Electronic Colloquium on Computational Complexity, Report No. 85 (2000)

Probabilistic OBDDs: on Bound of Width
versus Bound of Error

Rustam Mubarakzjanov *

Abstract

Ordered binary decision diagrams (OBDDs) are well established
tools to represent Boolean functions. There are a lot of results con-
cerning different types of generalizations of OBDDs. The same time,
the power of the most general form of OBDD, namely probabilistic
(without bounded error) OBDDs, is not studied enough. In order to
compare probabilistic OBDDs with other kinds of branching programs,
we consider such OBDDs bounding their width by a constant. We
show this computation model can be more powerful than polynomial
size non-deterministic, probabilistic with bounded error OBDDs and
non-deterministic read-once branching programs. We discuss also the
possibilities to find functions being hard for probabilistic OBDDs with
constant width.

Key words: Probabilistic branching programs, Boolean functions, com-
plexity classes.

1 Introduction

In order to study the relationship between different complexity classes re-
stricted models of computation are considered. Branching programs form
one of most investigated in last years computation model (see [13] for a lot of
references). In particular, read-once ordered branching programs (OBDDs)
determine complexity classes relationships between which are successfully
proven [3], [8], [9]. The same time OBDDs are convenient tools to represent
Boolean functions because of the possibility to manipulate them efficiently
[5]. Probabilistic OBDDs have the most general form of OBDDs.

*Dept. of Computer Science, University of Trier. Research partially supported by
the Russia Fund for Basic Research 99-01-00163 and Fund “Russia Universities” 04.01.52.

Email: rustamm@ti.uni-trier.de

ISSN 1433-8092

We recall basic definitions. A deterministic branching program P for
computing a Boolean function h, : {0,1}" — {0,1} is a directed acyclic
multi-graph with a source node and two distinguished sink nodes: accept-
ing and rejecting. The out-degree of each non-sink node is exactly 2. Each
node is labeled by some variable z;; then it is called an z;-node. The two
arcs outgoing from z;-node are labeled by 0 and 1. The label “a” indicates
that only inputs satisfying x; = a may follow this arc in the computation.
The branching program P computes function h, in the obvious way: for
each x € {0,1}", hp(x) = 1 iff there is a directed path starting in the
source and leading to the accepting node such that all labels along this path
are consistent with x = x5 ...x,. The branching program becomes non-
deterministic if we allow ”guessing nodes” that is nodes with two outgoing
arcs being unlabeled. A non-deterministic branching program P outputs 1
on an input x iff there exists (at least one) computation on x starting in
the source node and leading to the accepting node. A probabilistic branch-
ing program has in addition to its standard (deterministic) nodes specially
designated nodes called random nodes. Each such a node corresponds to
a random input y; having values from {0, 1} with probabilities {1/2,1/2}.
We say that a probabilistic branching program computes (or (1/2+¢€)- com-
putes) a function h if it outputs h(x) with a probability greater than 1/2
(at least(1/2 + ¢)) for any input x (0 < € < 1/2). A probabilistic branching
program B on n variables determines a function cg: {0,1}" — [0, 1]; c¢p(x)
is the probability that B reaches the accepting sink on the input x. We call
this function the characteristic function of the branching program B.

For a branching program P we define the complezity of the branching
program P as the number of its nodes. We denote the class of Boolean func-
tions computable by polynomial size nondeterministic branching programs
by NP—BP. The class coN P—BP contains all Boolean functions the nega-
tions of which are computable by polynomial size non-deterministic branch-
ing programs. We say that a function belongs to the class PP—BP iff there
is a polynomial size probabilistic branching program computing this func-
tion. For a probabilistic computation with bounded error, i.e. an (1/2 + ¢)-
computation, € > 0, we use an other notation for the complexity class. Let
BPP,— BP be the class of functions (1/2 + €)-computable by polynomial
size probabilistic branching programs. Furthermore, let BPP — BP :=
Uo<e<i1/2 BPPe — BP. For a restricted class of branching programs @Q, we
define analogous complexity classes using “—Q" as a suffix to their notations.

