
On the difference between polynomial-time many-one and
truth-table reducibilities on distributional problems1

Shin Aida2 Rainer Schuler3 Tatsuie Tsukiji2

Osamu Watanabe3

2. School of Informatics and Sciences, Nagoya University, Nagoya 464-8601.

3. Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552.

Keywords. Computational and structural complexity, average-case complexity.

Abstract

In this paper we separate many-one reducibility from truth-table reducibility for distri-

butional problems in DistNP under the hypothesis that P 6= NP . As a first example we

consider the 3-Satisfiability problem (3SAT) with two different distributions on 3CNF formu-

las. We show that 3SAT using a version of the standard distribution is truth-table reducible

but not many-one reducible to 3SAT using a less redundant distribution unless P = NP .

We extend this separation result and define a distributional complexity class C with the

following properties:

(1) C is a subclass of DistNP , this relation is proper unless P = NP .

(2) C contains DistP , but it is not contained in AveP unless DistNP ⊆ AveZPP.

(3) C has a ≤p

m
-complete set.

(4) C has a ≤p

tt
-complete set that is not ≤p

m
-complete unless P = NP .

This shows that under the assumption that P 6= NP , the two completeness notions differ

on some non-trivial subclass of DistNP .

1 Introduction

Since the discovery of NP-complete problems by Cook and Levin [Coo71, Lev73], a considerable

number of NP-complete problems have been reported from various areas in computer science. It

is quite interesting and even surprising that most of these NP-completeness results, except only

few cases [VV83], have been proven by showing a polynomial-time many-one reduction from some

other known NP-complete problems. Recall that there are various reducibility types (among

polynomial-time deterministic reducibilities) and that polynomial-time many-one reducibility

is of the most restrictive type. For example, polynomial-time truth-table reducibility is, by

definition, more general than polynomial-time many-one reducibility, and in fact, it has been

shown [LLS75] that these two reducibilities differ on some problem. Nevertheless, no NP-

complete problem is known that requires (even seems to require) polynomial-time truth-table

reducibility for proving its NP-completeness.

1Supported in part by JSPS/NSF cooperative research: Complexity Theory for Strategic Goals, 1998–2001.

1

E
lectronic C

olloquium
 on C

om
putational C

om
plexity, R

eport N
o. 81 (2000)

ISSN
 1433-8092

Many researchers have studied the difference between these polynomial-time reducibility

types; see, e.g., [LY90, Hom97]. Notice first that showing the difference between many-one

and more stronger reducibilities on NP implies that P 6= NP (because if P = NP , then any

nontrivial set in NP is NP-complete under many-one reducibility). Thus, it is more reasonable

to assume (at least) P 6= NP and to ask about the difference between, e.g., many-one and

truth-table reducibilities on NP under this assumption. Unfortunately, however, the question

is still open even assuming that P 6= NP . Maybe the difference is too subtle to see it in NP

by only assuming P 6= NP . In this paper we show that this subtle difference appears when we

use reducibility for analyzing distributional NP problems.

The notion of “distributional problem” has been introduced by Levin [Lev86] in his frame-

work for studying average-case complexity of NP problems. A distributional problem is a pair

(A,µ) of a decision problem A (as usual, A is a set of positive instances of the problem) and

an input distribution µ. Intuitively (see below for the formal definition), by the complexity of

(A,µ), we mean the complexity of A when inputs are given under the distribution µ. Analog to

the class NP , Levin proposed to study a class DistNP , the class of all distributional problems

(A,µ) such that A ∈ NP and µ can be computed in polynomial-time. Also he introduced a

class AveP , the class of distributional problems solvable in polynomial-time on average. Then

the question analog to the P versus NP question is whether DistNP ⊆ AveP . Levin also

extended the notion of reducibility for distributional problems, and somewhat surprisingly, he

proved that distributional problem (BH, µst), where BH is a canonical NP-complete set and µst

is a standard uniform distribution, is complete in DistNP by using many-one reducibility. (See,

e.g., [Gur91, Wang97] for detail explanation and basic results on Levin’s average-case complexity

theory.)

Unlike the worst-case complexity, only a small number of “natural” distributional problems

have been shown as complete for DistNP . Intuitively, it seems that most NP problems are not

hard enough to become complete under natural distributions. More technically, the condition

required for the reducibility (in the average-case framework) is strong, it is affected by even some

small change of distribution. Aida and Tsukiji [AT00] pointed out that this sensitivity could

be used to show the subtle difference between many-one and more general reducibilities. They

showed two problems (A,µA) and (B,µB) in DistNP such that (A,µA) ≤p
tt (B,µB) but (A,µA)

6≤p
m (B,µB) unless P = NP . Unfortunately, though, these distributions µA and µB are so small

that these two problems are trivially in AveP . It has been left open to show such difference on

nontrivial distributional NP problems.

We solve this open question in this paper. We separate many-one reducibility from truth-

table reducibility for nontrivial problems in DistNP under the hypothesis that P 6= NP. Fur-

thermore, we show some nontrivial subclass of DistNP in which many-one and truth-table

completeness notions differ unless P = NP .

