Electronic Colloquium on Computational Complexity, Report No. 84 (2000)

A Complete Problem for Statistical Zero Knowledge*

Amit Sahait Salil Vadhan!
October 25, 2000

Abstract

We present the first complete problem for SZK, the class of (promise) problems possessing statistical
zero-knowledge proofs (against an honest verifier). The problem, called STATISTICAL DIFFERENCE,
1s to decide whether two efficiently samplable distributions are either statistically close or far apart.
This gives a new characterization of SZK that makes no reference to interaction or zero knowledge.

We propose the use of complete problems to unify and extend the study of statistical zero knowl-
edge. To this end, we examine several consequences of our Completeness Theorem and its proof,
such as:

e A way to make every (honest-verifier) statistical zero-knowledge proof very communication
efficient, with the prover sending only one bit to the verifier (to achieve soundness error 1/2).

o Simpler proofs of many of the previously known results about statistical zero knowledge, such
as the Fortnow and Aiello-Hastad upper bounds on the complexity of SZK and Okamoto’s
result that SZK is closed under complement.

e Strong closure properties of SZK which amount to constructing statistical zero-knowledge
proofs for complex assertions built out of simpler assertions already shown to be in SZK.

o New results about the various measures of “knowledge complexity,” including a collapse in the
hierarchy corresponding to knowledge complexity in the “hint” sense.

o Algorithms for manipulating the statistical difference between efficiently samplable distribu-
tions, including transformations which “polarize” and “reverse” the statistical relationship
between a pair of distributions.

*Preliminary versions of this work appeared in the proceedings of the 38th Annual IEEE Symposium on the
Foundations of Computer Science [SVI7] and the DIMACS Workshop on Randomization Methods in Algorithm
Design [SV99].

fDepartment of Computer Science, Princeton University, Princeton, NJ 08544. Email: sahai@cs.princeton.edu.
URL: http://wuw.cs.princeton.edu/"sahai. This work was done when the author was at the MIT Laboratory for
Computer Science, supported by a DOD NDSEG Graduate Fellowship and partially by DARPA grant DABT63-96-
C-0018.

tDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. Email:
salil@deas.harvard.edu. URL: http://deas.harvard.edu/"salil. This work was done when the author was in
the MIT Department of Mathematics, supported by a DOD NDSEG Graduate Fellowship and partially by DARPA
grant DABT63-96-C-0018.

ISSN 1433-8092

Contents

1

ot

Q w »

Introduction

1.1 Statistical zero knowledge
1.2 The complete problem
1.3 Consequences
1.4 Subsequent work

Preliminaries

2.1 Promise problems.
2.2 Probability distributions
2.3 The statistical difference metric
2.4 Zero-knowledge proofs

The Completeness Theorem

3.1 The complete problem
3.2 A polarization lemma
3.3 A protocol for STATISTICAL DIFFERENCE
3.4 SZK-hardnessof SD
3.5 Proofof Lemma 3.8

Applications

4.1 Efficient statistical zero-knowledge proofs
4.2 Closure properties
4.3 Knowledge complexity
4.4 Reversing statistical difference.

4.5 Weak-SZK and expected polynomial-time simulators

4.6 Perfect and computational zero knowledge
4.7 Hard-on-average problems and one-way functions

Extensions to cheating-verifier zero knowledge
The Statistical Difference Metric
A Generic Complete Problem for PZK

An Example for GRAPH ISOMORPHISM

10
10
11
14
16
16

20
20
21
25
29
33
35
37

39

48

49

50

1 Introduction

A revolution in theoretical computer science occurred when it was discovered that NP has com-
plete problems [Coo71, Lev73, Kar72]. Most often, these theorems and other completeness results
are viewed as negative statements, as they provide evidence of a problem’s intractability. These
same results, viewed as positive statements, enable one to study an entire class of problems by
focusing on a single problem. For example, all languages in NP were shown to have computational
zero-knowledge proofs when such a proof was exhibited for GRAPH 3-COLORABILITY [GMW91].
Similarly, the result that IP = PSPACE was shown by giving an interactive proof for QUANTIFIED
BOOLEAN FORMULA, which is complete for PSPACE [LFKN92, Sha92]. More recently, the cele-
brated PCP theorem characterizing NP was proven by designing efficient probabilistically checkable
proofs for a specific NP-complete language [ALM™98, AS98].

In this paper, we present a complete problem for SZK, the class of promise problems' possessing
statistical zero-knowledge proofs (against an honest verifier). This problem provides a new and
simple characterization of SZK — one which makes no reference to interaction or zero knowledge.
We propose the use of complete problems as a tool to unify and extend the study of statistical zero
knowledge. To this end, we use our complete problem to both establish a number of new results
about SZK and easily deduce nearly all previous results about SZK.

1.1 Statistical zero knowledge

Zero knowledge was introduced in the seminal paper of Goldwasser, Micali, and Rackoff [GMR&89]
within the context of their new notion of interactive proof systems. Informally, an interactive proof
is a protocol in which a computationally unbounded prover P attempts to convince a probabilistic
polynomial-time verifier V' of an assertion, namely that a string x is a YES instance of some (promise)
problem. The zero knowledge property requires that, during this process, the verifier learns nothing
beyond the validity of the assertion being proven! To formalize this seemingly impossible notion,
two probability distributions are considered:

1. The interaction of P and V from V’s point of view.

2. The output of a probabilistic polynomial-time machine not interacting with anyone, called
the simulator, on input x.

An interactive proof system (P, V') is said to be zero knowledge if, for every YES instance z, the
two distributions above are “alike.” Intuitively, the verifier gains no knowledge by interacting
with the prover except that z is a YES instance, since it could have run the simulator instead.
The specific variants of zero knowledge differ by the interpretation given to “alike.” The most
strict interpretation, leading to perfect zero knowledge, requires that the distributions be identical.
A slightly relaxed interpretation, leading to statistical zero knowledge (sometimes called almost
perfect zero knowledge), requires that the distributions have negligible statistical difference from
one another. The most liberal interpretation, leading to computational zero knowledge, requires
that samples from the two distributions be indistinguishable by any polynomial-time machine.

In this work, we focus on the class of problems possessing statistical zero-knowledge proof
systems, which we denote SZK. We remark that we are restricting our attention to zero-knowledge
proofs against an honest verifier, i.e. the verifier that follows the specified protocol. In cryptographic

LA promise problem is a decision problem given by a pair of disjoint sets of strings, corresponding to YES and NO
instances. In contrast to languages, there may be strings which are neither YES instances nor NO instances. A formal
definition is given in Section 2.

applications, one usually wants the zero-knowledge condition to hold for all (even cheating) verifier
strategies. However, subsequent to this work, it has been shown that one can transform any proof
system that is statistical zero knowledge against an honest verifier into one that is statistical zero
knowledge against all verifiers [GSV98], so restricting to honest verifiers causes no loss of generality.

SZK contains a number of important problems, including GRAPH NONISOMORPHISM [GMW91],
a problem which is not known to be in NP. It also contains problems with cryptographic appli-
cation and significance that are believed to be hard on average, such as QUADRATIC RESIDUOS-
ITY (and its complement) [GMR89], a problem equivalent to the DISCRETE LOGARITHM prob-
lem [GK93], and approximate versions of the SHORTEST VECTOR and CLOSEST VECTOR problems
in lattices [GGO00]. At the same time, the statistical zero knowledge property has several strong
consequences. Unlike a computational zero-knowledge protocol, a statistical zero-knowledge pro-
tocol remains zero knowledge even against a computationally unbounded verifier. In addition,
a problem which has a statistical zero-knowledge proof must lie low in the polynomial-time hi-
erarchy. In fact, such a problem cannot be NP-complete unless the polynomial-time hierarchy
collapses [For89, AH91, BHZ87]. Because SZK contains problems believed to be hard yet cannot
contain NP-complete problems, it holds an intriguing position in complexity theory.

1.2 The complete problem

The promise problem we show to be complete for SZK is STATISTICAL DIFFERENCE. An instance of
STATISTICAL DIFFERENCE consists of a pair of probability distributions, specified by circuits which
sample from them. Roughly speaking, the problem is to decide whether the distributions defined
by the two circuits are statistically close or far apart. (The gap between ‘close’ and ‘far apart’ is
what makes it a promise problem and not just a language.) Our main theorem is that STATISTICAL
DIFFERENCE is complete for SZK. This Completeness Theorem gives a new characterization of
SZK. Informally, it says that the assertions that can be proven in statistical zero knowledge are
exactly those that can be cast as deciding whether a pair of efficiently samplable distributions are
statistically close or far apart.

The starting point for our proof of the Completeness Theorem is a powerful theorem of Okamoto [Oka00],
which states that all languages in SZK have public-coin (also known as Arthur-Merlin [BM88]) sta-
tistical zero-knowledge proofs. Using the approach pioneered by Fortnow [For89], we analyze the
simulator of such a proof system and show that statistical properties of the simulator’s output dis-
tribution can be used to distinguish between YES and NO instances of the problem in consideration.
Our key new observation is that, for a public-coin proof system, these statistical properties can
be captured by the statistical difference between efficiently samplable distributions. We thereby
conclude that every problem in SZK reduces to STATISTICAL DIFFERENCE.

To show that STATISTICAL DIFFERENCE is in SZK, we exhibit a simple 2-message proof system
for it, generalizing the well-known proof systems for QUADRATIC NONRESIDUOSITY [GMRR89] and
GRAPH NONISOMORPHISM [GMW91]. One ingredient in our proof system is a new “Polarization
Lemma” for statistical difference, which may be of independent interest. Roughly speaking, this
lemma gives an efficient transformation which takes as input a pair of probability distributions
(specified by circuits which sample from them) and produces a new pair of distributions such that
if the original pair is statistically close (resp., far apart), the new pair is statistically much closer
(resp., much further apart).

1.3 Consequences

We propose using complete problems, such as STATISTICAL DIFFERENCE, to unify and extend
the study of SZK. We also use the connection between SZK and statistical properties of samplable
distributions to establish new techniques for manipulating such distributions. The results we obtain
along these lines are summarized below.

The relationship between SZK and BPP. Our complete problem illustrates that statistical
zero knowledge is a natural generalization of BPP. In the definition of STATISTICAL DIFFERENCE ,
the circuits can output strings of any length. If we restrict the circuits to have output of logarithmic
length, the resulting problem is easily shown to be complete for BPP.

Efficient SZK proof systems. The zero-knowledge proof system we exhibit for STATISTICAL
DIFFERENCE has many attractive properties (which we describe shortly); by the Completeness
Theorem it follows that every problem in SZK also has a proof system with such properties. First,
the protocol is very communication efficient — only two messages are exchanged between the prover
and verifier, and the prover only sends one bit to the verifier (to achieve soundness error 1/2). In
addition, we will show that when the input is a YES instance, the verifier’s view of the interaction
can be simulated by a polynomial-time simulator with exponentially small statistical deviation.
Moreover, we will show that this simulator deviation can be made to shrink exponentially fast as a
function of a separate “security parameter” which can be varied independently from the assertion
being proven. This is in contrast to the definition of SZK, which only requires that the verifier be
able simulate the interaction with statistical deviation 1/n“(), where n is the the length of the
assertion being proven.

Closure properties. Using the complete problem, we demonstrate that SZK has some very
strong closure properties. These can be informally described as asserting the existence of statistical
zero-knowledge proofs for complex assertions built out simpler assertions already known to be in
SZK. These complex assertions take the form of arbitrary propositional formulae whose atoms
are statements about membership in some problem in SZK, and the statistical zero-knowledge
proofs we exhibit have complexity which is polynomial in the size of these formulae. These results
generalize earlier ones of De Santis, Di Crescenzo, Persiano, and Yung [DDPY94] and Damgard and
Cramer [DC96], which held for monotone formulae and various subclasses of SZK, such as random
self-reducible problems.

By the Completeness Theorem, the closure properties we establish are equivalent to the ex-
istence of efficient transformations that manipulate the statistical difference between samplable
distributions in various ways. Indeed, it is by exhibiting such transformations that we prove the
closure properties of SZK. The transformations we give (and their application to closure properties)
are inspired by the techniques of De Santis, Di Crescenzo, Persiano, and Yung [DDPY94].

Simpler proofs of previous results. Many of the previous results about SZK can be deduced
as immediate corollaries of our Completeness Theorem and its proof. For example, the result of
Okamoto [Oka00] that SZK is closed under complement follows directly from our proof of the Com-
pleteness Theorem. Then, using the fact that our proof system for STATISTICAL DIFFERENCE is a
constant-round one, we deduce that SZK C AM N co-AM, as originally proven by Fortnow [For89]
and Aiello and Hastad [AH91]. In addition, the result of Ostrovsky [Ost91] that one-way functions

exist if SZK contains a hard-on-average problem follows immediately by combining our Complete-
ness Theorem with a result of Goldreich [Gol90] on computational indistinguishability.

Knowledge complexity. In addition to introducing zero-knowledge proofs, the conference ver-
sion of the paper of Goldwasser, Micali, and Rackoff [GMR89] proposed a more general idea of
measuring the amount of knowledge leaked in an interactive proof. Goldreich and Petrank [GP99]
suggested several definitions of knowledge complezity to accomplish this, and relationships between
these various types of knowledge complexity were explored in [GP99, BP92, GOP98, ABV95, PT96].
Loosely speaking, the definitions of (statistical) knowledge complexity measure the “amount of
help” a verifier needs to generate a distribution that is statistically close to its real interaction with
the prover. There are several ways of formalizing the “amount of help” the verifier needs and each
leads to a different notion of knowledge complexity.

Our work on SZK turns out to have consequences for (non-zero) knowledge complexity as well.
First, we show that for the weakest of the various measures of knowledge complexity, namely statis-
tical knowledge complexity in the “hint sense”, the corresponding hierarchy collapses by logarithmic
additive factors at all levels, and in particular, knowledge complexity logn equals statistical zero
knowledge. No collapse was previously known for any of the variants of knowledge complexity
suggested in [GP99]. Our results are obtained by combining our results on SZK with a general
lemma relating knowledge complexity in the hint sense to zero knowledge for promise problems.

As with zero knowledge, perfect knowledge complexity can also be defined. This measures the
number of bits of help the verifier needs to simulate the interaction ezactly, rather than statistically
closely. Using our complete problem for SZK, we improve some results of Aiello, Bellare, and
Venkatesan [ABV95] on the perfect knowledge complexity of statistical zero knowledge.

Reversing statistical difference. One interesting result that follows from the completeness of
STATISTICAL DIFFERENCE and the closure of SZK under complement is the existence of an efficient
mapping which “reverses” statistical difference. That is, for every pair of efficiently samplable
distributions, we can construct another pair of efficiently samplable distributions such that when
the former are statistically close, the latter are statistically far apart, and when the former are far
apart, the latter are close.

This motivated us to search for a more explicit description of such a transformation. By
extracting ideas from the work of Okamoto [Oka00] and our proof of the Completeness Theorem,
we have obtained such a description (which we give in Section 4.4).

Weak SZK and expected polynomial-time simulators. The original definition of SZK in
[GMRRY] allows the simulator to run in ezpected polynomial time, whereas we insist on strict
polynomial time, following [Gol95]. Actually, our proof of the Completeness Theorem shows that
the two definitions are equivalent for public-coin proof systems. That is, if a problem possesses a
public-coin SZK proof system with an expected polynomial-time simulator, then it also possesses
an SZK proof system with a strict polynomial-time simulator (which can be made public coin by
[Oka00]). In fact, the equivalence extends to an even weaker definition of SZK, in which it is only
required that for every polynomial p(n), there exists a simulator achieving simulator deviation

1/p(n).
Perfect and computational zero knowledge. Our techniques can also be used to analyze

public-coin perfect and computational zero-knowledge proofs. Although we do not obtain com-
plete problems in these cases, we do obtain some novel insights into the corresponding complexity

4

classes. Specifically, in Section 4.6 we show that every problem possessing a public-coin perfect
zero-knowledge proof (essentially) reduces to a restricted version of STATISTICAL DIFFERENCE.
We also show that for any problem possessing a public-coin computational zero-knowledge proof,
there exist ensembles of samplable distributions indexed by instances of the problem such that on
YES instances, the distributions are computationally indistinguishable and on NO instances, the
distributions are statistically far apart.

Cheating-verifier zero knowledge. While in this paper we primarily focus on honest-verifier
statistical zero knowledge, there have been a number of works examining “cheating-verifier” statis-
tical zero knowledge, and in particular relating the honest and cheating-verifier definitions. Some
of these works exhibited transformations from honest-verifier SZK proofs to cheating-verifier ones
under (successively weaker) complexity assumptions ([BMO90], [OVY93], and [DGOW95, Part
2]), and others gave unconditional transformations for restricted subclasses of SZK ([Dam93] and
[DGOWY5, Part 1]). Finally, subsequent to our paper, it was proven in [GSV98] that honest-verifier
and cheating-verifier SZK are the equal, unconditionally and with no restrictions.

Following the paradigm advocated in [BMO90], we use the above transformations to translate
our results about honest-verifier SZK, namely the Completeness Theorem and its corollaries, to the
cheating-verifier class. In Section 5, we precisely state the results thereby obtained for cheating-
verifier statistical zero knowledge.

1.4 Subsequent work

Subsequent to the conference version of this paper [SV97], there have a been a number of other
works improving our understanding of SZK, many of which make use of the complete problem
methodology advocated here. As mentioned above, Goldreich, Sahai, and Vadhan [GSV98] show
that honest-verifier statistical zero knowledge equals cheating-verifier statistical zero knowledge.
Goldreich and Vadhan [GV99] use the complete problem methodology to give a simpler proof of
Okamoto’s theorem that private-coin SZK equals public-coin SZK (on which our work relies). In
the process, they exhibit another complete problem for SZK, called ENTROPY DIFFERENCE, which
amounts to deciding which of two given distributions (specified by circuits which sample from them)
has noticeably higher entropy than the other. Di Crescenzo, Sakurai, and Yung [DSY00] consider
two variants of (honest-verifier) statistical zero-knowledge proofs, namely “proofs of decision power”
and “proofs of decision”, and exhibit such proof systems for all of SZK. Their construction makes
use of the complete problems for SZK given here and in [GV99] and special properties of their proof
systems.

