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1 Problem description and history

The permanent of an n× n non-negative matrix A = (a(i, j)) is defined as

per(A) =
∑

π

∏

i

a(i, π(i)),

where the sum is over all permutations π of {1, 2, . . . , n}. When A is a
0,1 matrix, we can view it as the adjacency matrix of a bipartite graph
GA = (V1, V2, E). It is clear that the permanent of A is then equal to the
number of perfect matchings in GA.

The evaluation of the permanent has attracted the attention of researchers
for almost two centuries, beginning with the memoirs of Binet and Cauchy
in 1812 (see [11] for a comprehensive history). Despite many attempts, an
efficient algorithm for general matrices remained elusive. Indeed, Ryser’s al-
gorithm [11] remains the most efficient for computing the permanent exactly,
even though it uses as many as Θ(n2n) arithmetic operations. A notable
breakthrough was achieved about 40 years ago with Kasteleyn’s algorithm
for counting perfect matchings in planar graphs [9], that uses just O(n3)
arithmetic operations.

This lack of progress was explained in 1979 by Valiant [13], who proved
that exact computation of the permanent is #P-complete, and hence (under
standard complexity-theoretic assumptions) not possible in polynomial time.
Since then the focus has shifted to efficient approximation algorithms with
precise performance guarantees. Essentially the best one can wish for is a
fully-polynomial randomized approximation scheme (fpras), which provides
an arbitrarily close approximation in time that depends only polynomially
on the input size and the desired error. (For precise definitions of this and
other notions, see the next section.)

Of the several approaches to designing an fpras that have been proposed,
perhaps the most promising was the “Markov chain Monte Carlo” approach.
This takes as its starting point the observation that the existence of an fpras
for the 0,1 permanent is computationally equivalent to the existence of a
polynomial time algorithm for sampling perfect matchings from a bipartite
graph (almost) uniformly at random [7].

Broder [3] proposed a Markov chain Monte Carlo method for sampling
perfect matchings. This was based on simulation of a Markov chain whose
state space consisted of all perfect and “near-perfect” matchings (i.e., match-
ings with two uncovered vertices, or “holes”) in the graph, and whose sta-
tionary distribution was uniform. This approach can be effective only when
the near-perfect matchings do not outnumber the perfect matchings by more
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than a polynomial factor. By analyzing the convergence rate of Broder’s
Markov chain, Jerrum and Sinclair [4] showed that the method works in
polynomial time whenever this condition is satisfied. This led to an fpras
for the permanent of several interesting classes of 0,1 matrices, including all
dense matrices and a.e. random matrix.

For the past decade, an fpras for the permanent of arbitrary 0,1 matrices
has resisted the efforts of researchers. There has been similarly little progress
on proving the converse conjecture, that the permanent is hard to approxi-
mate in the worst case. Attention has switched to two complementary ques-
tions: how quickly can the permanent be approximated within an arbitrary
close multiplicative factor; and what is the best approximation factor achiev-
able in polynomial time? Jerrum and Vazirani [8], building upon the work
of Jerrum and Sinclair, presented an approximation algorithm whose run-
ning time was exp(O(

√
n)), which though substantially better than Ryser’s

exact algorithm is still exponential time. In the complementary direction,
there are several polynomial time algorithms that achieve an approximation
factor of cn, for various constants c (see, e.g., [10, 2]). To date the best of
these is due to Barvinok [2], and gives c ∼ 1.31.

In this paper, we resolve the question of the existence of an fpras for
the permanent of a general 0,1 matrix (and indeed, of a general matrix with
non-negative entries) in the affirmative. Our algorithm is based on a refine-
ment of the Markov chain Monte Carlo method mentioned above. The key
ingredient is the weighting of near-perfect matchings in the stationary distri-
bution so as to take account of the positions of the holes. With this device,
it is possible to arrange that each hole pattern has equal aggregated weight,
and hence that the perfect matchings are not dominated too much. The
resulting Markov chain is a variant of Broder’s earlier one, with a Metropo-
lis rule that handles the weights. The analysis of the mixing time follows
the earlier argument of Jerrum and Sinclair [4], except that the presence
of the weights necessitates a combinatorially more delicate application of
the path-counting technology introduced in [4]. The computation of the
required hole weights presents an additional challenge which is handled by
starting with the complete graph (in which everything is trivial) and slowly
reducing the presence of matchings containing non-edges of G, computing
the required hole weights as this process evolves.

We conclude this introductory section with a statement of the main result
of the paper.

Theorem 1 There exists a fully-polynomial randomized approximation scheme
for the permanent of an arbitrary n×n matrix A with non-negative entries.
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The remainder of the paper is organized as follows. In section 2 we summa-
rize the necessary background concerning the connection between random
sampling and counting, and the Markov chain Monte Carlo method. In
section 3 we define the Markov chain we will use and present the overall
structure of the algorithm, including the computation of hole weights. In
section 4 we analyze the Markov chain and show that it is rapidly mixing;
this is the most technical section of the paper. Finally, in section 5 we show
how to extend the algorithm to handle matrices with arbitrary non-negative
entries, and in section 6 we observe some applications to constructing an
fpras for various other combinatorial enumeration problems. In the inter-
ests of clarity of exposition, we make no attempt to optimize the exponents
in our polynomial running times.