A read-once branching program (BP1) is a branching program in which
every variable is tested no more than once on each path. A BP1 is called
ordered (or OBDD) if the variables have to be tested according to some

fixed ordering 7. An OBDD is called oblivious if it can be leveled, i.e.
arcs connect only neighboring levels, and each level contains only z-nodes
for some fixed variable x. The width of an OBDD is a maximum number of
nodes belonging to a level. OBDDs having the width bounded by a constant
(bwOBDD for short) are studied in this work. The restriction on the width
was studied earlier for general deterministic branching programs [4]. We
show in this work that probabilistic bwOBDD can be more powerful than
non-deterministic BP1 and probabilistic with bounded error OBDD.

First off all we motivate that probabilistic branching programs can be
interesting for a practical computation. We present a function from PP —
OBDD \ (BPP — OBDD U NP — BP1 U coNP — BP1) that could be
computed with an arbitrary precision by a polynomial times repetition of
the computation of a probabilistic OBDD.

In Section 3 we present basic lemmas helping to obtain different char-
acteristic functions of some probabilistic bwOBDDs. Using these lemmas
we present a probabilistic bwOBDD reading the variables in the prescribed
order, {1, 2,..., n}, and computing some function that is hard for nonde-
terministic OBDDs reading the variables in the same order. In Section 4,
we present an explicit function computable by probabilistic bwOBDD be-
ing hard for non-deterministic read-once branching programs. It is known
that a polynomial randomized branching program can be transformed to
an equivalent polynomial one having such a form that it can be partitioned
into a tree of probabilistic nodes at the top and a completely deterministic
part at the bottom [16]. Our probabilistic OBDD shows that such transfor-
mation is impossible if the error of computations is not bounded. The only
model of probabilistic branching program for which an exponential lower
bound of computation is known is probabilistic OBDD with bounded er-
ror [1]. For probabilistic read-once branching program, exponential lower
bounds are obtained only for fixed error [18], [15]. For the computations
without bounded error analogous problem is more hard. We discuss in Sec-
tion 5 the possibilities to find functions being hard for probabilistic OBDD
with constant width and some extra restrictions.

2 Repetition of probabilistic computations

One can obtain an arbitrary precision by a repetition of a probabilistic com-
putation when the error is bounded. The number of repetitions is a constant
depending on the desired precision. This in not the case for probabilistic
computations generally. But if a polynomial probabilistic branching pro-

gram P has the characteristic function cp(x) then |cp(x) — 1/2| > ¢, for
some function €, and any x, |x| = n. The following lemma holds.

Lemma 1 Let a polynomial size probabilistic branching program P compute
some function q. Then for any positive constant a and any values of input
variables x, |x| = n the majority result of O(1/ey,)-times repetition of the
computation of the branching program P on x is equal to q(x) with the
probability at least 1 — .

Proof. Let P computing some function ¢ run ¢ times on some fixed input
x. We obtain independent Poisson trials Y7,...,Y; with Y; = (P(x) = ¢(x))
for i = 1,t. The probability Pr(Y; = 1) is at least 1/2 + ¢,. Because of the
Chernoff bound [7] (see also Theorem 4.2 in [11]) the majority result of the
t experiments on P is not equal to ¢(x) with the probability Pr(3¢_;Y; <
t/2) < eap(— 2T where ¢/2 = (1~ 8)(% + en)t. Then 6 = 125
Therefore if ¢ > (In é)% then Pr(Xt_,Y; <t/2) <a.

