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Abstract

In a great variety of neuron models neural inputs are combined us-
ing the summing operation. We introduce the concept of multiplicative
neural networks which contain units that multiply their inputs instead of
summing them and, thus, allow inputs to interact nonlinearly. The class
of multiplicative networks comprises such widely known and well studied
network types as higher-order networks and product unit networks.

We investigate the complexity of computing and learning for multiplica-
tive neural networks. In particular, we derive upper and lower bounds on
the Vapnik-Chervonenkis (VC) dimension and the pseudo dimension for
various types of networks with multiplicative units. As the most general
case, we consider feedforward networks consisting of product and sigmoidal
units, showing that their pseudo dimension is bounded from above by a
polynomial with the same order of magnitude as the currently best known
bound for purely sigmoidal networks. Moreover, we show that this bound
holds even in the case when the unit type, product or sigmoidal, may be
learned. Crucial for these results are calculations of solution set compo-
nents bounds for new network classes. As to lower bounds we construct
product unit networks of fixed depth with superlinear VC dimension.

For higher-order sigmoidal networks we establish polynomial bounds
that, in contrast to previous results, do not involve any restriction of the
network order. We further consider various classes of higher-order units,
also known as sigma-pi units, characterized by connectivity constraints. In
terms of these we derive some asymptotically tight bounds.

Multiplication plays an important role both in neural modeling of bio-
logical behavior and in applications of artificial neural networks. We also
briefly survey research in biology and in applications where multiplication
is considered an essential computational element. The results we present
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here provide new tools for assessing the impact of multiplication on the
computational power and the learning capabilities of neural networks.

1 Introduction

Neurons compute by receiving signals from a large number of other neurons and
processing them in a complex way to yield output signals sent to other neurons
again. A major issue in the formal description of single neuron computation is
how the input signals interact and jointly affect the processing that takes place
further. In a great many neuron models this combination of inputs is specified us-
ing a linear summation. The McCulloch-Pitts model and the sigmoidal neuron are
both examples of these summing neurons which are very popular in applications
of artificial neural networks. Neural network researchers widely agree that there
is only a minor correspondence between these neuron models and the behavior of
real biological neurons. In particular, the interaction of synaptic inputs is known
to be essentially nonlinear (see, e.g., Koch, 1999). In search for biologically closer
models of neural interactions neurobiologists have found that multiplicative-like
operations play an important role in single neuron computations (see also Koch
and Poggio, 1992; Mel, 1994). For instance, they model nonlinearities of dendritic
processing and show how complex behavior can emerge in simple networks. In
recent years also evidence has accumulated that specific neurons in the nervous
system of several animals compute in a multiplicative way (Andersen et al., 1985;
Suga, 1990; Hatsopoulos et al., 1995; Gabbiani et al., 1999; Anzai et al., 1999a,b).

That multiplication increases the computational power and storage capacities
of neural networks is well known from extensions of artificial neural networks
where it appears in the form of higher-order units (see, e.g., Giles and Maxwell,
1987). A more general type of multiplicative neuron model is the product unit
introduced by Durbin and Rumelhart (1989) where inputs are multiplied after
they have been raised to some power specified by an adjustable weight. We sub-
sume networks containing units that multiply their inputs instead of summing
them under the general concept of multiplicative neural networks and investigate
the impact that multiplication has on their computational and learning capabili-
ties. A theoretical tool that quantifies the complexity of computing and learning
with function classes in general, and neural networks in particular, is the Vapnik-
Chervonenkis (VC) dimension. In this article we provide a theoretical study of
the complexity of computing and learning with multiplicative neural networks in
terms of this dimension.

The VC dimension and related notions, such as the pseudo dimension and the
fat-shattering dimension, are well known to yield estimates for the number of ex-
amples required by learning algorithms for neural networks and other hypothesis
classes such that training results in a low generalization error. Using these di-
mensions, bounds on this sample complexity of learning can be obtained not only



for the model of probably approximately correct (pac) learning due to Valiant
(1984) (see also Blumer et al., 1989), but also for the more general model of ag-
nostic learning, that is, in the case when the training examples are generated by
some arbitrary probability distribution (see, e.g. Haussler, 1992; Maass, 1995a,b;
Anthony and Bartlett, 1999). Furthermore, in terms of the VC dimension bounds
have been established also for the sample complexity of on-line learning (Maass
and Turdn, 1992) and Bayesian learning (Haussler et al., 1994). However, the
VC dimension is not only useful in the analysis of learning but has also proven a
successful tool for studying the complexity of computing over, in particular, the
real numbers. Koiran (1996) and Maass (1997) employed the VC dimension to
establish lower bounds on the size of sigmoidal neural networks for the computa-
tion of functions. Further, using the VC dimension, limitations of the universal
approximation capabilities of sigmoidal neural networks have been exhibited by
the derivation of lower bounds on the size of networks that approximate con-
tinuous functions (Schmitt, 2000). Thus, in particular for neural networks the
VC dimension has acquired a wide spectrum of applications in analyzing the
complexity of analog computing and learning.