2 Random sampling and Markov chains

2.1 Random sampling

As stated in the Introduction, our goal is a fully-polynomial randomized
approximation scheme (fpras) for the permanent. This is a randomized al-
gorithm which, when given as input an n×n non-negative matrix A together
with an accuracy parameter ε ∈ (0, 1], outputs a number Z (a random vari-
able of the coins tossed by the algorithm) such that

Pr[(1 − ε)Z ≤ per(A) ≤ (1 + ε)Z] ≥ 3
4 ,

and runs in time polynomial in n and ε−1. The probability 3/4 can be in-
creased to 1−δ for any desired δ > 0 by outputting the median of O(log δ−1)
independent trials [7].

To construct an fpras, we will follow a well-trodden path via random
sampling. We focus on the 0,1 case; see section 5 for an extension to the
case of matrices with general non-negative entries. Recall that when A
is a 0,1 matrix, per(A) is equal to the number of perfect matchings in the
bipartite graph GA. Now it is well known—see for example [6]—that for this
and most other natural combinatorial counting problems, an fpras can be
built quite easily from an algorithm that generates the same combinatorial
objects, in this case perfect matchings, (almost) uniformly at random. It will
therefore be sufficient for us to construct a fully-polynomial almost uniform
sampler for perfect matchings, namely a randomized algorithm which, given
as inputs an n× n 0,1 matrix A and a bias parameter δ ∈ (0, 1], outputs a
random perfect matching in GA from a distribution U ′ that satisfies

dtv(U ′,U) ≤ δ,
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where U is the uniform distribution on perfect matchings of GA and dtv
denotes (total) variation distance.1 The algorithm is required to run in time
polynomial in n and log δ−1.

This paper will be devoted mainly to the construction of a fully-polynomial
almost uniform sampler for perfect matchings in an arbitrary bipartite graph.
The sampler will be based on simulation of a suitable Markov chain, whose
state space includes all perfect matchings in the graph GA and which con-
verges to a stationary distribution that is uniform over these matchings.

2.2 Markov chains

Consider a Markov chain with finite state space Ω and transition probabil-
ities P . The chain is irreducible if for every pair of states x, y ∈ Ω, there
exists a t > 0 such that P t(x, y) > 0 (i.e., all states communicate); it is
aperiodic if gcd{t : P t(x, y) > 0} = 1 for all x, y. It is well known from
the classical theory that an irreducible, aperiodic Markov chain converges
to a unique stationary distribution π over Ω, i.e., P t(x, y)→ π(y) as t→∞
for all y ∈ Ω, regardless of the initial state x. If there exists a probability
distribution π on Ω which satisfies the detailed balance conditions for all
M,M ′ ∈ Ω, i.e.,

π(M)P (M,M ′) = π(M ′)P (M ′,M) =: Q(M,M ′),

then the chain is said to be (time-)reversible and π is the stationary distri-
bution.

We are interested in the rate at which a Markov chain converges to its
stationary distribution. To this end, we define the mixing time as

τx(δ) = min{t : dtv(P t(x, ·), π) ≤ δ}.

When the Markov chain is used as a random sampler, the mixing time deter-
mines the number of simulation steps needed before a sample is produced.

In this paper, the state space Ω of the Markov chain will consist of
the perfect and “near-perfect” matchings (i.e., those that leave only two
uncovered vertices, or “holes”) in the bipartite graph GA with n+n vertices.
The stationary distribution π will be uniform over the perfect matchingsM,
and will assign probability π(M) ≥ 1/(4n2 + 1) to M. Thus we get an
almost uniform sampler for perfect matchings by iterating the following trial:
simulate the chain for τx(δ̂) steps (where δ̂ is a sufficiently small positive

1The total variation distance between two distributions µ, η on a finite set Ω is defined
as dtv(µ, η) = 1

2

�
x∈Ω

|µ(x) − η(x)| = maxS⊂Ω |µ(S) − η(S)|.
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set δ̂ ← δ/(12n2 + 3)
repeat T = d(6n2 + 2) ln(3/δ)e times:

simulate the Markov chain for τx(δ̂) steps
output the final state if it belongs to M and halt

output an arbitrary perfect matching if all trials fail

Figure 1: Obtaining an almost uniform sampler from the Markov chain.

number), starting from state x, and output the final state if it belongs
to M. The details are given in figure 1.

Lemma 2 The algorithm presented in figure 1 is an almost uniform sampler
for perfect matchings with bias parameter δ.

Proof. Let π̂ be the distribution of the final state of a single simulation
of the Markov chain; note that the length of simulation is chosen so that
dtv(π̂, π) ≤ δ̂. Let S ⊂M be an arbitrary set of perfect matchings, and let
M ∈M be the perfect matching that is eventually output (M is a random
variable depending on the random choices made by the algorithm). Denoting
by M = Ω \M the complement of M, the result follows from the chain of
inequalities:

Pr(M ∈ S) ≥ π̂(S)

π̂(M)
− π̂(M)T

≥ π(S)− δ̂

π(M) + δ̂
− exp(−π̂(M)T )

≥ π(S)

π(M)
− 2δ̂

π(M)
− exp(−(π(M) − δ̂)T )

≥ π(S)

π(M)
− 2δ

3
− δ

3
.

A matching bound Pr(M ∈ S) ≤ π(S)/π(M) + δ follows immediately by
considering the complementary set M \ S. (Note that the total variation
distance dtv(µ, η) between distributions µ and η may be interpreted as the
maximum of |µ(S)− η(S)| over all events S.)