There are functions cgmputable by polynomial size probabilistic OBDDs
with 1/€, = O(poly(n)) that are hard for randomized OBDDs and for non-
deterministic OBDD as well. We present such a function ¢ using ideas of
[8]. Let X,Y’, and Z be sets of n variables with pairwise empty intersection.
Then the function ¢ on 3n variables is exclusive OR of three functions on
X, Y and Z respectively: q(xyz) = Perm(x) + ~Perm(y) + fn(z). Here
Perm : {0,1}™" — {0,1},n = m?, is the “permutation” function ([10]),
i.e. PERM(x) = 1 iff every row and every column of the matrix x =
(z1,1,%1,2,- - -, Tm,m) contains exactly one 1. The function f, is presented in
[17]. For the sake of completeness, we recall the definition of f,. Let p[n]
be the smallest prime greater or equal to an integer n. For every integer s,
wp(s) is defined as follows. For j = s(mod p[n]), 1 < j < p[n], wp(s) = J
if 7 < n and wp(s) = 1 otherwise. The Boolean function f, is defined as
fn(z) = zj for every z € {0,1}" where j = w, (D i 12;).

Theorem 1 The function q, q(xyz) = Perm(x) + ~Perm(y) + fn(z), be-
longs to PP — OBDD \ (BPP — OBDD U NP — BP1U coNP — BP1).
Moreover for any positive constant o, there is a polynomial size probabilistic
OBDD such that the majority result of a polynomial times repetition of its
computation is equal to q with the probability at least 1 — .

Proof. 1t is known that Perm € BPP—OBDD\ NP — BP1 ([10], [15]) and
fn € NP —-OBDD\ BPP — OBDD ([17], [1]). Therefore the function ¢
belongs neither to BPP —OBDD, nor to NP — BP1, nor to coNP — BP1.

The functions Perm(x) and —Perm(y) are computed by probabilistic
OBDDs with bounded error By and Bs ([15]). There is an OBDD non-
deterministically computing f,,(z). One can transform its non-deterministic
selection to a random selection and obtain after some modifications a prob-
abilistic OBDD Bjs computing f,(z) with €, = % for some constant c.
Following ideas of [8] the desired OBDD B computing g has three parts
corresponding to By, By and Bjs. Informally speaking, the sinks of B; are
identified in the proper way with sources of copies of B; 11, i = 1,2. How it
was shown in [8] B computes g with €, such that 1/, = O(n?). Lemma 1
gives the statement of Theorem. I

3 Characteristic functions

It is known that the size of an OBDD depends heavily on the variable
order. If one restricts the class of computations fixing ordering of reading
variables higher lower bounds of an OBDD complexity can be obtained. An
idea helping to obtain such lower bounds for the nondeterministic case is
the following one. For any fixed ordering of reading variables, an OBDD
computing some function h on n variables has to keep values of m input
variables read at first. If this number m is big, say m = n/2, then the
OBDD has the exponential complexity. For the prescribed order, typical
such a function is a following one: h(x) = 1 iff x is the concatenation of
two equal words, i.e. x = yy. We show that this function is computable
by probabilistic bwOBDD respecting the prescribed order of deterministic
variables.

First of all we give some answers to the following question. What kind
of functions can be the characteristic functions of some OBDDs or of some
bwOBDDs? We omit details of proofs of following simple lemmas for the
lack of space.

Lemma 2 For any constant a, 0 < o < 1, if the binary representation of
« has t positions then there exists a bwOBDD B of the width 2 with t levels
consisting only of random nodes such that cg = «.

Lemma 3 Let c¢p, and cp, be the characteristic functions of bwOBDDs B,
of the width w1 and By of the width wo, respectively, reading deterministic
variables of the same set X in the prescribed order. Then following functions
are the characteristic functions of some bwOBDDs with the prescribed order:
1—cp,(z); 1/2(cB, (z)+cB,(2)); ¢, ()cB, (x). These OBDDs have the width
w1, Wi + ws, wiwy respectively.