There are some known bounds on the VC dimension for neural networks that
also partly include multiplicative units. These results are concerned with net-
works of higher order where the linearly weighted sum of a classical summing
unit is replaced by polynomials of a certain degree. All bounds determined thus
far, however, are given in terms of the maximum order of the units or require the
order to be fixed. For instance, a network with units computing piecewise poly-
nomial functions with order at most d is known to have VC dimension O(W?2d)
where W is the number of network parameters (Goldberg and Jerrum, 1995; Ben-
David and Lindenbaum, 1998). For sigmoidal networks of higher-order Karpinski
and Macintyre (1997) established the bound O(W?2k?logd) where k is the num-
ber of network nodes. There are some further results for other network types of
which we give a more complete account in a later section. They all consider the
exponents of higher-order units as constants.

In this article we derive bounds on the VC dimension and the pseudo dimen-
sion of product unit networks. In these networks the exponents are no longer
fixed but treated as variable weights. In addition, no restriction is imposed on
their magnitude. We show that a feedforward network consisting of product and
sigmoidal units has pseudo dimension at most O(W?k?) where W is the number
of parameters and k£ the number of nodes. Hence, the same bound that is known
for higher-order sigmoidal networks of restricted degree also holds when product
units are used instead of monomials. Moreover, the bound is valid not only when
the types of the nodes are fixed but also when they can vary between a sigmoidal
unit or a product unit. This may be the case, for instance, when a learning al-
gorithm decides which unit type to assign to which node. The results are based
on the method of solution set components bounds (see Anthony and Bartlett,
1999) and we derive new such bounds. We use this method also for showing that
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a network with k higher-order sigmoidal units and W parameters has pseudo
dimension at most O(W*k?), a bound that also includes the exponents as ad-
justable parameters. Thus, the VC dimension and the pseudo dimension of these
networks cannot grow indefinitely in terms of the order, and the exponents can be
treated as weights analogous to the coefficients of the polynomials. These results
indicate that from the theoretical viewpoint multiplication can be considered as
an alternative to summation without significantly increasing the complexity of
computing and learning with higher-order networks.

We further derive bounds for specific classes of higher-order units. Considering
a higher-order unit as a network with one hidden layer, we define these classes in
terms of constraints on the network connectivity. On the one hand, we restrict
the number of connections outgoing from the input nodes, on the other hand we
put a limit on the number of hidden nodes. We derive various VC dimension
bounds for these classes, order-dependent as well as independent, and show for
some of them that they are asymptotically tight. It might certainly be possible
to embed a class of networks entirely into a single network. The results show,
however, that smaller bounds arise when the specific properties of the class are
taken into account. We also establish a lower bound for product unit networks
stating that networks with two hidden layers of product and summing units have
a superlinear VC dimension. Finally, we show that the pseudo dimension of the
single product unit and of the class of monomials is equal to the number of input
variables.

We focus on feedforward networks with a single output node. This means
that at least two possible directions are not pursued here further: recurrent
networks and networks with multiple output nodes. VC dimension bounds for
recurrent networks consisting of summing units, including threshold, sigmoidal,
and higher-order units with fixed degree, have been established by Koiran and
Sontag (1998). Shawe-Taylor and Anthony (1991) give bounds on the sample
complexity for networks of threshold units with more than one output node.
Since both these works build on previous bounds for feedforward networks or
single output networks, respectively, the ideas presented here may be helpful
for deriving similar results for recurrent or multiple-output networks containing
multiplicative units.

The article is organized as follows. In Section 2 we first introduce the necessary
terminology and, in particular, demarcate multiplicative from summing units.
We then report on some research in neurobiology that resulted in the use of
multiplication for the modeling of biological neural systems. Further, we give
a brief review of some learning applications where multiplication, mainly in the
form of higher order, has been employed to increase the capabilities of artificial
neural networks. In Section 3 we introduce the definitions of the VC dimension,
the pseudo dimension, and the fat-shattering dimension, and exhibit some close
relationships between these combinatorial characterizations of function classes.
We also survey previous results where bounds on these dimensions have been
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obtained for neural networks. In the two subsequent sections our own results
follow: Section 4 contains the calculations of the upper bounds, whereas lower
bounds are derived in Section 5. Finally, in Section 6 we give a summary of the
results in tabular form and conclude with some remarks and open questions.

2 Neural Networks with Multiplicative Units

Terminology in neural network literature varies and is occasionally used incon-
sistently. In the following we introduce the terms and concepts that we shall
adhere to throughout this article. Further, we present some of the biological and
application-specific motivations that led researchers to the use of multiplicative
units in neural networks.