De Santis, Di Crescenzo, Persiano and Yung [DDPY98] extend the use of complete problems to
study “noninteractive” statistical zero knowledge; they exhibit a complete problem for the corre-
sponding complexity class NISZK and use it to prove some general results about the class. Goldreich,
Sahai, and Vadhan [GSV99] exhibit two more complete problems for NISZK. These problems are
natural restrictions of the complete problems for SZK given here and in [GV99], and thus they are
able to use the complete problems to relate SZK and NISZK. Gutfreund and Ben-Or [GB00] exam-
ine weaker models of noninteractive zero knowledge proofs, and, using our complete problem and
reversal mapping, show that every problem in SZK has a noninteractive statistical zero-knowledge
proof in one of their models.

Finally, Vadhan [Vad00] examines the blow-up in the prover’s complexity incurred by trans-
formations from private-coin proof systems to public-coin proof systems, such as those in [GS89,
Oka00], and shows that this inefficiency is inherent in the fact that the transformations use the

original prover and verifier strategies as “black boxes”. In fact, it is shown that any black-box trans-
formation which preserves the prover’s complexity must fail on our proof system for STATISTICAL
DIFFERENCE.

Unified presentations of many of the above results, together with the results in this paper, can
be found in the Ph.D. theses of the authors [Vad99, Sah00].

2 Preliminaries

2.1 Promise problems

The problem we prove to be complete for SZK is not a language, but rather a promise prob-
lem [ESY84]. Formally, a promise problem II consists of two disjoint sets of strings IIy and Iy,
where Ty is the set of YES instances and Il is the set of NO instances. A promise problem II is
associated with the following computational problem: Given an input which is “promised” to lie in
IIy U Ily, decide whether it comes from IIy or Ily. The complement of II is the promise problem
II, where Iy = IIy and Iy = ITy. Note that languages are a special case of promise problems.

We say that promise problem II reduces to promise problem I' if there is a polynomial-time
computable function f such that

zelly = f(r)eTly
zelly = f(r)eln

If C is a class of promise problems, we say that promise problem II is complete for C if IT € C and
every promise problem in C reduces to II. As above, all reductions we consider are polynomial-time
many-one (or Karp) reductions, unless otherwise specified.

2.2 Probability distributions

If X is a probability distribution (or random variable), we write <— X to indicate that z is a
sample taken from X. If S is a set, we write z€RS to indicate that z is uniformly selected from S.

In this paper, we will consider probability distributions defined both by circuits and probabilistic
algorithms (i.e. Turing machines). If A is a probabilistic algorithm, we use A(z) to denote the
output distribution of A on input z. A PPT algorithm (for “probabilistic polynomial time”) is a
probabilistic algorithm which runs in strict polynomial time. If C is a circuit mapping m-bit strings
to n-bit strings, then choosing an input u uniformly at random from {0,1}"™ defines a probability
distribution on {0, 1}" given by C(u). For notational convenience, we also denote this probability
distribution by C. These definitions capture the idea of an “(efficiently) samplable” distribution,
as to sample from the distribution one need only run the algorithm or evaluate the circuit.

2.3 The statistical difference metric

For probability distributions (or random variables) X and Y on a discrete set D, the statistical
difference between X and Y is defined to be

||X—Y||:gncatl)j(|Pr[X€S]—Pr[Y€S]|. (1)

This is often also called the wvariation distance between X and Y. Removing the absolute values
in (1) does not change the definition because replacing S by its complement changes the sign

(but not magnitude) of Pr[X € S] — Pr[Y € S]. The maximum in (1) can be achieved by taking
S={z:Pr[X =z| > Pr[Y =z]} (or its complement); this can be seen directly or in the proof of
Fact 2.1 below.

There is an equivalent formulation of statistical difference in terms of the #; norm |-|; that will
sometimes be more convenient for us. To every probability distribution X on a discrete set D, the
mass function of X is a vector in RP whose x’th coordinate is Pr[X = z]. For the sake of elegance,
we also denote this vector by X. With this notation, we can state the following well-known fact.

Fact 2.1 [X - Y| =1|X -Y|,

The proof of this fact and others in this section are deferred to Appendix A. It is immediate
from this characterization of statistical difference that it is a metric (as long as we identify random
variables that are identically distributed). In particular, it satisfies the Triangle Inequality.

Fact 2.2 (Triangle Inequality) For any probability distributions X, Y, and Z,
X =Y[<X -Z|+]|Zz-Y]

Recall that for any two vectors v € R™ and w € R”, their tensor product v ® w is the vector
in R*, whose (4, j)'th component is v;w;. Now, if we have a pair of random variables (X,Y’) (on
the same probability space) taking values in D x F, then X is independent from Y iff the mass
function of (X,Y) is the tensor product of the mass functions of X and Y (which are elements of
RP and R respectively). For this reason, if we have random variables X and Y taking values in
sets D and F, respectively, we write X ® Y for the random variable taking values in D x FE which
consists of independent samples of X and Y. Similarly, ®* X denotes the random variable taking
values in D* consisting of k independent copies of X, i.e. X @ X ® --- @ X.

Now, for any two vectors v and w, |v ® w|; = |v|; - |w|,. In addition, for any mass function X,
|X|; = 1. These facts enable one to show that the statistical difference behaves well with respect
to independent random variables:

Fact 2.3 Suppose X1 and X9 are independent random variables on one probability space and Yy
and Yy are independent random variables on another probability space. Then,

1(X1, X2) — (Y1, Vo) | < [[X1 = V1| + [| X2 — V2

One basic fact about statistical difference is that it cannot be created out of nothing. That is,
for any procedure A, even if it is randomized, the statistical difference between A(X) and A(Y) is
no greater than the statistical difference between X and Y. Formally, if D is any set, a randomized
procedure on D is a a pair A = (f, R), where R is a probability distribution on some set F and f
is a function from D x E to any set F'. Think of the distribution R as providing a “random seed”
to the procedure A. If X is a probability distribution on D, then A(X) denotes the probability
distribution on F' obtained by sampling X ® R and applying f to the result. Note that applying a
function is a special case of applying a randomized procedure.

Fact 2.4 If X and Y are random variables and A is any randomized procedure, then
[AX) —AY)|| < | X =Y

The next fact is useful when arguing that the statistical difference between distributions is small.

Fact 2.5 Suppose X = (X1,X3) and Y = (Y1,Y3) are probability distributions on a set D x E such
that

1. X1 and Y7 are identically distributed, and

2. With probability greater than (1 — €) over z <— X1 (equivalently, x < Y1),
| X2|x,=2 — Yalvi=all < 6

(where B|a=q denotes the conditional distribution of B given that A = a for jointly distributed
random variables A and B).

Then || X = Y| <e+4.

The next fact says that if two distributions have small statistical difference, then their mass
functions must be close at most points.

Fact 2.6 If X and Y are any two distributions such that | X — Y| < €, then with probability
>1—2y/e over z + X,

(1-Ve)Pr[X =z]<Pr[Y =1] < (1+e) Pr[X = 1]

2.4 Zero-knowledge proofs

Before defining zero knowledge, we need to introduce some more terminology. Recall that a PPT
algorithm is a probabilistic algorithm which runs in strict polynomial time. A function f(n) is
negligible if for all polynomials p(n), f(n) < zﬁ for all sufficiently large n.

We follow [GMRS89] and [Gol95] in defining interactive proofs and zero-knowledge. The orig-
inal definitions in [GMR89] were given for languages. We generalize these definitions to promise
problems in the natural way, as previously done in [GK93]. That is, conditions previously required
for inputs in the language are now required for YES instances of a promise problem and conditions
previously required for inputs not in the language are now required for NO instances.

Informally, an interactive proof is a protocol in which a computationally unbounded prover
attempts to convince a polynomial-time verifier V that an assertion is true, i.e. that a string x
is a YES instance of a promise problem. More formally, an interactive protocol (P, V) between a
computationally unbounded prover P and a PPT verifier V is said to be an interactive proof system
for a promise problem II with completeness error c¢(n) and soundness error s(n) if

1. If z € Ily, then Pr[(P,V)(z) = accept| > 1 — ¢(|z]).
2. If z € Ty, then for all P*, Pr[(P*,V)(z) = accept] < s(|z]).

We always require that 1 —c(n) > s(n)+1/poly(n) and that both can be computed in time poly(n);
under this assumption, parallel repetition can be used to obtain a new interactive proof for II with
completeness error and soundness error 2_”k, for any constant k. We say that (P, V) exchanges at
m(n) messages if the prover and verifier exchange at most m(n) messages on any input of length n.
An interactive proof system is said to be public coin if on every input, the verifier’s random coins
r can be written as a concatenation of strings 7179 --- 1 such that the i’th message sent from the
verifier to the prover is simply r;.

Roughly speaking, an interactive proof is said to be zero knowledge if, when the input is a
YES instance, the verifier can simulate its view of the interaction on its own. To formalize this,

let (P,V) be an interactive proof system (P, V) for a promise problem II. Let Viewpy(z) be a
random variable describing the random coins of V' and the messages exchanged between P and V
during their interaction on input z. (P,V') is said to be a statistical zero-knowledge proof system
(against the honest verifier) if there exists a PPT simulator S and a negligible function « (called
the simulator deviation) such that

If z € Tly, then ||S(z) — Viewpy (z)] < a(|z]). (2)

A perfect zero-knowledge proof system is defined in the same way, except that (2) is replaced
by ||S(z) — Viewpy(z)| = 0, where S is allowed to output ‘fail’ with probability at most 1/2
and S(z) denotes the conditional distribution of S given that the output is not fail.2 A com-
putational zero-knowledge proof system replaces (2) with the requirement that {S(z)}zem, and
{Viewp v (z)}zem, are computationally indistinguishable [GM84, Yao82] ensembles of distributions.
That is, for every nonuniform polynomial-time algorithm D, there is a negligible function a such
that | Pr[D(z,S(z)) = 1] — Pr[D(z, Viewpy(z))] | < af|z|) for all z € IIy.

We let SZK (resp. PZK, CZK) denote the class of promise problems with statistical (resp.
perfect, computational) zero-knowledge proof systems against the honest verifier.

Remarks on the definitions.

1. (Honmest verifiers) We only require that the zero-knowledge condition to hold against the
honest verifier, i.e. the verifier that follows the protocol as specified. The usual definition
requires the zero-knowledge property to hold against any polynomial-time verifier strategy.
However, subsequent to this work, it has been shown that any proof system which is statistical
zero knowledge against the honest verifier can be transformed into one that is zero knowledge
against cheating verifiers [GSV98]. Via this transformation, many of our results directly
translate to the class of promise problems possessing statistical zero-knowledge proofs against
cheating verifiers. This is discussed in detail in Section 5.

2. (Error probabilities) The completeness and soundness error probabilities can be made expo-
nentially small without increasing the number of rounds, because zero-knowledge against an
honest verifier is preserved under parallel repetition.

3. (Strict polynomial-time simulation) Following [Gol95], we work with the variant of zeroknowl-
edge in which the simulator is required to run in strict polynomial time, with some probability
of failure in the perfect case. The original definition in [GMR89] allows the simulator to run
in expected polynomial time, but with zero probability of failure. Our choice is not very
restrictive, because we are only discussing honest-verifier statistical zero-knowledge and we
do not know of any problems which require an expected polynomial time simulator for the
honest verifier. In addition, as shown in Section 4.5, our techniques can be used to prove
that expected polynomial time simulators and strict polynomial time simulators are actually
equivalent for public-coin statistical zero-knowledge proofs against an honest verifier.

4. (Promise problems vs. languages) Our definitions above generalize the original definitions
of [GMR89] from languages to promise problems, and we focus on the “promise class” SZK
rather than the class of languages possessing statistical zero-knowledge proofs. A couple of
justifications can be given for this extension. First, for essentially all of our results, the fact

2A failure probability can also be allowed in the definition of statistical zero-knowledge, but this can easily be
k
reduced to an 27" for any constant k by repeated trials and absorbed in to the simulator deviation.

that we prove them for the promise class only makes them stronger, by virtue of the fact that
the promise class contains the language class. Second, several of the most important natural
problems known to be in SZK, such as those in [GK93, GG98], are not languages, but promise
problems, so it may actually be preferable to study the promise class.

Our only result which requires new interpretation for the language class is the Completeness
Theorem. As the complete problem is a promise problem, it is not complete for the language
class in the usual sense. Nevertheless, it still gives a characterization of the language class, in
that a language has a statistical zero-knowledge proof if and only if it reduces to the complete
problem.

We note that one must be a bit more careful in a complexity-theoretic investigation of promise
classes, particularly when discussing reductions that may violate the promise (cf., discussions
in [ESY84, GGY98]), and it may be the case that the language class has some different prop-
erties than the promise one.

3 The Completeness Theorem

3.1 The complete problem

The main aim of this paper is to demonstrate that SZK consists exactly of the problems that involve
deciding whether two efficiently samplable distributions are either far apart or close together. This
can be formally captured by the following promise problem STATISTICAL DIFFERENCE (abbreviated
SD):

2
SDY = {(00,01) : ||C() — 01” > §}

1
SDN = {(C(),Cl) : ||C() — 01” < g}

In the above definition, Cy and C; are circuits; these define probability distributions as discussed
in Section 2. The thresholds of 1/3 and 2/3 in this definition are not completely arbitrary; it is
important for the Polarization Lemma of Section 3.2 that (2/3)2 > 1/3.

We can now state the main theorem of the paper.

Theorem 3.1 (Completeness Theorem) STATISTICAL DIFFERENCE is complete for SZK.

The most striking thing about Theorem 3.1 is that it characterizes statistical zeroknowledge
with no reference to interaction or zero knowledge. Future investigation of the class SZK can focus
on the single problem SD, instead of dealing with arbitrarily complicated protocols, problems, and
simulators.

We emphasize that the novelty of this result lies in the specific complete problem we present and
not merely the ezistence of a complete promise problem. It is fairly straightforward to construct a
complete promise problem for PZK involving descriptions of Turing machines for the verifier and
simulator. (See Appendix B.) However, in contrast to SD, a complete problem constructed in this
manner is essentially restatement of the definition of the class and therefore does not simplify the
study of the class at all.

The proof of Theorem 3.1 will come in Sections 3.3 and 3.4 via two lemmas and a theorem of
Okamoto [Oka00]. But first, we observe that a statement analogous to Theorem 3.1 can be made
for BPP, if we generalize BPP to promise problems in the obvious way.

10

Proposition 3.2 If SD' is the promise problem obtained by modifying the definition of SD so that
Co and Cy only have 1 bit of output, then SD' is complete for BPP.

Proof: To see that SD’ is in BPP, first observe that for circuits Cy and C; (or any random
variables) that just output 0 or 1,

ICo — Ci|| = | Pr[Co = 1] - Pr[Cy = 1]|.

Thus, an estimate on ||Cp — C1]| that is correct within an additive factor of 1/3 can be obtained
by sampling Cy and C polynomially many times and counting the number of ones that occur for
each. This is sufficient to decide SD'.

Now we show that every promise problem II in BPP reduces to SD’. Let A be the PPT machine
which outputs 1 with probability greater than 2/3 when z € Ily, but outputs 1 with probability
less than 1/3 when = € IIx. Let p(n) be a polynomial bound on the running time of A. Given an
input z, we can, by standard techniques,® produce in polynomial time a circuit C, describing the
computation of A on z for p(|z|) steps. The input to C is the first p(|z|) bits on the random tape
of A the output is the first bit on the output tape. Let D be a circuit that always outputs 0. Then
|Cz — D|| =Pr[A(z) = 1], so z — (Cy, D) is a polynomial-time reduction from II to SD’. =

Proposition 3.2 remains true even if we allow Cj and C to output strings of logarithmic length.
Other classes such as P and co-RP can be obtained by modifying the definition of SD in a similar
fashion (and changing the thresholds). This demonstrates that SZK is a natural generalization of
these well-known classes.

3.2 A polarization lemma

In this section, we exhibit a transformation which “polarizes” the statistical relationship between
two distributions. That is, pairs of distributions which are statistically close become much closer
and pairs of distributions which are statistically far apart become much further apart.

Lemma 3.3 (Polarization Lemma)* There is a polynomial-time computable function that takes
a triple (Cy, C1,1%), where Cy and Cy are circuits, and outputs a pair of circuits (Do, D1) such that

ICo = Cill <1/3 = |[Dy— Dy <27
|Co—Ci|| >2/3 = ||Dy—Dy|| >1—-27%

The usefulness of the Polarization Lemma, comes from the fact that the two distributions it
produces can be treated almost as if they were identically distributed or disjoint (i.e. statistical
difference 0 and 1, respectively). Indeed, it will be essential in proving that SD (with thresholds
of 2/3 and 1/3, as we've defined it) is in SZK and we will make further use of it in deriving
consequences of Theorem 3.1.

Superficially, it may seem that a Chernoff bound argument is all that is needed to prove
Lemma 3.3. However, Chernoff bounds are primarily useful for distinguishing between two events.
This corresponds to increasing statistical difference, as formalized in the following “direct product”
lemma;

3See, for example, [Pap94, Thms. 8.1 and 8.2].
“The Polarization Lemma, stated here is called the Amplification Lemma in [SV97]. We change the name here to
stress that the Polarization Lemma does not merely increase statistical difference.