Lemma 4 There is a bwOBDD B, reading deterministic variables in the
prescribed order and accepting a word r1zo...Ty, x; € {0,1}, i = 1,...,n,
with the probability which binary representation is 0, TpTp_1...21-

The construction of B,, is based on a probabilistic automaton determined
by Rabin [14] and is presented on the following picture.

/d\ o8 d\o 3

\ i

3/%>3/a0>8/ >o >§

Figure 1. OBDD equivalent to Rabin’s automaton. 2-nodes levels contain random nodes.
All nodes of a 3-nodes level are labeled by a variable written below.
An arc without a label denotes both arcs labeled by 0 and 1.

Theorem 2 There exists probabilistic bwOBDD computing function the h
(h(x) = 1 iff x =yy) and reading deterministic variables in the prescribed
order.

Proof. We write x as yz, y = Y1---Yn,%2 = 21...2n- Let 0,1y, ...y1 = ¢
and 0,2, ...21 = p. Then there exists a bwOBDD P such that cp(x) =
%qp + %q(l —q) (Lemmas 3 and 4). For a fixed p, if ¢ = 1/2p + 1/2 (i.e.
y = z) then this probability is maximal and equal to v’ = 1/8p?+1/4p+1/8.
Otherwise, it is at most 7’ — 5yr. There exists a bwOBDD P’ that
reaches the accepting node with the probability 1 — 7/ (Lemmas 3 and
4). Combining the bwOBDDs P and P’ we obtain the bwOBDD P" with
cpr(x) = 1/2(1 + ep(x) — r'). Because of Lemma 2, there is a bwOBDD
P" with the characteristic function 1 + 5y . The bwOBDD with a random
source the arcs from which lead to the sources of P” and P" computes the
function h. I

4 Probabilistic OBDD of constant width can do
more than polynomial nondeterministic BP1

The author presented in [12] a function GE, belonging to the class Q =
PP\ (BPPUNPUcoNP) in the context of OBDD. The function GE,
is computable by a probabilistic branching program of the width bounded
by a constant. The function GE, : {0,1}" — {0,1} (“greater or equal”)
is specified as follows. Let n = 4l. Say that even bit z;, i € {2,4,...,41},
has type 0 (1) if the corresponding previous odd bit z;_; is 0 (1). For a

sequence x € {0,1}*, denote by x° (x!) subsequence of x that consists of
all even bits of type 0 (1). For any word x = z;...zy € {0,1}%, let b(x)
be the binary number 0, Z;,Zp—1 - .. 1. Let b(e) = 0 for the empty word e.
Then GE,(x) = 1 iff b(x?) > b(x!).

Theorem 3 There is a probabilistic bwOBDD B(GEy;) computing the func-
tion GEy. There is no polynomial size nondeterministic OBDD and no
polynomial size probabilistic with a bounded error OBDD computing G Ey,.

We present now a new function LePerm. The function LePerm :
{0,1}™* — {0,1} (“less or equal” than “permutation”) is based on the
function Perm mentioned in Section 2 and is specified as follows. Let
m(m +1)/2 = M and x = (£1,1,%1,2,---,%m,m) then LePerm(x) = 1 iff
for any 4,1 < i < m, [{j|lz;; = 1}| = 1 and >}%, j; < M where z;;, = 1,
i =1, m. Note that if Perm(x) =1 then LePerm(x) = 1.

Theorem 4 A such probabilistic OBDD B(LePerm) ezists that it com-
putes the function LePerm and has the width 5. There are no polynomial
nondeterministic read-once branching program computing this function.

Proof. Firstly we consider a bwOBDD B presented on the following picture.
X1 *12 *13 *,m-1 X,m X1 *22 *23 *m,m_
: YY) 4 . YY) jfﬁ’;» 1
Figure 2.