2.1 Neural Network Terminology

The connectivity of a neural network is given in terms of an architecture which is
a graph with directed edges, or connections, between the nodes. Nodes with no
incoming edges are called input nodes, nodes with no outgoing edges are output
nodes. All remaining ones are hidden nodes. The computation nodes of an archi-
tecture are its output and hidden nodes. Input nodes serve as input variables of
the network. The fan-in of a node is the number of connections entering the node;
correspondingly, its fan-out is the number of connections leaving it. The archi-
tecture of a feedforward network has no cycles. We focus on feedforward networks
with one output node such as shown in Fig. 1 that are suitable for computing
functions with a scalar, that is, one-dimensional, output range. Some specific
architectures are said to be layered. In this case all nodes with equal distance
from the input nodes constitute one layer and edges exist only between subse-
quent layers. An architecture becomes a neural network when edges and nodes
are labeled with weights and thresholds, respectively, as the network parameters.
To further specify which function is to be computed by the respective node vari-
ables have to be assigned to the input nodes and units have to be selected for the
computation nodes. The types of units studied in this article will be defined in
the following section. Finally, when values, that is, in general real numbers, are
specified for the network parameters, the network computes a unique function
defined by functional composition of its units.

2.2 Neuron Models that Sum or Multiply

The networks we are considering consist of multiplicative as well as standard
summing units. First, we briefly recall the definitions of the latter.
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Figure 1: Neural network terminology. An architecture is shown with 4 input
nodes, one hidden layer consisting of 3 hidden nodes, and one output node.
Hidden and output nodes are computation nodes. All input nodes have fan-out
3, the hidden nodes have fan-in 4. We also consider architectures with fan-out
restrictions. In this case subsequent layers need not be fully connected. When
parameters, that is, weights and thresholds, are assigned and node functions are
specified by choosing units, the architecture becomes a neural network.

2.2.1 Summing Units

The three most widely used summing units are the threshold unit, the sigmoidal
unit and the linear unit. Each of them is parameterized by a set of weights
wy, ..., w, € R, where n is the number of input variables, and a threshold ¢t € R.
They compute their output in the form

f(wlasl + Wo X9 + -t WnpTy — t),

where x4, ..., x, are the input variables with domain R and f is a nonlinear func-
tion, referred to as the activation function of the unit. The particular choice of
the activation function characterizes what kind of unit is supposed. The threshold
unit, also known as McCulloch-Pitts neuron (after McCulloch and Pitts, 1943)
or Perceptron’, uses for f the sign or Heaviside function sgn(y) = 1 if y > 0, and

!Perceptron is nowadays a widely used synonym for the threshold unit, although in the
original definition by Rosenblatt (1958) the Perceptron is introduced as a network of threshold
units with one hidden layer (see also Minsky and Papert, 1988).



sgn(y) = 0 otherwise. The logistic function o(y) = 1/(1 + e ¥) is the activation
function employed by the sigmoidal unit®. Finally, we have a linear unit if the
activation function is chosen to be the identity, that is, the linear unit plainly
outputs the weighted sum wixy + wsxs + - - - + wyx, — t. In other words, the
linear unit computes an affine function.

The activation function also defines the output ranges of the units which are
{0,1}, (0,1), and R for the threshold, sigmoidal, and linear unit respectively.
Linear units as computation nodes in neural networks are in general redundant
if they feed their outputs only into summing units. For instance, a network
consisting solely of linear units is equivalent to a single linear unit. They are
mainly used as output nodes of networks that compute or approximate real-
valued functions (see, e.g., the survey by Pinkus, 1999). However, linear units as
hidden nodes can help to save network connections.

2.2.2 Multiplicative Units

The simplest type of a multiplicative unit is a monomzal, that is, a product

ot -t
where x1, 2o, . .., Z, are input variables. Each d; is a nonnegative integer referred

to as the degree or exponent of the variable x;. The value di+- - -+d, is called the
order of the monomial. Since monomials restricted to the Boolean domain {0, 1},
where all non-zero exponents are 1 without loss of generality, compute the logical
AND function they are often considered as computing the continuous analog
of a logical conjunction. A Boolean conjunction, however, does not necessarily
require the use of multiplication because the logical AND can also be computed
by a threshold unit. The same holds for the neural behavior known as shunting
inhibition which is sometimes referred to as a continuous AND-NOT operation.
In this article, we do not consider conjunction as a multiplicative operation and
use monomials as computational models for genuine multiplicative behavior with
real-valued input and output.
If My, ..., M are monomials, a higher-order unit is a polynomial

w1M1+'w2M2+---+wkMk—t

with real-valued weights wy, ..., wy and threshold ¢. It is also well known under
the name sigma-pi unit (Rumelhart et al., 1986a; Williams, 1986). As in the
case of a summing unit, weights and threshold are parameters, but to uniquely
identify a higher-order unit one has also to specify the structural parameter of the
unit, that is, the set of monomials {Mj, ..., My}. We call this set the structure

