Electronic Collogquium on Computational Complexity, Report No. 80 (2000) b rar

Perfect Code is W[1]-complete

Marco Cesati

Department of Computer Science, Systems,
and Industrial Engineering
University of Rome “Tor Vergata”
via di Tor Vergata 110, I-00133 Rome, Italy
cesati@Ouniroma2.it

July 20, 2000

Abstract

We show that the parameterized problem PERFECT CODE belongs to W[1]. This
result closes an old open question, because it was often conjectured that PERFECT CODE
could be a natural problem having complexity degree intermediate between W[1] and
W/[2]. This result also shows W[1]-membership of the parameterized problem WEIGHTED
ExAacT CNF SATISFIABILITY.

1 Introduction

Parameterized Complexity [7] has been introduced by Downey and Fellows about ten
years ago. It is a powerful framework with which to address the different “parameterized
behavior” of many computational problems. Almost all natural problems have instances
consisting of at least two logical items; many NP-complete problems admit “efficient”
algorithms for small values of one item (the parameter).

A parameterized problem is said to be fized parameter tractable if it admits a solving
algorithm whose running time on instance (z,k) is bounded by f(k) - |z|*, where f is an
arbitrary function and « is a constant not depending on the parameter k. The class of
fixed parameter tractable problems is denoted by FPT.

In order to characterize those problems that do not seem to admit a fixed parameter
efficient algorithm, Downey and Fellows defined a fized parameter reduction: a parameter-
ized problem A reduces to a parameterized problem B if there is an FPT algorithm that
transforms an instance (z, k) of A into an instance (z', k") of B, such that (1) k¥’ depends
only on k, and (2) (z,k) € A if and only if («/, k') € B.

Furthermore, a hierarchy of classes W[1] C W[2] C ... including likely fixed parameter
intractable problems has been defined. Each W-class is the closure under fixed parameter

ISSN 1433-8092

reductions with respect to a kernel problem, which is usually formulated in terms of special
mixed-type boolean circuits. For details, refer to [7].

Many natural parameterized problems have been proved to be complete for the first
two levels W[1] and W[2]. Although W[1l]-complete problems are not fixed parameter
tractable (unless W[1] = FPT, which is very unlikely), they appear to be easier than
W]2]-complete problems. Essentially, candidate solutions for W[1]-complete problems
(like INDEPENDENT SET [4, 7]) can be verified using constant-depth boolean circuits
having just one level of gates with unbounded fan-in, while solutions for W[2]-complete
problems (like DOMINATING SET [3, 7]) do not.

The parameterized complexity of a problem complete for a W-class is precisely deter-
mined. However, many problems have been shown to be hard for some level and belonging
to a higher level in the hierarchy. Although we can safely assume that these problems are
not fixed parameter tractable, it seems that we still lack some information about their
complexity. Directly citing from Downey and Fellows’s book [7, page 487]:

[...] we find that there are many annoying gaps between hardness and
membership results. For example, there is the PERFECT CODE problem that
is hard for W[1] and a member of W[2]. It is very annoying not to know
exactly where to put it. We conjecture that it either represents a natural degree
intermediate between W[1| and W[2], or is complete for W[2]. In any case, it
has resisted strenuous efforts to achieve a precise classification.

This paper solves the question of the precise degree of parameterized complexity of
the PERFECT CODE problem: we show that it belongs to W[1], and thus that it is W[1]-
complete. As a corollary, the WEIGHTED EXACT CNF SATISFIABILITY problem, which
is equivalent to PERFECT CODE, also belongs to W[1].

2 The Perfect Code problem

A perfect code in a graph G = (V, E) is a subset of vertices V' such that for each vertex v €
V, the subset V' includes exactly one element among v and all vertices adjacent to v.
Formally:

PERFECT CODE
Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Does G have a k-element perfect code? A perfect code is a set of
vertices V' C V with the property that for each vertex v € V there is precisely
one vertex in N[v] N V",

Downey and Fellows proved that the PERFECT CODE problem is W[1]-hard by means
of a reduction from INDEPENDENT SET [3]. Although PERFECT CODE may be easily
placed in W/[2] (see [3]), till now there was no evidence that it belongs to W[1]. Downey
and Fellows conjectured that the problem could be of difficulty intermediate between W/[1]
and W/[2], and thus not W[1]-complete ([7, pages 277 and 458])).

The following theorem represents the main result of this paper.
Theorem 1 The PERFECT CODE problem belongs to WI[1].

Proof. We show a parameterized reduction from PERFECT CODE to the following problem:

SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION

Instance: A singletape, singlehead nondeterministic Turing machine M ; a word
z on the input alphabet of M.

Parameter: A positive integer k.

Question: Is there a computation of M on input z that reaches a final accepting
state in at most k steps?

Since SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION is W[1]-complete
[8, 1], the reduction proves that PERFECT CODE belongs to W[1].

Given a graph G = (V, E) with n vertices and a positive integer k, let us construct a
nondeterministic Turing machine T' = (X, @, A), where ¥ includes the alphabet symbols

Y={0}U{op:veV}U{si:i=1,...,n}

and @) contains the internal states

Q:{qA,qR}U{qi:i:O,...,k}U{qf,,qZ:vEV}U{qj:jzl,...,n}

(Notice that both the alphabet size || and the state set size || depend on n, hence the
Turing machine behavior cannot be predicted with an FPT-algorithm unless W[1] = FPT
2))

When the Turing machine starts, the internal state is gg and all tape cells contain the
blank symbol (0). The machine operates in three phases.