The running time of the random sampler is determined by the mixing
time of the Markov chain. We will derive an upper bound on τx(δ) as
a function of n and δ. To satisfy the requirements of a fully-polynomial
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sampler, this bound must be polynomial in n. (The logarithmic dependence
on δ−1 is an automatic consequence of the geometric convergence of the
chain.) Accordingly, we shall call the Markov chain rapidly mixing (from
initial state x) if, for any fixed δ > 0, τx(δ) is bounded above by a polynomial
function of n. Note that in general the size of Ω will be exponential in n, so
rapid mixing requires that the chain be close to stationarity after visiting
only a tiny (random) fraction of its state space.

In order to bound the mixing time we use the notion of conductance Φ,
defined as Φ = min∅⊂S⊂Ω Φ(S), where

Φ(S) =
Q(S,S)

π(S)π(S)
≡

∑

x∈S

∑

y∈S Q(x, y)

π(S)π(S)
.

The following bound relating conductance and mixing time is well known
(see, e.g., [4]).

Theorem 3 For an ergodic, reversible Markov chain with self-loop proba-
bilities P (y, y) ≥ 1/2 for all states y, and any initial state x ∈ Ω,

τx(δ) ≤ 2

Φ2

(

lnπ(x)−1 + ln δ−1
)

.

Thus to prove rapid mixing it suffices to demonstrate a lower bound of
the form 1/poly(n) on the conductance of our Markov chain on matchings.
(The term lnπ(x)−1 will not cause a problem since the total number of states
will be at most (n+1)!, and we will start in a state x that maximizes π(x).)

3 The sampling algorithm

As explained in the previous section, our goal now is to design an efficient
(almost) uniform sampling algorithm for perfect matchings in a bipartite
graph G = GA. This will immediately yield an fpras for the permanent
of an arbitrary 0,1 matrix, and hence most of the content of Theorem 1.
The extension to matrices with arbitrary non-negative entries is described
in section 5.

Let G = (V1, V2, E) be a bipartite graph on n + n vertices. The basis
of our algorithm is a Markov chain MC defined on the collection of perfect
and near-perfect matchings of G. LetM denote the set of perfect matchings
in G, and let M(y, z) denote the set of near-perfect matchings with holes
only at the vertices y ∈ V1 and z ∈ V2. The state space of MC is Ω :=
M ∪ ⋃

y,zM(y, z). Previous work [3, 4] considered a Markov chain with
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Figure 2: A graph with |M(u, v)|/|M| exponentially large.

the same state space Ω and transition probabilities designed so that the
stationary distribution was uniform over Ω, or assigned slightly higher weight
to each perfect matching than to each near-perfect matching. Rapid mixing
of this chain immediately yields an efficient sampling algorithm provided
perfect matchings have sufficiently large weight; specifically, |M|/|Ω| must
be bounded below by a polynomial in n. In [4] it was proved that this
condition — rather surprisingly — also implies that the Markov chain is
rapidly mixing. This led to an fpras for the permanent of any 0,1 matrix
satisfying the above condition, including all dense matrices (having at least
n/2 1’s in each row and column), and a.e. random matrix.

It is not hard to construct graphs in which the ratio |M(u, v)|/|M|
is exponentially large for some pair of holes u, v. The graph depicted in
figure 2, for example, has one perfect matching, but 2k matchings with holes
at u and v. For such graphs, the above approach breaks down because the
perfect matchings have insufficient weight in the stationary distribution. To
overcome this problem, we will introduce an additional weight factor that
takes account of the holes in near-perfect matchings. We will define these
weights in such a way that any hole pattern (including that with no holes,
i.e., perfect matchings) is equally likely in the stationary distribution. Since
there are only n2 + 1 such patterns, π will assign Ω(1/n2) weight to perfect
matchings.

It will actually prove technically convenient to introduce edge weights
also. Thus for each edge (y, z) ∈ E, we introduce a positive weight λ(y, z),
which we call its activity. We extend the notion of activities to match-
ings M (of any cardinality) by λ(M) =

∏

(i,j)∈M λ(i, j). Similarly, for a

set of matchings S we define λ(S) =
∑

M∈S λ(M).2 For our purposes, the
advantage of edge weights is that they allow us to work with the complete
graph on n+n vertices, rather than with an arbitrary graph G = (V1, V2, E):
we can do this by setting λ(e) = 1 for e ∈ E, and λ(e) = ξ ≈ 0 for e /∈ E.
Taking ξ ≤ 1/n! ensures that the “bogus” matchings have little effect, as

2Note that if we set λ(y, z) = a(y, z) for every edge (y, z), then per(A) is exactly equal
to λ(M). Thus our definition is natural.
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will be described shortly.
We are now ready to specify the desired stationary distribution of our

Markov chain. This will be the distribution π over Ω defined by π(M) ∝
Λ(M), where

Λ(M) =

{

λ(M)w(u, v) if M ∈M(u, v) for some u, v;
λ(M) if M ∈M,

and w : V1×V2 → � + is the weight function for holes to be specified shortly.
To construct a Markov chain having π as its stationary distribution, we

use the original chain of [3, 4] augmented with a Metropolis acceptance rule
for the transitions. Thus transitions from a matching M are defined as
follows:

1. Choose an edge e = (u, v) uniformly at random.

2. (i) If M ∈M and e ∈M , let M ′ = M \ {e} ∈ M(u, v);

(ii) if M ∈M(u, v), let M ′ = M ∪ {e} ∈ M;

(iii) if M ∈M(u, z) where z 6= v and (y, v) ∈M , let M ′ = M ∪ {e} \
{(y, v)} ∈ M(y, z);

(iv) if M ∈M(y, v) where y 6= u and (u, z) ∈M , let M ′ = M ∪ {e} \
{(u, z)} ∈ M(y, z).