11

Lemma 3.4 (Direct Product Lemma) Let X and Y be distributions such that | X — Y| = e.
Then for all k, ,
ke > || @F X — @*Y|| > 1 — 2e7F< /2

Proof: The upper bound of ke follows immediately from Fact 2.3, so we proceed to the proof of
the lower bound. Recall, from the definition of statistical difference, that there must exist a set S
such that

Pr[X eS| —-PrlY e S]=e

Let p=Pr[Y € 5], so Pr[X € S] = p + e¢. Hence, in k independent samples of X, the expected
number of samples that lie in S is (p + €)k, whereas in k independent samples of Y, the expected
number of samples that lie in S is pk. The Chernoff bound® tells us that the probability that at
least (p + £)k components of ®*Y lie in S is at most exp(—ke?/2), whereas the probability that at
most (p+ §)k components of ®* X lie in S is at most exp(—ke?/2). Let S’ be the set of all k-tuples
that contain more than (p 4+ §)k components that lie in S. Then,

| @k X — @Y || > Pr [@kX € S'] —Pr [@ky e S’] > 1 2¢ k2,

Note the gap between the upper and lower bounds in Lemma 3.4; the lower bound says that
taking O(1/€?) copies is sufficient to increase statistical difference from e to a constant, while the
upper bound says that 2(1/¢) copies are necessary. This gap is inherent, and essentially amounts
to the difference between 1-sided and 2-sided error: Taking X and Y to be distributions on {0,1}
that are 1 with probability 1 and 1 — €, respectively, we see that the statistical difference between
®*X and ®*Y is exactly 1 — (1 — €)¥, which is a constant for & = ©(1/¢). On the other hand,
when X and Y are 1 with probability (1 + €)/2 and (1 — €)/2, respectively, it can be shown that
k = ©(1/€?) copies are necessary to increase the statistical difference to a constant. Furthermore,
in this latter example, |X @ X —Y ® Y| = € = || X — Y|, so we cannot even hope to show that
statistical difference always increases for every k > 1 (as pointed out to us by Madhu Sudan).

Notice that the Direct Product Lemma 3.4 is not sufficient to prove the Polarization Lemma,
because it always increases statistical difference, whereas we would like to increase statistical differ-
ence in some cases and decrease it in others. However, it does drive larger values of the statistical
difference to 1 more quickly than it drives smaller values to 1, so it is a step in the right direction.
The following lemma, provides a complementary technique which decreases the statistical difference
to 0, with small values going to 0 faster than large values.

Lemma 3.5 (XOR Lemma) There is a polynomial-time computable function that maps a triple
(Co, C1,1%), where Cy and Cy are circuits, to a pair of circuits (Dy, D1) such that ||Dy — Dy|| =
|Co — C1||k- Specifically, Dy and D1 are defined as follows:

Dqy: Uniformly select (by,...,b;) € {0,1}* such that by @ --- @ by, = 0, and output a sample of
Chy ® - ® Ch, .
Dy: Uniformly select (by,...,b;) € {0,1}* such that by @ --- @ by, = 1, and output a sample of
Chp, @+ ®Cy,.

SFor the formulation of the Chernoff bound we use, see, for example, the formulation of Hoeffding’s inequality
in [Hof95, Sec. 7.2.1].

12

In order to prove this lemma, we employ a generalization of the technique used in [DDPY94] to
represent the logical AND of statements about GRAPH NONISOMORPHISM. This tool is described
in the following Proposition.

Proposition 3.6 Let Xy, X1,Yy, Y1 be any random variables, and define the following pair of ran-
dom variables:

Zy: Choose a,ber{0,1} such that a ® b= 0. Output a sample of X, QY.
Zy: Choose a,ber{0,1} such that a ® b= 1. Output a sample of X, @ Yj.

Then ||Zy — Z1|| = || Xo — X1]| - [|Yo — Y1l

The statistical difference between Xy and X7 (or Yj and Y7) measures the advantage a compu-
tationally unbounded party has, over random guessing, in guessing b given a sample from X}, where
b is selected uniformly from {0,1}. (This view of statistical difference will become more apparent
in the subsequent section.) Intuitively, the above Proposition says that the advantage one has in
guessing the XOR of two independent bits is the product of the advantages one has for guessing
each individual bit.

Proof:
1
1Zo = Z1]| = §|Z0—Z1|1
= 1 1X®Y+1X®Y — 1X®Y—I—1X®Y
- 2 2 0 0 2 1 1 2 1 0 2 0 1 .
1
= Z|(X0—X1)®(YO—Y1)|1
1 1
= (5 |X0_X1|1> ’ (5 |YE)_Y1|1>
= || Xo— X1 - [|[Yo — Y1
[|

Proposition 3.6 and an induction argument establish Lemma 3.5. Yao’s XOR Lemma [Yao82]
(cf., [GNW95]) can be seen as an analogue of Lemma 3.5 in the computational setting, where the
analysis is much more difficult.®

Now we combine the Direct Product and XOR constructions of Lemmas 3.4 and 3.5 to prove
Lemma 3.3. The Direct Product Lemma, gives a way to increase statistical difference with large
values going to 1 faster than small values. Similarly, the XOR Lemma shows how to decrease sta-
tistical difference with small values going to 0 faster than large values. Intuitively, alternating these
procedures should “polarize” large and small values of statistical difference, pushing them closer
to 1 and 0, respectively. A similar alternation between procedures with complementary effects was
used by Ajtai and Ben-Or [AB84] to amplify the success probability of randomized constant-depth
circuits.

5To see the analogy, recall that Yao’s XOR Lemma considers the maximum advantage an efficient algorithm has,
over random guessing, in computing a bit b from string x when they are selected according to some distrbution
(b,z) + (B, X) (e.g., X is uniform and B is a hardcore bit of f~*(X) for some one-way permutation f.). It states
that the maximum advantage an efficient algorithm has in computing the XOR b1 @®- - -®by, from (z1,...,x) decreases
exponentially with & when the pairs (b;, z;) are independentally distributed according to (B, X).

13

Proof: Let £ = [log,/36k[. Apply Lemma 3.5 to the triple (Co, C1,1%) to produce (Ch,C1)
such that if
ICo—C1|| <1/3 = ||C§—C1| < (1/3)*
ICo— Cul| >2/3 = |Ch—Ci| > (2/3)".
Let m = 371, Let Cf = @™C}, and let C = ®™C. Then, by Fact 2.3 and the Direct Product
Lemma,
ICo—Ci| <1/3 = ||c§—cC| <1/3
|Co—Cil| >2/3 = ||CF —Cf| >1—2exp(—3-"(2/3)%/2) > 1 — 275
Finally, apply the transformation of Lemma 3.5 one more time to (Cf/,CY, 1¥) to produce (Dy, D1)
such that

ICo—Cill<1/3 = |[Dy—Di] <3 F<27F
|Co—Ci|| >2/3 = ||Do—Di| >0 —-2eF),>1—-2ke*>1-2"*

Notice that the above analysis relies on the fact that (2/3)? > (1/3), so it will not work if
2/3 and 1/3 are replaced by, say, .51 and .49. We do not know how to prove such a Polarization
Lemma for arbitrary constant thresholds. We can however extend it to thresholds « and 3, where

a? > f3, and the running time will be polynomial in exp ((1 - log(aQ)/log(,B))_l) along with the
input size. See [SV99] for more details.

3.3 A protocol for STATISTICAL DIFFERENCE

In this section, we show that SD has a simple two-message statistical zero-knowledge proof system,
which is a generalization of the standard protocols for for QUADRATIC NONRESIDUOSITY [GMR&89]
and GRAPH NONISOMORPHISM [GMW91]. Intuitively, if two distributions are statistically far apart,
then, when given a random sample from one of the distributions, a computationally unbounded
party should have a good chance of guessing from which distribution it came. However, if the two
distributions are statistically very close, even a computationally unbounded party should not have
much better than a 50% chance of guessing correctly. This suggests the following two-message
(private-coin) protocol for SD:

Zero-knowledge Proof System for SD
Input: (Cy,C1) (such that either ||Cy — C1]| > 2/3 or ||Cy — C4]] < 1/3)
1. V, P: Compute (Dy, D1) = Polarize(Cj, C1,1™), where n = |(Cp, C1)].
2. V: Flip one random coin r € {0,1}. Let z be a sample of D,. Send z to P.

3. P: If Pr[Dy = z] > Pr[D; =], answer 0, otherwise answer 1.

4. V: Accept if P’s answer equals 7, reject otherwise.
P q)

14

Lemma 3.7 The above is a statistical zero-knowledge proof system for SD, with soundness error
% + 27", and completeness error and simulator deviation both 27". Thus SD € SZK.

Proof: We will argue that the prover strategy given in the protocol is optimal (i.e. maximizes
the verifier’s acceptance probability), and use this to bound both the soundness and completeness
error. The simulator deviation will then follow easily.

Consider any prover P*. Suppose for some z the prover P* fails to follow the strategy we
present. If Pr[Dy = z| # Pr[D; = 2], this means that with nonzero probability, P* choses the
distribution in which z is less likely to occur. Then, conditioned on z, the success probability of
P* will certainly be lower than that of the prover in our protocol. If Pr[Dgy = z] = Pr[D; = 2|, the
prover has no information about r, so no matter what strategy it uses, it has exactly even odds of
guessing correctly. Since these observations hold for all z, the given prover is optimal.

We now analyze the probability of success of the optimal prover. Recall that ||Dy — Di|| =
Pr[Dy € S] —Pr[D; € S] for S = {z : Pr[Dy = z] > Pr[D; = z]}. The probability that the optimal
prover guesses correctly is exactly

1 1
%Pr[DOES]+§Pr[D1¢S] = 5 (Pr[Dy€ 5] +1-Pr[D € 5))
_ 1+4||Do — D4
Tl

By Lemma 3.3, | Dg—D; || > 1—2"" when (Cy, C1) is a YES instance of SD, and || Dy—D1|| < 27"
when (Cy,C1) is a NO instance. Hence, the probability that the prover convinces the verifier to
accept is greater than (1+1—2"")/2 > 1 — 2" for YES instances, and less than (1 4+27")/2 <
1/2 4+ 27" for NO instances. This immediately gives the completeness error; the soundness error
also follows because we considered the optimal prover strategy.

Now, notice that when the prover answers correctly, all the verifier receives from the prover
is the value of r, which the verifier already knew. Thus, since we have shown that the prover
is answering correcty with all but exponentially small probability, intuitively the verifier learns
nothing. To turn this intuition into a proof of statistical zero knowledge, we consider the fol-
lowing probabilistic polynomial-time simulator: On input (Cy,C}), the simulator first computes
(Dy, D1) = Polarize(Cy, C1,1™), where n = |(Cy, C1)|- The simulator then flips one random coin
r € {0,1}. If r = 0, it samples z from Dy, otherwise it samples z from D;. The simulator then
outputs a conversation in which the verifier sends z to the prover, and the prover responds with
r. The simulator also outputs the random coins it used to generate r and z as the coins of the
verifier. Thus, the simulator presented here always outputs conversations in which the prover re-
sponds correctly. Except for the prover’s response, all other components of the simulator’s output
distribution are distributed identically to the verifier’s view of the real interaction. Hence, the
simulator deviation is bounded by the probability that the prover responds incorrectly in the real
interaction, which we have already argued is at most 27" in the case of YES instances. W

Note that the above proof system remains complete and sound even without polarization, but
for the zero-knowledge property, we need to make the statistical difference very close to 1 on YES
instances.

By using a security parameter k£ rather than n in the call to Polarize, both the completeness
error and simulator deviation can be reduced to 27%. Thus, even very short assertions about
SD can be proven with with very high security. Contrast this with the original definition of
SZK [GMR&9], which only requires that the simulator deviation vanish as an negligible function of

15

the input length. This property has obvious cryptographic significance, so we formulate it more
precisely in Section 4.1.

3.4 SZK-hardness of SD

The other main lemma, we prove to show that SD is complete for SZK follows:

Lemma 3.8 Suppose promise problem 11 has a public coin statistical zero-knowledge proof system.
Then there exist PPT’s A and B and a negligible function « such that

zelly = |A@2) - Bo)| < afz)), and
zelly = |A() - B()|| >1-2 %=,

We defer the proof of this lemma to Section 3.5, and first observe how it gives a reduction to SD
for problems with public-coin statistical zero-knowledge proofs.

Corollary 3.9 Suppose promise problem Hims a public-coin statistical zero-knowledge proof sys-
tem. Then II reduces to SD. (Equivalently, 11 is reduces to SD.)

Proof: First apply Lemma 3.8 to obtain A and B, with p(|z|) being a polynomial bound on the
running times of A(z) and B(z). Given a string z, we can, by standard techniques,” produce in
polynomial time circuits Cy and C; describing the computation of A and B, respectively, on z for
p(|z|) steps. The inputs to Cy and C; are the first p(|z|) bits on the random tapes of A and B and
the outputs are the first p(|z|) positions on the output tapes. Then ||Cy — C1| = ||A(z) — B(=)||,
which is at most a(|z|) < 1/3 if z € IIy and at least 1 —27'% > 2/3 if z € Iy (for all sufficiently
long). So = — (Cp, C1) is a reduction from II to SD (for all but finitely many z). =

The final ingredient in the proof of Theorem 3.1 is a theorem of Okamoto [Oka00], which we
state in terms of promise problems.?

Theorem 3.10 ([Oka00, Thm. 1]) If a promise problem II has a statistical zero-knowledge proof
system, then II has a public-coin statistical zero-knowledge proof system.

Now it will be easy to show that SD is complete for SZK.

Proof of Theorem 3.1: Lemma 3.7 tells us that SD € SZK, so we only need to show that
every problem in SZK reduces to SD. Corollary 3.9 and Theorem 3.10 imply that every problem
II € SZK reduces to SD. In particular, SD reduces to SD, or, equivalently, SD reduces to SD.
Composing reductions, it follows that every problem IT € SZK reduces to SD. =

3.5 Proof of Lemma 3.8

The constructions in this lemma and the statistical zero-knowledge proof system for STATISTICAL
DIFFERENCE are carried out for the specific example of GRAPH ISOMORPHISM in Appendix C.

"See, for example, [Pap94, Thms. 8.1 and 8.2].
80kamoto stated his result in terms of languages, but the proof readily extends to promise problems (cf., [GV99]).

16

Intuition. Recall that we wish to construct a pair of probabilistic polynomial-time machines A
and B such that if z € IIy, the distributions A(z) and B(z) are statistically very close, but when
z € ly, A(z) and B(z) are far apart. We are given that II has a public-coin statistical zero-
knowledge proof system. A natural place to search for the desired distributions is in the output
of the simulator for this proof system. We think of the simulator as describing the moves of a
virtual prover and a virtual verifier.’. We wish to find properties of the simulator’s output that
(1) distinguish the case z € Iy from z € Iy, and (2) are captured by the statistical difference
between samplable distributions. In the case that z € Ily, we have strong guarantees on the
simulator’s output. Namely, it outputs accepting conversations with high probability and its output
distribution is statistically very close to the real interaction. When z € Ily, there are two cases.
If the simulator outputs accepting conversations with low probability, this easily distinguishes it
from the simulator output when z € IIy. However, it is possible that the simulator will output
accepting conversations with high probability even when x € IIy. This means that the virtual
prover is doing quite well in fooling the virtual verifier. This naturally suggest a strategy for a real
prover — imitate the virtual prover’s behavior. Such a prover, called a simulation-based prover,
was introduced by Fortnow [For89] and is a crucial construct in our proof. The soundness of the
proof system tells us that the simulation-based prover cannot hope to convince the real verifier
with high probability. There must be a reason for this discrepancy between the success rates of the
virtual prover and the simulation-based prover. One possibility is that the virtual verifier’s coins in
the simulator’s output are far from uniform, so that the simulation only captures a small fraction
of possible verifier states. However, this is not the only difficulty. A second difficulty is that the
responses of the virtual prover may depend on future coin tosses of the virtual verifier, which is
impossible in a real public-coin interaction. Note that this is equivalent to the virtual verifier’s
coin tosses being dependent on previous messages of the virtual prover. We will show that these
are the only two obstacles the simulation-based prover faces in trying to fool the verifier, and thus
they must be present when = € IIx. In the case that = € Ily, however, these difficulties cannot
arise since we are guaranteed that the simulator output distribution is very close to that of the real
interation. If we could measure the extent to which these anomalies are present by the statistical
difference between samplable distributions, we would achieve our objective. This is precisely what
we do.

Notation. Let (P,V) be a public-coin interactive proof system for a promise problem IT which is
(honest-verifier) statistical zero knowledge and let S be a simulator for this proof system. Without
loss of generality, we may assume that the interaction of P and V on input z always has 2r(|z|)
exchanged messages, with V' sending the first message and each message consisting of exactly g(|z|)
bits, for some polynomials ¢ and r. Moreover, it may be assumed that S’s output always consists
of 2r(|z|) strings of length ¢(|z|). The output of S and the conversation between P and V on input
z will be written in the form S(z) = (c1,p1,...,¢,pr)s and (P, V)(z) = (c1,p1,---, ¢, Pr) (P
respectively, where ¢y, ..., ¢, represent the messages (equivalently coin tosses, since we are in the
public-coin setting) of V', p1,...,p, represent the prover messages, and r = r(|z|). (Dependence on
x will often be omitted in this manner for notational convenience.) We use notation such as (¢;)g for
the random variable obtained by running S once and taking the ¢;-component of its output. More
generally, partial conversation transcripts will be written like (c1, p1, c2,p2)s. We call a conversation
transcript (c1,p1,---,¢r,pr) which would make V' accept (resp., reject) an accepting conversation

9This terminology is taken from [AH91]. The cases we consider are quite similar to those analyzed in [For89, AH91]
Because we focus on public-coin proofs, many complications faced in those works do not arise. This allows us to
make some new observations and reach a novel conclusion (namely, the Completeness Theorem).

