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Abstract

A dichotomy theorem for a class of decision problems is a result asserting that certain
problems in the class are solvable in polynomial time, while the rest are NP-complete. The first
remarkable such dichotomy theorem was proved by T.J. Schaefer in 1978. It concerns the class
of generalized satisfiability problems SAT(S), whose input is a CNF(S)-formula, i.e., a formula
constructed from elements of a fixed set S of generalized connectives using conjunctions and
substitutions by variables.

Here, we investigate the complexity of minimal satisfiability problems MIN SAT(S), where
S is a fixed set of generalized connectives. The input to such a problem is a CNF(S)-formula
and a satisfying truth assignment; the question is to decide whether there is another satisfying
truth assignment that is strictly smaller than the given truth assignment with respect to the
coordinate-wise partial order on truth assignments. Minimal satisfiability problems were first
studied by researchers in artificial intelligence while investigating the computational complexity
of propositional circumscription. The question of whether dichotomy theorems can be proved for
these problems was raised at that time, but was left open. We settle this question affirmatively
by establishing a dichotomy theorem for the class of all MIN SAT(S)-problems, where S is
a finite set of generalized connectives. We also prove a dichotomy theorem for a variant of
MiN SAT(S) in which the minimization is restricted to a subset of the variables, whereas the
remaining variables may vary arbitrarily (this variant is related to extensions of propositional
circumscription and was first studied by Cadoli). Moreover, we show that similar dichotomy
theorems hold also when some of the variables are assigned constant values. Finally, we give
simple criteria that tell apart the polynomial-time solvable cases of these minimal satisfiability
problems from the NP-complete ones.
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1 Introduction and Summary of Results

Computational complexity strives to analyze important algorithmic problems by first placing them
in suitable complexity classes and then attempting to determine whether they are complete for
the class under consideration or they actually belong to a more restricted complexity class. This
approach to analyzing algorithmic problems has borne fruit in numerous concrete cases and has led
to the successful development of the theory of NP-completeness. In this vein, dichotomy theorems
for classes of NP-problems are of particular interest, where a dichotomy theorem is a result that
concerns an infinite class F of related decision problems and asserts that certain problems in F
are solvable in polynomial time, while on the contrary all other problems in F are NP-complete.
It should be pointed out that the a priori existence of dichotomy theorems cannot not be taken
for granted. Indeed, Ladner [Lad75] showed that if P # NP, then there are problems in NP that
are neither NP-complete nor in P. Consequently, a given class F of NP-problems may contain such
problems of intermediate complexity, which rules out the existence of a dichotomy theorem for F.

The first remarkable (and highly non-trivial) dichotomy theorem was established by Schaefer
[Sch78], who introduced and studied the class of GENERALIZED SATISFIABILITY problems (see also
[GJ79, LOG6, page 260]). A logical relation (or generalized connective) R is a non-empty subset of
{0,1}*, for some k > 1. If S = {Ry,...,Rn} is a finite set of logical relations, then a CNF(S)-
formula is a conjunction of expressions (called generalized clauses or, simply, clauses) of the form
Ri(x1,...,1k), where each R} is a relation symbol representing the logical relation R; in S and
each x; is a Boolean variable. Each finite set S of logical relations gives rise to the GENERALIZED
SATISFIABILITY problem SAT(S): given a CNF(S)-formula ¢, is ¢ satisfiable? Schaefer isolated
six efficiently checkable conditions and proved the following dichotomy theorem for the class of
all GENERALIZED SATISFIABILITY problems SAT(S): if the set S satisfies at least one of these
six conditions, then SAT(S) is solvable in polynomial time; otherwise, SAT(S) is NP-complete.
Since that time, only a handful of dichotomy theorems for other classes of decision problems have
been established. Two notable ones are the dichotomy theorem for the class of FIXED SUBGRAPH
HOMEOMORPHISM problems on directed graphs, obtained by Fortune, Hocroft and Wiley [FHW80],
and the dichotomy theorem for the class of H-COLORING problems on undirected graphs, obtained
by Hell and Nesetfil [HN90]. The latter is a special case of CONSTRAINT SATISFACTION, a rich
class of problems that have been the object of systematic study in artificial intelligence. It should
be noted that no dichotomy theorem for the entire class of CONSTRAINT SATISFACTION problems
has been established thus far, in spite of intensive efforts to this effect (see Feder and Vardi [FV99],
Jeavons, Cooper and Gyssens [JCGI7)).

In recent years, researchers have obtained dichotomy theorems for optimization problems, count-
ing problems, and decision problems that are variants of GENERALIZED SATISFIABILITY problems.
Specifically, Creignou [Cre95], Khanna, Sudan and Williamson [KSW97|, Khanna, Sudan and Tre-
visan [KST97], and Zwick [Zwi98] obtained dichotomy theorems for certain classes of optimization
problems related to propositional satisfiability and Boolean constraint satisfaction, Creignou and
Hermann [CH96] proved a dichotomy theorem for the class of counting problems that ask for the
number of satisfying assignments of a given CNF(S)-formula, and Kavvadias and Sideri [KS98] es-
tablished a dichotomy theorem for the class of decision problems INVERSE SAT(S) that ask whether
a given set of truth assignments is the set of all satisfying assignments of some CNF(S)-formula,
where in all these results S is a finite set of logical relations. Even more recently, Reith and Vollmer
[RV98] proved a dichotomy theorem for the class of optimization problems LEXMIN SAT(S) and
LEXMAX SAT(S) that ask for the lexicographically minimal (or maximal) truth assignment that
satisfies a given CNF(S)-formula.



Researchers have also investigated the class of decision problems MIN SAT(S) that ask whether
a satisfying truth assignment of a CNF(S)-formula is minimal with respect to the coordinate-
wise partial order. More precisely, if S is a finite set of logical relations, then MIN SAT(S) is
the following decision problem: given a CNF(S)-formula ¢ and a satisfying truth assignment «
of ¢, is there a satisfying truth assignment S of ¢ such that f < «, where < is the coordinate-
wise partial order on truth assignments? These decision problems were introduced and studied by
researchers in artificial intelligence while investigating circumscription, a well-developed formalism
of common-sense reasoning introduced by McCarthy [McC80] about twenty years ago. The main
question left open about MIN SAT(S) was whether a dichotomy theorem holds for the class of
all MIN SAT(S) problems, where S is a finite set of logical relations. In the present paper, we
settle this question in the affirmative and also provide easily checkable criteria that tell apart the
polynomial-time solvable cases of MIN SAT(S) from the NP-complete ones. Moreover, we obtain
dichotomy theorems for classes of several related decision problems that have to do with powerful
extensions of circumscription.