3. With probability min{1,Λ(M ′)/Λ(M)} go to M ′; otherwise, stay at M .

The Metropolis rule in the final step ensures that this Markov chain is
reversible with π(M) ∝ Λ(M) as its stationary distribution. Finally, to
satisfy the conditions of Theorem 3 we add a self-loop probability of 1/2 to
every state; i.e., on every step, with probability 1/2 we make a transition as
above and otherwise do nothing.

Next we need to specify the weight function w. Ideally we would like to
take w = w∗, where

w∗(u, v) =
λ(M)

λ(M(u, v))
(1)

for each pair of holes u, v with M(u, v) 6= ∅. (We leave w(u, v) undefined
whenM(u, v) = ∅.) With this choice of weights, any hole pattern (including
that with no holes) is equally likely under the distribution π; since there
are n2 + 1 such patterns, when sampling from the distribution π a perfect
matching is generated with probability 1/(n2 +1). In the event, we will not
know w∗ exactly but will content ourselves with weights w satisfying

w∗(y, z)/2 ≤ w(y, z) ≤ 2w∗(y, z), (2)
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with very high probability. This perturbation will reduce the relative weight
of perfect matchings by at most a constant factor.

The main technical result of this paper is the following theorem, which
says that, provided the weight function w satisfies condition (2), the Markov
chain is rapidly mixing. We present the theorem as it applies to an arbitrary
bipartite graph, hence let m = |E|. Since we are working with the complete
bipartite graph, for our purposes m = n2.

Theorem 4 Assuming the weight function w satisfies inequality (2) for all
(y, z) ∈ V1 × V2, then the mixing time of the Markov chain MC is bounded
above by τ(δ) = O(m6n8(n log n + log δ−1)), provided the initial state is a
perfect matching of maximum activity.

Finally we need to address the issue of computing (approximations to)
the weights w∗ defined in (1). Since w∗ encapsulates detailed information
about the set of perfect and near-perfect matchings, we cannot expect to
compute it directly. Rather than attempt this, we instead initialize the edge
activities λ(e) to trivial values, for which the corresponding w∗ can be com-
puted easily, and then gradually adjust the λ(e) towards their desired values;
at each step of this process, we will be able to compute (approximations to)
the weights w∗ corresponding to the new activities.

As indicated earlier, it will be convenient to work with the complete
graph on n + n vertices, and to think of non-edges e /∈ E as having a
very small activity of 1/n!. Since the weight of an invalid matching (i.e.,
one that includes a non-edge) is at most 1/n! and there are at most n!
possible matchings, the combined weight of all invalid matchings is at most 1.
Assuming the graph has at least one perfect matching, the invalid matchings
merely increase by at most a small constant factor the probability that
a single simulation fails to return a perfect matching. Thus our “target”
activities are λ∗(e) = 1 for all e ∈ E, and λ∗(e) = 1/n! for all other e.

As noted above, our algorithm begins with activities λ whose ideal
weights w∗ are easy to compute. Since we are working with the com-
plete graph, a natural choice is to take λ as the constant function 1. We
converge to the target activities λ∗ in a sequence of phases, in each of
which the activity λ(e) of some chosen edge e is updated to λ′(e), where
exp(−1/2)λ(e) ≤ λ′(e) ≤ exp(1/2)λ(e).

We assume at the beginning of the phase that condition (2) is satisfied;
in other words, w(u, v) approximates w∗(u, v) within ratio 2 for all pairs
(u, v).3 Before updating an activity, we must consolidate our position by

3We say that ξ approximates x within ratio r if r−1x ≤ ξ ≤ rx.
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finding, for each pair (u, v), a better approximation to w∗(u, v): one that is
within ratio c for some 1 < c < 2. (We shall see later that c = 6/5 suffices
here.) For this purpose we may use the identity

w(u, v)

w∗(u, v)
=

π(M(u, v))

π(M)
, (3)

since w(u, v) is known to us, and the probabilities on the right hand side
may be estimated to arbitrary precision by taking sample averages. (Recall
that π denotes the stationary distribution of the Markov chain.)

Although we do not know how to sample from π exactly, Theorem 4
does allow us to sample, in polynomial time, from a distribution π̂ that is
within variation distance δ̂ of π. (We shall set δ̂ appropriately presently.)
So suppose we generate S samples from π̂, and for each pair (u, v) ∈ V1×V2

we consider the proportion α(u, v) of samples with hole pair u, v, together
with the proportion α of samples that are perfect matchings. Clearly,

�
α(u, v) = π̂(M(u, v)) and

�
α = π̂(M). (4)

Naturally, it is always possible that some sample average α(u, v) will be
far from its expectation, so we have to allow for the possibility of fail-
ure. We denote by ε the (small) failure probability we are prepared to
tolerate. Provided the sample size S is large enough, α(u, v) (respectively

α) approximates π̂(M(u, v)) (respectively π̂(M)) within ratio c1/4, with

probability at least 1 − ε. Furthermore, if δ̂ is small enough, π̂(M(u, v))
(respectively π̂(M)) approximates π(M(u, v)) (respectively π(M)) within

ratio c1/4. Then via (3) we have, with probability at least 1 − (n2 + 1)ε,
approximations within ratio c to all of the target weights w∗(i, j).

It remains to determine bounds on the sample size S and sampling tol-
erance δ̂ that make this all work. Condition (2) entails

�
[α(u, v)] = π̂(M(u, v)) ≥ π(M(u, v)) − δ̂ ≥ 1/4(n2 + 1)− δ̂.