First we define two versions of the distributional 3-Satisfiability problem (3SAT) by consid-

ering different distributions on 3CNF formulas. The first distribution µ is defined by modifying

a standard uniform distribution on 3CNF formulas. Here the standard distribution gives each

2

formula the probability that it is generated by a random process, where every literal is chosen

randomly from the set of variables and their complements. For the second distribution ν, we

consider less redundant 3CNF representation. Note that a 3CNF formula F usually has many

trivially equivalent formulas; for example, permuting the order of clauses in F , we can easily

get a different but equivalent formula. We consider some restriction on the form of formulas

to reduce this redundancy, and define the second distribution ν so that non-zero probability is

given only on such formulas that satisfy our restriction. By this way, the probability of each

formula (of the required form) gets increased considerably (compared with ν). By using this in-

crease, we prove that (3SAT, ν) is not many-one reducible to (3SAT, µ) unless P = NP. On the

other hand, by using the self-reducibility of 3SAT, we prove that even (3SAT, ν) is truth-table

reducible (3SAT, µ).

Next we extend this separation technique and define a subclass C of DistNP in which

many-one and truth-table completeness notions differ unless P = NP . Furthermore, we can

show that C is not contained in AveP (thus it is not trivial) unless all DistNP are solvable in

polynomial-time on average by randomized zero-error computation.

2 Preliminaries

We use standard notations and definitions from computability theory, see, e.g., [BDG88]. We

briefly recall the definitions of the average-case complexity classes used in the following. For

definitions and discussion, see [Gur91].

A distributional problem consists of a set L and a distribution on strings defined by the

distribution function µ, i.e., a (real) valued function such that
∑

x µ(x) = 1. A distribution

µ is called polynomial-time computable if the binary expansion of the distribution function µ∗,

defined by µ∗(x) =
∑

y≤x µ(x) for all x, is polynomial-time computable in the sense that for any

x and n, the first n bits of µ∗(x) is computable within polynomial time w.r.t. |x| and n.

Let DistNP denote the class of all distributional problems (L,µ) such that L ∈ NP and

µ is polynomial-time computable. Similarly, DistP denotes the class of distributional problems

(L,µ) ∈ DistNP such that L is in P.

The average-case analog of P is denoted by AveP and defined as follows. A distributional

problem (L,µ) is decidable in polynomial-time on average, if L is decidable by some t-time

bounded Turning machine, and t is polynomial on µ-average, which means that t, a function

from Σ∗ → N, satisfies the following for some constant ε > 0 [Lev86, Gur91].

∑

x

tε(x)

|x|
µ(x) < ∞.

Let AveP denote the class of all distributional problems that are decidable in polynomial-time

on average. Similarly let AveZPP denote the class of all distributional problems that are

decidable in polynomial-time on average by randomized Turing machines (without error), see,

e.g., [Imp95]. Here we have to be a little careful defining average polynomial-time for randomized

3

computation [Gur91]. Let t(x, r) denote the running time of M on input x using random bits

r. We say that M is polynomial-time on average if

∑

x

∑

r

2−|r| t
ε(x, r)

|x|
µ(x) < ∞,

where r ranges over all binary strings such that M on input x halts using r but it does not halt

using any prefix r′ of r.

Finally, we define “reducibility” between distributional problems. A distributional problem

(A,µ) is polynomial-time reducible to (B, ν), if there exists an oracle Turing machine M and a

polynomial p such that the following three conditions hold.

(1) The running time of M (with oracle B) is polynomially bounded.

(2) For every x, we have x ∈ A ⇔ x ∈ L(M,B), where L(M,B) is the set of strings accepted

by M with oracle B.

(3) For any x, let Q(M,B, x) denote the set of oracle queries made by M with oracle B and

input x. The following condition holds for every y.

ν(y) ≥
∑

x : y∈Q(M,B,x)

µ(x)

p(|x|)
.

From these three conditions, any problem (A,µ) that is polynomial-time reducible to some

problem in AveP also belongs to AveP [Lev86, Gur91]. The above condition (3) is called a

dominance condition.

By restricting the type of queries, we can define finer reducibilities. A reduction M is called

a truth-table reduction if for every x, the oracle queries of M on input x are made nonadaptively,

i.e., they are independent of the oracle set. M is a many-one reduction if for every x, M on input

x makes exactly one query, and it accepts x iff the query is in the oracle set. We can define

more general reduction types by considering randomized computation. That is, a reduction

is called a randomized reduction if the oracle Turing machine is randomized. In this paper,

we consider the most restrictive randomized reduction type that requires “zero error” to the

oracle Turing machine M , i.e., M is correct and polynomial-time bounded for all inputs and all

possible random bits. The dominance condition needs to be revised for randomized reductions.