This OBDD has fictitious nodes. These nodes have both outgoing arcs
leading to the same node. These arcs correspond to an unlabeled arc on the
picture. Each level contains only z-nodes for some variable z. We put the
label of these nodes on the top of each “deterministic” level. Unlabeled lev-
els contain random nodes. B; runs in the following manner. The variables
are tested in the prescribed order. While going through a row of the ma-
trix (1,1,21,2,- -, Zm,m) the OBDD looks for a variable equal to 1. Before
testing each deterministic variable, By goes to the rejecting path (sink) with
the probability 1/2. After finding an 1 in a row, the OBDD tests whether
rest variables of the row are equal to 0. If it finds an other variable equal to
1 then the OBDD goes to the rejecting path.

The bwOBDD has the width 3 and accepts the word (11,212, .., Zmm)
with the probability cg, = (1/2)M®), M(x) = Y7, j; where z;;, = 1, i =
1,m, only if [{j|z;; = 1}| = 1 otherwise it rejects the word.

There is a bwOBDD Bj; that reaches the accepting node with the prob-
ability 1 — 3/4(1/2)M (Lemma 2).

The bwOBDD B(LePerm) has a random source. The arcs from the
source lead to the source of By and to the source of By. To make B(LePerm)
oblivious we put in B fictitious random and deterministic levels. If the
equation |{j|z;; = 1}| = 1 does not hold for some i then B(LePerm)
reaches the accepting node with probability 1/2 — 3/4(1/2)M+1 < 1/2.

If |{jlzi; =1} =1, = 1,m, then B(LePerm) reaches the accepting
node with probability cg = % — 42M+1 + 2M(}=)+1 If M(x) < M then
cg > 1/2. If M(x) > M + 1 then ¢g < 1/2. Therefore B(LePerm)
computes LePerm.

To find a lower bound of the complexity of a non-deterministic read-once
branching program D computing LePerm, we use an idea of [10].

Let R be the set of such words w that PERM(w) = 1. For these
words LePerm(w) = 1. Consider a part of D determined by accepting
paths corresponding to the words of R. Let L be a set of nodes of D when
exactly m/2 ones are read. For any two accepting paths in D, let w; and
wy be corresponding words from R. Let a node a (b) from L correspond
to wy (wz). Let m/2 ones of wy (of wy) reached at first be the values of
variables Ziy i1 -+ Liyy2simy20 11 < iy < ... < im/2 (iI?ZI gl Ty /2’Jm/2
ih<ih < ... <z';n/2).

If a = b then 4; = 4 for [= 1,m/2. Analogous property holds for the first
indexes (i.e. i- and i'-indexes) of variables equal to 1 tested after a according
to w1 and to wy. Because the words w; and wy correspond to permutation
matrices the same properties can be written for second indexes (i.e. j- and
j'-indexes) of corresponding variables. That means that for any node a € L,
there are at most ((m/2)!)? words of R going through a. These words are
obtained by fixing the order and values of i-indexes of variables equal to 1.
Then values of j-indexes are fixed also but they can stay in different order.
Therefore |L| > |R|/((m/2))? = m!/((m/2))? > 2™/(2/m). I

5 Functions being hard for probabilistic OBDDs
with some restrictions

There is no any known exponential lower bound of the complexity of a
probabilistic computation. To obtain such lower bound we consider an extra
restrictions for bwOBDD. First of all we can transform every bwOBDD to
an other branching program having on each level the constant number of
nodes. It does not disturb a generalization of our consideration but makes
easier following definitions. We number nodes of every level of a bwOBDD.
Each node v obtains a number n(v). Nodes having the same number are

called corresponding. For a bwOBDD, we call as connections between two
neighboring levels L1 and Lo the following set M. For v1 € L1 and vy € Lo,
if there is an arc (v1,v2) labeled by a then M contains (n(vi),n(v2),a). A
bwOBDD has fixed connections between levels iff there is such numbering of
levels that the connections between any two neighboring levels are the same
and moreover the number of levels between nearest deterministic levels are
the same too. We use the notation fixOBDD for this OBDD. Although
the class of fixOBDDs seems to form a very weak computation model some
functions (one of them is GE,, presented in previous Section) being hard for
non-probabilistic OBDDs are computable by probabilistic fixOBDDs [12].