17

(resp., rejecting conversation). We denote by U(n) the uniform distribution on strings of length n.

The proof. In order to formalize the above intuition, a definition of the simulation-based prover
needs to be given. This is the prover P* that imitates the virtual prover, i.e. P* does the following
to compute its next message when the current conversation transcript is (c1,p1, ..., ci):

If S(z) outputs conversations that begin with (c1,p1,...,¢;) with probability 0, then
output 022
Else output y € {0, 1}q(|w|) with probability

py = Pr[S(z) begins with (c1,p1,...,¢i,y)|S(x) begins with (ci,p1,...,¢)]

In order to analyze the success probability of P*, we first compare the output of .S to the actual
conversations between P* and V. Let ¢; be the statistical difference between (¢1,p1 ..., ¢i—1,Pi-1,¢i)s
and (c1,p1...,¢i-1,pi—1)s @U(q(|z])). Thus ¢; measures how far from uniform the virtual verifier’s
i-th set of coins are and how far from independent they are from what comes before. The following
claim formalizes our intuition that P* can do as well as the virtual prover, as long as the virtual
verifier’s coins are near-uniform and near-independent from what preceeds them.

Claim 3.11 ||S(z) — (P*,V)(2)|| < >oI_ €i-

Proof of claim: Let C = (c1,p1,..-,¢;)s be the random variable of partial simulator
transcripts ending with the i-th coins of the virtual verifier. Let P® = (c1,p1,...,¢i,pi)s
be the random variable of partial transcripts ending with the ¢-th virtual prover re-
sponse. Similarly define C} and P} as partial conversation transcripts of (P*, V). The
aim is to show that at round k, the statistical difference grows by at most €. Formally,

it will be shown by induction on k£ that

k
1Pé = Pif <> e
i=0

The case k = 0 is trivial. For general k, first note that since P* gives a response
chosen according to the same distribution as the virtual prover, adding these responses
to the conversations cannot increase the statistical difference (by Fact 2.4). That is,

||P,f+1 - Pl = ||le+1 = G-

The idea now is to extract the parts of [|Cy,, — Ci, | corresponding to €441 and
observe that what is left is simply the error from the previous round. Note that Cy | =
P ® U(q(|z])), since the real verifier’s coins are always uniform and independent from
what came before.

Then, applying Fact 2.3 and the Triangle Inequality,

ICE1 = Chall < |Gk — B @ Ula(lz))]| + [|PF ® Ulg(l2])) — Py @ Ula(lzl))]|
< enr + [|BE = B+ U a(2D) - Ulg(lz)]
<

k
€g+1 T+ Z €.
=0

This completes the induction. Since P° = S(z) and P¥ = (P*,V)(x), the Claim is
proved.

18

Algorithm A Algorithm B

Ao(z) | Run S(z) for |z| repetitions. By(z) | Output 1.
Output ‘1’ if the majority are

accepting conversations and ‘0’ otherwise.
Ai(z) | Run S(z) to output (c1,p1,---,Ci)s(a)- B;(z) | Run S(z) and flip ¢(]z|) more coins to output
(Clapla s 5Ci—17pi—1)5(z) ® U(q(|m|))

Table 1: The components of A and B

We are now ready to construct the distributions we seek. The two distributions A and B each
consist of r + 1 components, shown in Table 1. A is the algorithm whose output on input
z is (Ao(x), A1(x),...,Ar(z)), all run independently, and B is the algorithm whose output is
(Bo(z), Bi(z),...,Br(z)), all run independently.

Here, A; is a sampling of a partial conversation transcript from S up to the virtual verifier’s
i-th set of coins, while B; is a sampling of a partial conversation transcript from S up to the virtual
prover’s (¢ — 1)-st response followed by ¢(|z|) independent random bits. So, for i > 1, the statistical
difference between A; and B; is ;.

We will show that the statistical difference between A and B is negligible if z € Iy and is
noticeable if z € TIy. Amplifying this gap by repetition will yield Lemma 3.8.

Claim 3.12 There ezists a negligible function « such that if x € Iy, then ||A(z) — B(z)|| < a(|z|).

Proof of claim: The statistical difference between A(z) and B(zx) is bounded above
by the sum of the statistical differences between A;(z) and B;(z) over i = 1,...,7(|z|)
(by Fact 2.3). First, let’s examine ¢ = 0. Since S(z) outputs a conversation which
makes V' accept with probability at least 2/3 — neg(|z|), the Chernoff bound implies
that Pr[dg(z) =1] = 1 — 2-%2)), 5o the statistical difference between Ay and By is
negligible. For 7 > 1, recall that in the real conversations of P and V, the verifier’s
coins are truly uniform and independent from prior rounds, so ||A4;(z) — B;(z)|| should
essentially be bounded by the statistical difference between the simulator’s output and
the real interaction. This is in fact true, as (omitting z from the notation):

|A;i — Bil| < ||4; = (e1,p1,---,¢)pyv] + (e, p1,---,¢i) Py — Bi|
< S =BV +]S - (P, V).

(The last inequality is by Fact 2.4.) Thus,
1A(z) = B(a)[| <270 + 2r(|z]) - |S(z) — (P, V()]
which is negligible since ||S(z) — (P, V)(z)|| is negligible and r(z) is polynomial.
Claim 3.13 If z € Iy then ||A(z) — B(z)|| > 1/12r(|z|).

Proof of claim: It suffices to show that for some i, ¢; = ||A;(z) — B;i(z)|| > 1/12r(|z|)
(by Fact 2.4). We deal with two cases depending on the probability that S outputs an
accepting conversation.

Case 1: Pr[S(z) accepts | < 5/12. Then, by the Chernoff bound, Pr[A4y(z) =1] <

19

2-%2) 50 the statistical difference between Ag(z) and By(z) is at least 1 — 2-2(2D) >
1/12r(|z|).

Case 2: Pr[S(z) accepts] > 5/12. Then, since Pr[(P*,V)(z) accepts | is at most
1/3, we must have

,
5 1
> _ * — _ .
S ez 156 - (P V@) > 5 -1 =
1=0
Thus, at least one ¢; must be greater than 1/12r(|z|).

Now consider the samplable distributions A(z) = @°(#) A(z) and B(z) = @*(*)B(z), where s(n) =
n-r(n)? If z € My, ||[A(z) — B(z)|| < s(|z|) - | A(z) — B(z)|, which is still negligible. If € Ty,
then by the Direct Product Lemma (Lemma 3.4), ||A(z) — B(z)|| > 1 — 2=(2). This completes
the proof of Lemma 3.8. ®

4 Applications

4.1 Efficient statistical zero-knowledge proofs

The proof system for STATISTICAL DIFFERENCE given in Section 3.3 has a number of desirable
features. It is very efficient in terms of communication and interaction, and the simulator deviation
can be made exponentially small in a security parameter (that can be varied independently of the
input length). By the Completeness Theorem, it follows that every problem in SZK also has a proof
system with these properties.

We begin by formalizing one of the properties of the SD proof system that was informally
discussed in Section 3.3.

Definition 4.1 An interactive protocol (P,V') is called a security-parametrized statistical zero-
knowledge proof system for a promise problem II if there exists a PPT simulator S, a negligible
function a(k) (called the simulator deviation), and completeness and soundness errors c(k) and
s(k) such that for all strings = and all k € N,

1. If z € Ty, then Pr [(P,V)(z,1%) = accept] > 1 — c(k).
2. If v € Iy, then for all P*, Pr [(P*,V)(z,1%) = accept| < s(k).
3. If z € Iy, then ||S(z,1¥) — Viewpy (z,1%)|| < a(k).

As usual, we require that c(k) and s(k) are computable in time poly(k) and 1 — c(k) > s(k) +
1/poly (k)

We now describe the efficient proof systems inherited by all of SZK.

Corollary 4.2 Every problem in SZK possesses a security-parametrized statistical zero-knowledge
proof system with the following properties:

1. Simulator deviation 27%, completeness error 27%, and soundness error 1/2 + 27F.

2. The prover and verifier exchange only 2 messages.

20

3. The prover sends only 1 bit to the verifier.
4. The prover is deterministic.

Proof: Let II be any promise problem in SZK. Let f be the reduction from II to SD guaranteed
by the Completeness Theorem. A protocol with the desired properties for II can be obtained as
follows: on input (x, 1¥), execute the proof system for SD, given in Section 3.3, on input f(z) and
using k rather than n in the call to Polarize. ®

4.2 Closure properties

In this section, we prove several closure properties of SZK. The first, closure under reductions,
is a direct consequence of the “security parametrization” property shown to hold for SZK in the
previous section.

Corollary 4.3 SZK is closed under (Karp) reductions. That is, if I1 € SZK and T' reduces to II,
then T' € SZK.

Proof: By Corollary 4.2, IT has a security-parameterized statistical zero-knowledge proof. A sta-
tistical zero-knowledge proof for I can be obtained as follows: On input z, the prover, verifier, and
simulator run the security-parametrized proof for II on input (f(z),1%), where f is the reduction
fromTtoIl. m

The security-parametrization property is essential in the above proof, because an arbitrary re-
duction f could potentially shrink string lengths dramatically, and we want the simulator deviation
to be negligible as a function of |z|, not |f(z)|.

Next, we show how Okamoto’s result that SZK is closed under complement follows immediately
from our proof of Completeness Theorem.

Corollary 4.4 ([Oka00, Thm. 2]) SZK is closed under complement, even for promise problems.

Proof: Let II be any problem in SZK. By Theorem 3.10 and Corollary 3.9, II reduces to SD,
which is in SZK. By Corollary 4.3, IT € SZK. =

Before moving on to additional closure properties, we deduce the upper bounds of Fortnow [For89]
and Aiello and Hastad [AH91] on the complexity of SZK.

Corollary 4.5 ([For89, AH91]) SZK C AM N co-AM, where AM denotes the class of problems
possessing constant-message interactive proofs.

Proof: Immediate from Corollaries 4.2 and 4.4. =

Above, we have shown that SZK satisfies a computational closure property (Corollary 4.3) and a
boolean closure property (Corollary 4.4). Now we will exhibit a stronger closure property, which can
be viewed as both a computational one and a boolean one: given an arbitrary boolean formula whose
atoms are statements about membership in any problem in SZK, one can efficiently construct a
statistical zero-knowledge interactive proof for its validity. Note that such a property does not follow
immediately from the fact that a class is closed under intersection, union, and complementation,
because applying these more than a constant number of times could incur a superpolynomial cost in

21

efficiency, while we ask that the construction can be done efficiently with respect to the size of the
formula. The procedure for doing this is based on work by De Santis, Di Crescenzo, Persiano, and
Yung [DDPY94]. They show how to construct statistical zero-knowledge proofs for all monotone
boolean formulae whose atoms are statements about a random self-reducible language. Their
zero-knowledge proofs are constructed by producing two distributions which are either disjoint or
identical, depending on whether or not the formula is true. Hence, their construction can be viewed
as a reduction to an extreme case of SD, in which the thresholds are 1 and 0.

Using the Direct Product, XOR, and the Polarization Lemmas of Section 3.2, we generalize
their result to monotone formulae whose atoms are statements about membership in STATISTICAL
DIFFERENCE. Then, using the completeness of SD (Theorem 3.1) and closure under complement
(Corollary 4.4), we deduce the result for general (i.e. non-monotone) formulae and every promise
problem in SZK.

We begin with some definitions describing precisely what kind of boolean closure properties we
will achieve. (Later, we will see how it can also be interpreted as closure under a certain class of
polynomial-time reductions.) In order to deal with instances of promise problems that violate the
promise, we will work with an extension of boolean algebra that includes an additional “ambiguous”
value *.

Definition 4.6 A partial assignment to variables v1, ..., vy is a k-tuple@ = (ay,...,a) € {0,1,%}*,
For a propositional formula (or circuit) ¢ on variables v1, ..., vy, the evaluation ¢(a) is recursively
defined as follows:

1 iféd(@) =1andy(a)=1
vi(@) = a (pAp)(@) = 0 ifp@ =0 orey@=0
*x otherwise
1 if¢p(a)=0 1 if¢g(@)=1ory@) =1
(-¢)@ = q0 ifg@=1 (pVi)(a) = {0 if (@) =0 and (@) =0
x if ¢(a) = * otherwise

Note that ¢(a) equals 1 (resp., 0) for some partial assignment @, then ¢(a’) also equals 1 (resp.,
0) for every boolean @' obtained by replacing every x in @ with either a 0 or 1. The converse, however,
is not true: The formula ¢ = v V —v evaluates to 1 on every boolean assignment, yet is not 1 when
evaluated at x. Thus, the “law of excluded middle” ¢ V =¢ = 1 no longer holds in this setting.
However, other identities in boolean algebra such as De Morgan’s laws (e.g. (¢ V 9) = = A =)
do remain true.

Definition 4.7 For a promise problem II, the characteristic function of IT is the map xy : {0,1}* —
{0,1,x} given by

1 ifrxelly
xn(z) =40 ifzely
*x otherwise

Definition 4.8 For any promise problem 11, we define a new promise problem ®(II) as follows: ¢

Q(H)Y = {(¢,.T1,... 7'7"/6) : ¢(XH(‘7"1)’ s aXH("I"k)) = 1}
(I)(H)N = {(¢a$17"' 7$k) : ¢(XH(‘T1)7 s aXH(xk)) = O}a

where ¢ is a k-ary propositional formula. Mon(II) is defined analogously, except that only monotone
¢ are considered.'®

%Tn [DDPY94], only monotone formulae are treated. What they call ®(L) is what we call Mon(L).

22

Sample(v), b)

If 9 = v;, sample z < D,’;.

fy=1Vvy,
Sample z; « Sample(r, b);
Sample zo < Sample(p, b);
Let z = (21, 22)-

Ify=71Apu,
Choose ¢,d€g{0,1} subject to c® d = b;
Sample z; < Sample(T, ¢);
Sample zo < Sample(u, d);
Let z = (21, 22)-

Output z.

Figure 1:

In [DDPY94], it is shown that Mon(L) € SZK for any language L which is random self-reducible,
whose complement is self-reducible, or whose complement has a noninteractive statistical zero-
knowledge proof. They also give statistical zero-knowledge proofs for some simple statements
involving a random-self-reducible language and its complement. Damgard and Cramer [DC96]
extend these results by showing that Mon(L) € SZK as long as L or its complement has a 3-
message public-coin statistical zero-knowledge proof, and also treat a larger class of monotone
functions.

Our result holds for all of SZK and for all boolean formulae, not just monotone ones:

Theorem 4.9 For any promise problem II € SZK, ®(II) € SZK.

This theorem can be generalized to work for all boolean formulae whose atoms are statements
about membership in any finite set of languages in SZK, but we omit the notationally cumbersome
formal statement since it is immediate from the completeness of STATISTICAL DIFFERENCE.

The main step in proving Theorem 4.9 is the following Lemma, which is based on the construc-
tion of [DDPY94] for Mon(GRAPH NONISOMORPHISM):

Lemma 4.10 Mon(SD) € SZK.

Proof: For intuition, consider two instances of statistical difference (Cy, C1) and (Dy, D7), both
of which have statistical difference very close to 1 or very close to 0 (which can be achieved by the
Polarization Lemma). Then (Cy® Dy, C; ® D;) will have statistical difference very close to 1 if either
of the original statistical differences is very close to 1 and will have statistical difference very close to
0 otherwise. Thus, this Direct Product operation represents OR. Similarly, the XOR operation in
Proposition 3.6 represents AND. We will recursively apply these constructions to obtain a reduction
from Mon(SD) to SD. By closure under reductions (Corollary 4.3), Lemma 4.10 will follow.

Let w = (¢,(CE,C}1),...,(CE,CF)) be an instance of Mon(SD) and let n = |w|. By ap-
plying the Polarization Lemma (Lemma 3.3), we can constuct in polynomial time pairs of circuits
(D}, D1),...,(DE, D¥) such that the statistical difference between Df and D! is greater than 1—27"
if (C§, C?) € SDy and is less than 27" if (C§, C}) € SDy.

Consider the randomized recursive procedure Sample(t, b) in Figure 1 which takes a subformula
P of ¢ = ¢(v1,...,v,) and a bit b € {0,1} as input. Executing Sample(¢,b) for b € {0,1} takes

23

time polynomial in 7, because the number of recursive calls is equal to the number of subformulas
of ¢. For a subformula 1) of ¢, define

Dif(4) = [|Sample(, 0) — Sample(st, 1)
Then we can prove the following about Dif:
Claim 4.11 Let @ = (xsp(Cg,C}),-- -, xsp(CE,CF)). For every subformula 1 of ¢, we have:
Y@ =1 = Dif(y)>1—[yp)27"
Y@ =0 = Dif(y) <[|p[27"
Note that nothing is claimed when (@) = *.

Proof of claim: The proof of the claim is by induction on subformulae i of ¢. It
holds for atomic subformulae (i.e. the variables v;) by the properties of the Dj’s.

Case I: v =7V pu. If ¢(a) = 1, then either 7(a) = 1 or u(a) = 1. Without loss of
generality, say 7(a) = 1. Then, by Fact 2.4 and induction,

Dif(4) > Dif(7) > 1 —|7]27" > 1 —|¢|27".
If ¢(@) = 0, then 7(a) = p(a) = 0. By Fact 2.3 and induction,
Dif() < Dif(r) + Dif(u) < |72 + 2" < [gf2~".

Case I: ¢y = 7 A u. By Proposition 3.6, Dif(¢)) = Dif(7) - Dif(u). If (@) = 1, then, by
induction,

Dif(¢p) > (1 —[7[27")(1 — [p|27") > 1 = (|7[+ [p)27" 2 1 — ||27".
If ¢(a) = 0, then, without loss of generality, say 7(a) = 0. By induction,
Dif(y) < Dif(r) < |7]27" < |[[27".