2There is a large class of sigmoidal functions of which the logistic function is only one
particular instance. The sigmoidal unit as it is defined here is also referred to as the standard
sigmoidal unit.



of a higher-order unit. A higher-order unit can be viewed as a network with one
hidden layer of monomials and a linear unit as output node. For this reason, a
higher-order unit is often referred to in the literature as a higher-order network.
In such a network only the connections leading from hidden nodes to the output
node have weights whereas the connections between input and hidden layer are
weightless. Clearly, assigning multiplicative weights to input variables does not
increase the power of a higher-order unit since due to the multiplicative nature
of the hidden nodes all such weights can be moved forward to the output node.
For higher-order units it is also common, depending on the type of application,
to use a threshold or a sigmoidal unit instead of a linear unit as output node.
This yields a higher-order unit that computes

flwi My + woMs + - - - + wp My, — t)

with nonlinear activation function f. In case that f is the sign function we
have a higher-order threshold unit, or polynomaial threshold unit. If the activation
function is sigmoidal we refer to it as a higher-order sigmotidal unait.

Finally, we introduce the most general type of multiplicative unit, the product
unit. It has the form

ZB;UISL';UZ . x;’p

with variables zi,...,z, and weights w,...,w,. The number p of variables is
called the order of the product unit. In contrast to the monomial the product unit
does not have fixed integers as exponents but variable ones that may even take
on any real number. Thus, a product unit is computationally at least as powerful
as a monomial. Moreover, ratios of variables, and thus division, can be expressed
using negative weights. This is one reason the product unit was introduced
by Durbin and Rumelhart (1989). Another advantage these and other authors
explore is that the exponents of product units can be adjusted automatically, for
instance, by gradient-based and other learning methods (Durbin and Rumelhart,
1989; Leerink et al., 1995a,b).

We mentioned above the well-known fact that networks of linear units are
equivalent to single units. The same holds for networks consisting solely of prod-
uct units. Unless there is a restriction on the order, such a network can be
replaced by a single unit. Therefore, product units are mainly used in networks
where they occur together with other types of units, such as threshold or sigmoidal
units. For instance, the standard neural network containing product units is an
architecure with one hidden layer such as shown in Fig. 1 where the hidden nodes
are product units and the output node is a sigmoidal unit.

A legitimate question is whether multiplicative units are actually needed in
neural networks and whether their task cannot be done by some reasonably sized
networks of summing units. Indeed, for multiplication and exponentiation of inte-
gers in binary representation networks of threshold units with a small number of
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layers have been constructed that perform these and other arithmetic operations
(for surveys see, e.g., Hofmeister, 1994; Siu et al., 1995). However, the drawback
with these networks is that they grow in size, albeit polynomially, with the num-
ber of bits required for the representation of the numbers to be multiplied. Such
a quality is certainly disastrous when one would like to process real numbers with
possibly infinite precision. Therefore, networks of summing units do not seem to
be an adequate substitute for genuine multiplicative units.

2.2.3 Units vs. Neurons

We have introduced all neuron models that will be considered in this article as
“units”. As common in the neural network literature we could have also called
them neurons or gates synonymously, so that we could speak of a sigmoidal neuron
or a product gate. In what follows we shall always use the term unit for the
computational element of a neural network, thereby viewing it as an abstraction
for the functionality it represents. In an artificial neural network a unit may be
implemented by connecting several model neurons together, such as monomials
and a linear unit form a higher-order unit. Likewise, a unit may also serve as
a model for information processing in some part of a single biological neuron
such as monomials or product units are used to model nonlinear interactions of
synaptic inputs in dendritic trees.

2.3 Multiplication in Biological Neural Networks

There are several reasons why neurobiologists study multiplication as a computa-
tional mechanism underlying the behavior of neural systems. First, it can be used
to model the nonlinearities involved in dendritic processing of synaptic inputs.
Second, it is shown to arise in the output activity of individual model neurons or
in neural populations. Third, it can be employed to explain how simple model
networks can achieve complex behavior with biologically plausible methods. And
finally, multiplicative neurons are actually found in real neural networks. In the
following we mention some of the research that has been done in each of these
directions. Further references regarding the fundamental role and the evidence of
multiplication-like operations on all levels of neural information processing can
be found in the article of Koch and Poggio (1992) and the book of Koch (1999).

2.3.1 Dendritic Multiplication and Division

In a large quantity of neuron models interaction of synaptic inputs is modeled as
a linear operation. Thus, synaptic inputs are combined by adding them. This is
evident for the summing units introduced above but it holds also for the more



complex and biologically closer model of the leaky integrate-and-fire neuron?® (see,
e.g., Softky and Koch, 1995; Koch, 1999, for surveys of single neuron models).
Linearity is believed to be sufficient for capturing the passive, or cable, properties
of the dendritic membrane where synaptic inputs are currents that add.