For any x and any r, let Q(M,B, x, r) denote the set of oracle queries made by MB(x; r), i.e.,

the execution of M with oracle B on input x using random bits r. Here we assume that MB(x; r)

halts consuming all bits of r and MB(x; r′) does not halt for any prefix r′ of r. (If r does not

satisfy this condition, then we simply define Q(M,B, x, r) to be empty.) Then our dominance

condition is stated as follows.

(3) For every y, we have

ν(y) ≥
∑

x,r : y∈Q(M,B,x,r)

µ(x) · 2−|r|

p(|x|)
.

4

3 Separation on 3SAT

Our first separation is on 3SAT, i.e., the set of all satisfiable 3CNF formulas F . We recall some

basic definitions on 3SAT. A formula F is in 3CNF if F is a conjunction of clauses which contain

at most 3 literals, i.e., F is of the form C1 ∧ C2 ∧ · · · ∧ Cm, where Ci = lj1 ∨ lj2 ∨ lj3 and ljk

is either the variable vjk
or its negation. (We use the index of jk of each literal ljk

to denote

that of its variable.) We use F (n,m) to denote the set of 3CNF formulas with n variables and m

clauses. (We assume that m ≤ 8n3.)

The standard distribution µst assigns to any formula F in F (n,m) the probability

1

n(n + 1)
·

1

8n3
2−3m(1+dlog ne).

That is, we have the following random experiment in mind.

Choose n (number of variables) randomly. Choose m ∈ {1, · · · , 8n3} (number of

clauses) randomly. Choose each of the 3m literals l randomly from the set of variables

and negated variables of size 2n. Let F denote the resulting formula. Output F .

In order to simplify our discussion, we restrict the form of formulas so that m = f0(n),

where f0(n) = dn log ne. Since m is determined from n, the standard distribution is modified as

follows.

µstf0
(F) =







8n3 · µst(F), if F ∈ F (n,f0(n)), and

0, otherwise.

We should note here that the same result holds by considering any “smooth” function for f

such that n ≤ f(n) ≤ n log n for all n. Here a function f is smooth if there is no big jump from

f(n − 1) to f(n); more precisely, there exists constants cf > 1 and df > 0 such that for any

sufficiently large n and for some k < df log n, we have f(n)− cf log n < f(n− k) < f(n)− log n.

For example, consider f(n) = ndlog ne. While this function satisfies our smoothness condition

for most n, we have f(n) ≥ f(n− k) + log n for any k = O(log n) if n is sufficiently large and

dlog ne = 1 + dlog(n− 1)e. On the other hand, a function like f(n) = dn log ne satisfies this

smoothness condition for k = 1 and cf = 2.

Note that it is still open whether (3SAT, µstf0
) is in AveP, i.e., polynomial-time solvable on

average. On the other hand, it has been shown that (3SAT, µstf
) defined using f(n) ≥ dn2 for

some d > 0 is indeed in AveP [KP92].

Now define the first distribution. From some technical reason, we consider 3CNF formulas

with some additional clauses. For any n > 0, let d(n) = f0(n)− f0(n− 1) (where f0(0) = 0). A

3CNF P = C1∧· · ·Cd(n) is called a type-I prefix for n if each Ci is of the form Ci = (vji
∨vji
∨vji

)

for some ji ∈ {3i,3i+1, 3i+2}. Note that there are 3d(n) ≤ n4 type-I prefices for n. We consider

only formulas G that are of the form P ∧F for some type-I prefix P for n and F ∈ F (n,f0(n−1)).

We use G(n) to denote the set of such formulas. This somewhat artificial requirement is just to

simplify our analysis of a truth-table reduction defined in Lemma 3.

5

Our first distribution is defined as follows.

µ(G) =







1
n(n+1)3

−d(n) · 2−3f0(n−1)(1+dlog ne), if G is in G(n), and

0, otherwise.

Next we define the second distribution. As mentioned in the Introduction, the 3CNF repre-

sentation has redundancy; i.e., a 3CNF formula (usually) has many trivially equivalent formulas.

Here we introduce one restriction on the form of formulas for reducing some redundancy, which

is not essential for the hardness of the satisfiability problem.

For any n, a 3CNF P = C1 ∧ · · ·Cd(n) is called the type-II prefix for n if each Ci is of

the form Ci = (v3i ∨ v3i+1 ∨ v3i+3). Note that for each n, the type-II prefix for n is uniquely

determined. We consider only formulas F in F (n,f0(n)) such that the first d(n) clauses of F are

the type-II prefix for n. Let F (n) denote the set of such formulas. Note that F (n) and G(n) are

subsets of F (n,f0(n)). As shown in the next Lemma, the restriction to formulas of type F (n) is

not essential for the hardness of the satisfiability problem. (A proof of the Lemma can be found

in the Appendix)

Lemma 1. For any 3CNF formula F ∈ F (n,f0(n)), we can either convert it to an equivalent

formula F ′ ∈ F (n) (by (i) reordering clauses and (ii) renaming and/or changing the signs of

variables) or determine the satisfiability of F in polynomial-time.