For any Boolean function f, let X™(f) be the set of binary words x of
length n such that f(x) = 1.

Lemma 5 Let F be the family of functions that are computable by proba-
bilistic fitOBDDs of width c1 with co levels between any two nearest deter-
ministic levels. Then there is a constant ¢ = c(c1,ca) such that the cardinal-
ity of {Xn(f)|f € F} is at most ¢ for any integer n.

Proof. Let P be a probabilistic fixOBDD. For any nearest deterministic
levels L; and L9, we can consider stochastic matrices P(0) and P(1): (i,7)-
th element of P(a) is a probability that P leads from the z'-node v' €
Li,n(v') = i to the z”-node v" € Lg,n(v") = j when ' = a. For given
constant ¢; and ¢z, matrices P(0) and P(1) have the size ¢; x ¢; and each
element of these matrices is equal to k/2 for some integer k, 0 < k < 22,
There are only a constant number of such matrices. Therefore there are only
constant number of different fixOBDDs for any number n of variables. I

Let Ly, be a language consisting of words that contain exactly ng zeros
and n1 ones. Let F be a set of functions f such that f on the words of length
n is the characteristic function of some Ly 5, no +n1 =n, ng > 0,171 > 0.

Theorem 5 For any constant numbers c; and co, there exists a function
f € F that can not be computed by a probabilistic fitOBDD of the width
c1 with ¢y levels between any two nearest deterministic levels. Any function
f € F is computable by deterministic OBDD of width n.

Proof. For any n, |{Lnyn,|no +n1 =n, ng > 0,n; > 0} = n— 1. Thus
it follows from Lemma 5 that not all functions from F are computable by
probabilistic fixOBDD of width ¢; with co levels between any two nearest
deterministic levels. A deterministic OBDD computing a function from F
calculates the number of O-s in the input string. It is possible if the OBDD
has the width n. I

Unfortunately, we can not obtain analogous result for bwOBDDs.

Theorem 6 Let a function f on the words of length n be the characteristic
function of some language L. Let for any integer n exist numbers p, and
€n < 1 having both in the binary representation poly(n) positions and a
probabilistic OBDD B of the width ¢ with the following property. For a
word X, |x| = n, if x € L then cg(x) = pp, otherwise |cp(X) — pn| > €n.
Then f is computable by probabilistic OBDD of the width ¢ + 2¢ + 2.

Proof. Let p, > 1/2. Because of Lemma 2 and 3, there exists a bwOBDD B;
of the width ¢(c+2) with the characteristic function cg, = cg(3(1—cp+p')),
p' = 2p, — 1. The function cp, has the maximum equal to p” = p2 /2 when
CB = Pn-

If p, <= 1/2 then there exists a bwOBDD B of the width ¢(c+ 2) with
the characteristic function cg, = (1 — cg)(3(cp + '), p' = 1 — 2p,. The
function cp, has the maximum equal to p” = (1 — p,)?/2 when cg = p,.

For the both cases if cg(x) # pn, i.e. x € L, then cp, < p" — €2/2. The
binary representation of p™ = 1 — p" + €2 /4 has poly(n) positions and is
equal to the characteristic function of some probabilistic bwOBBD of width
2. Therefore there exists a bwOBDD of the width ¢(c + 2) + 2 with the
characteristic function 3(cp, +p™). This OBDD computes the function f.J

Corollary 1 Any function f € F is computable by a probabilistic OBDD of
the width 10.

Indeed, there exists an OBDD of the width 2 with the characteristic function
(3)/{d2i=0} This OBDD is even a fixOBDD.