Assuming δ̂ ≤ 1/8(n2 + 1), it follows from a standard Chernoff bound (see,
e.g., [1] or [12, Thm. 4.1]), that just O(n2 log ε−1) samples from π̂ suffice

to estimate
�

α(u, v) = π̂(M(u, v)) within ratio c1/4 with probability at
least 1 − ε. Again using the fact that π(M(u, v)) ≥ 1/4(n2 + 1), we see

that π̂(M(u, v)) will approximate π(M(u, v)) within ratio c1/4 provided

δ̂ = c1/n
2 where c1 > 0 is a sufficiently small constant. (Note that we

also satisfy the earlier constraint on δ̂ by this setting.) Therefore, taking
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initialize λ(e)← 1 for all e ∈ V1 × V2

initialize w(u, v)← n for all (u, v) ∈ V1 × V2

while ∃e /∈ E with λ(e) > 1/n! do
take S samples from MC with parameters λ,w,

each after a simulation of T steps
use the sample to obtain estimates w′(u, v) satisfying

condition (5) with high probability ∀u, v
set λ(e)← λ(e) exp(−1/2) and w(u, v) ← w′(u, v) ∀u, v

output final weights w(u, v)

Figure 3: The algorithm.

c = 6/5 and using O(n2 log ε−1) samples, we obtain refined estimates w(u, v)
satisfying

5w∗(u, v)/6 ≤ w(u, v) ≤ 6w∗(u, v)/5 (5)

with probability 1− (n2 + 1)ε. Plugging δ = δ̂ into Theorem 4, the time to
generate each sample is T = O(n21 log n).

We can then update the activity of an edge e by changing λ(e) by a
multiplicative factor of exp(−1/2). Note that the effect of this change on
the ideal weight function w∗ is at most a factor exp(1/2). Thus, since
6 exp(1/2)/5 < 2, our estimates w obeying (5) actually satisfy the weaker
condition (2) for the new activities as well, so we can proceed with the next
phase. The algorithm is sketched in figure 3.

Starting from the trivial values λ(e) = 1 for all edges e of the complete
bipartite graph, we use the above procedure repeatedly to reduce the activity
of each non-edge e /∈ E down to 1/n!, leaving the activities of all edges e ∈ E
at unity. This requires O(n3 log n) phases, and each phase requires S =
O(n2 log ε−1) samples. We have seen that the number of simulation steps
to generate a sample is T = O(n21 log n). Thus the overall time required
to initialise the weights to appropriate values for the target activities λ∗ is
O(n26(log n)2 log ε−1).

Suppose our aim is to generate one perfect matching from a distribu-
tion that is within variation distance δ of uniform. Then we need to set ε
so that the overall failure probability is strictly less than δ, say δ/2. The
probability of violating condition (5) in any phase is at most O(εn5 log n),
since there are O(n5 log n) values to be estimated, and we can fail in any
individual case with probability ε. So for adequate reliability we must take
ε = c2δ/n

5 log n. The running time of the entire algorithm of figure 3 is thus
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O(n26(log n)2(log n + log δ−1)). By Theorem 4, the (expected) additional
time required to generate the sample is O(n22(n log n + log δ−1)), which is
negligible in comparison with the initialisation procedure. (The extra fac-
tor n2 represents the expected number of samples before a perfect matching
is seen.)

At the conclusion of this algorithm we have a good approximation to
the ideal weights w∗ for our desired activities λ∗. We can then simply simu-
late the Markov chain with these parameters to generate perfect matchings
uniformly at random at an (expected) cost of O(n22(n log n + log δ−1)) per
sample, where δ is the permitted deviation from uniformity.

4 Analysis of the Markov chain

We bound the conductance by defining canonical paths γI,F from all I ∈ Ω to
all F ∈M. By upper bounding the maximum number of paths through any
particular transition we will obtain a lower bound on the conductance. Using
the fact that perfect matchings are likely under the stationary distribution,
it will be sufficient to only consider a portion of particular canonical paths.
Denote the set of all canonical paths by Γ = {γI,F : (I, F ) ∈ Ω × M}.
Certain transitions on a canonical path will be deemed chargeable. For each
transition t denote by

cp(t) = {(I, F ) : γI,F contains t as a chargeable transition}.

The canonical paths are defined by superimposing I and F . If I ∈ M,
then I⊕F consists of a collection of alternating cycles. We assume that the
cycles are ordered in some canonical fashion; for example, having ordered
the vertices, we may take as the first cycle the one that contains the least
vertex in the order, as the second cycle the one that contains the least vertex
amongst those remaining, and so on. Furthermore we assume that each cycle
has a distinguished start vertex (e.g., the least in the order).

The canonical path γI,F from I ∈ M to F is obtained by unwinding
these cycles in the canonical order. A cycle v0 ∼ v1 ∼ . . . ∼ v2k = v0,
where we assume w.l.o.g. that the edge (v0, v1) belongs to I, is unwound
by: (i) removing the edge (v0, v1), (ii) successively, for each 1 ≤ i ≤ k −
1, exchanging the edge (v2i, v2i+1) with (v2i−1, v2i), and (iii) adding the
edge (v2k−1, v2k). (Refer to figure 4.) All transitions on the path γI,F are
deemed chargeable. A canonical path joining two perfect matchings, as just
described, will be termed “type A.”
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Figure 4: Unwinding a cycle with k = 4.