In circumscription, properties are specified using formulas of some logic, a natural partial order
between models of each formula is considered, and preference is given to models that are mini-
mal with respect to this partial order. McCarthy’s key intuition was that minimal models should
be preferred because they are the ones that have as few “exceptions” as possible and thus em-
body common-sense. A fundamental algorithmic problem about every logical formalism is model
checking, the problem of deciding whether a finite structure satisfies a formula. As regards cir-
cumscription, model checking amounts to the problem of deciding whether a finite structure is a
minimal model of a formula. The simplest case of circumscription is propositional circumscrip-
tion, where properties are specified using formulas of propositional logic; thus, the model checking
problem for propositional circumscription is precisely the problem of deciding whether a satisfying
truth assignment of a propositional formula is minimal with respect to the coordinate-wise order.
It is not hard to show that this problem is coNP-complete, when arbitrary propositional formulas
are allowed as part of the input. For this reason, researchers in artificial intelligence embarked on
the pursuit of tractable cases of the model checking problem for propositional circumscription. In
particular, Cadoli [Cad92, Cad93] adopted Schaefer’s approach, introduced the class of decision
problems MIN SAT(S), identified several tractable cases, and raised the question of the existence
of a dichotomy theorem for this class (see [Cad93, page 132]). Moreover, Cadoli pointed out that
if a dichotomy theorem for MIN SAT(S) indeed exists, then the dividing line is going to be very
different from the dividing line in Schaefer’s dichotomy theorem for SAT(S). To see this, consider
first the set S = {R;/3}, where R;;3 = {(1,0,0),(0,1,0),(0,0,1)}. In this case, SAT(S) is the well-
known NP-complete problem POSITIVE-1-IN-3-SAT, while on the contrary MIN SAT(S) is trivial,
since it can be easily verified that every satisfying truth assignment of a given CNF(S)-formula
is minimal. Thus, an intractable case of SAT(S) becomes a tractable (in fact, a trivial) case of
MIiIN SAT(S). In the opposite direction, Cadoli [Cad92, Cad93] showed that certain tractable (in
fact, trivial) cases of SAT(S) become NP-complete cases of MIN SAT(S). Specifically, one of the
six tractable cases in Schaefer’s dichotomy theorem is the case where S consists entirely of 1-valid
logical relations, that is, every relation R in S contains the all-ones tuple (1,...,1) (and, hence,
every CNF(S)-formula is satisfied by the truth assignment that assigns 1 to every variable). In
contrast, Cadoli [Cad92, Cad93] discovered a finite set S of 1-valid relations such that MIN SAT(S)
is NP-complete.

As it turns out, the collection of 1-valid relations holds the key to the dichotomy theorem for
MIN SAT(S). More precisely, we first establish a dichotomy theorem for the class of MIN SAT(S)
problems, where S is a finite set of 1-valid relations. Using this restricted dichotomy theorem as



a stepping stone, we then derive the desired dichotomy theorem for the full class of MIN SAT(S)
problems, where S is a finite set of arbitrary logical relations. Note that all dichotomy theorems
described thus far involve CNF(S)-formulas that do not contain the constant symbols 0 and 1;
Schaefer, however, [Sch78] also proved a dichotomy theorem for CNF(S)-formulas with constant
symbols. Here, we derive dichotomy theorems for minimal satisfiability of CNF(S) formulas with
constant symbols as well. QOur results differ from earlier dichotomy theorems for satisfiability
problems in two major aspects. First, in all earlier dichotomy theorems the tractable cases arise
from conditions that are directly applied to the set S of logical relations under consideration; in our
main dichotomy theorem, however, the tractable cases arise from conditions that are applied not to
the set S of logical relations at hand, but to a certain set S* of 1-valid logical relations obtained from
S by projecting the relations in S in a particular way. Second, the proofs of essentially all earlier
dichotomy theorems for satisfiability problems used Schaefer’s dichotomy theorem; furthermore,
they often hinged on stronger versions of what has become known as Schaefer’s expressibility theorem
[Sch78, Theorem 3.0, page 219], which asserts that if S does not satisfy at least one of the six
conditions that give rise to tractable cases of SAT(S), then every logical relation is definable from
some CNF(S)-formula using existential quantification and substitution by constants. The proof of
our dichotomy theorem for MIN SAT(S), however, hinges on new and rather delicate expressibility
results that provide precise information about the way particular logical relations, such as the
implication connective, are definable from CNF(S)-formulas using existential quantification and
substitution by constants.

Researchers in artificial intelligence have also investigated various powerful extensions of cir-
cumscription in which the partial order among models of a formula is modified, so that some
parts of the model are assigned fixed values and some other parts are allowed to vary arbitrarily
[Lif85, McC85]. In the present paper, we also establish dichotomy theorems for the model checking
problem for the main extensions of propositional circumscription; this answers another question
left open by Cadoli [Cad92, Cad93].

2 Preliminaries and Background

This section contains the definitions of the main concepts used in this paper and a minimum amount
of the necessary background material from Schaefer’s work on the complexity of GENERALIZED
SATISFIABILITY problems [Sch78].

Definition 2.1: Let S = {Ry,...,R;,} be a finite set of logical relations of various arities, let
S"={R]},...,R.,} be a set of relation symbols whose arities match those of the relations in S, and
let V' be an infinite set of variables.

A CNF(S)-formula is a finite conjunction C; A ... A Cy, of clauses built using relation symbols
from S’ and variables from V, that is, each C; is an atomic formula of the form R;- (1, k),
where R’ is a relation symbol of arity k in S', and =1,..., 7 are variables in V. A CNF¢(S5)-
formula is a formula obtained from a CNF(S)-formula by substituting some of its variables by the
constant symbols 0 or 1. The semantics of CNF(S)-formulas and CNF¢/(S)-formulas are defined
in a standard way by assuming that variables range over the set of bits {0, 1}, each relation symbol
R} in §' is interpreted by the corresponding relation R; in S, and the constant symbols 0 and 1
are interpreted by 0 and 1 respectively.

SAT(S) is the following decision problem: given a CNF(S)-formula ¢, is it satisfiable? (i.e., is
there a truth assignment to the variables of ¢ that makes every clause of ¢ true?) The decision
problem SAT(S) is defined in a similar way. i



It is clear that, for each finite set S of logical relations, both SAT(S) and SAT¢(S) are problems
in NP. Moreover, several well-known NP-complete problems and several important tractable cases of
Boolean satisfiability can easily be cast as SAT(.S) problems for particular sets S of logical relations.
Indeed, we already saw in the previous section that the NP-complete problem PoOSITIVE-1-IN-3-
SAT ([GJ79, LOA4, page 259]) is precisely the problem SAT(S), where S is the singleton consisting of
the relation R;/3 = {(1,0,0),(0,1,0),(0,0,1)}. Moreover, the prototypical NP-complete problem
3-SAT coincides with the problem SAT(S), where S = {Ry, Ry, Ry, R3} and Ry = {0,1}3—{(0,0,0)}
(expressing the clause (z Vy V 2)), R1 = {0,1}% — {(1,0,0)} (expressing the clause (-z V y V 2)),
Ry = {0,1}3 — {(1,1,0)} (expressing the clause (—z V =y V z)), and R3 = {0,1}3 — {(1,1,1)}
(expressing the clause (—z V =y V —z)). Similarly, but on the side of tractability, 2-SAT is precisely
the problem SAT(S), where S = {Ry, R, Re} and Ry = {0,1}2 — {(0,0)} (expressing the clause
(xr Vy)), Rt = {0,1}2 — {(1,0)} (expressing the clause (-z V y)), and Ry = {0,1}% — {(1,1)}
(expressing the clause (—z V —y)).

The next two definitions introduce the key concepts needed to formulate Schaefer’s dichotomy
theorems.

Definition 2.2: Let ¢ be a propositional formula.

@ is 1-valid if it is satisfied by the truth assignment that assigns 1 to every variable. Similarly,
@ is 0-wvalid if it is satisfied by the truth assignment that assigns 0 to every variable.

@ is bijunctive if it is a 2CNF-formula, i.e., it is a a conjunction of clauses each of which is a
disjunction of at most two literals (variables or negated variables).

@ is Horn if it is the conjunction of clauses each of which is a disjunction of literals such that
at most one of them is a variable. Similarly, ¢ is dual Horn if it is the conjunction of clauses each
of which is disjunction of literals such that at most one of them is a negated variable.

@ is affine if it is the conjunction of subformulas each of which is an exclusive disjunction of
literals or a negation of an exclusive disjunctions of literals (by definition, an exclusive disjunction
of literals is satisfied exactly when an odd number of these literals are true; we will use @ as the
symbol of the exclusive disjunction). Note that a formula ¢ is affine precisely when the set of its
satisfying assignments is the set of solutions of a system of linear equations over the field {0,1}. 1

Definition 2.3: Let R be a logical relation and S a finite set of logical relations.