Now, let A and B be the circuits which sample from the distributions Sample(¢, 0) and Sample(¢p, 1),
respectively. (The the random bits each procedure uses are the inputs to the circuits). By the above
claim, |[A—B|| > 1—-n2"" > 2/3 if (@) = 1, and ||A — B|| < n27" < 1/3 if #(@) = 0. In other
words, the construction of A and B from w is a reduction from Mon(SD) to SD. This reduction can
be computed in polynomial time because Sample runs in polynomial time. Thus, by Corollary 4.3,
Mon(SD) € SZK. m

Now it is straightforward to deduce Theorem 4.9.

Proof: Let II be any promise problem in SZK. By closure under complement (Corollary 4.4)
and the completeness of SD (Theorem 3.1), both IT and TI reduce to SD. Let f and g be these
reductions, respectively. Now, let (¢, z1,...,zx) be any instance of ®(II), where ¢ = ¢(v1,...,vg)-
Use De Morgan’s laws to propagate all negations of ¢ to its variables. Now replace all occurrences
of the literal —w; with a new variable w;. Let 9(v1,...,vg, w1,...,wg) be the resulting (monotone)
formula. It is clear that

(¢a$15 s amk) = (’(ﬁ,f(-’L'l),--.,f(!]:k),g(-'L'l),- .- ,g(.’L'k))

24

is a reduction from ®(II) to Mon(SD). Since Mon(SD) € SZK (Lemma 4.10) and SZK is closed
under reductions (Corollary 4.3), Theorem 4.9 follows. =

Theorem 4.9 can be also viewed as demonstrating that SZK is closed under a type of polynomial-
time reducibility, which is formalized by the following two definitions.

Definition 4.12 (truth-table reduction [LLS75]): We say a promise problem II truth-table reduces
to a promise problem T if there exists a (deterministic) polynomial-time computable function f,

which on input x produces a tuple (yi,...,yx) and a boolean circuit C (with k input gates) such
that

r€lly = Cxr(y),...,xr(y) =1
r€lly = Cxr(y),---,xr(yw) =0

In other words, a truth-table reduction for promise problems is a nonadaptive Cook reduction
which is allowed to make queries which violate the promise, but still must have an unambiguous
output (in the strong sense formalized by Definition 4.6). We further consider the case where we
restrict the complexity of computing the output of the reduction from the queries:

Definition 4.13 (NC! truth-table reductions): A truth-table reduction f between promise problems
is an NC! truth-table reduction if the circuit C' produced by the reduction on input = has depth
bounded by cylog|z|, where cy is a constant independent of x.

With these definitions, we can restate Theorem 4.9 as follows:
Corollary 4.14 SZK is closed under NC' truth-table reductions.

Proof: Any circuit of size s and depth d can be efficiently “unrolled” into a formula of size
2¢ . s. Hence, an NC! truth-table reduction from T' to IT gives rise to a Karp reduction from I' to
®(TI). Since SZK is closed under ®(-) and Karp reductions, it is also closed under NC! truth-table
reductions. ®

It would be interesting to prove that SZK is closed under general truth-table reductions (or,
even better, adaptive Cook reductions), or give evidence that this is not the case.

4.3 Knowledge complexity

Knowledge complexity [GMR89, GP99] is a generalization of zero knowledge which attempts to
quantify how much a verifier learns from an interactive proof. A number of different measures have
been proposed to accomplish this, most of which are based on the intuition that a verifier gains at
most k bits of “knowledge” from an interaction if it can simulate the interaction with at most k bits
of “help”. Below we give terse definitions of the variants we consider. The first three definitions
come from [GP99], and the last comes from [ABV95]. Let (P,V) be an interactive proof system
for a promise problem II. Then the knowledge complexity of (P, V') in various senses is defined as
follows:

e Hint sense: We say that (P, V') has perfect (resp., statistical) knowledge complexity k(n) in
the hint sense if there exists a PPT simulator S and a hint function h : IIy — {0,1}" such
that for all z € Iy, |h(z)| = k(|z|) and ||S(z, h(z)) — Viewpy (z)|| is O (resp., is bounded by
a negligible function of |z|.)

25

e Strict oracle sense: (P, V) is said to have perfect (resp., statistical) knowledge complexity
k(n) in the strict oracle sense if there exists a PPT oracle-machine S and an oracle O such
that on every input z € Ily, S queries O at most k(|z|) times and ||S°(z) — Viewp,y (z)|| is
0 (resp., is bounded by a negligible function of |z|.)

e Oracle sense: (P,V) is said to have perfect (resp., statistical) knowledge complexity k(n)
in the oracle sense if there exists a PPT oracle-machine S and an oracle O such that on every
input z € Iy, S queries O at most k(|z|) times, S outputs ‘fail’ with probability at most
1/2, and HSO(.’E) - VieWp,V(:c)” is O (resp., is bounded by a negligible function of |z|), where
SO(x) denotes the output distribution of S conditioned on non-failure.

e Average oracle sense: (P,V) has perfect (resp., statistical) knowledge complexity k(n) in
the average oracle sense if there exists a PPT oracle-machine S and an oracle O such that
for every input z € Ily, the average number of queries S makes to O is at most k(|z|) and
|5€(x) — Viewp,y ()| is O (resp., is bounded by a negligible function of |z|.)

e Entropy sense: (P,V) has perfect (resp., statistical) knowledge complexity k(n) in the
entropy sense if there exists a PPT oracle-machine S, an oracle O, and a PPT oracle-simulator
A such that for all z € Iy, Eg[log P,(R) '] < k(|z|), where P,(R) = Pr,[A(z,R;p) =
SO(z; R)] and HSO(:E) - ViewP,V(x)” is 0 (resp., is bounded by a negligible function of |z|).
Here, the notation M (y;r) denotes the output of PPT M on input y and random coins r,

The knowledge complezity (in some specified sense) of a promise problem II is k(n) if there
exists an interactive proof system (P,V) for II achieving negligible error probablity in both the
completeness and soundness conditions such that the knowledge complexity of (P, V') is k(n). The
class of languages possessing perfect knowledge complexity k(n) in the hint, strict oracle, average
oracle, and entropy senses are denoted by PKCpint, PKCstrict, PKCayg, and PKCent, respectively.
Statistical knowledge complexity is denoted by SKC with the appropriate subscript.

A Collapse for the Hint Sense

Our first result about knowledge complexity is that the SKCp;n: hierarchy collapses by logarithmic
additive factors. Previously, Goldreich and Petrank [GP99] have shown that SKCin: (poly(n)) C AM
and SKChint(O(log(n))) C co-AM; the second of these results can be derived immediately from our
result and Fortnow’s theorem [For89] that SZK C co-AM.

Theorem 4.15 For any polynomially bounded function k(n),
SKChint(k(n) + logn) = SKChint(k(n)).

For intuition, consider the case that k(n) = 0. Loosely speaking, if the verifier is given the hint
along with the input (with the “promise” that the hint is correct), then the original proof system
becomes zero knowledge, so we can apply the results of the previous section. By the boolean closure
properties established in Theorem 4.9, we can take the “union over all possible hints” (there are
only polynomially many of them) without leaving SZK. The result is easily seen to be the original
problem.

In order to turn this intuition into a proof, we first show that knowledge complexity in the hint
sense can be characterized in terms of zero-knowledge promise problems, so that questions about
the SKCh;n¢ hierarchy are reduced to questions about statistical zero knowledge. This is equivalence
is obtained by providing the hint along with the input and “promising” that the hint is correct.

26

Lemma 4.16 Let k(n) be any polynomially bounded function. Then II € SKCpint(k(n)) (Tesp.,
PKChint(k(n))) iff there exists a promise problem I' € SZK (resp., PZK) such that

1. z € Ily = there ezxists a such that |a| = k(|z|) and (z,a) € T'y, and
2. x € Uy = forall a, (z,a) € Ty.

Proof: We only give the proof for statistical knowledge complexity and zero knowledge; the
perfect case is identical.

= Let II be a promise problem in SKChint(k(n)) and let h : IIy — {0,1}". be a hint function cor-
responding to an appropriate interactive proof system and simulator for II. Consider the following
promise problem I':

I'y = {(z,h(z)):z €y}
'y = {(z,a):z€llny}

By using the protocol and simulator for II, we see that I' € SZK (the verifier and prover for T’
should ignore the second component, whereas the simulator uses it as a hint.) It is clear that T’
satisfies the other conditions of Lemma 4.16.

< Let ' € SZK be the promise problem satisfying the stated conditions. Let h : Iy — {0,1}"
be any function such that for all z € Ily,

L |h(z)| = k(|=)),
2. (z,h(z)) €Ty.

(Such a function is guaranteed by Condition 1.) We now give a proof system for IT of knowledge
complexity k(n). On input z, the prover gives the verifier A(z) in the first step, and then they
execute the protocol for I on (x,h(z)). The completeness and soundness of this protocol follow
from the properties of the I' proof system. This proof system is easily seen to have knowledge
complexity k(n) in the hint sense, using the hint A(z) with the the zero-knowledge simulator for T'.
|

We now prove Theorem 4.15.

Proof: Let II be a problem in SKCp;int(k(n) +1logn) and let I be the promise problem guaranteed
by Lemma 4.16. By Theorem 4.9, ®(T') € SZK. Now consider a different, but related promise
problem I", defined by

'y = {(z,a)) : there exists b such that |b| = log|z| and (z,ab) € T'y }
PIN = {(CC,G,) : for all ba (.’B,G,b) € FN} = {(.’E,a) T € HN}

For any string z, let by, ..., b, be all strings of length log |z|, and let C be the circuit of depth
O(log |z|) computing the function ¢(vi,...,v,) = \/,; vi. The relationship between I" and I above
implies that

(z,a) = (b, (z,ab1),...,(z,aby,))

27

is an NC! truth-table reduction from I to I'. Since SZK is closed under such reductions (Corol-
lary 4.14), we conclude that TV € SZK.

Now, z € Ily, then there exists an a of length k(|z|) + log(|z|) such that (z,a) € TI'y. Tak-
ing @' to be the first k(|z|) bits of a, we see that there exists an a’ of length k(|z|) such that
(z,a') € T,. Moreover, if z € Iy, then for all a, (z,a) € I'y. Thus, by Lemma 4.16, we conclude
that I € SKCping (k(n)). m

The Perfect Knowledge Complexity of SZK

The next theorem establishes tighter bounds on the perfect knowledge complexity of SZK. Aiello,
Bellare, and Venkatesan [ABV95] have previously demonstrated that every language in SZK has
perfect knowledge complexity n“(!) (resp., 1+n~“(1) in the entropy (resp. average oracle) sense.
Our results improve on these bounds, although the results of [ABV95] also apply to cheating-verifier
classes and ours do not. Goldreich, Ostrovsky, and Petrank [GOP98] show that SZK has logarithmic
perfect knowledge complexity in the oracle sense, so our results are incomparable to theirs. Our
result for the strict oracle sense is the first that we know of.

Theorem 4.17 11

1. For every polynomial-time computable m(n) = w(logn), SZK C PKCgict(m(n)).
2. SZK C PKCayg(1 +27).
3. SZK = PKCent(2 ™).

Corollary 4.2 tells us that every problem in SZK has a simple two-message proof system like
the SD proof system of Section 3.3. Thus, in order to measure the perfect knowledge complexity
of SZK and prove Theorem 4.17, it suffices to analyze this protocol. Intuitively, since the prover
is only sending the verifier one bit and this bit is almost always a value the verifier knows, the
knowledge complexity of this protocol should be extremely small. However, this argument does
not suffice, because the knowledge complexity of a problem II is determined only by proof systems
for IT which achieve negligible error probability in both the completeness and soundness conditions.
We can overcome this difficulty by performing w(logn) parallel repetitions.

Proof: Let II be any problem in SZK and let (P,V) be the proof system for I constructed
in Corollary 4.2 (from the SD proof system of Section 3.3) with the security parameter set to
k = 4n (so the completeness error is 27%"). Let m = m(n) be any function computable in time
poly(n) such that w(logn) < m < n. Consider the proof system (P’,V') obtained by m parallel
repetitions of (P, V'); this has negligible completeness and soundness errors. We now analyze its
perfect knowledge complexity.

1. The prover sends at most m bits to the verifier on inputs of length n, so the perfect knowledge
complexity of this protocol in the strict oracle sense is bounded by m.

2. A perfect simulator for (P’,V’) can be obtained as follows: On input z of length n, the
simulator runs V(z) for m times independently and queries the oracle once to find out if

1 The 272 in these results can be improved to 2-2(n") for any constant k by polarizing with security parameter
n* instead of n + 1 in the SD proof system of Section 3.3.

28

any of these runs would result in an incorrect prover response. If the oracle replies yes,
the simulator queries the oracle m more times to find out which runs would result in an
incorrect response. The simulator then outputs the random coins used for running V' and the
appropriate prover responses.

In each subprotocol, the prover gives an incorrect response with probability at most 274".
Thus, the simulator has to query the oracle for more than one bit with probability at most
n2~%". Thus, on average, the simulator queries the oracle for at most 1+ mn2=%" < 142"
bits.

3. Let S be the simulator for (P’, V') which simply simulates V' and queries the oracle O for
all prover responses. One possible oracle simulator would assume that the prover is correct
in all subprotocols. Unfortunately, this gives 1/P,(R) = oo for some R and yields infinite
knowledge complexity. Thus, we instead have our oracle simulator A assume that the prover
is right in each subprotocol independently with probability 1 — §, where § = 272". Thus,
P.(R) = (1 — §)¥0™* if R is a set of random coins for V' (equivalently S, since S mimics
V') which would elicit a correct prover response in exactly k of the subprotocols. Let € be
the probability that the prover is incorrect in an individual subprotocol. Then, ¢ < §2, and

we have
= (log %m) kf:_o (”Z) emR(1 —)k + (log - f 6) kf:_o (7:) ™k (1 — e)Fk

1
= log(s—m+m(1—6) (logli(S)

m(log L + logl_é)
= €
1-94

1 1
m(log1_5+5210g5>

< 2mé <27

IN

for sufficiently large n.

The opposite inclusion follows from the result of [ABV95] that PKCent(neg(n)) C SZK for
any negligible function neg(n).

4.4 Reversing statistical difference

By the completeness of SD (Theorem 3.1) and SZK’s closure under complement (Corollary 4.4), it
follows that SD reduces to SD. This is equivalent to the following surprising result:

Corollary 4.18 (Reversal Mapping) There is a polynomial-time computable function that maps
pairs of circuits (Cy, C1) to pairs of circuits (Dy, D1) such that

ICo —Cill <1/3 = ||Do— D1l >2/3
|Co — C1l >2/3 = |[[Do— D1 <1/3.

29

That is, SD reduces to SD.

This corollary motivated our search for a more explicit description of such a mapping. By
extracting ideas used in the transformations of statistical zero-knowledge proofs given in [Oka00]
and [SV97], we obtained the description of this transformation given below.

The Construction. Let (Cy, C1) be any pair of circuits and let n = |(Cy, C1)|. By the Polarization
Lemma (Lemma 3.3), we can produce in polynomial time a pair of circuits (C}, C7) such that

ICo—Cil|<1/3 = |Cp—-Ci]>1-27"
ICo—Cill >2/3 = ||Ci—-Cif <27"

Let ¢ = poly(n) be the number of input gates of C}) and C (w.L.o.g. we may assume they have the
same number) and let £ = poly(n) be the number of output gates. For notational convenience, let
R ={0,1}7 and L = {0,1}. Let m = n*¢? and define a new distribution C: {0,1}™ x R™ — L™
as follows: .

C(b,7) = (Cy, (r1), .-, Cp,, (Tm))-

We use the notation Z < C to denote Z chosen according to C, i.e. select b and 7 uniformly and
let 7 = C(b,7).

Let H be a 2-universal family of hash functions from {0, 1} x R™x L™ to T' = {0, 1}{a+)m-24-n_
where A = \/nmg? = m/n. We can now describe the new distributions:

Dy:_ Choose g_)‘,f')ER{O,l}m x R™ § « C, and hegH. Output
(C(b’ﬂ’b’h,h(b’F’g))'

Dy: Choose (b,7)€r{0,1}™ x R™, hegH, and tepT. Output

-

(C(b,7), b, h, t).

The important things to note about these distributions are that bis part of the output, and that
Dy and D; only differ in the last component, where Dy has the value of the hash function and D,
has a truly random element of 7. Also note that the size of T is chosen to be |[{0, 1}™ x R™|/224+",
which is essentially |{0,1}™ x R™|, scaled down by a “slackness” factor of 222*". The introduction
of the sample ¢ in Dy may at first seem superfluous; we explain below.
Intuition. For intuition, consider the case that Cis a flat distribution; that is, for every Z' €
range(C), the size of the preimage set |{(b,7): C(b,7) = #}| is the same value N. (It turns out that
Cis actually “close enough” to being flat for the following arguments to work.) Then the range of
C has size |{0,1}™ x R™|/N = 2@+)m /N So, in Dy, conditioned on a value for C(b,), the triple
(5, 7,7) is selected uniformly from a set of size 2(¢+D™, Since this is much greater than |T'|, the
Leftover Hash Lemma of [HILL99] implies that conditioned on any value for the first component
of Dy, the last two components (h,h(g, 7,9)) are distributed close to the uniform distribution on
H x T, which is the distribution that D; has in its last two components.'? Thus, if their second

>Here we see the importance of §: Without 7, conditioned on some value of C'(b, 7), the pair (b, 7) would be selected
uniformly from a space of size N. If we were only hashing this pair, for the distribution k(b, 7) to be uniform by the
Leftover Hash Lemma, T would have had to be chosen so that |T| < N. The value of N, however, depends on the
inner workings of the circuit C, and is in general unknown. By including #, which comes uniformly from a space of
size 2(‘”'1)’"/N, we balance the arguments to h so that they come from a space of size 2(@tDm 3 known quantity. This

use of “dummy” samples to form a space whose size is known is the “complementary usage of messages” technique
of Okamoto [Oka00].