From numerous studies using recording experiments or computer simulations
sufficient evidence has arisen that synaptic inputs can interact nonlinearly when
the synapses are co-localized on patches of dendritic membrane with specific prop-
erties. Thus, the spatial grouping of synapses on the dendritic tree is reflected in
the computations performed at local branches. The summing operation, due to
its associativity merely representing the dendrite as an amorphous device, does
not take hold of this. Consequently, these local computations must be nonlinear,
thereby enriching the computational power of the neuron by nonlinear compu-
tations that take place in the dendritic tree prior to the central nonlinearity of
the neuron, the threshold. It has been convincingly argued that these dendritic
nonlinearities should be modeled as multiplication. For instance, performing
extensive computer experiments Mel (1992b, 1993) has found that excitatory
voltage-dependent membrane mechanisms, such NMDA receptor channels, could
form a basis for multiplicative interactions among neighboring synapses. The ex-
hibited so-called cluster sensitivity can give rise to complex pattern recognition
tasks performed by single neurons. This is also shown in a learning experiment
where a biologically plausible, Hebbian-like learning rule is introduced to manip-
ulate the spatial ordering of synaptic connections onto the dendritic tree (Mel,
1992a).

Multiplicative-like operations in dendritic trees are also shown to take place
in the form of division, an operation that is not performed by monomials and
higher-order units but is available in the product units of Durbin and Rumel-
hart (1989) by using negative exponents (see Section 2.2.2). Neurobiological
results exhibiting division arise mainly in investigations concerned with shunting
inhibitory synapses. For instance, in a mathematical analysis of a simple model
neuron Blomfield (1974) derives sufficient conditions for inhibitory synapses to
perform division. The division operation can be seen as a continuous analog of
the logical AND-NOT, also referred to as veto mechanism, a form in which it
is studied by Koch et al. (1983). Using computer simulations they show that
inhibitory synapses are able to perform such an analog veto operation. The
capability of computing division is also found to be essential in a model con-
structed by Carandini and Heeger (1994) for the responses of cells in the visual
cortex. The divisive operation of the cell membrane of the model neuron explains
how nonlinear operations required for selectivity to various visual input stimuli,

3The linearity referred to here concerns the way how several inputs interact, and not the
neural response to a single synaptic input. Leaky integrate-and-fire models treat single synaptic
inputs as nonlinearitites by describing the course of the postsynaptic response as a nonlinear
function in time. Here, we do not take detailed temporal effects into account but consider
synaptic inputs as represented by weighted analog variables.
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such as position, orientation, and motion direction, can be achieved by single
neurons. These authors also show that their theoretical results compare well
with physiological data from the monkey primary visual cortex. Perhaps one of
the earliest modeling studies involving nonlinear dendritic processing, albeit not
explicitly multiplicative, is due to Feldman and Ballard (1982) who show how
complex cognitive tasks can be implemented in a biologically plausible way using
their model neurons. For a detailed account of further ideas and results about
dendritic computation we refer to the review by Mel (1994).

2.3.2 Model Neurons and Networks that Multiply

Beyond using multiplication for modeling dendritic computation, investigations
have been aimed at revealing that entire neurons can function as multipliers. Al-
ready in the early days of cybernetics research it was known that under certain
conditions a coincidence detecting neuron performs a multiplication by trans-
forming the frequencies of input spikes arriving at two synaptic sites into an out-
put spike frequency that is proportional to the product of the input frequencies
(Kiipfmiiller and Jenik, 1961). Similar studies based on slightly different neu-
ron models have been carried out by Srinivasan and Bernard (1976), Bugmann
(1991), and by Rebotier and Droulez (1994) with comparable results. Bugmann
(1991) argues that proximal synapses lead to a multiplicative behavior while with
distal synapses the neuron operates in a summation mode. A further model of
Bugmann (1992) includes time-dependent synaptic weights for the compensation
of a problem caused by irregularities in input spike trains, which can deteriorate
multiplicative behavior.

Tal and Schwartz (1997) show that even the summing operation can be used
to compute multiplication. They find sufficient conditions for a leaky integrate-
and-fire neuron to compute a nonlinearity close to the logarithm. In this way,
the logarithm of a product can be obtained by summing the outputs of leaky
integrate-and-fire neurons. By means of the In-exp transform

Ty = elnw—l—lny
the logarithm is also a key ingredient for the biophysical implementation of multi-
plication proposed by Koch and Poggio (1992) (see also Koch, 1999). As such the
transform is also suggested by Durbin and Rumelhart (1989) for their product
units.