R is 1-valid if it contains the tuple (1,1,...,1), whereas R is 0-valid if it contains the tuple
(0,0,...,0). We say that S is 1-valid (0-valid) if every member of S is 1-valid (0-valid).

R is bijunctive (Horn, dual Horn, or affine, respectively) if there is a propositional formula ¢
which is bijunctive (Horn, dual Horn, or affine, respectively) and such that R coincides with the
set of truth assignments satisfying .

S is Schaefer if at least one of the following four conditions hold: every member of S is bijunctive;
every member of S is Horn; every member of S is dual Horn; every member of S is affine. Otherwise,
we say that S is non-Schaefer. 1

There are simple criteria to determine whether a logical relation is bijunctive, Horn, dual Horn,
or affine. In fact, a set of such criteria was already provided by Schaefer [Sch78]; moreover, Dechter
and Pearl [DP92] gave even simpler criteria for a relation to be Horn or dual Horn. Each of
these criteria involves a closure property of the logical relations at hand under a certain function.
Specifically, a relation R is bijunctive if and only if for all ¢1,%5,%t3 € R, we have that (¢; V t2) A
(ta Vt3) A (t1 V t3) € R. Note that the i-th coordinate of the tuple (¢ V t2) A (t2 V t3) A (1 V t3)
is equal to 1 exactly when the majority of the i-th coordinates of ¢1, %9, t5 is equal to 1. Thus, this
criterion states that R is bijunctive exactly when it is closed under coordinate-wise applications of
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the ternary majority function. R is Horn (respectively, dual Horn) if and only if for all 1, ¢, € R, we
have that ¢; Aty € R (respectively, t1 Vita € R). Finally, R is affine if and only if for all ¢1,9,t3 € R,
we have that ¢; @t @ t3 € R. As an example, it is easy to apply these criteria to the ternary
relation R, /3 = {(1,0,0),(0,1,0),(0,0,1)} and verify that R, /3 is neither bijunctive, nor Horn, nor
dual Horn, nor affine; moreover, it is obvious that Ry 3 is neither 1-valid nor 0-valid. Finally, there
are polynomial-time algorithms that given a logical relation that is bijunctive (Horn, dual Horn,
or affine, respectively), produce a defining propositional formula which is bijunctive (Horn, dual
Horn, or affine, respectively). See [DP92, KV98].

If S is a 0-valid or a 1-valid set of logical relations, then SAT(S) is a trivial decision problem (the
answer is always “yes”). If S is an affine set of logical relations, then SAT(S) can easily be solved
in polynomial time using Gaussian elimination. Moreover, there are well-known polynomial-time
algorithms for the satisfiability problem for the class of all bijunctive formulas (2-SAT), the class
of all Horn formulas, and the class of all dual Horn formulas. Schaefer’s seminal discovery was that
the above six cases are the only ones that give rise to tractable cases of SAT(S); furthermore, the
last four are the only ones that give rise to tractable cases of SATc(S).

Theorem 2.4: [Schaefer’s Dichotomy Theorems, [Sch78]] Let S be a finite set of logical relations.
If S is 0-valid or 1-valid or Schaefer, then SAT(S) is solvable in polynomial time; otherwise, it
18 NP-complete.
If S is Schaefer, then SATc(S) is solvable in polynomial time; otherwise, it is is NP-complete.

As an application, Theorem 2.4 immediately implies that POSITIVE-1-IN-3-SAT is NP-complete,
since this is the same problem as SAT(R,/3), and R;/3 is neither 0-valid, nor 1-valid, nor Schaefer.
To obtain the above dichotomy theorems, Schaefer had to first establish a result concerning the
expressive power of CNF(S) formulas. Informally, this result asserts that if S is a non-Schaefer
set of logical relations, then CNF ¢(S)-formulas have extremely highy expressive power, in the sense
that every logical relation can be defined from a CNF ¢(S)-formula using existential quantification.

Theorem 2.5: [Schaefer’s Expressibility Theorem, [Sch78]] Let S be a finite set of logical rela-
tions. If S is non-Schaefer, then for every k-ary logical relation R there is a CNF(S)-formula
O(T1y- - Ty 215 -+ -y 2m) Such that R coincides with the set of all truth assignments to the variables
Z1,...,Zk that satisfy the formula (3z1)--- (Fzm)(T1, -, Thy 215 -« - 3 Zm)-

3 Dichotomy Theorems for Minimal Satisfiability

In this section, we present our main dichotomy theorem for the class of all minimal satisfiability
problems MIN SAT(S). We begin with the precise definition of MIN SAT(S), as well as of certain
variants of it that will play an important role in the sequel.

Definition 3.1: Let < denote the standard total order on {0, 1}, which means that 0 < 1.

Let k be a positive integer and let o = (ay,...,a;), 8 = (by,...,bx) be two k-tuples in {0, 1}*.
We write 8 < « to denote that b; < a;, for every 1 < k. Also, 8 < « denotes that 8 < « and S # «.

Let S be a finite set of logical relations. MIN SAT(S) is the following decision problem: given a
CNF(S)-formula ¢ and a satisfying truth assignment « of ¢, is there a satisfying truth assignment
B of ¢ such that 8 < a? In other words, MIN SAT(S) is the problem to decide whether or not a
given truth assignment of a given CNF(.S)-formula is minimal. The decision problem MIN SAT¢(S)
is defined in a similar way by allowing CNF¢(.S)-formulas as part of the input.



Let S be a 1-valid set of logical relations. 1-MIN SAT(S) is the following decision problem: given
a CNF(S)-formula ¢ (note that ¢ is necessarily 1-valid), is there a satisfying truth assignment of
¢ that is different (and, hence, smaller) from the all-ones truth assignment (1,...,1)?

A CNF(S)-formula is obtained from a CNF(S)-formula by replacing some of its variable
by the constant symbol 1. The decision problem 1-MIN SAT;(S) is defined the same way as
1-MiIN SAT(S), except that CNF'(S)-formulas are allowed as part of the input (arbitrary CNF¢(.5)-
formulas are not allowed, since substituting variables by 0 may destroy 1-validity). il

As mentioned in the introduction, Cadoli [Cad92, Cad93] raised the question of whether a
dichotomy theorem for the class of all MIN SAT(S) problems exists. Note that if S is a 0-valid set
of logical relations, then MIN SAT(S) is a trivial decision problem. Moreover, Cadoli showed that
if S is a Schaefer set, then MIN SAT(S) is solvable in polynomial time. To see this, let ¢ be a
CNF(S)-formula and « be a k-tuple in {0,1}* that satisfies ¢. Assume, without loss of generality,
that for some [,1 <1 < k + 1 the components a; for 1 < j < are all equal to 0 and the rest are
all all equal to 1. For each ¢ such that [ <17 <k, let ¢; be the formula in CNF(S) obtained from
@ by substituting the variables x1,...,z;_1 and the variable z; with 0. It is easy to see that ¢ has
a satisfying truth assignment strictly less than « if and only if at least one of the formulas ¢; for
[ <14 <k is satisfied. Therefore MIN SAT(S) is polynomially reducible to SATc(S), and therefore
if S is Schaefer, MIN SAT(S) is polynomially solvable. Actually, this argument also shows that if S
is Schaefer, then MIN SAT(S) is solvable in polynomial time. On the intractability side, however,
Cadoli [Cad92, Cad93] showed that there is a 1-valid set of logical relations such that MIN SAT(S) is
NP-complete. Consequently, any dichotomy theorem for MIN SAT(S) will be substantially different
from Schaefer’s dichotomy theorem for SAT(S). Furthermore, such a dichotomy theorem should
also yield a dichotomy theorem for the special case of MIN SAT(S) in which S is restricted to be
1-valid. In what follows, we first establish a dichotomy theorem for this special case of MIN SAT(.S)
and then use it to derive the desired dichotomy theorem for MIN SAT(S), where S is an arbitrary
finite set of logical relations.