The last statement says also that the bound on the number of levels
between the nearest deterministic levels in Theorem 5 is essential. One can
consider only the width of deterministic levels of OBDDs and fix connections
between deterministic levels. That means informally that the probabilities
leading from one deterministic node to a next deterministic node for any
neighboring deterministic levels are fixed. Lemma 3 with some weak mod-
ifications holds for such OBDDs too. Lemma 2 does not give a fixOBDD
but gives an OBDD with fixed connections between deterministic levels. To
see it we put between fictitious deterministic nodes the only probabilistic
OBDD B from Lemma 2. The deterministic levels have 3 nodes. The first
node corresponds to the source of B. The second and third nodes correspond
to sink-nodes of B. These nodes are connected “direct” with correspond-
ing nodes of next deterministic level. Because there is a fixOBDD with the
characteristic function from Lemma 4 the statement holds.

10

Corollary 2 Any function f € F is computable by a probabilistic OBDD of
a constant width having the same connections between any two neighboring
deterministic levels.

Acknowledgment
The author would like to thank Farid Ablayev and Christoph Meinel for

helpful discussions on the subject of this paper.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

F. Ablayev, Randomization and nondeterminism are incomparable for
ordered read-once branching programs, Proc. ICALP’97, LNCS 1256,
Springer, 1997, pp- 195-202.

F. Ablayev and M. Karpinski, On the power of random-
ized ordered branching programs, ECCC TR98-004, 1998
http://www.ecc.uni-trier.de/eccc

F.Ablayev, M.Karpinski, and R.Mubarakzjanov, On BPP versus NP
UcoNP for Ordered Read-Once Branching Programs, Proc. Random-
ized Algorithms, Brno, 1998.

D.A.Barington, Bounded-width polynomial-size branching programs rec-
ognize ezactly those languages in NC', Proc. of the 18st ASM STOC,
1986, 1-5.

R.E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Transactions on Computers 35, 1988, 677-691.

A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-
k-times branching programs, Computational Complexity, 3, (1993), 1-
18.

H.Chernoff, A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations, Annals of Mathematical Statistics,
23:493-509, 1952.

M.Karpingki and R.Mubarakzjanov, Some separation prob-
lems on randomized OBDDs, CSIT’99, Moscow, Russia, 1999
http://msu. jurinfor.ru/CSIT99

M.Karpingki and R.Mubarakzjanov, A note on Las Vegas OBDDs,
ECCC TR99-009, 1999 http://www.ecc.uni-trier.de/eccc/

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M.Krause, Ch.Meinel, and S.Waak, Separating the eraser Turing ma-
chine classes L¢, N Le,co— N LeandP,, Proc. of MFCS, Springer-Verlag,
1988, pp. 405-413 (LNCS No. 324)

R.Motwani and P.Raghafan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

R.Mubarakzjanov, On probabilistic OBDDs with constant width, ac-
cepted by CSIT’00, Ufa, Russia, 2000.

A.A. Razborov, Lower bounds for deterministic and nondeterminis-
tic branching programs, Proc. Fundamentals in Computing Theory,
Springer, Lecture Notes in Computer Science, 529, 47-60.

M.O.Rabin, Probabilistic Automata, “Information and Control”, 1963,
6, N3, p.230-245.

M.Sauerhoff, Randomness and Nondeterminism are incompara-
ble for Read-Once Branching Programs, ECCC TR98-018, 1998
http://www.ecc.uni-trier.de/eccc/

M.Sauerhoff, Complezity theoretical results for randomized branch-
ing programs , PhD thesis, Univ. of Dortmund, Shaker 1999
http://1ls2-www.informatik.uni-dortmund.de/ sauerhoff/

P.Savicky and S.Zak, A large bound for 1-branching programs, Revision
01 of ECCC TR96-036, 1996 http://www.ecc.uni-trier.de/eccc/

J. Thathachar, On separating the read-k-times branching program hier-
archy, ECCC TR98-002, 1998 http://www.ecc.uni-trier.de/eccc/

12

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