Proof. Let F be any 3CNF formula in F (n). From this F , we construct the type-II prefix

for n, i.e., the clauses C1, C2, ..., Cd(n) of the specific form. They are constructed one by one

by choosing some appropriate clause from (the remaining part of) F and renaming it. Assume

that we have already constructed clauses C1, ..., Ci, and let E be the remaining formula. So

far we have used variables v1, ..., v3i. For obtaining the next Ci+1, we find from E some clause

C consisting of three new variables vj1 , vj2 , vj3 . Then we simply rename these variables to

v3i+1, v3i+2, v3i+3 and change their sings (if necessary) in E so that C is now represented as a

clause (v3i+1 ∨ v3i+2 ∨ v3i+3). If we can keep finding appropriate clauses, we would be able to

construct required C1, ..., Cd(n). Then F ′ is obtained as C1 ∧ · · · ∧ Cd(n) ∧ E.

Our construction fails if we cannot find any new appropriate clause from the remaining

part E after constructing C1, ..., Ci. But this means that after determining values of variables

v1, ..., v3i in C1, ..., Ci, E becomes a 2CNF formula. Hence, we can determine its satisfiability in

polynomial-time. Since i < d(n) = f0(n)− f0(n− 1) ≤ 2dlog ne, we can determine whether F is

satisfiable or not in polynomial-time by trying all possible assignments for v1, ..., v3i. tu

Now our distribution is defined as follows.

ν(F) =







1
n(n+1)2

−3(f0(n)−d(n))(1+dlog ne), if F ∈ F (n),

0, otherwise.

Intuitively, ν corresponds to the following random generation.

6

Algorithm 3SAT Solver

input F in F (n,f0(n))

F ′ ← F ; n′ ← n;

while n′ > log n do

modify F ′ to an equivalent formula F in F (n′);

% The procedure given in Lemma 1 is used.

% If the procedure fails, then the satisfiability of F ′ can be determined directly.

G ← R(F); n′ ← the number of variables in G;

% G is in G(n′); i.e., G = P ∧ F ′ with some type-I prefix P for n′ and F ′ ∈ F (n′,f0(n′−1)).

remove each clause (vki
∨ vki

∨ vki
) of P by assinging vki

= 1 in F ′;

% F ′ may be reduced to a simpler formula.

(if necessary) add redundant variables or clauses so that F ′ belongs to F (n′−1,f0(n′−1));

end-while

output 1 if the final F ′ is satisfiable, and output 0 otherwise;

end-algorithm.

Figure 1: SAT solver

Choose n (number of variables) randomly. Fix first d(n) clauses as required for the

type-II prefix. Then choose the remaining f0(n) − d(n) clauses as in the standard

distribution. Output F .

We observe (without proof) that the distributions µ and ν defined above are polynomial time

computable. Thus, both distributional problems (3SAT, µ) and (3SAT, ν) belong to DistNP .

For our separation result, we first show that (3SAT, ν) is not ≤p
m to (3SAT, µ) unless P =

NP .

Lemma 2. If (3SAT, ν) ≤p
m (3SAT, µ), then we have 3SAT ∈ P and hence P = NP .

Proof. Assume there exists a many-one reduction R from (3SAT, ν) to (3SAT, µ). Consider

the 3SAT solver defined in the Figure 1.

The correctness is clear by the definition of the many-one reducibility. The polynomial-time

bound of this algorithm is guaranteed as follows. The reduction R reduces (in each iteration) a

formula of F in F (n,f0(n)) to a formula F ′ in F (n′−1,f0(n′−1)) with n′ ≤ n. That is, the number

of variables is reduced by at least one in each while-iteration.

This claim is proved by using the dominance condition. From the dominance condition, for

some constant c > 0 and for any sufficiently large n, we have

1

n(n + 1)
2−3(f0(n)−d(n))(1+dlog ne)

= ν(F) ≤ nc · µ(F ′)

=
nc

n′(n′ + 1)
3−d(n) · 2−3f0(n′−1)(1+dlog n′e).

7

Since d(n) ≥ dlog ne, this implies

1

n(n + 1)
2−3(f0(n)−dlog ne)(1+dlog ne) ≤

nc

(n′)5(n′ + 1)
2−3f0(n′−1)(1+dlog n′e).

Now suppose that n′ > n. Then from the above, it should hold that c log n > 3 log2 n, which is

impossible for sufficiently large n. Therefore, we have n′ ≤ n. tu

On the other hand, some ≤p
tt-reduction exists from (3SAT, ν) to (3SAT, µ).

Lemma 3. (3SAT, ν) ≤p
tt (3SAT, µ).

Proof. We define a truth-table reduction from (3SAT, ν) to 3SAT, µ). For our discussion,

consider any formula F in F (n). Recall that F = C1 ∧ · · · ∧ Cd(n) ∧ E, where each Ci, 1 ≤

i ≤ 2dlog ne, is of the form (v3i ∨ v3i+1 ∨ v3i+2). We would like to solve the satisfiability of

F by asking polynomially many nonadaptive queries to 3SAT. Note that all queried formulas

have to be of some appropriate form, more precisely, they should belong to G(n′) for some n′.