Theorem 3.2: [Dichotomy of MIN SAT(S) for 1-valid S| Let S be a 1-valid set of logical relations.
If S is O-valid or Schaefer, then MIN SAT(S) is solvable in polynomial time; otherwise, it is
NP-complete.
If S is Schaefer, then MIN SATq(S) is solvable in polynomial time; otherwise, it is NP-complete.

Proof: Let S be a 1-valid set of logical relations. In view of the remarks preceding the statement of
the theorem, it remains to establish the intractable cases of the two dichotomies. The proof involves
three main steps; the first step uses Schaefer’s Expressibility Theorem 2.5, whereas the second step
requires the development of additional technical machinery concerning the expressibility of the
binary logical relation {(0,0),(0,1),(1,1)}, which represents the implication connective —.

Step 1: If S is 1-valid and non-Schaefer, then SAT(R, /3) is log-space reducible to 1-MIN SAT;(SU
{—1})- Consequently, if S is 1-valid and non-Schaefer, then 1-MIN SAT;(SU{—}) is NP-complete.

Step 2: If S is 1-valid and non-Schaefer, then 1-MIN SAT;(S U {—}) is log-space reducible to
MIN SATq(S). Consequently, if S is 1-valid and non-Schaefer, then MIN SATc(S) is NP-complete.

Step 3: If S is 1-valid but neither 0-valid nor Schaefer, then MIN SATc(S) is log-space reducible
to MIN SAT(S). Consequently, if S is 1-valid but neither 0-valid nor Schaefer, then MIN SAT(S) is
NP-complete.

Proof of Step 1: Assuming that S is 1-valid and non-Schaefer, we will exhibit a log-space reduction
of SAT(R;/3) to 1-MIN SAT;(SU{—}). According to Definition 3.1, the latter problem asks: given
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a CNF (S U {—})-formula, is it satisfied by a truth assignment that is different from the all-ones
truth assignment (1,...,1)?

Let ¢(z) be a given CNF({R; /3})-formula, where = (z1,...,z,) is the list of its variables.
By applying Schaefer’s Expressibility Theorem 2.5 to the occurrences of Ry/3 in ¢(Z), we can
construct in log-space a CNF(S)-formula x(Z, z, wy, w1 ), such that ¢(z) = 3zx(z, z,0/wp, 1/w1),
where zZ = (21, ..., 2mn), W, w1 are new variables different from Z (substitutions of different variables
by the same constant can be easily consolidated to substitutions of the occurrences of a single
variable by that constant). Notice that the formula x(Z, z, wg, 1/w), whose variables are Z, Z, and
wy, is a CNF1(S)-formula, since it is obtained from a CNF(S)-formula by substitutions by 1 only.
Let 9(Z, z,wp) be the following formula:

x(Z, Z,wq,1/w1) A (/n\(wo — CCZ)> A (7\(11)0 — zj)> .

i=1 j=1

It is clear that ¥(z,z,wp) is a CNF{(S U {—})-formula (hence, 1-valid, because S is 1-valid) and
that the following two logical equivalences hold:

w(‘iaga O/wO) = X(J_?,E, O/ZU(), l/wl) and <P(5U) = HEX(J_:’E’ O/ZU(), l/wl) = 32'(/)(5),2,0/’[1)0)

It is now easy to verify that the given CNF({R;/3})-formula o(Z) is satisfiable if and only if the
CNF (S U {—})-formula v(z,z, w) is satisfied by a truth assignment different from the all-ones
truth assignment (1,...,1). This completes the proof of Step 1. 1I

To motivate the proof of Step 2, let us consider the combined effect of Steps 1 and 2. Once
both these steps have been established, it will follow that SAT({R;/3}) is log-space reducible to
MIN SATq(S), which means that an NP-complete satisfiability problem will have been reduced to a
minimal satisfiability problem. Note that the only information we have about S is that it is a 1-valid,
non-Schaefer set of logical relations. Therefore, it is natural to try to use Schaefer’s Expressibility
Theorem 2.5 in the desired reduction, since it tells us that R, /3 is definable from some CNF¢(S5)-
formula using existential quantification. The presence of existential quantifiers, however, introduces
a new difficulty in our context, because this way we reduce the satisfiability of a CNF ({R;/3})-
formula ¢(Z) to the minimal satisfiability of a CNF(S)-formula (Z, Z), where Z are additional
variables. It is the presence of these additional variables that creates a serious difficulty for minimal
satisfiability, unlike the case of satisfiability in Schaefer’s Dichotomy Theorem 2.4. Specifically, it
is conceivable that, while we toil to preserve the minimality of truth assignments to the variables
Z, the witnesses to the existentially quantified variables z may very well destroy the minimality
of truth assignments to the entire list of variable Z,z. Note that this difficulty was bypassed in
Step 1 by augmenting S with the implication connective —, which made it possible to produce
formulas in which we control the witnesses to the variables z. The proof of Step 2, however, hinges
on the following crucial technical result that provides precise information about the definability of
the implication connective — from an arbitrary 1-valid, non-Schaefer set S of logical relations.

Key Lemma 3.3: Let S be a 1-valid, non-Schaefer set of logical relations. Then at least one of
the following two statements is true about the implication connective.

1. There ezists a CNF¢(S)-formula e(z,y) such that (x — y) = €e(z,v).

2. There ezists in CNF(S)-formula n(x,y, z) such that



(i) (x = y) = 32)n(z,y,2); (ii) n(z,y,z) is satisfied by the truth assignment (1,1,1);
(i) if a truth assignment (1,1,b) satisfies n(z,y,z), then b= 1.

In other words, the formula (3z)n(z,y,z) is logically equivalent to (x — y) and has the
additional property that 1 is the only witness for the variable z under the truth assignment
(1,1) to the variables (x,y).

The proof of the above Key Lemma 3.3 can be found in Appendix A. We are now ready to
embark on the proof of Step 2.

Proof of Step 2: Assuming that S is 1-valid and non-Schaefer, we will exhibit a log-space reduction
of 1-MIN SAT;(S U {—}) to MIN SATc(S). According to the Key Lemma 3.3, either there is a
CNF(S)-formula €(z,y) that is logically equivalent to (x — y) or there is a CNF ¢(S)-formula
n(z,y, z) such that (3z)n(z,y, z) is logically equivalent to (z — y) and conditions (i)-(iii) above
hold. In what follows, we assume that the latter case holds, since the former is similar and actually
much easier to handle.