30

components were missing, Do and D; would be statlstlcally close. Now, con51der the case that
IC — C1|l = 1. Then bis essentially “determined” by C (7). So the presence of b can be ignored,
and the above argument says that Dy and D; are statlstlcally very close. Now, consider the case
that ||C} — C}|| ~ 0. Then b is essentlally ‘unrestricted” by C(b,7). Since there are 2™ choices for
b, conditioning on b in addition to (b, 7), cuts the number of triples (b 7,1) down from 27(a+1) to
roughly 2™(¢+1) /2™ Since 2(¢+1) /2™ is much smaller than |T|, h(b, 7, 7) will cover only a small
fraction of |T| and thus will be far from uniform (conditioned on values for C(b,7), b, and k).

Direct Proof of Corollary 4.18. First we will argue that C is close to being flat, so that we
can apply arguments like those given above. This is the case because C is composed of many
independent, identically distributed random variables. For zZ' € L™, we say the welght of 7 is the
logarithm of the size of the preimage set of Z. Formally, let wt(Z) = log, |{(b,7) : C(b,7) = 7}|. Let

w be the expected weight of an image, i.e. w =E_,_ s[wt(Z)]. Then we can show the following:

Lemma 4.19 Pr_ x[|wt(2) — w| > A] < 279",

Z«C
Proof: For z € L, let wto(z) = logy [{(b,7) : Cp(r) = z}|. Then, for Z € L™, wt(Z) =
wto(z1)+---+wto(zm). Observe that when 7 is selected according to C, z1, ..., 2, are independent

and identically distributed. Moreover, for any z € L, 0 < wto(z) < ¢. So, by the Hoeffding
inequality [Hof95, Sec. 7.2.1], we have

Pr [|wt(2) — w| > A] < 2¢227/m0" — 921,

Z«C

It will be convement to eliminate those Z € L™ that have weight far above or below the mean.
Let G = {(b, F) |Wt(7(b,7)) — w| < A} be the set of good pairs (b,7). The above Lemma says
that |G| > (1 —27%)|{0,1}™ x R™|. Thus ||G — {0,1}™ x R™|| < 2" where for simplicity of
notation, we let the name of a set also refer to the uniform distribution on the same set. Define ¢
to be the distribution obtained by selecting (b, 7) < G and outputting C(b, 7). Then, since C is a
function, Fact 2.4 tells us that |G — C'|| = 27", Similarly, we define variants of Dy and D; that
sample from G instead of {0,1}™ x R™:

D_’Q: B Le_‘f (b, f)ERG, 7 <« (', and hegH. Output
(C'(B,7), b, h, h(b, 7, 7).
D!: Let (b,7)€rG, hegH, and tegT. Output (C'(b,7),b, h,t).

Since Dy (or D}) is a randomized procedure applied to two (or one) independent samplings
from G, Fact 2.4 tells us that || Dy — Dj|| = 27 (and ||D; — D}|| = 2=%™). Hence, it suffices
to prove that these modified distributions have the properties we want in each case. For the case
when Cj and C; are statistically far, we prove the following claim:

Claim 4.20 If||C, — Cl|| > 1 — 2™, then | D) — D} < 2.

Proof of claim: First we formalize the idea that b is “determined” by C. Define
f:L—{0,1} by

[0 ifPr[Cy=2z]>Pr[C] =7
f(z) = { 1 otherwise

31

In other words, f is exactly the prover strategy from the proof system for STATISTICAL
DIFFERENCE given in Section 3.3. The completeness of that proof system (Lemma 3.7)
says that Pry,[f(Cj(r)) = b] > 1 —27". Now define Fo L™ = {0,1}™ by f(Z) =
(f(z1),...,f(#m)). Then

Prf(CE,M) =B > (1 —27mm =1 - 27,

b7

Since G is a 1 — 2~ fraction of {0,1}™ x R™, the same is true when (b, 7) is selected
uniformly from G. Thus, if we define:

Dy: Let (b,7)erG, § <+ C', and hegH. Output
(C(b, 7), f(Cb, 7)), by h(b, T, 5)).
7 Yo o

b
D!: Let (b,7)€rG, hegH, and tegT. Output (C'(b,7), f(C'(b, 7)), h,t).

—
—

Then, by Fact 2.5, ||D}y — DY|| = 2= and || D} — D!|| = 2= So it suffices to
show that || Df — DY|| = 2~"). Since the first components of DY and DY are identically
distributed and the second components are determined by the first ones, it suffices to
show (by Fact 2.5) that, conditioned on any value for the first coordinate, the third and
fourth components have statistical difference 2=, This will follow from the Leftover
Hash Lemma [HILL99]:

Lemma 4.21 (Leftover Hash Lemma [HILL99]) Let H be a family of 2-universal
hash functions from D to T. Let X by a probability distribution on D such that for
all z € D, Pr(X =z] < ¢/|T|. Then the following two distributions have statistical
difference at most €'/3.

1. Choose z < X, hegH. Output (h,h(z)).

2. Choose he g, tegT. Output (h,t).

By the above argument and the Leftover Hash Lemma, it suffices to show that
conditioned on any value Z for C'(b,7), no triple (b,7,%) has probability more than
2-(n) /|T|. The pair (Z;,F) comes uniformly from a set of size 2%% > 2w—4 and 7
is selected independently according to (', so the probability of any triple (5, 7, 9) is at

most
1 qw+A - 92A 92—Q(n)
(QWA) (|G|) T (127020t)m 7|

Thus, ||Df — DY|| < 2=4™) and the claim is established.

Now we treat the other case, when Cy and C; are statistically close.

Claim 4.22 If ||C} — C}|| < 27", then ||D}y — D} > 1 — 2=¥"),
Proof of claim: First, we formalize the idea that b is almost completely “undeter-
mined” by C(b, 7). Since ||C{—C1|| < 27", it follows from Fact 2.6 that with probability

1 — 27U over z + C},

(1—2"M)Pr [0 =2] <Pr[Ch=2] <(1+27)Pr[C] =2].

32

In other words,

T {r:Cilr) =z} —
The same is true with probability 1 — 2™ when the roles of C}, and C} are reversed.
Thus, with probability 1 — m2~Un) = 1 — 2=U") gyer 7 « C, we have for every pair
b,c € {0,1}™,

{7: C(b,7

) =7}
(7: C(e7) =7}
Since there are 2™ choices for ¢, this, combined with Lemma 4.19, implies that, with
probability 1 — 27 over Z «+— C, the following holds for every b € {0,1}™:

1—2 % = (1 —2%(m)ym <

< (1 + 2fﬂ(n))m =14+ 9—8(n)

9wt (2)

2m

-

{7: C(b,7) = 7}

< (1 + 2—Q(n)) . < (1 4 2—Q(n)) . 2w—|—A—m_

Since this is true with probability 1 — 27%®) for 7 selected according to 6_", it is also
true with probability 1 — 2% for # selected according to C'. Fix any such Z and fix
any b € {0,1}" and h € H. Then, in Dj, conditioned on C'(b,7) = Z, b, and h, there
are at most
G
(1 + Qfﬂ(n)) . QwtA—m (2L_|A) < (1 + 2—Q(n)) .92A-m 2m(q+1)
_ (1 + 2—Q(n)) . 94A+n—m |T|
9—8(m) , T

possible values for (7,7). Thus, with probability 1 — 2~*")_ conditioned on values for
the first three components of Dj, the fourth component h(b, 7, %) can cover at most a
2-m) < 9-9n) fraction of T. In contrast, conditioned on values for the first three

components of D}, the fourth component is uniformly distributed on 7. Therefore,
IDy — Dif| > 1 — 279,

In [Vad99], it is shown that this Reversal Mapping can be better understood as a composition of two
reductions, going the two directions between STATISTICAL DIFFERENCE and ENTROPY DIFFER-
ENCE (the complete problem for SZK given in [GV99], which trivially reduces to its complement).

4.5 Weak-57ZK and expected polynomial-time simulators

Recall that, in this paper, we defined statistical zero-knowledge with respect to strict polynomial-
time simulators. As noted in Section 2, the original definition of statistical zero-knowledge permits
expected polynomial-time simulators, but only allowing strict polynomial-time simulators is not
very restrictive when discussing honest-verifier proofs, as we are.

However, our techniques do say something about expected polynomial-time simulators, and in
particular show that expected polynomial-time simulators are no more powerful than strict ones
for public-coin statistical zero-knowledge. This is the first general equivalence between strict and
expected polynomial-time simulators for statistical zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, that of weak statistical
zero knowledge (as previously considered in [DOY97], where it was referred to as “non-uniform
simulation”):

33

Definition 4.23 An interactive proof system (P,V) for a promise problem II is weak statistical
zero knowledge if for all polynomials p, there exists an efficient probabilistic (strict) polynomial-time
algorithm S, such that

[Se(z) — (P, V)(z)] < 1/p(lz]),
for all sufficiently long x € Iy .

We denote by weak-SZK the class of promise problems admitting weak statistical zero-knowledge
proofs, and by public-coin weak-SZK the class corresponding to such proofs which are also public
coin. Note that any proof system admitting an expected polynomial-time simulator (in the usual
sense) certainly also satisfies the requirements of weak statistical zero-knowledge. We show that
in fact any public-coin weak statistical zero-knowledge proof system can be transformed into a
statistical zero-knowledge proof system with a strict polynomial-time simulator achieving negligible
(in fact, exponentially small) simulator deviation. In other words, public-coin weak-SZK = SZK.

Proposition 4.24 public-coin weak-SZK = SZK = public-coin SZK.

The only obstacle in generalizing Proposition 4.24 to all weak statistical zero-knowledge proofs
(instead of just public-coin ones) is that Okamoto’s private to public-coin transformation in [Oka00]
is only given for strict polynomial-time simulators achieving negligible simulator deviation. In fact,
this generalization was accomplished in work (subsequent to ours) by Goldreich and Vadhan [GV99].

In order to establish Proposition 4.24, it suffices to show that every problem in public-coin weak-SZK
reduces to SD, as the proposition follows by closure under reductions (Corollary 4.3) and Okamoto’s
theorem that SZK = public-coin SZK (Theorem 3.10). Therefore, we need only establish the fol-
lowing generalization of Lemma 3.8:

Lemma 4.25 Suppose promise problem II has a public-coin weak statistical zero-knowledge proof.
Then there exist probabilistic (strict) polynomial time machines A and B such that

1
zelly = |A(z)— B(x)| < 3 and

2
zelly = |A(z) — B(z)| > 3

Proof: The proof is identical to the proof of Lemma 3.8, except that wherever the simulator S is
used in that proof, we replace it with Sy, a simulator with deviation 1/p(n), where p(n) = Tn-r(n)3.

Then we replace Claim 3.12 with the following;:
Claim 4.26 If x € Ty, then ||A(z) — B(z)|| < 1/(3|z| - r(|z|)?).

Proof of claim: The proof is identical to the proof of Claim 3.12, except that now,
we have

1

14(@) = B <2 1 2n(ja)) - [Sy() ~ (P.V)@ < g

On the other hand, Claim 3.13 remains true, i.e. z € IIy implies || A(z) —

as in the original proof, we consider the samplable distributions A(z) =
@5(eD B(z), where s(n) = n-r(n)2. If z € Iy, ||A(z) — B(z)|| < s(|z|)||A(z
sired. If z € Iy, then by the Direct Product Lemma (Lemma 3.4), || A(z)—

B(z)|| /12r(n).AThen,
®*(7) A(z) and B(z) =

) — B()| < 1/3, as de-
Bla)| > 1-2-(=). m

34

4.6 Perfect and computational zero knowledge

Although the focus of this paper is statistical zero knowledge, some of the techniques also apply to
perfect and computational zero knowledge. In particular, for public-coin proof systems we obtain
variants of Lemma, 3.8 for both perfect and computational zero knowledge. In addition, a restricted
version of STATISTICAL DIFFERENCE can be shown to have perfect zero-knowledge proof.

First, we define some variants of SD. For any two constants « and 8 with a > 3, define:

SDY? = {(Co,C1) :1|Co — Cull > a}
SDY = {(Co,Ch): [ICo— Cill < B}
SD®? is interreducible with SD and hence complete for SZK whenever 1 > o® > 8 > 0, since the

Polarization Lemma generalizes to such thresholds. (See discussion at the end of Section 3.2).
We can almost show that every problem which has a public-coin perfect zero-knowledge proof

reduces to SD¥/%0. The caveats are that either the original proof system must have perfect com-
pleteness, or we obtain distributions that are samplable in expected polynomial time rather than
circuits.

Proposition 4.27 Every promise problem having a public-coin perfect zero-knowledge proof with

perfect completeness reduces to SDY/20.

Proof: It suffices to show that the distributions A(z) and B(z) constructed in the proof of
Lemma 3.8 have statistical difference 0 on YES instances, when the original proof system has per-
fect completeness and the simulator deviation is 0. Indeed, for 7 > 1, the distributions A;(z) and
B;(z) are identical if the simulator deviation is 0, and the distributions Ay(z) and By(z) are iden-
tical under the additional assumption that the proof system has perfect completeness. =

Proposition 4.28 Suppose promise problem 11 has a public-coin perfect zero-knowledge proof.
Then there exist probabilistic expected polynomial time machines A and B such that

zelly = [A(z)-B(z)|| =0, and
zelly = ||A(z) - Bz)| >1 -2,

Proof: The proof is nearly identical to that of Proposition 4.27, except that we must modify
Ap(z) and By(z) to have statistical difference 0 (at the price of By(z) becoming expected polyno-
mial time). Let ¢(n) be a polynomial bound on the number of random coins S uses on inputs of
length n. Then we define Ay and By as follows (in both descriptions, n = |z|):

Ao(z): Run S(z) for n - ¢(n) repetitions. Output ‘1’ if the majority are accepting conversations
and ‘0’ otherwise.

By(z): With probability 1 — 27¢(™)_ output ‘1. Otherwise, calculate the probability ¢ that S (z)
outputs an accepting conversation (by exhaustive search over all 2¢) random seeds). Now calculate

If 7 > 27¢(™)_ output ’1." Otherwise, output ‘0’ with probability 7/2_6(”), and ‘1’ otherwise.

Note that By(z) runs in expected polynomial time, since with probability 27¢") it runs in time
poly(n)2%™) and otherwise it runs in time poly(n). Also observe that 7 is the probability that
Ao(z) outputs ‘0’

Now we argue that, when z € Iy, Ag(z) and By(z) have statistical difference 0,i.e. output ‘1’
with the same probability. Since S(z) outputs a conversation which makes V' accept with proba-
bility at least 2/3 — neg(n), the Chernoff bound implies that Pr[Ag(z) = 1] = 1 — 2~ e(®) This
means that 7 will always be less than 2= (for sufficiently large n), so By will output ‘0’ with
probability 2-¢") (7 /2-¢(™)) = 7 which is the probability that Ay outputs ‘0’. =

Now, if we could show that SD!/20 (or its complement) has a perfect zero-knowledge proof
system, we would have something like a completeness result for PZK. Although we do not know
how to do this, we can instead show that SDL/2 ¢ pzK. Indeed, consider the protocol of Sec-
tion 3.3 with the modification that the two parties use the XOR Lemma (Lemma 3.5) instead of
the Polarization Lemma. Then the proof of Lemma 3.7 tells us that this protocol, when used for
SD"!/2 has completeness error 0, simulator deviation 0, and soundness error 1/2 + 2 ™. Thus we
have:

Proposition 4.29 SD"'/? ¢ PZK.
For computational zero knowledge, the techniques of Lemma 3.8 give us the following:

Proposition 4.30 Suppose promise problem 11 has a public-coin computational zero-knowledge
proof. Then there exist probabilistic polynomial time machines A and B such that

1. zelly = ||Az) — B(z)|| > 1 — 2D and

2. {A(z)}gen, and {B(z)}gem, are computationally indistinguishable ensembles of probability
distributions.

Note that, in contrast to perfect and statistical zero knowledge, the conditions given in Propo-
sition 4.30 do not give a way to distinguish YES and NO instances; it is possible for A(x) and B(z)
to have statistical difference greater than 1 —22#]) even for z € TIy. We also remark that Propo-
sition 4.30 holds even when the simulator for the proof system runs in expected polynomial-time,
except that A and B will also run in expected polynomial-time.

Proof: The proof follows Lemma 3.8 exactly, except for Claim 3.12, which should be replaced
with the following:

Claim 4.31 {A(z)}zem, and {B(z)}zem, are computationally indistinguishable ensembles of prob-
ability distributions.

We omit = from the notation for readability; below all probability distributions actually refer
to ensembles indexed by x € ITy. The proof in Claim 3.12 that Ay and By have exponentially small
statistical difference still holds. Thus it suffices to show that the distributions A’ and B’ obtained
by removing the 0’th components of A and B, respectively, are computationally indistinguishable.

36

To prove this, we first note that a hybrid argument shows that the distributions ®" (P, V') and ®"S
are computationally indistinguishable, since (P, V) and S are computationally indistinguishable.!?

Now we introduce a new distribution C. Define C; = (c1,p1,---,¢i)(py) for 1 <4 <7, and let
C=0C1®---®C,. Then C and A’ are computationally indistinguishable since a distinguisher D be-
tween them could be used to make a distinguisher D’ between ®" (P, V') and ®"S: Given a sequence
of r transcripts (t1,...,t.), D' truncates t; = (c1,p1,...,¢r,pr) to produce t; = (ci,p1,...,¢) and
feeds (t),...,t.) to D. When fed with ®"S, D' gives D a sample of A’, and when fed with @ (P, V),
D’ gives D a sample of C.