Furthermore, since ν(F) (for F ∈ F (n)) is much bigger than µ(G) (for G ∈ G(n+1)), we cannot

increase the size of queried formulas. Our idea is simple. We delete the first d(n) clauses

C1, ..., Cd(n) by considering all possible partial assignments satisfying all these clauses. Since

each Ci is (v3i ∨ v3i+1 ∨ v3i+2), we only have to assign 1 to one of three variables v3i, v3i+1, v3i+2

for satisfying Ci. That is, for every partial assignment, which assigns 1 to one of three variables

v3i, v3i+1, v3i+2 for each i, 1 ≤ i ≤ d(n), we can substitute the first d(n) clauses by a type-I

prefix for n. The resulting formula G is in G(n) (i.e., has (at most) n variables and consists of a

type-I prefix for n followed by f0(n)− d(n) = f0(n− 1) clauses). Note that there are 3d(n) ≤ n4

such partial assignments and that F is satisfiable if and only if one of the obtained formula G

is satisfiable. Therefore, the above procedure is indeed a disjunctive truth-table reduction that

asks a polynomial number of formulas (of the same size).

The dominance condition, is satisfied since (i) ν(F) ≤ nc · µ(G) and (ii) any query formula

G is asked for only one formula F . The condition (ii) is satisfied since the type-II prefix of F is

unique, and G is identical to F on all other clauses.

The fact that ν(F) ≤ nc · µ(G) for some c > 0. is immediate by comparing ν(F) and µ(G)

as follows.

ν(F) =
1

n(n + 1)
2−3(f0(n)−d(n))(1+log n)

=
1

n(n + 1)
2−3f0(n−1)(1+log n)

= 3d(n) ·
1

n(n + 1)
3−d(n) · 2−3f0(n−1)(1+log n)

≤ nc · µ(G)

tu

From above two lemmas, we have the following separation result.

Theorem 4. There exist polynomial time distributions ν and µ such that (3SAT, ν)≤p
tt (3SAT, µ),

but (3SAT, ν) 6≤p
m (3SAT, µ) unless P = NP .

8

4 Separating Completeness Notions

In this section we define some subclass of DistNP in which we can show the difference between

many-one and truth-table completeness notions. More specifically, we will define a distributional

complexity class C with the following properties:

(1) C is a subclass of DistNP , and furthermore, the relation is proper unless P = NP.

(2) C contains DistP , but it is not contained in AveP unless DistNP ⊆ AveZPP .

(3) C has a ≤p
m-complete set.

(4) There exists a problem C ∈ C that is ≤p
tt-complete in C but that is not ≤p

m-complete in C

unless P = NP.

That is, if P 6= NP , then two completeness notions differ on some subclass of DistNP .

First we define the complexity class C. For this purpose, we consider the following version

of bounded halting problem, which we call Bounded Halting problem with Padding. Here for

some technical reason, we consider only Turing machines M using one tape as both an input

and a work tape. We also assume that M ’s tape alphabet is {0, 1,B} and that M cannot go

beyond the cells containing 0 or 1. Note that this is not an essential restriction if we assume

that M ’s reachable tape cells are initially filled by 0. On the other hand, with this assumption,

we can represent the content of the whole tape of M by a string in {0, 1}∗ of fixed length.

Below we use φ to denote any fixed function on N such that n ≤ φ(n) ≤ p(n) for some

polynomial p and φ(n) is computable within polynomial-time in n.

BHPφ = { 〈M, q, i, w, y〉 :

(i) M is NDTM, q is its state, i, 1 ≤ i ≤ |w|, is a head position, and

w, y ∈ {0, 1}∗, where w is M ’s tape and y is padding,

(ii) |y| = φ(|M | + |w|+ t) for some t ∈ N, and

(iii) M has an accepting path of length t from configuration (q, i, w). }

Notice here that w represents the content of the whole M ’s tape. We assume that M ’s tape head

does not go outside of w. We assume some reasonable encoding of M and its state q, and |M |

and |q| are the length of the descriptions of M and q under this encoding. Again for simplifying

our discussion below, we assume that for each M and w, the length of |q| and |i| is fixed.

In the literature, the following versions of the halting problem BH and its padded version

BH′ have been studied [Gur91]. Our BHPφ is regarded a variation of of BH′ when φ is defined

as φ(n) = n.

BH = { 〈M,x, 0t〉 : M accepts x in t steps. }, and

BH′ = { 〈M,x, y〉 : M accepts x in |y| steps. }.

As a distribution we consider the standard distribution extended on tuples, e.g., every

instance 〈M, q, i, x, y〉 of BHPφ has the following probability.