Given a CNF (S U {—})-formula ¢(Z), construct in log-space a CNF¢(S)-formula x(z,z) by
removing each occurrence of the implication connective in ¢(Z) as follows: (i) if the occurrence
is the form (1 — 1) or of the form (z; — 1), then this occurrence is simply deleted; (ii) if the
occurrence is of the form (1 — z;), then it is substituted by the formula 7(1,z;,z2,), where a
different new variable z, is used in each such substitution; and (iii) if the occurrence is of the form
(z;i — x;), then it is substituted by the formula 7(z;,z;, 2,), where a different new variable z, is
used in each such substitution. Note that the variables of x are the original variables Z and the
new variables Z = (21,...,%p,...). Using the Key Lemma 3.3, it is not hard to show that x(z, z)
is 1-valid and that ¢(Z) = 3zx(Z, ). Finally, using the Key Lemma 3.3 again, one can show that
©(Z) is satisfied by a truth assignment that is different from the all-ones truth assignment (1,...,1)
to the variables Z if and only if x(Z, z) is satisfied by a truth assignment that is different from the
all-ones truth assignment (1,...,1) to the variables z and z. Indeed, first assume that we have
a different from the all-ones truth assignment « to the variables z that satisfies ¢(Z). Extend «
to a different from the all-ones truth assignment § that satisfies x(z,z) by letting the variables
Z be assigned the truth values that witness the fact that 3zx(Z, z) is satisfied by a. Conversely,
assume that a different from the all-ones truth assignment S of x(z, z) is given. If we restrict g
to the variables Z, we obviously get a truth assignment « that satisfies p(Z). It remains to show
that « is different from the all-ones assignment. Suppose it were not. Then by the property (iii) of
the Key Lemma 3.3 and by the way x was constructed, we would conclude that the truth values
corresponding to the variables z would also be all equal to one, contradicting the hypothesis that
B was different from the all-ones assignment. This completes the proof of Step 2. 1

Proof of Step 3: Assuming that S is 1-valid but neither 0-valid nor Schaefer, we will exhibit a log-
space reduction of MIN SATc(S) to MIN SAT(S). In constructing the reduction, we will need the
following fact: For any set of relations 7 that is not 0-valid, there is a CNF(T")-formula 7(wq, w1)
such that 7(0/wp,w;) is satisfied by a truth assignment if and only if w; takes the value 1 under
this assignment. To see this, let R be a non-0-valid relation in 7', and say that R is of arity k.
Let a = (aj,...,ax) be an element of R which is different from the all-zeros k-tuple. Let R' be
a relation symbol corresponding to R. The desired formula 7(wp,w) is then obtained from the
CNF(T)-formula R'(z1,...,z) as follows: if a; = 1, replace z; by wi; otherwise, replace z; by wp.

Consider an instance of MIN SAT¢(S) consisting of a CNF ¢(S)-formula ¢(z,0/wq,1/w;) and
a satisfying truth assignment « for the variables z. Let x(z,wg,w;) be the CNF(S)-formula
©(Z,wo,w1) A T(wg,w1), where 7(wp,w) is as above. The satisfying truth assignment a of ¢ can



be extended to a satisfying truth assignment o' of x by letting wy = 0 and w; = 1. It is then easy
to verify that ¢(Z,0/wg,1/w) has a satisfying truth assignment 8 < « if and only if x(Z, wo, w1)
has a satisfying truth assignment 5’ < o’. This holds true because any satisfying truth assingment
of x that is smaller than o’ must assign the value 0 to wg; consequently, it must also assign the
value 1 to w; (by the way 7(0/wo,w:) is defined). This completes the proof of Step 3, as well as
the proof of Theorem 3.2. I

The following three examples illustrate the preceding Theorem 3.2.

Example 3.4: Consider the ternary logical relation
K =1{(1,1,1),(0,1,0),(0,0,1)}.

Since K is 1l-valid, the satisfiability problem SAT({K}) is trivial (the answer is always “yes”).
In contrast, Theorem 3.2 implies that the minimal satisfiability problems MIN SAT({K}) and
MiN SATc({K}) are NP-complete. Indeed, it is obvious that K is not 0-valid. Moreover, using the
criteria mentioned after Definition 2.3, it is easy to verify that K is neither bijunctive, nor Horn,
nor dual Horn, nor affine (for instance, K is not Horn because (0,1,0) A (0,0,1) = (0,0,0) ¢ K).

Note that the logical relation K can also be used to illustrate the Key Lemma 3.3. Specifically,
it is clear that (z — y) is logically equivalent to the formula (3z)K(z,y, z); moreover, 1 is the only
witness for the variable z such that (3z)K (1,1, z) holds. As a matter of fact, it was this particular
property of K that inspired us to conceive of the Key Lemma 3.3. 1

Example 3.5: Consider the 1-valid set
S = {R07 R17 RZ}a

where Ry = {0,1}® — {(0,0,0)} (expressing the clause (z Vy V 2)), Ri = {0,1}® — {(1,0,0)}
(expressing the clause (—zVyV z)), Ry = {0,1}3 —{(1,1,0)} (expressing the clause (-zV -y V z)).
Since S is a 1-valid set, SAT(S) is trivial. In contrast, Theorem 3.2 implies that MIN SAT(S) and
MiIN SAT(S) are NP-complete. Indeed, S is not 0-valid, since Ry is not a 0-valid logical relation.
Moreover, it is not hard to verify that S is not Schaefer. For this, observe that R; is not Horn
(since (1,1,0)A(1,0,1) = (1,0,0) & Ry), R; is not bijunctive (since the coordinate-wise majority of
(1,1,0), (1,0,1), (0,0,0) is (1,0,0) &€ Ry), and R; is not affine (since (1,1,1) & (1,1,0) & (1,0,1) =
(1,0,0) € Ry). Furthermore, Ry is not dual Horn (since (1,0,0) Vv (0,1,0) = (1,1,0) &€ Rs). 11

Example 3.6: Consider the 1-valid set
S ={R1, Rp},

where Ry and Ry are as in the preceding Example 3.5. Clearly, MIN SAT(S) is trivial, since S is
a 0-valid set. Theorem 3.2, however, implies that MIN SATc(S) is NP-complete, since S is not
Schaefer (as seen in the preceding example, the relations R; and Ry form a non-Schaefer set). 1

Theorem 3.2 yields a dichotomy for MIN SAT(S) , where S is a 1-valid set of logical relations.
In what follows, we will use this result to establish a dichotomy for MIN SAT(S), where S is an
arbitrary set of logical relations. Before doing so, however, we need to introduce the following
crucial concept.

Definition 3.7: Let R be a k-ary logical relation. We say that a logical relation T is a 0-section of
R if either T is the relation R itself or 7' can be defined from the formula R(z1,...,zx) by replacing
at least one, but not all, of the variables z1,...,z; by 0. I



To illustrate this concept, observe that the 1-valid logical relation {(1)} is a O-section of R, /3 =
{(1,0,0),(0,1,0),(0,0,1)}, since it is definable by R;/3(21,0,0). Note that the logical relation
{(1,0),(0,1)} is also a O-section of R;3, since it is definable by the formula R;/3(0, 2, 3), but it
is not 1-valid. In fact, it is easy to verify that {(1)} is the only O-section of R, /3 that is 1-valid.

Theorem 3.8: [Dichotomy of MIN SAT(S)] Let S be a set of logical relations and let S* be the
set of all logical relations P such that P is both 1-valid and a 0-section of some relation in S.

If S* is 0-valid or Schaefer, then MIN SAT(S) is solvable in polynomial time; otherwise, it is
NP-complete.

If S* is Schaefer, then MIN SAT(S) is solvable in polynomial time; otherwise, it is NP-
complete.

Moreover, each of these two dichotomies can be decided in polynomial time; that is to say,
there is a polynomial-time algorithm to decide whether, given a finite set S of logical relations,
MIN SAT(S) is solvable in polynomial time or NP-complete (and similarly for MIN SATq(S)).