Similarly, C and B’ are also computationally indistinguishable because a distinguisher between
them could be to make a distinguisher D’ between ®"(P,V) and ®"S: Given a sequence of r
transcripts (t1,...,%), D' truncates t; = (c1,p1,. .., ¢, pr) and selects u; according to the uniform
distribution on strings of length r(|z|) to produce t; = (c1,p1,...,pi—1,u) and feeds (t,...,t;.) to
D. When fed with ®"S, D' gives D a sample of B’, and when fed with ®"(P,V), D' gives D a
sample of C.

Now, because both A’ and B’ are computationally indistinguishable from C, they must be com-
putationally indistinguishable from each other, completing the proof. =

4.7 Hard-on-average problems and one-way functions

Most, if not all, of cryptography relies on the existence of computational problems which are hard-
on-average. However, the mere exitence of a hard-on-average problem, even in NP, is not known to
imply even the most basic cryptographic primitive, namely a one-way function. Ostrovsky [Ost91],
however, showed that the existence of a hard-on-average problem in SZK does imply the exis-
tence of one-way functions. This result was subsequently generalized to CZK by Ostrovsky and
Wigderson [OW93].

In this section, we show how Ostrovsky’s result follows readily from our Completeness Theorem
and a result of Goldreich [Gol90] on computational indistinguishability. Using the generalization
of our techniques to CZK described in the previous section, we also obtain a simpler proof of the
the Ostrovksy—Wigderson theorem restricted to public-coin proof systems.

In order to state these theorems precisely, we need to define what we mean for a problem II
to be “hard.” Informally, we require that membership in II is (very) hard to decide under some
samplable distribution of instances.

Definition 4.32 An ensemble of distributions {Dy }neN is said to be samplable if there is a prob-
abilistic polynomial-time algorithm that, on input 1" outputs a string distributed according to D,,.

Definition 4.33 A promise problem II is hard-on-average if there exists a samplable ensemble of
distributions { Dy }nen such that the following holds: For every nonuniform probabilistic polynomial-
time algorithm M, there exists a negligible function p : N — [0,1] such that

1
Pr[M(z) correctly decides whether = is a YES or NO instance of II] < 5t p(n) Vn €N,

where the probability is taken over x < D,, and the coins of M. (If x violates the promise, then M
is considered to be correct no matter what it outputs.)

13 Actually this step uses the fact that our definition of computational indistinguishability is with respect to nonuni-
form distinguishers, because (P, V) is not a samplable distribution.

37

In this section, we will give new proofs of the following results.

Theorem 4.34 ([Ost91]) If there is a hard-on-average promise problem in SZK, then one-way
functions exist.

Theorem 4.35 ([OW93] for public-coin proofs) If a hard-on-average promise problem pos-
sesses a public-coin computational zero-knowledge proof system, then one-way functions exist.

We will only prove Theorem 4.35 as Theorem 4.34 then follows via Theorem 3.10. Our proof
will make use of Proposition 4.30 in conjuction with the following result of Goldreich [Gol90]:

Proposition 4.36 ([Gol90]) Suppose there ezxist two samplable ensembles of distributions, { Ap }nen
and {Bp, }nen, such that

1. {A,} and {B,} are computationally indistinguishable.
2. There is a polynomial p : N — N such that for all n, || A, — Bp|| > 1/p(n).

Then one-way functions exist.

Proof of Theorem 4.34: Suppose Il is a hard-on-average problem with a public-coin computa-
tional zero-knowledge proof and let {D,} be the ensemble of distributions under which IT is hard.
By Proposition 4.30 there are probabilistic polynomial-time algorithms A and B such that

L o € Iy = [A(2) - B(o)]| > 1 -2 %), and
2. {A(z)}zen, and {B(z)}zemn, are computationally indistinguishable.

(Note that if IT € SZK, the Completeness Theorem and Polarization Lemma yield such A and B
with the computational indistinguishability replaced by statistical difference 2_|”3|.)

We will show that the following ensembles {A,} and {B,} meet the requirements of Proposi-
tion 4.36:

Ap: Sample z according to D,,. Sample z from A(z). Output (z, 2).
B,: Sample z according to D,,. Sample z from B(z). Output (z, 2).

The statistical farness of these ensembles will follow from the farness of A(z) and B(z) on
NO instances. The computational indistinguishability will follow from the computational indistin-
guishability of A(z) and B(z) on YES instances, together with the fact that it is hard to distinguish
YES instances of IT from NO instances.

To formalize this intuition, we make some observations which follow from the fact that II
is hard-on-average (where here and throughout this proof, we write neg(n) to denote negligible
functions):

1. Pr[D,, ¢ IIy UIlx] = neg(n).
2. ‘Pr [Dy, € TIy] — %‘ = neg(n) and ‘Pr [D, € Ily] — %‘ = neg(n).

3. The ensembles {D} },en and {D) },,en obtained by conditioning D,, on being a YES or NO
instance, respectively, are computationally indistinguishable.

38

Items 1 and 2 hold because otherwise the trivial algorithm that always outputs YES or the one that
always outputs NO would decide II correctly with nonnegligible advantage. Item 3 holds because a
distinguisher between {DY} and {DX} could be used to decide I with nonnegligible advantage.

Claim 4.37 ||A, — By|| > 1/2 — neg(n).

Proof of claim: Since D, must produce a NO instance of II with probability at least
1/2 — neg(n), [[An — Bal| > (1/2 — neg(n)) - (1 — 2-%)) = 1/2 — neg(n).

Claim 4.38 {A,},en and {By}nen are computationally indistinguishable.

Proof of claim: Let M be any probabilistic polynomial-time algorithm. From the
fact that A(z) and B(z) are computationally indistinguishable for YES instances, it
follows that

|Pr[M(z,A(z)) = 1|z € Ily| — Pr[M(z, B(z)) = 1|z € Ily]| = neg(n), (3)

where these probabilities (and all those to follow) are taken over = <— D,, and the coins
of all algorithms (M, A, and B). By the computational indistinguishability of {D}}
and {DX'}, we also have

|Pr[M(z,A(z)) = 1|z € lly| — Pr[M(z, A(z)) = 1|z € IIx]| = neg(n)
|Pr[M(z,B(z)) = 1|z € Iy| — Pr[M(z,B(z)) = 1|z € Ilx]| = neg(n).

Combining these with Equation 3, we see that all four conditional probabilities differ
only by negligible amounts. Therefore,

Pr[M(z,A(z)) =1] — Pr[M(z, B(z)) = 1]
< |Pr[M(z,A(z)) = 1|z € lly| — Pr[M(z, B(z)) = 1|z € IIy]|
+|Pr[M(z, A(z)) = 1|z € In] — Pr[M(z,B(z)) = 1|z € IIy]|
+2Pr [.T ¢ Iy u HN]
= neg(n).
This establishes the computational indistinguishability of {A4,} and {B,}.

Given these claims, the result now follows from Proposition 4.36. ®

5 Extensions to cheating-verifier zero knowledge

The focus of study in this paper has been the class of languages (or promise problems) possessing
statistical zero-knowledge proofs against an honest verifier. However, in cryptographic applications,
one usually wants the zero-knowledge condition to hold even against cheating verifier strategies that
deviate arbitrarily from the specified protocol. There have been a number of results showing how
to transform proof system which are statistical zero knowledge against the honest-verifier into ones
that are statistical zero knowledge against cheating verifier strategies [BM090, OVY93, Dam93,
DGOWY95, GSV98]. As advocated in [BMO90], one can use such transformations to translate results
like ours about honest-verifier statistical zero knowledge to to the cheating-verifier definition. In

39

this section, we discuss which of our results apply to the cheating-verifier class and the appropriate
formulations in each case.

Of the transformations mentioned above, the result of [GSV98] is the only unconditional and
unrestricted one; all the others use computational assumptions such as the existence of one-way
functions or only apply to a restricted class of statistical zero-knowledge proofs. Since most of our
results assert properties of the class SZK, much of their translation to the cheating-verifier class will
immediately follow from [GSV98], since that transformation gives an equality between the honest-
verifier and cheating-verifier classes. However, in order to translate results which assert the existence
of honest-verifier proof systems with various properties, we must check that the transformation
preserves those properties. Thus, in one instance, we will use transformation of [BMQO90] instead,
which will require making a complexity assumption.

Now, we give a formal definition of cheating-verifier statistical zero knowledge.

Definition 5.1 An interactive protocol between a computationally unbounded prover P and a PPT
verifier V is said to be a (black-box) cheating-verifier statistical zero-knowledge proof system for a
promise problem 11 if there exists a PPT simulator S and a negligible function o such that

1. If z € Ily, then Pr[(P,V)(z) = accept] > 1 — ¢(|z|).
2. If x € Iy, then for all P*, Pr[(P*,V)(z) = accept] < s(|z]).

3. For all (even computationally unbounded) V* and all x € Ily, ||SV* () — Viewpy~ (x)” <
o(|z|), where SV (z) denotes the output distribution of S with oracle access to V*.

As usual, o) is called the simulator deviation, c(-) the completeness error, and s(-) the soundness
error. cheating-ver SZK denotes the class of promise problems possessing cheating-verifier statistical
zero-knowledge proofs.

The above definition is more stringent than the original definition in [GMR89] in several re-
spects. The most important difference is that we require simulability for all verifier strategies, not
just polynomial-time computable strategies. We also use a black-boz notion of simulation, as intro-
duced by [GO94]. That is, we say there should be a single simulator which works for all verifiers,
given oracle access to that verifier, whereas the original definition in [GMR89] only asks that for
every PPT verifier strategy, there exists a PPT simulator.!* We also require that the simulator
deviation is bounded by the same negligible function for all verifier strategies, instead of allowing a
different negligible function for each verifier. Finally, we require that the simulator operate in strict
polynomial time, whereas [GMR89] allows expected polynomial time. The main result of [GSV98]
follows.

Theorem 5.2 ([GSV98]) cheating-ver SZK = SZK.

Theorem 5.2 is proven by transforming public-coin statistical zero-knowledge proofs against the
honest verifier into public-coin statistical zero-knowledge proofs against cheating verifiers. By
the private- to public-coin transformation of Okamoto (Theorem 3.10), this suffices to prove the
theorem.

As one would expect, the conditional results of [BMO90], [OVY93], and [DGOW95, Part 2] do
not meet our strong definition of cheating-verifier statistical zero knowledge. In the proof systems

4 The notion of black-box zero knowledge is needed to make sense of a PPT machine simulating the behavior of a
computationally unbounded verifier strategy.

40

that result from their transformations, the zero-knowledge condition only holds for PPT verifiers
V*, and the simulator deviation can depend on the verifier V*. We will call a proof system meeting
this weaker requirement an cheating- PP T-verifier statistical zero-knowledge proof system.

Now we examine which of our results are preserved under these two transformations.

The Completeness Theorem. Of course, since Theorem 5.2 gives an equality of classes, the
Completeness Theorem extends to the cheating-verifier class:

Proposition 5.3 STATISTICAL DIFFERENCE is complete for cheating-ver SZK.

We now look at the applications of the Completeness Theorem, beginning with our results on
efficient SZK proof systems in Corollary 4.2.

Simulator deviation and security parametrization. Both the transformations of [Oka00]
and [GSV98] can be made to preserve a simulator deviation of 2-("). Applying these transfor-
mations to Corollary 4.2, we see that every language in SZK has a cheating-verifier statistical
zero-knowledge proof with simulator deviation 2-%(™).

We can also consider a security-parametrized variant of cheating-verifier zero knowledge, analo-
gous to the honest-verifier case (Definition 4.1): the protocol takes an extra parameter & (in unary)
and the zero-knowledge condition demands that, for any verifier, the simulator deviation is less
than a(k) for some negligible function o. The transformations of [Oka00, GSV98] both preserve
the security-parametrization property, so we obtain:

Proposition 5.4 Any promise problem in SZK has a cheating-verifier security-parametrized sta-
tistical zero-knowledge proof with simulator deviation 27%.

Message complexity. Corollary 4.2 shows that every promise problem in SZK has a 2-message
honest-verifier statistical zero-knowledge proof. Although the transformation of [GSV98] only mul-
tiplies the number of messages by a factor of two when applied to public-coin proof systems, the
private- to public-coin transformation of [Oka00] increases the number of messages to polynomial
even when applied to a constant-message protocol. However, if one is willing to make a compu-
tational assumption, then the transformation of [BMO90] applies and this transformation does
preserve the message complexity up to a constant factor.

Proposition 5.5 If the DISCRETE LOGARITHM problem is hard,'> then every promise problem
in SZK has a constant-message cheating-PPT-verifer statistical zero-knowledge proof system with
soundness and completeness errors 27 ".

Proof: Let II be any promise problem in SZK. From Corollary 4.2, we know that II has a
2-message (honest-verifier) statistical zero-knowledge proof system. Repeating this protocol in par-
allel O(n) times gives a constant-message proof system with soundness and completeness errors
27", Note that parallel repetition preserves honest-verifier statistical zero knowledge. Now, apply
the transformation of [BMO90], which yields a constant-message cheating-verifier statistical zero-
knowledge proof system for II, under the assumption that the discrete logarithm is hard. This
transformation only increases the number of messages by a constant factor and preserves the com-
pleteness and soundness errors. H

5See [BMO90] for a precise formulation of this assumption.

41

It is still open whether one can unconditionally prove that all of SZK has constant-message
cheating-verifier proofs. We note that Goldreich and Krawcyzk [GK96] have shown some limitations
on the message complexity of cheating-verifier zero-knowledge proofs (for problems outside BPP): If
the proof system has negligible soundness error and is zero knowledge under black-box simulation,
then it cannot consist of fewer than 4 messages. If, in addition, it is public coin, then it cannot
consist of any constant number of messages.

Communication. Corollary 4.2 shows that every promise problem in SZK has a very communication-
efficient honest-verifier statistical zero-knowledge proof, in that the prover only sends one bit to
achieve completeness error 1 — 27" and soundness error 1/2 + 27". Unfortunately, none of the
known transformations to cheating-verifier statistical zero knowledge preserve the amount of com-
munication, so this result does not translate to cheating-verifier statistical zero knowledge.

Deterministic Prover. We note that the fact that the prover is deterministic in Corollary 4.2
cannot extend to cheating-ver SZK (unless SZK = BPP) [GO94].

Closure properties. Since Theorem 5.2 gives an equality of classes, any closure properties of
the honest-verifier class (namely, Corollaries 4.3, 4.4, and 4.14, and Theorem 4.9) also hold for the
cheating-verifier classs. So we immediately obtain the following:

Proposition 5.6 cheating-ver SZK is closed under Karp reductions, complement, ®(-), and NC!
truth-table reductions.

Knowledge complexity. Cheating-verifier analogues of all the knowledge complexity classes
discussed in Section 4.3 can be defined just as we have done for statistical zero knowledge. We
adopt the same conventions as in Definition 5.1 — black-box strict polynomial-time simulation for
all (not just PPT) verifier strategies, with the simulator deviation a negligible function independent
of the verifier. We denote the cheating-verifier variant of a class C with cheating-ver C.

First, we show that honest-verifier and cheating-verifier statistical knowledge complexity in the
hint sense coincide. To prove this, we observe one direction of the characterization of knowledge
complexity in the hint sense given by Lemma 4.16 also holds for the cheating-verifier classes:

Lemma 5.7 Let II be any language and let k(n) be any polynomially bounded function. Suppose
there exists a promise problem T € cheating-ver SZK (resp., cheating-ver PZK) such that

1. z € Ily = there exists a such that |a| = k(|z|) and (z,a) € T'y, and
2. x e UNyL = for all a, (z,a) € Ty.

Then II € cheating-ver SKChint(k(n)) (resp., cheating-ver PKChint(k(n)))

The proof of Lemma, 5.7 is the same as the corresponding direction of Lemma 4.16. The reason
the other direction of Lemma 4.16 does not immediately apply to the cheating-verifier case is that
the hint function may be different for each verifier. However, it will follow from the following:

Proposition 5.8 For every polynomially-bounded function k(n),

SKChint(k(n)) = cheating-ver SKCpint(k(n)).

42

Proof: Clearly, cheating-ver SKCpint(k(n)) C SKChint(k(n)). Now suppose II is any language in
SKChint(k(n)), and let ' € SZK be the promise problem guaranteed by Lemma 4.16. Then, by The-
orem 5.2, " € cheating-ver SZK. Applying Lemma 5.7, we see that II € cheating-ver SKCpint (k(n))-
|

Observe that we have actually proved something stronger: if II € SKChini(k(n)), then there
is an proof system for II with cheating-verifier statistical knowledge complexity k(n) for which
the same hint function can be used for every verifier. Also note that analogous results for the
other variants of knowledge complexity do not appear to follow immediately from the fact that
SZK = cheating-ver SZK.

Given Proposition 5.8, it follows immediately that Theorem 4.15 also holds for the cheating-
verifier classes:

Proposition 5.9 For any polynomially bounded function k(n),
cheating-ver SKChint(k(n) + logn) = cheating-ver SKCpint(k(n)).

In contrast, we do not know whether our results on the perfect knowledge complexity of SZK
hold for the analogous cheating-verifier classes. To apply the same approach, one would have to
analyze the (cheating-verifier) perfect knowledge complexity of the protocols obtained by performing
the transformations of [Oka00] and [GSV98] on the protocol for SD. These transformations could
conceivably increase the perfect knowledge complexity dramatically.

Hard-on-average problems and one-way functions. These results are stronger for the
honest-verifier class, because the existence of a hard-on-average problem in the cheating-verifier
class implies the existence of one in the cheating-verifier class (even without Theorem 5.2).