If I ∈ M(y, z) for some (y, z) ∈ V1 × V2, then I ⊕ F consists of a
collection of alternating cycles together with a single alternating path from
y to z. The canonical path γI,F from I to F is obtained by unwinding
the path and then unwinding the cycles in some canonical order. In this
case, only the transitions involved in the unwinding of the path are deemed
chargeable. The alternating path y = v0 ∼ . . . ∼ v2k+1 = z is unwound
by: (i) successively, for each 1 ≤ i ≤ k, exchanging the edge (v2i−1, v2i) with
(v2i−2, v2i−1), and (ii) adding the edge (v2k, v2k+1). A canonical path joining
a near-perfect to a perfect matching will be termed “type B.”

We define a notion of congestion of Γ that accounts only for the charge-
able transitions:

%(Γ) := max
t∈T

{

1

Q(t)

∑

(I,F )∈cp(t)

π(I)π(F )

}

. (6)

Our main task will be to derive an upper bound on %(Γ), which we state
in the next lemma. From this, it will be a straightforward matter to obtain
a lower bound on the conductance Φ (see Lemma 8 below) and hence, via
Theorem 3, a bound on the mixing time. In the following lemma recall that
m = |E|, where for our purposes m = n2.

Lemma 5 Assuming the weight function w satisfies inequality (2) for all
(y, z) ∈ V1 × V2, then %(Γ) ≤ 16m.

In preparation for proving Lemma 5, we establish some combinatorial
inequalities concerning weighted near-perfect matchings that will be used in
the proof.

Lemma 6 Let G be as above, and let u, y ∈ V1, v, z ∈ V2.

(i) λ(u, v)λ(M(u, v)) ≤ λ(M), for all vertices u, v with u ∼ v;
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(ii) λ(u, v)λ(M(u, z))λ(M(y, v)) ≤ λ(M)λ(M(y, z)), for all distinct ver-
tices u, v, y, z with u ∼ v.

Proof. The mapping from M(u, v) to M defined by M 7→ M ∪ {(u, v)}
is injective, and preserves activities modulo a factor λ(u, v); this dispenses
with (i). For (ii), suppose Mu,z ∈M(u, z) and My,v ∈M(y, v), and consider
the superposition of Mu,z, My,v and the single edge (u, v). Observe that
Mu,z ⊕My,v ⊕ {(u, v)} decomposes into a collection of cycles together with
an odd-length path O joining y and z.4 Let O = {e0, e1, . . . , e2k} be an
enumeration of the edges of this path, starting at y and working towards z.
Denote by O0 the k + 1 even edges, and by O1 the k odd edges. Finally
define a mapping fromM(u, z)×M(y, v) toM×M(y, z) by (Mu,z,My,v) 7→
(M,My,z), where M := Mu,z∪O0\O1 and My,z := My,v∪O1\O0. Note that
this mapping is injective, since we may uniquely recover (Mu,z,My,v) from
(M,My,z). (To see this, observe that M ⊕My,z decomposes into a number
of cycles, together with a single odd-length path joining y and z. This path
is exactly the path O considered in the forward map. There is only one way
to apportion edges from O \ {(u, v)} between Mu,z and My,v.) Moreover,
the mapping preserves activities modulo a factor λ(u, v).

Corollary 7 Let G be as above, and let u, y ∈ V1, v, z ∈ V2. Then, provided
in each case that the left hand side of the inequality is defined,

(i) w∗(u, v) ≥ λ(u, v), for all vertices u, v with u ∼ v;

(ii) w∗(u, z)w∗(y, v) ≥ λ(u, v)w∗(y, z), for all distinct vertices u, v, y, z
with u ∼ v;

(iii) w∗(u, z)w∗(y, v) ≥ λ(u, v)λ(y, z), for all distinct vertices u, v, y, z with
u ∼ v and y ∼ z.

Proof. Inequalities (i) and (ii) follow from the correspondingly labelled in-
equalities in Lemma 6, and the definition of w∗. Inequality (iii) is implied
by (i) and (ii).

Armed with Corollary 7, we can now turn to the proof of our main
lemma.

4It is at this point that we rely crucially on the bipartiteness of G. If G is non-bipartite,
we may end up with an even-length path and an odd-length cycle, and the proof cannot
proceed.



15

q

q q

q

q

qq

q

q

q q

q

q

qq

q

q

q q

q

q

qq

q

q

q q

q

q

qq

q

q

q q

q

q q

qq

@@

@@ ��

@@��

@@

��@@

��

F η(M,M ′)(I, F )I

→∗ → →∗

M ′M

Figure 5: A canonical path through transition M →M ′ and its encoding.

Proof of Lemma 5. Note from the Metropolis rule that for any pair of states
M,M ′ such that the probability of transition from M to M ′ is non-zero,
we have Q(M,M ′) = min{π(M), π(M ′)}/2m. We will show that for any
transition t = (M,M ′) and any pair of states I, F ∈ cp(t), we can define an
encoding ηt(I, F ) ∈ Ω such that ηt : cp(t) → Ω is an injection (i.e., (I, F )
can be recovered uniquely from ηt(I, F )), and

π(I)π(F ) ≤ 8min{π(M), π(M ′)}π(ηt(I, F )) = 16mQ(t)π(ηt(I, F )). (7)

Summing inequality (7) over (I, F ) ∈ cp(t), we get

1

Q(t)

∑

(I,F )∈cp(t)

π(I)π(F ) ≤ 16m
∑

(I,F )∈cp(t)

π(ηt(I, F )) ≤ 16m,

where we have used the fact that ηt is an injection. This immediately yields
the claimed bound on %(Γ).

We now proceed to define the encoding ηt and show that it has the above
properties. For a transition t = (M,M ′) which is involved in stage (ii) of
unwinding a cycle, the encoding is

ηt(I, F ) = I ⊕ F ⊕ (M ∪M ′) \ {(v0, v1)}.