Proof: We only prove the theorem for MIN SAT(S); the case with constants is analogous and, in
fact, easier. We first show that if the 1-valid set S* is neither 0-valid nor Schaefer, then MIN SAT(S)
is NP-complete. In this case, by Theorem 3.2, MIN SAT(S*) is NP-complete. We will produce a
polynomial-time reduction of MIN SAT(S*) to MIN SAT(S). Let ¢ be a CNF(S*)-formula and
let o be a satisfying truth assignment of . For every relation symbol P/ in ¢, let P; be the
corresponding logical relation in S*, let R; be a relation in S such that P; is a 0-section of R;, and
let R} be the corresponding relation symbol. Let also wy be a new variable. We now construct a
CNF(S)-formula x by transforming each occurrence of P/ in ¢ to an occurrence of R, as follows:
(i) we put the variable wy in all variable positions that correspond to coordinates of R; that were
set to 0 to obtain the O-section P;; (ii) for the remaining variables of R}, we use the variables in
the occurrence of P under consideration and we put them in the same arrangement they appear
in this occurrence of P/. Also, we extend « to a satisfying truth assignment o' of x by assigning
the value 0 to wg. The formula x and the assignment o/ is the instance of MIN SAT(S) to which
the reduction is made. It is not hard to prove that there is a truth assignment 8 < a that satisfies
 if and only if there is a truth assignment 3’ < o that satisfies x. This completes the reduction
that establishes the hardness part of the dichotomy for MIN SAT(S).

For the other direction, suppose that the 1-valid set S* is 0-valid or Schaefer. In this case, by
Theorem 3.2, MIN SAT(S*) is solvable in polynomial time. We will now reduce MIN SAT(S) to
MiIN SAT(S*) in polynomial time. Suppose we are given a CNF (S)-formula x and a satisfying truth
assignment « of it. We now construct in polynomial time a CNF (S*)-formula ¢ as follows. Consider
an occurrence R}(y1,...,ym) of a relation symbol R} in x, and let R; be the corresponding logical
relation in S. Depending on the values assigned by « to the variables y1, ..., yn, we either eliminate
this occurrence of R, or transform it to an occurrence of a relation symbol P, corresponding to a
relation P; in S*. Specifically, there are three cases to consider:

1. If o assigns value 0 to each variable y; . .. , Y, then we eliminate the occurrence R} (y1, . . ., Ym)-

2. If « assigns value 1 to each variable yi,..., ¥, then we keep the occurrence R}(y1,-..,Ym)-
Note that, since « satisfies x, the relation R; must be 1-valid and so it is a member of S*.

3. If a assigns value 0 to some variable y, and value 1 to some other variable y in the occurrence
Ri(y1,---,Ym), then let P; be the 0-section of R; obtained by setting equal to 0 each variable
yr to which « assigns value 0. Note that, since « satisfies x, the relation P; must be 1-valid
and so it is a member of S*. We now replace the occurrence R} (yi,...,ym) by the occurrence
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P/(Yi,,---,Yi,), where (yi,,...,yy,) is the subsequence of the sequence (y1,...,ym) consisting
of all variables among ¥4, ..., ¥, to which «a assigns value 1.

It should be pointed out that in this construction the same relation symbol R} in x may give
rise to several different relation symbols in ¢, corresponding to different occurrences of R
in x; the reason for this is that, depending on «, different occurrences of the same relation
symbol may correspond to different 0-sections.

It is easy to show that x has a satisfying assignment § < « if and only if ¢ has a satisfying assignment
that is different from the all-ones assignment. This completes the proof of the tractability part of
the dichotomy.

Note that the size of S§* is polynomial in the size of S, since every relation in S§* is either a
relation in S or is determined by a relation R in S and a tuple « in R that is different from the
all-ones tuple (1,...,1) (the positions of the zeros in a determine the variables that are replaced
by 0 to obtain a 1-valid 0-section of R). The existence of a polynomial-time algorithm for deciding
between tractability and NP-completeness in the dichotomy is established by combining this fact
with the existence of a uniform polynomial-time algorithm for deciding whether a given set of
logical relations is Schaefer (see [KV98]).1

We now present several different examples that illustrate the power of Theorem 3.8.

Example 3.9: If m and n are two positive integers with m < n, then R/, is the n-ary logical
relation consisting of all n-tuples that have m ones and n—m zeros. Clearly, Ry, , is neither 0-valid
nor 1-valid. Moreover, it is not hard to verify that R,,,, is not Schaefer. To see this consider the
following three n-tuples in R, /p:

a=(1,...,1,0,...,0), B=(0,1,...,1,0,...,0), v =(1,0,1,...,1,0,...,0).
—— ——r ——r

m m m—1
Ry /n is neither Horn nor dual Horn, because o A 8 has m — 1 ones and « V 8 has m + 1 ones.
Moreover, R/, is not bijunctive, because the coordinate-wise majority of o, 8 and y has m + 1
ones. Finally, R, , is not affine, because o ® 8 @ v has m — 2 ones.

Let S be a set of logical relations each of which is a relation R, , for some m and n with m < n.
The preceding remarks and Schaefer’s Dichotomy Theorem 2.4 imply that SAT(S) is NP-complete.
In contrast, the Dichotomy Theorem 3.8 implies that MIN SAT(S) and MIN SATc(S) are solvable
in polynomial time. Indeed, S™* is easily seen to be Horn (and, hence, Schaefer), since every relation
P in S* is a singleton P = {(1,...,1)} consisting of the m-ary all-ones tuple for some m.

This family of examples contains POSITIVE-1-IN-3-SAT as the special case where S = {R/3};
thus, Theorem 3.8 provides an explanation for the difference in complexity between the satisfiability
problem and the minimal satisfiability problem for POSITIVE-1-IN-3-SAT. 1

Example 3.10: Consider the 3-ary logical relation
T ={0,1}* - {(0,0,0),(1,1,1)}.

SAT({T}) is the well-known problem POSITIVE-NOT-ALL-EQUAL-3-SAT: given a 3CNF-formula
¢ with clauses of the form (z V y V z), is there a truth assignment such that in each clause of
¢ at least one variable is assigned value 1 and at least one variable is assigned value 07 Using
Schaefer’s Dichotomy Theorem 2.4, it is easy to see that this problem is NP-complete. To begin
with, it is obvious that 7T is neither 0-valid nor 1-valid. Moreover, T is neither Horn nor dual
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Horn, because (1,1,0) A (0,0,1) = (0,0,0) ¢ T and (1,1,0) vV (0,0,1) = (1,1,1) ¢ T. Finally, T is
neither bijunctive nor affine, because the coordinate-wise majority of (1,1,0), (0,1,1) and (1,0,1)
is (1,1,1) € T, whereas their coordinate-wise & is (0,0,0) ¢ T

In contrast, the Dichotomy Theorem 3.8 easily implies that MIN SAT({T'}) and MIN SATc({T'})
are solvable in polynomial time. To see this, observe that

{7 = {MW)},{(0,1),(1,0), (1, 1)} },

where the logical relation {(1)} is the 0-section of T' obtained from T" by setting any two variable to
0 (for instance, it is definable by the formula 7"(z, 0, 0)) and the logical relation {(0, 1), (1,0), (1,1)}
is the 0-section of T" obtained from 7' by setting any one variable to 0 (for instance, it is definable
by the formula 7"(z,y,0)). It is clear that each of these two logical relations is bijunctive (actually,
each is also dual Horn), hence {T'}* is Schaefer.

This provides another example of a natural NP-complete satisfiability problem whose associated
minimal satisfiability problem is tractable. Il

Example 3.11: As seen earlier, 3-SAT coincides with SAT(S), where S = {Ry, R1, R, R3} and
Ro = {0,1}% — {(0,0,0)} (expressing the clause (z VyV 2)), Ry = {0,1}3 — {(1,0,0)} (expressing
the clause (-z V y V 2)), Ry = {0,1}® — {(1,1,0)} (expressing the clause (-z V =y V z)), and
R3 =1{0,1}® — {(1,1,1)} (expressing the clause (~z V -y V —z2)).

Since the logical relations Ry, Ri, Ry are 1-valid, they are members of S*. It follows that S*
is not 0-valid, since it contains Ry. Moreover, as seen in Example 3.5, the logical relation R; is
not Horn, it is not bijunctive, and it is not affine, whereas the logical relation Rs is not dual Horn.
Consequently, S* is not Schaefer. We can now apply Theorem 3.8 and immediately conclude that
MiIN SAT(S) (i.e., MIN 3-SAT) is NP-complete.