Phase 1: guess k vertices. The Turing machine chooses nondeterministically k vertices
of G writing the corresponding symbols into the tape. This is achieved by including the
following instructions into the transition table A:

(O,¢i,00,qi+1,+1) € A (Vi€ {0,...,k—2},VveV)

<D7qk—1aJUan70> €A (VU € V)

(Each instruction specifies, in order, the symbol scanned under the head, the internal
state of the machine, the new symbol written by the head, the new internal state, and
the movement of the head: —1 for left, +1 for right, and 0 for no move.)

Phase 2: check that the k vertices are “perfect”. The Turing machine scans the guessed
vertices and rejects as soon as it finds two vertices that violate one of the following
conditions:

e For every pair of guessed vertices z and y, x and y are different.
e For every pair of guessed vertices z and y, x and y are not adjacent.

e For every pair of guessed vertices x and y, there is no vertex z € V that is adjacent
to both = and .

Moreover, in this phase each symbol o, is replaced by the symbol s,,, where m repre-
sents the size of the neighborhood N[v] of v. This is achieved by including the following
instructions into the transition table A:

<0'ank:a0'117Q£;a _1> €A (VU c V)
<0waQ£,an,ql, _1> S A (V’U,’LU € V)

qr ifv=w
gr if (v,w) € E
where ¢ = { gr if 3z € V such that
(v,2) € E and (w,2) € E
¢, otherwise

<Daqfnljaqua+]—> €A (V’U EV)
<o-w7Q’(7}"O-w’q:‘j7+]‘> €A (V'U,'w EV',’U#’UJ)
(00, 43y 8m, @k, —1) € A (Vv € V), where m = [N[v]|

<Da 9k, Da 9k, +1) €A

Phase 3: taking the sum. The tape now contains exactly k symbols s;; each of them
represents the neighborhood size of a guessed vertex. The Turing machine must accept if
and only if the sum of all neighborhood sizes is equal to n. In fact, the checks in Phase 2
grant that no vertex in G belongs to the neighborhood of two different guessed vertices.
In other words, the guessed vertices cover non-overlapping subsets of V. Therefore, the
sum cannot be greater than m; moreover, if the sum is equal to n, all vertices in G
are dominated by the guessed k-element subset of V. The following instructions in A
computes the sum:

<3ianasiaqfa+1) €A (VZ € {1, - ,n})

<3jan73j7qfa+1> €A (V'L,] € {1,,7’L},’L+] Sn)a where t =i+ j

4

<D7q'fLaD7q.430) €A
<Daq;aD,QRaO>EA (VjE{].,,n—l})

It is straightforward to verify that the Turing machine T includes (5/2)n? + (k +
7/2)n + 1 instructions, that it can be derived in polynomial time in the size of G, and
that it accepts in k2 + 4k + 3 steps if and only if there exists a perfect code of size k in G.

Q.E.D.

2.1 Weighted Exact CNF Satisfiability

The following problem is equivalent to PERFECT CODE:

WEIGHTED EXACT CNF SATISFIABILITY
Instance: A boolean expression F in conjunctive normal form.
Parameter: A positive integer k.

Question: Is there a truth assignment of weight k to the variables of F that
makes exactly one literal in each clause of E true?

Downey and Fellows showed that PERFECT CODE reduces to WEIGHTED ExacT CNF
SATISFIABILITY, and vice versa [3, 7]. Therefore, an immediate corollary of Theorem 1 is
that WEIGHTED EXACT CNF SATISFIABILITY is W[1]-complete. Notice, however, that
WEIGHTED CNF SATISFIABILITY (the same as above, but without the restriction that
exactly one literal in each clause is true) is W[2]-complete [3].

3 Conclusions

W/[1]-membership of PERFECT CODE easily derives from a singletape, singlehead Turing
machine that guesses and verifies a candidate perfect code with a “short” computation. In
general, it seems fruitful to think in terms of Turing machine computations when trying
to prove membership in W[1]. This technique could also be applied to show membership
in W[2], because the multihead, multitape Turing machine computation problem is W[2]-
complete [2, 6].

References
[1] L. Cai, J. Chen, R. G. Downey, M. R. Fellows. The parameterized complexity of

short computation and factorization. In Proceedings of the Sacks Conference 1993,
Archive for Math Logic, 1997.

2]

M. Cesati, M. Di Ianni. Computation Models for Parameterized Complexity. Math.
Log. Quart. 43 (1997) 179-202.

R. G. Downey, M. R. Fellows. Fized-parameter tractability and completeness I: Basic
results, SIAM J. Comput. 24 (1995) 873-921.

R. G. Downey, M. R. Fellows. Fized-parameter tractability and completeness II: On
completeness for W[1], Theoret. Computer Sci. 141 (1995) 109-131.

R. G. Downey, M. R. Fellows. Fixed-parameter tractability and completeness III:
Some structural aspects of the W hierarchy. In Complezity Theory: Current Research,
S. H. K. Ambos-Spies and U. Schoning, Eds., Cambridge University Press, 191-226,
1993.

R. G. Downey, M. R. Fellows. Threshold dominating sets and an improved charac-
terization of W/[2]. Theoret. Computer Sci. 209 (1998) 123-140.

R. G. Downey, M. R. Fellows. Parameterized Complexity. Springer-Verlag New York,
Inc., 1999.

R. G. Downey, M. R. Fellows, B. Kapron, M. T. Hallett, H. T. Wareham. Param-
eterized complexity of some problems in logic and linguistics (Extended Abstract).
In Proceedings of 2nd Workshop on Structural Complezity and Recursion-theoretic
Methods in Logic Programming, Lecture Notes in Computer Science 813, 89-101,
1994.

ECCC ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