µst(〈M, q, i, w, y〉) =
1

α(|M |, |q|, |i|, |w|, |y|)
· 2−(|M |+|q|+|i|+|w|+|y|),

9

where α(n1, n2, . . . , nk) =
∏k

i=1 ni(ni + 1). Note however that a unary padding string has

probability inverse polynomial to its length; for example, for any instance 〈M,x, 0t〉 for BH, we

have

µst(〈M,x, 0t〉) =
1

α(|M |, |x|, t)
· 2−(|M |+|x|),

First it should be mentioned that (BH, µst) is reducible to (BHPφ, µst) via a randomized

reduction of the strongest type, i.e., the one with no error. (A proof of the Proposition can be

found in the Appendix)

Proposition 5. For any polynomially bounded φ(n) that is polynomial-time computable w.r.t.

n, there is a polynomial-time randomized reduction (with no error) from (BH, µst) to (BHPφ, µst).

Proof. There is a standard technique [Gur91] for reducing the bounded halting problem BH to

its padding version BH′ via a randomized reduction. This technique can be also used here. One

point we should clarify is a way to adjust instances for our specific requirements.

Consider any instance 〈M,x, 0t〉 for BH. We may assume that M uses only one tape as both

an input and a work tape and that M ’s tape alphabet is {0, 1,B}. Also we assume that M does

not halt unless it enters an accepting state. Clearly, we do not need more than max{|x|, t} tape

cells for simulating M . Now we can easily modify M to some machine M ′ with the following

properties.

(1) Whenever M ′ moves to a cell containing a blank symbol, it moves back to the previous

position.

(2) M ′ has special states q′0 and q′1 such that M ′ from (q′0, u, v) moves to (q′1, λ, d(u)(01)m)

in O((|u| + |v|)2) steps, where u and v represent respectively the content of the tape left

and right of the tape head, d(u) is a string obtained by duplicating each bit of u, and

m = (|u|+ |v| − 2|u|)/2.

(3) Starting from the state q′1, M ′ simulates the execution of M by interpreting each 00, 11,

and 01 as 0, 1, and B of M ’s symbol. When the simulation enters an accepting state of M ,

M ′ also goes into an accepting state (and stays in it forever).

Then it is clear that 〈M,x, 0t〉 is in BH if and only if 〈M ′, q′0, |x| + 1, xz, y〉 is in BHPφ, where

z and y are any strings in {0, 1}∗ such that (i) |xz| = 2max{|x|, t}, (ii) |y| = φ(|M |+ |xz|+ t′)

for some time bound t′ that is large enough for the simulation of M for t steps. Therefore,

our reduction produces, for given 〈M,x, 0t〉, an instance 〈M ′, q′0, |x| + 1, xz, y〉 with randomly

generated z and y of appropriate length. The dominance condition can be checked easily and it

is left to the reader. tu

Since (BH, µst) a complete problem in DistNP [Gur91], this proposition shows that (BHPφ, µst)

is complete in DistNP under the zero-error randomized reducibility. On the other hand, since

(BHPφ, µst) is a distributional problem with a flat distribution, as we will see below, (BH, µst)

is not ≤p
m-reducible to (BHPφ, µst) unless P = NP .

10

We may use any reasonable function for φ. Here for the following discussion, we fix φ(n) =

n log n, by which we formally mean that φ(n) = dn log ne (see the smoothness discussion in the

previous section). Let BHP denote the class BHPφ with this φ. Now our class C is defined as

a class of distributional problems (L,µ) such that (i) µ is polynomial-time computable, and (ii)

(L,µ) is ≤p
m-reducible to (BHP, µst).

Note first that if (L,µ) is ≤p
m-reducible to (BHP, µst), then L must be in NP . Thus, C is

contained in DistNP . But (BH, µst) is not ≤p
m-reducible to (BHP, µst) unless P = NP . Thus,

if P 6= NP , then C is a proper subclass of DistNP because (BH, µst) does not belong to C.

On the other hand, since (BHP, µst) is complete in DistNP under the zero-error randomized

reducibility, it cannot be in AveP unless DistNP ⊆ AveZPP ; that is, C 6⊆ AveP unless DistNP

⊆ AveZPP .

Proposition 6. The class C defined above has the following complexity.

(1) It is a subclass of DistNP , and the relation is proper unless P = NP .

(2) It contains DistP , but it is not contained in AveP unless DistNP ⊆ AveZPP .

Clearly, the class C has ≤p
m-complete sets, e.g., (BHP, µst) is one of them. On the other

hand, we can define some ≤p
tt-complete problem in C that is not ≤p

m-complete unless P = NP.

Theorem 7. Define BHP′ as follows with φ′(n) = n log n + log2 n (or, more formally, φ′(n) =

dn log n + log2 ne). Then we have (BHP, µst) ≤
p
tt (BHP′, µst), but (BHP, µst) 6≤

p
m (BHP′, µst)

unless P = NP. That is, (BHP′, µst) is ≤p
tt-complete in C but it is not ≤p

m-complete unless P

= NP .