This example illustrates a fine point in the concept of a 0-section of a logical relation. Specifi-
cally, it is crucial to allow each logical relation to be a 0-section of itself (see Definition 3.7). Indeed,
it is easy to see that every 0-section of R; other than R; itself is bijunctive, 0 < ¢ < 3. Consequently,
if a logical relation were not allowed to be a 0-section of itself, then S* would consist entirely of
bijunctive relations and, hence, it would be Schaefer. I

Example 3.12: Consider the set S = { Ry, R3}, where Ry and Rj are as in the preceding Example
3.11. In this case, SAT(S) is the problem MONOTONE 3-SAT, that is to say, the restriction of
3-SAT to 3CNF-formulas in which every clause is either the disjunction of positive literals or the
disjunction of negative literals. Clearly, S is neither 0-valid nor 1-valid. Moreover, it is easy to
verify that S is not Schaefer. Consequently, Schaefer’s Dichotomy Theorem 2.4 implies that SAT(.S)
is NP-complete.

In contrast, the Dichotomy Theorem 3.8 implies that MIN SAT(S) and MIN SATq(S) are solv-
able in polynomial time. For this, it suffices to verify that S* is Schaefer. Note that the relation
Ry is dual Horn, because it is definable by the formula (z V y V z). Since dual Horn formulas are
closed under substitutions by constants, it follows that every 0-section of Ry is dual Horn as well.
Let us now consider those 0-sections of R3 that are also 1-valid relations. Observe that R3 is not
such a relation, since it is not 1-valid. Thus, every 1-valid 0-section of R3 must be obtained from
Rj3 either by setting one variable to 0 or by setting two variables to 0. The first case gives rise
to the trivial binary relation {(0,0), (0,1),(1,0),(1,1)}, whereas the second case gives rise to the
trivial unary relation {(0), (1)}. Since each of these relations is dual Horn, it follows that S* is dual
Horn and, hence, S* is Schaefer. 1
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4 Dichotomy Theorems for Extensions of Minimal Satisfiability

In this section, we establish a dichotomy theorem for minimal satisfiability problems with respect
to a modified partial order between truth assignments. This modified partial order allows for a
part of the assignment to be kept fixed, while another part of it may vary arbitrarily. As mentioned
earlier, the existence of a dichotomy theorem for these minimal satisfiability problems was raised
by Cadoli [Cad92, Cad93] while investigating propositional circumscription and its extensions.

Definition 4.1: Let k be a positive integer, let @« = (a1,...,ax) and 8 = (b1,...,b) be two
k-tuples in {0, 1}*, and let (P, Q, Z) be a partition of the set {1,2,...,k} in which P is non-empty,
while at least one of ) and Z may be empty.

We write a/P to denote the tuple that results from « by keeping only those coordinates a; such
that j € P. We also write 8 <(p,g, z) a to denote that /P < a/P and 8/Q = a/Q.

Let S be a finite set of logical relations. (P;Q; Z)-MIN SAT(S) is the following decision problem:
given a CNF(S)-formula ¢, a satisfying truth assignment « of ¢, and a partition (P, Q, Z) of the
set of variables of ¢ (in which P is non-empty, while at least one of @ and Z may be empty), is
there a satisfying truth assignment 8 of ¢ such that 8 <(pq,z) a? (here the partition (P, Q, Z) of
the indices of « is the one induced by the partition (P, Q, Z) of the variables of ¢). 1

Observe that (P; Q; Z)-MIN SAT(S) contains both MIN SAT(S) and MIN SAT¢(S) as restricted
cases. Indeed, MIN SAT(S) is the same problem as (P; Q; Z)-MIN SAT(S) with @ =0 and Z = 0,
while MIN SATq(S) is the same problem as (P;Q; Z)-MIN SAT(S) with Z = (. The last result of
this paper establishes a dichotomy for (P;Q; Z)-MIN SAT(S) (with no restrictions on @ or Z), as
well as for the restricted case of (P;Q; Z)-MIN SAT(S) with @ = 0.

Theorem 4.2: [Dichotomy of (P;Q; Z)-MIN SAT(S)] Let S be a set of logical relations.

If S is Schaefer, then (P;Q;Z)-MIN SAT(S) is solvable in polynomial time; otherwise, it is
NP-complete.

If S is O-valid or Schaefer, then (P;Q;Z)-MIN SAT(S) with @ = 0 is solvable in polynomial
time; otherwise, it is NP-complete.

Proof: Let K be a logical relation such that MIN SAT({K}) is NP-complete (for instance, the
logical relation K introduced in Example 3.4 has this property). To show the NP-completeness
of (P;Q; Z)-MIN SAT(S), when S is not Schaefer, we will exhibit a polynomial-time reduction of
MIN SAT({K}) to (P;Q; Z)-MIN SAT(S). Suppose we are given a CNF({K'})-formula ¢(Z), where
z = (x1,-..,%y,) is the list of its variables, and a satisfying truth assignment « of ¢. By repeatedly
applying Schaefer’s Expressibility Theorem 2.5 to the occurrences of K in ¢(Z), we can construct
in log-space a CNF(S)-formula x(Z,Zz,wo,w;), such that ¢(z) = Jzx(z,z,0/wp,1/w;1), where
Z = (z1,---,2m),wp, w1 are new variables different from Z (substitutions of different variables by
the same constant can be easily consolidated to substitutions of the occurrences of a single variable
by that constant). Let P be the set of variables T of ¢, let ) be the two-element set {wg,w;}, and
let Z be the set of variables Z. We now construct the following truth assignment S that satisfies
X(Z, Z,wp, w1): to the variables T, it assigns «; to the variable wy, it assigns 0; to the variable wq,
it assigns 1; finally, to the variables Z, it assigns a tuple that witnesses the fact that the formula
Jzx(Z,2,0/wy, 1/wi) = p(Z) is satisfied by a. The CNF(S)-formula x(Z, z, wp, w1 ), the partition
(P,Q, Z), and the satisfying truth assignment S constitute the instance of (P;@Q; Z)-MIN SAT(S)
to which the instance p(Z) and «a of MIN SAT(S) is being reduced. It is now immediate that
there is a truth assignment ' satisfying x(Z, Z, wg,w1) and such that g’ <(p,@,z) B if and only
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if (z) = Jzx(z,2,0/wp,1/wy) has a satisfying truth assignment o’ < «. This completes the
NP-hardness proof of the first part of the theorem.

Next, assume that S is neither 0-valid nor Schaefer. To show that (P; Q; Z)-MIN SAT(S) is NP-
complete even when @ = ), we produce again a reduction from MIN SAT({K}). As before, we start
with a CNF({K'})-formula ¢(Z) and a satisfying truth assignment «; we then construct a CNF(S)-
formula x(Z, Z, wo, w1 ) such that ¢(z) = 3zx(z, Z,0/wp, 1/w1). Consider now the CNF(S)-formula
T(wo, w1) used in the proof of Step 3 of Theorem 3.2; this formula has the property that 7(0/wg, w1)
is satisfied by a truth assignment if and only if wq gets the value 1 under this assignment. We now
consider the following instance of (P;Q; Z)-MIN SAT(S) with @ = 0: the formula is defined to be
X(Z, Z,wo,w1) A T(wg,w1) (thus w; is forced to take value 1 in every satisfying truth assignment
that assigns 0 to wg); P is defined to be the set consisting of the variables Z, wy, and wi; @ is
the empty set; finally, Z and 8 are defined as in the previous reduction. It is now immediate that
there is a truth assignment 3’ satisfying x(Z, z, wo, w1) A 7(wo,w1) and such that 3 <(po,z) B if
and only if o(z) = Izx(Z, z,0/wg, 1/w1) has a satisfying truth assignment o/ < . This completes
the NP-hardness proof ofthe second part of the theorem.