(Refer to figure 5, where just a single alternating cycle is viewed in isolation.)
Otherwise, the encoding is

ηt(I, F ) = I ⊕ F ⊕ (M ∪M ′).

It is not hard to check that C = ηt(I, F ) is always a matching in Ω (this is the
reason that the edge (v0, v1) is removed in the first case above), and that ηt is
an injection. To see this for the first case, note that I⊕F may be recovered
from the identity I ⊕ F = (C ∪ {(v0, v1)})⊕ (M ∪M ′); the apportioning of
edges between I and F can then be deduced from the canonical ordering of
the cycles and the position of the transition t. The remaining edges, namely
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those in the intersection I ∩F , are determined by I ∩F = M ∩M ′∩C. The
second case is similar, but without the need to reinstate the edge (v0, v1).

5

It therefore remains only to verify inequality (7) for our encoding ηt.
Consider first the case where I ∈ M and t = (M,M ′) is the initial

transition in the unwinding of an alternating cycle in a type A canonical
path, where M = M ′∪{(v0, v1)}. Since I, F, C,M ∈M and M ′ ∈M(v0, v1),
inequality (7) simplifies to

λ(I)λ(F ) ≤ 8min{λ(M), λ(M ′)w(v0, v1)}λ(C).

The inequality in this form can be seen to follow from the identity

λ(I)λ(F ) = λ(M)λ(C) = λ(M ′)λ(v0, v1)λ(C),

using of inequality (i) of Corollary 7, and inequality (2). The situation is
symmetric for the final transition in unwinding an alternating cycle.

Staying with the type A path, i.e., with the case I ∈ M, suppose the
transition t = (M,M ′) is traversed in stage (ii) of unwinding an alternating
cycle, i.e., exchanging edge (v2i, v2i+1) with (v2i−1, v2i). In this case we have
I, F ∈ M while M ∈ M(v0, v2i−1),M

′ ∈ M(v0, v2i+1) and C ∈ M(v2i, v1).
Since

λ(I)λ(F ) = λ(M)λ(C)λ(v2i, v2i−1)λ(v0, v1)

= λ(M ′)λ(C)λ(v2i, v2i+1)λ(v0, v1),

inequality (7) simplifies to

1 ≤ 8min

{

w(v0, v2i−1)

λ(v2i, v2i−1)
,
w(v0, v2i+1)

λ(v2i, v2i+1)

}

w(v2i, v1)

λ(v0, v1)
.

This inequality can be verified by reference to Corollary 7: specifically, it
follows from inequality (iii) in the general case i 6= 1, and by two applications
of inequality (i) in the special case i = 1.

We now turn to the type B canonical paths. Suppose I ∈ M(y, z), and
consider a transition t = (M,M ′) from stage (i) of the unwinding of an
alternating path, i.e., exchanging edge (v2i, v2i−1) with (v2i−2, v2i−1). Ob-
serve that F ∈ M,M ∈ M(v2i−2, z),M ′ ∈ M(v2i, z) and C ∈ M(y, v2i−1).

5We have implicitly assumed here that we know whether it is a path or a cycle that is
currently being processed. In fact, it is not automatic that we can distinguish these two
possibilities just by looking at M , M ′ and C. However, by choosing the start points for
cycles and paths carefully, the two cases can be disambiguated: just chose the start point
of cycles first, and then use the freedom in the choice of endpoint of the path to avoid the
potential ambiguity.
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Moreover, λ(I)λ(F ) = λ(M)λ(C)λ(v2i−2, v2i−1) = λ(M ′)λ(C)λ(v2i, v2i−1).
In inequality (7) we are left with

w(y, z) ≤ 8min

{

w(v2i−2, z)

λ(v2i−2, v2i−1)
,

w(v2i, z)

λ(v2i, v2i−1)

}

w(y, v2i−1),

which holds by inequality (ii) of Corollary 7. Note that the factor 8 = 23 is
determined by this case, since we need to apply inequality (2) three times.

The final case is the last transition t = (M,M ′) in unwinding an alter-
nating path, where M ′ = M ∪ (z′, z). Note that I, C ∈ M(y, z), F,M ′ ∈
M,M ∈ M(z′, z) and λ(I)λ(F ) = λ(M ′)λ(C) = λ(M)λ(z′, z)λ(C). (Here
we have written z′ for v2k.) Plugging these into inequality (7) leaves us with

1 ≤ 8min

{

w(z′, z)

λ(z′, z)
, 1

}

,

which follows from inequality (i) of Corollary 7.
We have thus shown that the encoding ηt satisfies inequality (7) in all

cases. This completes the proof of the lemma.

Based on the upper bound on congestion, we can derive the following
lower bound on the conductance.

Corollary 8 Assuming the weight function w satisfies inequality (2) for all
(y, z) ∈ V1 × V2, then Φ ≥ 1/100%3n4 ≥ 1/106m3n4.

Proof. Set α = 1/10%n2. Let S,S be a partition of the state-space. (Note
that we do not assume that π(S) ≤ π(S).) We distinguish two cases, depend-
ing on whether or not the perfect matchingsM are fairly evenly distributed
between S and S. If the distribution is fairly even, then we can show Φ(S)
is large by considering type A canonical paths, and otherwise by using the
type B paths.

Case I. π(S ∩M)/π(S) ≥ α and π(S ∩ M)/π(S) ≥ α. Just looking at
canonical paths of type A we have a total flow of π(S ∩ M)π(S ∩
M) ≥ α2π(S)π(S) across the cut. Thus %Q(S,S) ≥ α2π(S)π(S), and
Φ(S) ≥ α2/% = 1/100%3n4.