BHP′ = { 〈M, q, i, w, u, v〉 :

(i) M is NDTM, q is its state, i is a head position, and w, u, v ∈ {0, 1}∗,

(ii) |v| = φ′(|M |+ |w|+ t− |u|) for some t,

(iii) |u| = log(|M | + |w| + t), and

(iv) M has an accepting path of length t− |u| from configuration (q, i, w)

whose prefix is u. }

Proof. First we show that (BHP′, µst) is ≤p
m-reducible to (BHP, µst). This implies that

(BHP′, µst) is indeed contained in the class C. Let 〈M, q, i, w, u, v〉 be any instance of BHP′

satisfying the syntactic conditions, i.e., the conditions (i) ∼ (iii), of BHP′ for some number

t. Let m = |M | + |w| + t − |u|. We map this instance to 〈M, q′, i′, w′, y′〉, where q′, i′, w′

are respectively M ’s state, head position, and tape content after executing |u| steps on the

path u starting from configuration (q, i, w). In order to satisfy the syntactic conditions of BHP

(and keep the consistency as a reduction), y′ should be a string of length φ(m). But since

φ(m) = φ′(m) − log2 m (recall that |w| = |w′|), we have |y′| ≤ |v| − log2(m); hence, we can

simply use the prefix of v of appropriate length for y′. Notice that this mapping may not be

one-to-one. But first note that

11

µst(〈M, q′, i′, w′, y′〉) =
∑

ṽ∈V (y′)

µst(〈M, q, i, w, u, ṽ〉),

where V (y′) is the set of ṽ of length φ′(m) whose prefix is y′. Also for considering all configu-

rations reachable to (q′, i′, w′), let C(q′, i′, w′) be the set of pairs of M ’s configurations (q̃, ĩ, w̃)

and ũ of length log(|M |+ |w|+ t) such that the configuration (q′, i′, w′) is reached after execut-

ing |ũ| = log(|M | + |w| + t) steps from (q̃, ĩ, w̃) following ũ. Since |ũ| = log(|M | + |w̃| + t) =

log(|M |+ |w|+ t), C(q′, i′, w′) has at most |M |(|M |+ |w|+ t)2× (|M |+ |w|+ t) elements. Thus,

we have

∑

(q̃,̃i,w̃),ũ∈C(q′,i′,w′)

∑

ṽ∈V (y′) µst(〈M, q, i, w, u, ṽ)

|M |(|M | + |w|+ t)3
≤ µst(〈M, q′, i′, w′, y′〉).

Therefore the dominance condition is satisfied.

We observe here that the many-one reduction decreases the length of the instance by order

(log)2. Let ` = |M |+ |q|+ |i| + |w| + |u|+ |v| and `′ = |M | + |q′|+ |i′|+ |w′|+ |y′|, then if ` is

sufficiently large, we have

`′ ≤ `− log2(m) ≤ `− log2(l1/2) = `−
1

4
log2 `,

since we may assume that m2 ≤ m log m + log2 m + (|M | + |w| + |q| + |i| + |u|) = |M | + |q| +

|i|+ |w|+ |u|+ |v| = `, for sufficiently large `.

Next suppose that there exists a ≤p
m-reduction from (BHP, µst) to (BHP′, µst). We will

show that this assumption implies that P = NP. Consider any 〈M, q, i, w, y〉 satisfying the

syntax of BHP, and let 〈M ′, q′, i′, w′, u′, v′〉 be the instance of BHP′ obtained by the assumed

reduction. We may assume that 〈M ′, q′, i′, w′, u′, v′〉 satisfies the syntax of BHP′ for some t′;

i.e., |v| = φ′(|M ′| + |w′| + t′ − |u′|). Let ` = |M | + |q| + |i| + |w| + |y|. By using the reduction

from BHP′ to BHP explained above, we reduce further the instance 〈M ′, q′, i′, w′, u′, v′〉 to some

instance 〈M ′, q′′, i′′, w′′, y′′〉 of BHP. Note that |y′′| = φ(|M ′|+ |w′′|+ t′′) where t′′ = t′ − |u′|.

We estimate `′ = |M ′|+ |q′|+ |i′|+ |w′|+ |u′|+ |v′| and `′′ = |M ′|+ |q′′|+ |i′′|+ |w′′|+ |y′′|,

and prove that `′′ < `, i.e., 〈M ′, q′′, i′′, w′′, y′′〉 is shorter than 〈M, q, i, w, y〉.

First from the above analysis, we have

`′′ ≤ `′ −
1

4
log2 `′

Now consider the case that `′ < `/2. Then from the above bound, we immediately have `′′ < `

for sufficiently large `. Thus, consider the other case, i.e., `′ ≥ `/2. Even in this case, `′ cannot

be so large. This is because from the dominance condition, we have `′ ≤ ` + d log ` for some

constant d > 0, and hence,

`′′ ≤ (` + d log `)−
1

4
log2(` + d log `) ≤ (` + d log `)−

1

4
log2 `,

which, by using the assumption that `′ ≥ `/2, implies `′′ < ` if ` is large enough.