Multiplication is not only shown to arise in single elements, but also in an
ensemble of neurons where it emerges as a property of the network. Salinas and
Abbott (1996) show by computer simulations that population effects in a recur-
rent network can lead to multiplicative neural responses even when the individual
neurons are not capable of computing a product.
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2.3.3 Complex Neural Behavior through Multiplication

Assuming that multiplicative operations can be carried out in the nervous sys-
tem, several researchers have established that model neural networks relying on
multiplication are capable of solving complex tasks in a biologically plausible way.
Poggio (1990) proposes a general framework for the approximate representation of
high-dimensional mappings using radial basis functions. In particular, he shows
that multiplication offers a computationally powerful and biologically realistic
possibility of synthesizing high-dimensional Gaussian radial basis functions from
low dimensions (see also Poggio and Girosi, 1990a,b). Building on this theory
Pouget and Sejnowski (1997) demonstrate that basis functions could be used by
neurons in the parietal cortex to encode sensory inputs in a format suitable for
generating motor commands. The hidden units of their model network, which is
trained using gradient descent, compute the product of a Gaussian function of
retinal location with a sigmoidal function of eye position. Learning in multiplica-
tive basis function networks is also investigated by Mel and Koch (1990) using a
Hebbian method.

Olshausen et al. (1993) suggest a mechanism how the visual system could
focus attention and achieve pattern recognition that is invariant to position and
scale by dynamic routing of information. The neural circuit contains control
units that make multiplicative contacts in order to dynamically modulate the
strengths of synaptic connections. The already mentioned multiplicative network
of Salinas and Abbott (1996) is conceived for solving a similar task. They show
that it can transform visual information from retinal coordinates to coordinates
that represent object locations with respect to the body. That nonlinear dendritic
computation can be used in visual cortical cells for translation-invariant tuning
is shown by the computer simulations of Mel et al. (1998).

A neuron model proposed by Maass (1998) includes input variables for the
representation of firing correlations among presynaptic neurons, in addition to
the common input variables that represent their firing rates. In the computa-
tion of the output the correlation variables are multiplicatively combined with
monomials of rate variables. The model accounts for various phenomena believed
to be relevant for complex information processing in biological networks such as
synchronization and binding. Theoretical results show that the model neurons
and networks are computationally more powerful than models that compute only
in terms of firing rates.

2.3.4 Biological Multiplicative Neurons

Neurons that perform multiplicative-like computations have actually been iden-
tified in several biological nervous systems. Recordings performed by Andersen
et al. (1985) from single neurons in the visual cortex of monkeys show that the
selectivity of their receptive fields changes with the angle of gaze. Moreover, the

12



interaction of the visual stimulus and the eye position in these neurons is found to
be multiplicative. Thus they could contribute to the encoding of spatial locations
independent of eye position.

Suga et al. (1990) describe arrays of neural filters in the auditory system of the
bat that provide a means for processing complex sound signals by operating as
multipliers. As such they are involved in a cross-correlation analysis of distance
information conveyed by echo delays (see also Suga, 1990).

Investigating the visual system of the locust, Hatsopoulos et al. (1995) show
that a single, motion-sensitive neuron, known as the lobula giant motion detector,
performs a multiplication of two independent input signals. From experimental
data they derive an algorithm that could be used in the visual system to anticipate
the time of collision with approaching objects. The results reveal multiplication
to be an elementary building block underlying motion detection in insects. In
the work of Gabbiani et al. (1999) these investigations are continued resulting in
a confirmation and generalization of the model.

In an experimental study of the visual system of the cat, Anzai et al. (1999a,b)
find that neural mechanisms underlying binocular interaction are based on mul-
tiplication. They show that the well-studied simple and complex cells in the
visual cortex perform multiplicative operations analogous to those that are used
in an algorithm for the computation of interocular cross-correlation. These re-
sults provide a possible explanation of how the visual system could solve the
stereo correspondence problem.