Acknowledgements

We are grateful to our advisor, Shafi Goldwasser, for getting us started on the topic of statistical
zero knowledge and providing direction and advice throughout our work. We are indebted to
Oded Goldreich for many enlightening conversations and subsequent collaboration on this topic,
and his extensive help with the writing of this paper. We also thank Mihir Bellare, Tatsuaki
Okamoto, Madhu Sudan, Luca Trevisan, Avi Wigderson, and anonymous reviewers for many helpful
suggestions, clarifying discussions, and encouragement.

References

[ABV95] William Aiello, Mihir Bellare, and Ramarathnam Venkatesan. Knowledge on the
average—perfect, statistical and logarithmic. In Proceedings of the Twenty-Seventh

Annual ACM Symposium on the Theory of Computing, pages 469-478, Las Vegas,
Nevada, 29 May—1 June 1995.

[AH91] William Aiello and Johan Hastad. Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences, 42(3):327-345, June
1991.

43

[AB84]

[ALM™*98]

[AS98]

[BMSS]

[Bel97]

[BMO90]

[BP92]

[BHZ87]

[CooT1]

[DCY6]

[DGOWY5]

[DGW94]

[Dam93]

Miklés Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth com-
putations. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, pages 471-474, Washington, D.C., 1984.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, May 1998.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM, 45(1):70-122, January 1998.

Laszl6 Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system
and a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254-276, 1988.

Mihir Bellare. A note on negligible functions. Technical Report CS97-529, De-
partment of Computer Science and Engineering, University of California at San
Diego, March 1997. Also available from the Theory of Cryptography Library
(http://theory.lcs.mit.edu/"tcryptol).

Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant
rounds. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, pages 482-493, Baltimore, Maryland, 14-16 May 1990.

Mihir Bellare and Erez Petrank. Making zero-knowledge provers efficient. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing,
pages 711-722, Victoria, British Columbia, Canada, 4-6 May 1992.

Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25:127-132, 1987.

Stephen A. Cook. The complexity of theorem-proving procedures. In Conference
Record of Third Annual ACM Symposium on Theory of Computing, pages 151-158,
Shaker Heights, Ohio, 3-5 1971 1971.

Ivan Damgard and Ronald Cramer. On monotone function closure of perfect and
statistical zero-knowledge. Theory of Cryptography Library: Record 96-03, 1996.
http://theory.lcs.mit.edu/ tcryptol.

Ivan Damgard, Oded Goldreich, Tatsuaki Okamoto, and Avi Wigderson. Honest veri-
fier vs. dishonest verifier in public coin zero-knowledge proofs. In Proceedings of Crypto
‘95, Lecture Notes in Computer Science, volume 403. Springer-Verlag, 1995.

Ivan Damgard, Oded Goldreich, and Avi Wigderson. Hashing functions can simplify
zero-knowledge protocol design (too). Technical Report RS-94-39, BRICS, November
1994. See Part 1 of [DGOW95].

Ivan B. Damgard. Interactive hashing can simplify zero-knowledge protocol design
without computational assumptions (extended abstract). In Douglas R. Stinson, editor,
Advances in Cryptology— CRYPTO ’93, volume 773 of Lecture Notes in Computer
Science, pages 100-109. Springer-Verlag, 22-26 August 1993.

44

[DDPY94]

[DDPY98]

[DOY97]

[DSY00]

[ESY84]

[For89]

[Gol90]

[Gol95]

[GGYS8]

[GGOO]

[GK96]

[GK93]

[GMW91]

Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On
monotone formula closure of SZK. In 35th Annual Symposium on Foundations of
Computer Science, pages 454-465, Santa Fe, New Mexico, 20-22 November 1994. IEEE.

Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image
Density is complete for non-interactive-SZK. In Automata, Languages and Program-
ming, 25th International Colloguium, Lecture Notes in Computer Science, pages 784—
795, Aalborg, Denmark, 13-17 July 1998. Springer-Verlag. See also preliminary draft
of full version, May 1999.

Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung. Keeping the SZK-verifier
honest unconditionally. In Burton S. Kaliski Jr., editor, Advances in Cryptology—
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 31-45.
Springer-Verlag, 17-21 August 1997.

Giovanni Di Crescenzo, Kouichi Sakurai, and Moti Yung. On zero-knowledge proofs:
“from membership to decision”. In Proceedings of the 82nd Annual ACM Symposium
on Theory of Computing, pages 255-264, Portland, OR, May 2000. ACM.

Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems
with applications to public-key cryptography. Information and Control, 61(2):159-173,
May 1984.

Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor,
Advances in Computing Research, volume 5, pages 327-343. JAC Press, Inc., 1989.

Oded Goldreich. A note on computational indistinguishability. Information Processing
Letters, 34(6):277-281, 28 May 1990.

Oded Goldreich. Foundations of Cryptography (Fragments of a
Book). Weizmann Institute of Science, February 1995. Available from
http://www.eccc.uni-trier.de/eccc/.

Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability of lattice
problems. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pages 1-9, Dallas, 23-26 May 1998.

Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice
problems. Journal of Computer and System Sciences, 60(3):540-563, 2000. 30th Annual
ACM Symposium on Theory of Computing (Dallas, TX, 1998).

Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. STAM Journal on Computing, 25(1):169-192, February 1996.

Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a
problem equivalent to the discrete logarithm. Journal of Cryptology, 6:97-116, 1993.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(1):691-729, 1991.

45

[GNW95]

[GOY4]

[GOPYS]

[GP99]

[GSV98]

[GSV99]

[GV99]

[GMS84]

[GMRS9]

[GS89]

[GBOO]

[HILL99)

[Hof95]

[Kar72]

Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR lemma. Technical
Report TR95-050, Electronic Colloquium on Computational Complexity, March 1995.
http://www.eccc.uni-trier.de/eccc.

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1-32, Winter 1994.

Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity and
knowledge complexity. STAM Journal on Computing, 27(4):1116-1141, August 1998.

Oded Goldreich and Erez Petrank. Quantifying knowledge complexity. Computational
Complezity, 8(1):50-98, 1999.

Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, pages 399-408, Dallas, 23-26 May 1998.

Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero-knowledge be
made non-interactive?, or On the relationship of SZK and NISZK. In Advances in
Cryptology— CRYPTO ’99, Lecture Notes in Computer Science. Springer-Verlag, 1999,
15-19 August 1999. To appear.

Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge
with applications to the structure of SZK. In Proceedings of the Fourteenth Annual
IEEE Conference on Computational Complezity, pages 54-73, Atlanta, GA, May 1999.
IEEE Computer Society Press.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270-299, April 1984.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186-208, February 1989.

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Silvio Micali, editor, Advances in Computing Research, volume 5,
pages 73-90. JAC Press, Inc., 1989.

Danny Gutfreund and Michael Ben-Or. Increasing the power of the dealer in non-
interactive zero-knowledge proof systems. In Advances in cryptology—ASIACRYPT
00 (Kyoto, Japan, 2000). Springer, Berlin, 2000. To appear.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. STAM Journal on Computing, 28(4):1364—
1396 (electronic), 1999.

Micha Hofri. Analysis of Algorithms: Computational Methods & Mathematical Tools.
Oxford University Press, 1995.

R. M. Karp. Reducibility among combinatorial problems. In J. W. Thatcher and R. E.
Miller, editors, Complezity of Computer Computations, pages 85-103. Plenum Press,
Inc., 1972.

46

[LLS75]

[Lev73]

[LFKN92]

[Oka00]

[Ost91]

[OVY93]

[OW93]

[Pap94]
[PTY6]

[Sah00]

[SV99]

[SV97]

[Sha92]
[Vad99]

[Vad00]

Richard E. Ladner, Nancy A. Lynch, and Alan L. Selman. A comparison of polynomial
time reducibilities. Theoretical Computer Science, 1(2):103-123, December 1975.

Leonid A. Levin. Universal'nyie perebornyie zadachi (Universal search problems : in
Russian). Problemy Peredachi Informatsii, 9(3):265-266, 1973.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859-868, October 1992.

Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences, 60(1):47-108, February 2000.

Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the Sizth Annual Structure in Complexity Theory
Conference, pages 133-138, Chicago, Illinois, 30 June-3 July 1991. IEEE Computer
Society Press,.

Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Interactive hashing sim-
plifies zero-knowledge protocol design. In Proceedings of Eurocrypt ‘93, Lecture Notes
in Computer Science. Springer-Verlag, 1993.

Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Proceedings of the Second Israel Symposium on Theory of Comput-
ing and Systems, 1993.

Christos H. Papadimitriou. Computational Complezity. Addison—Wesley, 1994.

Erez Petrank and Gabor Tardos. On the knowledge complexity of N'P. In 37th Annual
Symposium on Foundations of Computer Science, pages 494-503, Burlington, Vermont,
14-16 October 1996. IEEE.

Amit Sahai. Frontiers in Zero Knowledge. PhD thesis, Massachusetts Institute of
Technology, September 2000.

Amit Sahai and Salil Vadhan. Manipulating statistical difference. In Panos Pardalos,
Sanguthevar Rajasekaran, and José Rolim, editors, Randomization Methods in Algo-
rithm Design (DIMACS Workshop, December 1997), volume 43 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 251-270. American
Mathematical Society, 1999.

Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-
knowledge. In 38th Annual Symposium on Foundations of Computer Science, pages
448-457, Miami Beach, Florida, 20-22 October 1997. IEEE.

Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-
sachusetts Institute of Technology, August 1999.

Salil P. Vadhan. On transformations of interactive proofs that preserve the prover’s
complexity. In Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pages 200-207, Portland, OR, May 2000. ACM.

47

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, pages 80-91, Chicago,
Illinois, 3-5 November 1982. IEEE.

A The Statistical Difference Metric

Proof of Fact 2.1: For any set S C D,

2IPr[X eS| —-Pr[YeS] = |Pr(XeS]|-Pr[YeS]|+|Pr[X ¢S]-Pr[Y ¢ 9]
= D _(@Pr[X =a]-Pr[Y =z])| +|>_ (Pr[X = 2] - Pr[Y =g
€S z¢S
< Y [Pr(X =a]-Pr[Y =z][+ Y _[Pr[X =a] - Pr[Y =]
z€S z¢S
= |X_Y|1-

Equality is achieved by taking S = {z :Pr[X =z] >Pr[Y =z]}. =

Proof of Fact 2.3:
(X1, X2) — (Y1, Vo) < [[(X1, X2) — (Y1, Xo)|| + [|(Y1, X2) — (Y1, Y2)|
1 1
= §\X1®X2—Y1®X2|1+§|Y1®X2—Y1®Y2|1

1 1

= 5‘(X1_Y1)®X2‘1+§|Y1®(X2—Y2)‘1
1 1

= §|X1_Y1|1'|X2|1+§|Y1|1'|X2—Y2|1

= X1 -1+ [X2 — Yo

Proof of Fact 2.4: Let A = (f,R) be any randomized procedure. Then, for any set S C F,

IPr[A(X) € S] - Pr[A(Y) € S]] = |Pr[f(X®R)eS]—Pr[f(Y ®R) eS|
Pr(X®@Re f'(S) -Pr[Y®Re f ()]
IX®R-Y ®R|

| X -Y| + ||R— R (by Fact 2.3)

X =Y.

IAIA

Taking the maximum over all sets S completes the proof. =

Proof of Fact 2.5: Let 7' C D be the set of z’s for which || Xs|x,=z — Y2|v;=z|| < 6. Now, let S
be an arbitrary subset of D x E and, for every =z € D, define S; = {y € E: (z,y) € S}. Then,

Pr(X € S] < Pr[Xy¢T]+)» Pr[X;€ S,|X;=z]-PrX; =]
zeT

< €+ Y (Pr[Yz € SofV1 =] +0) - Pr[¥; = g]
zeT
< e+d+PriYes].

48

By symmetry, we also have Pr[Y € S] < e+§+Pr[X € S]. Since S was arbitrary, || X —Y|| < e+4d.
]

Proof of Fact 2.6: Let S={z:(1—+/¢)Pr[X =2z] > Pr[Y = z]}, i.e. the set of z’s for which
the left-hand inequality in Fact 2.6 is violated. Then,

PriYeS) < (1-+ve)PrXeS
= Pr[X eS| —+Ve-Pr[X € 9].

Thus, /e Pr[X € §] <||X — Y| < ¢80 we must have Pr[X € S| < y/e. A similar argument show
that the right-hand inequality in Fact 2.6 is violated with probability less than \/e. ®

B A Generic Complete Problem for PZK

In this section, we show how to obtain a complete promise problem for PZK directly from the
definition of the class. However, in contrast to STATISTICAL DIFFERENCE, this problem will be
essentially a restatement of the definition of the class and therefore of little use.

The complete promise problem for PZK is PZK-GENERIC, which we now define. An instance of
PZK-GENERIC is a quadruple (V, S, z,1!), where V is a description of an interactive probabilistic
Turing machine and S is a description of a (noninteractive) probabilistic Turing machine. A YES
instance is such a quadruple for which there exists a prover strategy P such that

1. The interaction between P and V on z takes at most ¢ steps (including the computation time
for V) and V accepts in this interaction.

2. The running time of S on input z is at most .

3. S outputs fail with probability at most 1/2, and conditioned on not failing, the output
distribution of S is identical to V’s view of the interaction with P on z.

A NO instance is a quadruple such that for all prover strategies P,

1. The interaction between P and V on z takes at most ¢ steps (including the computation time
for V) and V rejects in this interaction.

2. The running time of S on input z is at most .
Proposition B.1 PZK-GENERIC is complete for PZK.

Proof: First we show that every promise problem IT in PZK reduces to PZK-GENERIC. Let (P,V)
be the perfect zero-knowledge proof system for IT with simulator S. Let t(n) be a (polynomial)
upper bound on both the running time of S and the number of steps of the interaction of P and V

on inputs of length n. Then
z = (V,8,2,1107)

is a polynomial-time reduction from II to PZK-GENERIC.
Now we argue that PZK-GENERIC € PZK. Consider the following descriptions of a verifier V,
a prover P, and a simulator S:

V(V,S,z,1"): When interacting with any machine, simulate V on input z.

49

P(V, S, z,1'): Exhaustively search for a prover strategy P for which V’s view of (P, V)(z) is iden-
tical to the output distribution of S(z) (conditioned on S(z) # fail.) If one exists, follow
that strategy, otherwise output fail.'6

S(V, S, x,1%): Simulate S on input z.

It is easy to see that these definitions provide a perfect zero-knowledge proof system for
PZK-GENERIC. H

The problem with extending this example to SZK is Condition 3 for YES instances. “Identical”
needs to be replaced by “negligible statistical difference,” but it is not clear what negligible function
to put there. We do not know how to get around this difficulty without using our Completeness
Theorem, which implies that every problem in SZK has a statistical zero-knowledge proof with the
same simulator deviation 27" (cf., Corollary 4.2).17

Another observation worth mentioning, pointed out to us by Bellare, Goldreich, and Sudan,
is that PZK-GENERIC can be modified to obtain complete promise problems for cheating-ver PZK
(as long as we restrict to “black-box” simulation) and also the various forms of PKC.

C An Example for GRAPH ISOMORPHISM

For illustrative purposes, here we explicitly describe what happens when the reduction to and
proof system for STATISTICAL DIFFERENCE are applied to the well-known public-coin perfect zero-
knowledge proof system for GRAPH ISOMORPHISM [GMW91]:

Perfect zero-knowledge proof system for GRAPH [SOMORPHISM.
Input: (G, G1).

1. P sends V a random isomorphic copy H of Gj.
2. V picks b € {0,1} at random and sends it to P.
3. P sends V a random isomorphism 7 between GGy and H, if one exists.

4. V checks that #G, = H.

Simulator S, on input (Gg, G1):
1. Pick random b € {0,1} and a random permutation .
2. Output (7Gp, b, 7).

Notice that the conversations output by S always make V accept.
If the reduction to SD from the proof of Lemma 3.8 is applied to the above protocol, the fol-
lowing distributions are obtained:

16 Alternatively, P can act as the simulation-based prover (see Section 3.5).

1"Note that the difficulty cannot be solved by the result of Bellare [Bel97], which states that any countable set of
negligible functions is “dominated” by a single negligible function. The reason is that there are uncountably many
problems in the promise-class SZK.

50

Ao(Go, G1): Always output 1.

By(Go, G1): Always output 1.

A1(Go, G1): Output (7Gyp,b) for a random permutation 7 and b € {0,1} chosen at random.
B1(Go,G1): Output (7Gp, ¢) for a random permutation = and b and ¢ chosen uniformly and inde-
pendently from {0,1}.

Thus, ||Ao(z) — Bo(x)|| always equals 0. ||A1(z) — Bi(z)|| is easily seen to be 0 if Gy = G and 1/2
if Gy 2 G1. For the rest of this section, we ignore Ay and By since they are irrelevant.

If we now apply the protocol for SD from Section 3.3 to the distributions 4; and B; (without
first applying the Polarization Lemma), we obtain the following proof system (P’, V') for GRAPH
NONISOMORPHISM:

1. V' picks a random bit d € {0,1}. If d = 0, V' chooses a random bit b € {0,1} and a random
permutation 7w and sends (7Gp,b) to P'. If d = 1, V' chooses random bits b,c € {0,1} and a
random permutation 7 and sends (7Gp,c) to P'.

2. P' receives message (H,b) from V'. P attempts to guess d as follows: If H is isomorphic to
Gy, then P’ guesses 0, else P’ guesses 1.

3. V' accepts if the P’ guesses d correctly.

Now, if Gy is not isomorphic to G, then P’ will guess correctly with probability 3/4. However,
if Gy is isomorphic to G1, then no prover can guess correctly with probability greater than 1/2. The
above protocol is of the same spirit as the standard GRAPH NONISOMORPHISM protocol [GMW91].
In both cases, the verifier randomly permutes one of the graphs to obtain a graph H and in order
for the prover to succeed with probability greater than 1/2, the prover needs to be able to tell
which graph H came from.

ECCC ISSN 1433-8092
51 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