12

Therefore, the obtained instance 〈M ′, q′′, i′′, w′′, y′′〉 is at least one bit shorter than the

original instance 〈M, q, i, w, y〉. Thus, applying this process for enough number of times, which

is still polynomially bounded, we can obtain a trivial instance for BHP. Thus BHP is in P,

which implies that P = NP.

Finally, we show a ≤p
tt-reduction from (BHP, µst) to (BHP′, µst). For a given instance

〈M, i, q, w, y〉 of BHP with |y| = φ(|M | + |w|+ t) for some t, we only have to ask queries of the

form 〈M, i, q, w, u, v〉 for all u ∈ {0, 1}log m, where m = |M |+ |w|+ t, and v is the prefix of y of

length φ′(|M | + |w| + t − log m). (We will see below that φ′(|M | + |w| + t − log m) is smaller

than φ(|M |+ |w| + t); hence, this choice of v is possible.)

Clearly, this reduction works as a disjunctive truth-table reduction from BHP to BHP′. To

check the dominance condition, consider any 〈M, i, q, w, u, v〉 satisfying the syntax of BHP′, we

estimate the probability of instances in BHP that ask 〈M, i, q, w, u, v〉 in our ≤p
tt-reduction. First

note that

|v| = φ′(|M |+ |w|+ t− log m)

= (m− log m) log(m− log m) + (log(m− log m))2

≤ m log m = φ(|M |+ |w|+ t) = |y|.

Let I be the set of instances in BHP that ask 〈M, i, q, w, u, v〉. Then I consists of strings

〈M, i, q, w, vy′〉 for some y′. Thus, µst(I), the total probability of instances in BHP that ask

〈M, i, q, w, u, v〉 is estimated as follows.

µst(I) =
∑

〈M,i,q,w,vy′〉∈I

(1/α) · 2−(|M |+|i|+|q|+|w|+|v|+|y′|)

= 2|y
′| × (1/α) · 2−(|M |+|i|+|q|+|w|+|v|+|y′|)

= (1/α) · 2−(|M |+|i|+|q|+|w|+|v|) ≤ |u|22|u| · (1/α′) · 2−(|M |+|i|+|q|+|w|+|u|+|v|)

= (log m)22log m · µst(〈M,w, u, v〉).

Here α = α(|M |, |q|, |i|, |w|, |v|, |y′ |) and α′ = α(|M |, |q|, |i|, |w|, |u|, |v|). Note that 1/α ≤ |u|2/α′.

Since (log m)22log m is bounded by p(|〈M,w, u, v〉|) with some polynomial p, the dominance

condition is satisfied. tu

References

[AT00] S. Aida and T. Tsukiji, On the difference among polynomial-time reducibilities for dis-

tributional problems (Japanese), in Proc. of the LA Symposium, Winter, RIMS publi-

cation, 2000.

[BDG88] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, EATCS Monographs

on Theoretical Computer Science, Springer-Verlag, 1988.

[Betal92] S. Ben-David, B. Chor, O. Goldreich, and M. Ludy, On the theory of average case

complexity, Journal of Comput. and Syst. Sci., 44:193-219, 1992.

13

[Coo71] S.A. Cook, The complexity of theorem proving procedures, in the Proc. of the third

ACM Sympos. on Theory of Comput., ACM, 151-158, 1971.

[Gur91] Y. Gurevich, Average case completeness, Journal of Comput. and Syst. Sci., 42:346–

398, 1991.

[Hom97] S. Homer, Structural properties of complete problems for exponential time, in Com-

plexity Theory Retrospective 2 (A.L. Selman Ed.), Springer-Verlag, 135–154, 1997.

[Imp95] R. Impagliazzo, A personal view of average-case complexity, in Proc. 10th Conference

Structure in Complexity Theory, IEEE, 134–147, 1995.

[KP92] E. Koutsoupias and C. Papadimitriou, On the greedy algorithm for satisfiability, Infom.

Process. Lett. 43, 53–55, 1992.

[LLS75] R. Ladner, N. Lynch, and A. Selman, A Comparison of polynomial time reducibilities,

Theoretical Computer Science, 1:103–123, 1975.

[Lev73] L.A. Levin, Universal sequential search problem, Problems of Information Transmission,

9:265–266, 1973.

[Lev86] L.A. Levin, Average case completeness classes, SIAM J. Comput., 15:285–286, 1986.

[LY90] L. Longpré and P. Young, Cook reducibility is faster than Karp reducibility, J. Comput.

Syst. Sci., 41, 389–401, 1990.

[VV83] U. Vazirani and V. Vazirani, A natural encoding scheme proved probabilistic polynomial

complete, Theoret. Comput. Sci., 24, 291–300, 1983.

[Wang97] J. Wang, Average-case computational complexity theory, in Complexity Theory Ret-

rospective 2 (A.L. Selman Ed.), Springer-Verlag, 295–328, 1997.

14

ftpm
ail@

ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://w

w
w

.eccc.uni-trier.de/eccc
E

C
C

C

ISSN
 1433-8092