2.4 Learning in Artificial Multiplicative Networks

Early on in the history of artificial neural networks and machine learning, higher-
order neurons have been used as natural extensions of the wide-spread linearly
weighted neuron models. Perhaps one of the first machine learning algorithms
using higher-order terms might be the checker playing program developed by
Samuel (1959). Its decisions are based on computing a weighted sum including
second-order Boolean conjunctions. In the sixties higher-order units were very
common in pattern recognition where they appear in the form of polynomial
discriminant functions (Cover, 1965; Nilsson, 1965; Duda and Hart, 1973). There
is an obvious reason for this popularity: Higher-order units are computationally
more powerful than single neurons since the higher-order terms act as hidden
units. Furthermore, since these hidden units have no weights there is no need
to backpropagate errors when using gradient descent for training. Therefore,
considering a higher-order unit as a linear unit in an augmented input space,
all available learning methods for linear units are applicable. Later the delta
rule, deleveloped within the framework of parallel distributed processing, was
easily generalized to networks having hidden units of higher-order, resulting in
a learning method for the backpropagation of errors in networks of higher-order
sigmoidal units (Rumelhart et al., 1986a,b).
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Soon, however, higher-order networks were caught up by what is known as
the curse of dimensionality. Due to the fact that the number of monomials
in a higher-order unit can be exponential in the input dimension the complete
representation of a higher-order unit succumbs to a combinatorial explosion. Even
if the order of the monomials is restricted by some fixed value, the number of
higher-order terms, and thus the free parameters to manipulate, is exponential in
this bound—still too large for many practical applications. Therefore, networks
of higher-order neurons have gained importance in cases where the number of
parameters can be kept low. One area of application for these sparse higher-order
networks is the recognition and classification of patterns that underlie various
geometric transformations such as scale, translation, and rotation. Maxwell et al.
(1986) describe a method for incorporating invariance properties into a network
of higher-order units thereby significantly reducing the number of parameters (see
also Giles and Maxwell, 1987; Bishop, 1995, for an explanation). Thus, also faster
training can be achieved by encoding into the network a priori knowledge that
need not be learned. Several studies using invariant recognition and classification
experiments show that higher-order networks can be superior to standard neural
networks and other methods with respect to training time and generalization
capabilities (see, e.g., Giles and Maxwell, 1987; Perantonis and Lisboa, 1992;
Schmidt and Davis, 1993; Spirkovska and Reid, 1994). Invariance properties are
also established for the so-called pi-sigma networks introduced by Ghosh and Shin
(1992). A pi-sigma network consists of one hidden layer of summing units and has
a monomial as output unit. Compared to a sigma-pi unit, it has the advantage
of further reducing the number of adjustable parameters. The dependence of the
number of weights on the order is linear for a pi-sigma network, whereas it can
be exponential for a higher-order unit.

While invariance and pi-sigma networks are mostly used with restricted order,
researchers have also striven to utilize the full computational power of higher-
order networks, that is, without imposing any constraints on the degree of mul-
tiplicative interactions. In order for this to be accomplished, however, it is not
sufficient to simply adopt learning methods from standard neural networks. In-
stead, a number of new learning algorithms has been developed that allow units of
any order but enforce sparseness by incrementally building up higher orders and
adding units only when necessary. Instances of such algorithms can be found in
the work of Redding et al. (1993), Ring (1993), Kowalczyk and Ferrd (1994), Fah-
ner and Eckmiller (1994), Heywood and Noakes (1995), and Roy and Mukhopad-
hyay (1997). A constructive algorithm for a class of pi-sigma networks, called
ridge polynomial networks, is proposed by Shin and Ghosh (1995). A method
that replaces units in a quadratic classifier with a limited number of terms is
devised in the early work of Samuel (1959).

All these incremental algorithms, however, have the disadvantage, that they
create higher order in a step-wise, discrete manner. Further, once a unit has
its order it cannot change it, unless the unit is deleted and a new one added.
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This problem is overcome by the product units of Durbin and Rumelhart (1989)
where high order appears in the form of real-valued, adjustable weights that are
exponents of the input variables. Thus a product is able to learn any higher-order
term. Moreover, its computational power is significantly larger compared to a
monomial due to the fact that exponents can be non-integral and even negative.
Product unit networks are further studied by Leerink et al. (1995a,b) and found
to be computationally more powerful than sigmoidal networks in many learning
applications. In particular, it is shown that they can solve many well-studied
problems using less neurons than networks with summing units. Besides the arti-
ficial neural network learning methods backpropagation and cascade correlation
they also consider more global search algorithms such as simulated annealing and
a random search technique.

A considerable volume of research has been concerned with the encoding
and learning of formal languages in higher-order recurrent networks. Especially
second-order networks have proven to be useful for learning finite-state automata
and recognizing regular languages (Giles et al., 1990; Pollack, 1991; Giles et al.,
1992; Watrous and Kuhn, 1992; Omlin and Giles, 1996a,b). Higher-order units
have also been employed as computational elements in Boltzmann machines and
Hopfield networks in order to enlarge the capabilities and overcome the limitations
of the first-order versions of these network models (Lee et al., 1986; Sejnowski,
1986; Psaltis et al., 1988; Venkatesh and Baldi, 1991a,b; Burshtein, 1998). Re-
sults on storage capacities and learning curves for single higher-order units are
established by Yoon and Oh (1998) using an approach from statistical mechanics.

3 Vapnik-Chervonenkis and Pseudo Dimension

As the main subjects of study we now introduce the tools for assessing the compu-
tational and learning capabilities of multiplicative neural networks: the Vapnik-
Chervonenkis (VC) dimension and the pseudo dimension. We give the definition
of the VC dimension in Section 3.1 and exhibit as a helpful property that if the
output node of a network is a summing unit then it does not matter for the
VC dimension which one it is. We also postulate a condition for the parameter
domain of product units that avoids the problem of having to deal with complex
numbers.