The tractability results follow easily, as in Theorem 3.2. 1

We conclude by pointing out that the above Dichotomy Theorem 4.2 for (P; Q; Z)-MIN SAT(S)
does not imply the Dichotomy Theorem 3.8 for MIN SAT(S) and MIN SATq(S). Indeed, since
MiN SAT(S) is a restricted case of (P;Q;Z)-MIN SAT(S), one cannot a priori rule out the ex-
istence of sets S of logical relations such that (P;Q;Z)-MIN SAT(S) is NP-complete, whereas
MiN SaT(S) is solvable in polynomial time. Actually, the familiar set S = {R;,3} has this prop-
erty, thus manifesting that the dichotomy for MIN SAT(S) cannot be derived from the dichotomy
for (P;Q; Z)-MIN SAT(S).
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5 Appendix: Proof of Key Lemma 3.3

This appendix contains a complete proof of the Key Lemma 3.3. To make the proof entirely self-
contained, we first present the proof of a result due to Creignou and Hermann [CH96], which will
be used in the sequel.

Proposition 5.1: [Creignou and Hermann, [CH96]] If R is a 1-valid logical of arity k, then the
following statements are equivalent:

e R is affine.

e For all s,t € R, we have that 1® s ®t € R, where 1 is the all-ones k-tuple (1,...,1).

Proof: As mentioned in Section 2, Schaefer [Sch78] showed that a logical relation R is affine if
and only if for all t1,t2,t3 € R, we have that t1 @ to @ t3 € R. It follows that if R is both 1-valid
and affine, then for all s,t € R, we have that 1® s ®t € R. For the other direction, assume
that R is 1-valid and such that if s, € R, then 1® s ®t € R. Let t1,t0,t3 € R. It follows that
u=1®t ®ty € R. By applying the closure property of R again, we get that 1®u®t3 € R. Since
1®1=0 and @ is associative, we have that 1 Qu®t3 =10 (1Dt Dto) Dtz =11 Dty D t3. 1

Key Lemma 3.3: Let S be a 1-valid, non-Schaefer set of logical relations. Then at least one of
the following two statements is true about the implication connective.

1. There exists a CNF¢(S)-formula e(z,y) such that (z — y) = €(z,y).

2. There ezists in CNF(S)-formula n(x,y, z) such that

(i) (x = y) = 32)n(z,y,2); (ii) n(z,y,2) is satisfied by the truth assignment (1,1,1);
(#i) if a truth assignment (1,1,b) satisfies n(x,y, z), then b= 1.

In other words, the formula (3z)n(z,y,z) is logically equivalent to (x — y) and has the
additional property that 1 is the only witness for the variable z under the truth assignment
(1,1) to the variables (z,y).

Proof: Since S is a 1-valid, non-Schaefer set of logical relations, it must contain a 1-valid logical
relation R that is not affine. Let k be the arity of R. From Proposition 5.1, it follows that there
are two k-tuples s, € R such that 1@ s®t & R. Let x1,...,x; be propositional variables and let
R’ be a relation symbol of arity k that will be interpreted by R. For (i,j) € {0,1}?, let V;; be the
set of all variables z,, 1 < p <k, such that the p-th coordinate of the tuple s is equal to 7, and the
p-th coordinate of the tuple t is equal to j. Let z,vy, z, w be four new propositional variables and
let ¢1(z,y, z,w) be the CNF(S)-formula R'(z/Vyo,vy/V1i0,2/Vo1,w/V11) obtained from the formula
R'(z1,...,z)) by substituting the variable z for all occurrences of the variables in Vpg, and similarly
for the variables y, z, and w. Also let ya(z,y,2) be the CNF(S)-formula ¢;(z,y,z,1/w). Now
observe the following:

the truth assignment (1, 1,1, 1) satisfies ¢1(z,y, z, w), because 1 € R;

( )
the truth assignment (0, 1,0, 1) satisfies 1(z,y, z,w), because s € R;
( )
( )

the truth assignment (0, 0,1, 1) satisfies the o1 (z,y, z,w), because t € R;

the truth assignment (1,0,0,1) does not satisfy ¢ (z,y,2,w), because 1 ® s Dt & R.
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Therefore, (1,1,1), (0,1,0) and (0,0, 1) satisfy @o(z,y,z), while (1,0,0) does not.

For the remaining four truth assignments (1,1,0),(0,1,1),(1,0,1) and (0,0,0), we have no
information as to whether or not they satisfy p2(x,y, z). Consequently, we have sixteen possibilities
to examine regarding the satisfiability of @2 (z,y, z) by these four truth assignments. To facilitate
the case analysis, we introduce a notation that we explain by an example. Case [N(0)-Y(es)-N(o0)-*]
means that the following hold:

e (1,1,0), the first truth assignment under consideration, does not satisfy s(z,y, 2);

(1,1,0)
e (0,1,1), the second truth assignment under consideration, satisfies o (z,y, 2);
e (1,0,1), the third truth assignment under consideration, does not satisfy ps(z,y, 2);
)

e (0,0,0), the fourth truth assignment under consideration, may or may not satisfy ¢s.

We will show that for each of the sixteen possibilities there exists a CNF ¢(S)-formula n(z,y) that
is logically equivalent to the implication  — y, or there exists a CNF ¢(S)-formula e(z,y) having
the properties stipulated in the Key Lemma 3.3, or there exists a CNF ¢(S)-formula that is logically
equivalent to the disjunction z V y.

e Case [N-*-N-*]: Set n(z,y,2) = 2(z,y, 2)

o Case [*-*-Y-Y]: Set e(z,y) = p2(z,0,y)

Case [*-Y-*-N]: Observe that z Vy = ¢2(0, z,y)

Case [*-N-Y-*]: Set e(z,y) = v2(y,,1)

Case [Y-N-*-*]: Set e(z,y) = ¢2(y, 1, z)

Case [*-Y-N-*]: Set e(z,y) = ¢2(z,y,1)

It is easy to check that the above cases cover all sixteeen possibiilities. Note, however, that the
proof of the Key Lemma 3.3 has not been completed, because in Case [*-Y-*-N] we only succeeded
to define z V y using a CNF¢(S)-formula. Since not every element of S is a dual Horn relation,
S must contain a logical relation @) for which there are tuples s, € @ such that sVt & @Q (here
we use the closure properties of dual Horn relations, due to Dechter and Pearl [DP92], mentioned
in Section 2). By arguments similar to the preceding ones, we can construct a CNF ¢(.S)-formula
Po(x,y, z) that is satisfied by (1,1,1), (0,1,0) and (0,0, 1), but it is not satisfied by (0,1,1). Let
¥3(z,y, z) be the CNF ¢(S)-formula 9(z,y,2) A (y V z). Observe that 13(z,y, 2) is satisfied by
(1,1,1), (0,1,0) and (0,0,1), but it is not satisfied by (0,1, 1), (1,0,0),(0,0,0). We are now left
with the triples (1,1,0) and (1,0, 1) about which there is no information as to whether they satisfy
Ps3(x,y, z) or not. We consider the following three exhaustive cases:

e If (1,1,0) satisfies 93(z, vy, z), then set
€(Z,y) = '(/)3(:‘]7 1a$)
e If (1,0,1) satisfies 93(z, vy, z), then set

E(xay) = ¢3(ya L, 1)'
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e If neither (1,1,0) nor (1,0, 1) satisfies v3(z,y, z), then set
77(37’1%2) = ’l,bg(l‘,y,Z)-

This completes the proof of the Key Lemma 3.3. I
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