Case II. Otherwise (say) π(M ∩ S)/π(S) < α. Note the following esti-
mates:

π(M) ≥ 1

4n2 + 1
≥ 1

5n2
;

π(S ∩M) < απ(S) < α;

π(S \M) = π(S)− π(S ∩M) > (1− α)π(S).
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initialize λ(e)← amax for all e ∈ V1 × V2

initialize w(u, v) ← namax for all (u, v) ∈ V1 × V2

while ∃e with λ(e) > a(e) do
take S samples from MC with parameters λ,w,

each after a simulation of T steps
use the sample to obtain estimates w′(u, v) satisfying

condition (5) with high probability ∀u, v
set λ(e)← max{λ(e) exp(−1/2), a(e)} and w(u, v) ← w ′(u, v) ∀u, v

output final weights w(u, v)

Figure 6: The algorithm for non-negative entries.

Consider the cut S \M : S ∪M. The weight of canonical paths (all
chargeable as they cross the cut) is π(S\M)π(M) ≥ (1−α)π(S)/5n2 ≥
π(S)/6n2. Hence %Q(S\M,S∪M) ≥ π(S)/6n2. Noting Q(S\M,S∩
M) ≤ π(S ∩M) ≤ απ(S) we have

Q(S,S) ≥ Q(S \M,S)

= Q(S \M,S ∪M)−Q(S \M,S ∩M)

≥ (1/6%n2 − α)π(S)

≥ π(S)/15%n2

≥ π(S)π(S)/15%n2.

Rearranging, Φ(S) = Q(S,S)/π(S)π(S) ≥ 1/15%n2.

Clearly, it is Case I that dominates, giving the claimed bound on Φ.

Our main result, Theorem 4 of the previous section, now follows imme-
diately.

Proof of Theorem 4. The condition on the starting state ensures log(π(X0)
−1) =

O(n log n), where X0 in the initial state. The lemma now follows from Corol-
lary 8 and Theorem 3.

5 Arbitrary weights

Our algorithm easily extends to compute the permanent of a matrix A with
non-negative entries. Let amax = maxi,j a(i, j) and amin = mini,j a(i, j).
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Assuming per(A) > 0, then it is clear that per(A) ≥ (amin)
n. Rounding zero

entries a(i, j) to (amin)n/n!, the algorithm follows as described in figure 6.
The running time of this algorithm is polynomial in n and log(amax/amin).

For completeness, we provide a strongly polynomial time algorithm, i.e., one
whose running time is polynomial in n and independent of amax and amin,
assuming arithmetic operations are treated as unit cost. The algorithm of
Linial, Samorodnitsky and Wigderson [10] converts, in strongly polynomial
time, the original matrix A into a nearly doubly stochastic matrix B such
that 1 ≥ per(B) ≥ exp(−n − o(n)) and per(B) = α per(A) where α is an
easily computable function. Thus it suffices to consider the computation of
per(B). In which case we can afford to round up any entries smaller than
say n−2n to n−2n. The analysis for the 0,1-case now applies with the same
running time.

6 Other applications

Theorem 1 along with the reduction described in [5] immediately imply the
following corollary.

Corollary 9 For an arbitrary bipartite graph G, there exists an fpras for
computing the number of labelled subgraphs of G with a specified degree se-
quence.

Consider a directed graph
−→
G = (

−→
V ,
−→
E ), where the in-degree (out-degree,

respectively) of a vertex v ∈ −→V is denoted by d−(v) (d+(v)). A 0,1-flow is

defined as a subset of edges
−→
E′ ⊂ −→E such that in the resulting subgraph

(
−→
V ,
−→
E′), d−(v) = d+(v) for all v ∈ −→V . Counting the number 0,1 flows is

reducible to computing the 0,1 permanent of an undirected bipartite graph
G = (V,E) as follows.

The graph G = (V,E) consists of:

V =

{

hi,j ,mi,j, ti,j for all −−→vivj ∈ −→E ,

u1
i , . . . , u

d−(vi)
i for all vi ∈ −→V

}

,

E =







(hi,j,mi,j), (mi,j , ti,j) for all −−→vivj ∈ −→E ,

(uk
i , hi,j) for all i, j, k where uk

i , hi,j ∈ −→V ,

(uk
i , tj,i) for all i, j, k where uk

i , tj,i ∈
−→
V







A 0, 1-flow
−→
E′ is mapped to a perfect matching M in the following man-

ner. For each −−→vivj ∈
−→
E′ add the edge (hi,j ,mi,j) to M , while for each
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−−→vivj ∈ −→E \
−→
E′ add the edge (mi,j, ti,j) to M . Now for vi ∈ −→V , observe that

the set of vertices {hi,j}j ∪ {tj′,i}j′ , consists of exactly d−(vi) unmatched
vertices. There are d−(vi)! ways of pairing these unmatched vertices with
the set of vertices {uk

i }k. Thus the flow E ′ corresponds to
∏

v∈
−→
V

d−(v)!

perfect matchings of G, and it is clear that the mapping is a bijection. This
implies the following corollary.

Corollary 10 For an arbitrary directed graph
−→
G , there exists an fpras for

counting the number of 0,1 flows.

Suppose the directed graph
−→
G has a fixed source s and sink t. After

adding a simple gadget from t to s we can estimate the number of maximum
0, 1 flows from s to t by estimating the number of 0, 1 flows in the resulting
graph.
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