In contrast to the VC dimension, the pseudo dimension takes into account that
neural networks in general deliver output values that are not necessarily binary.
Thus, the pseudo dimension appears suitable for networks that employ as output
node units without threshold such as the linear or the sigmoidal unit, the mono-
mial or the product unit. Nevertheless, after introducing the pseudo dimension
in Section 3.2 we shall point out that the pseudo dimension of a neural network,
being an upper bound on its VC dimension, can also almost serve as lower bound
since it can be considered as the VC dimension of a slightly augmented network.
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We then give the definition of another combinatorial dimension, the so-called fat-
shattering dimension, and indicate that bounds for it can be obtained in terms
of the VC dimension. The results presented in Sections 3.1 and 3.2 about the
dimensions of neural networks use elementary facts that are well known and seem
to have no unique origin in the literature.

Finally, in Section 3.3 we give a brief review of VC dimension bounds for
neural networks that have been previously established in the literature. The
bounds concern networks with summing and multiplicative units and are the
basis for the results that will be derived in the subsequent sections.

3.1 Vapnik-Chervonenkis Dimension

Before we can give a formal definition of the VC dimension we require some
additional notions. A partition of a set S C R" into two disjoint subsets (Sy, S1)
is called a dichotomy of S. A function f : R* — {0,1} is said to induce the
dichotomy (Sy,S1) of S if f satisfies f(Sy) C {0} and f(S;) C {1}. More
generally, if F is a class of functions mapping R* to {0,1} then F induces the
dichotomy (Sp, S1) if there is some f € F that induces (Sp,S1). Further, the
class F shatters S if F induces all possible dichotomies of S.

Definition. The Vapnik-Chervonenkis (VC) dimension of a class F of functions
that map R™ to {0,1}, denoted VCdim(F), is the cardinality of the largest set
shattered by F. If F shatters arbitrarily large sets then the VC dimension of F
18 infinite.

The definition applies to function classes but it is straightforward transferred
to neural networks. Consider a network having connections and nodes labeled
with programmable parameters, that is, weights and thresholds respectively, and
having a certain number, say n, of input nodes and one output node. If the
output node is a threshold unit, there is a a set of functions mapping R" to {0, 1}
naturally associated with this network, namely the set of functions obtained by
assigning all possible values to the network parameters. Thus the VC dimension
of a neural network is well defined if the output node is a threshold unit.

If the output node is not a threshold unit, the network functions are made
{0, 1}-valued to comply with the definition of the VC dimension. A general con-
vention is to compare the output of the network with some fixed threshold 6, for
instance § = 1/2 in the case of a sigmoidal unit. This is also common in appli-
cations when networks with continuous output values are used for classification
tasks. More specifically, the binary output value of the network is obtained by
applying the function y — sgn(y — 6) to the output y of the real-valued network.

Thus, 6 can be considered as an additional parameter of the network which
may be chosen independently for every dichotomy. However, one can show that
for a sigmoidal or a linear output node the VC dimension does not rely on the
specific values of this threshold. Moreover, it is also independent of the particular
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summing unit that is chosen. The following result makes this statement more
precise.

Proposition 1. The VC dimension of a neural network remains the same re-
gardless which summing unit (threshold, sigmoidal, or linear) is chosen for the
output node.

Proof. In the following we distinguish between ¢, which is the threshold of the
output node, and the network threshold 6, which is the value at which the network
output is thresholded if the network has a sigmoidal or a linear output node. Let
(So, S1) be a dichotomy of some set S. Assume first, that (Sp, S1) is induced by
some network that has a threshold unit as output node and let ¢ be the threshold
of this unit. Then for every 6, the dichotomy (S, S1) is also induced using a
linear unit with threshold ¢ = ¢ — # and network threshold 6.

Next, let (Sp,S1) be induced by some network having a linear output node.
As was just shown we may assume that the network threshold is # = 0. Since S
is finite, we can modify the threshold of the output node, if necessary, such that
all values the network outputs on S are different from 0. Then for any 6’ € (0, 1),
by scaling the parameters of the output node using a sufficiently large number,
we can achieve that using a sigmoidal output node the values are less than 6’ on
Sy and at least 6’ on S;.

Finally, assume that (S, S1) is induced by some network having a sigmoidal
output node with threshold ¢ and network threshold 8. The case § ¢ (0,1) is
trivial, since the network function is constant. On the other hand, if 6 € (0,1)
then o !(#) is uniquely defined. Thus, the dichotomy (Sp, Si) can be induced
using for the output node a threshold unit with threshold ¢ + o *(6). O

According to this result we may henceforth assume without loss of generality
that if the the output node of a network is a summing unit then it is a linear
unit. Linear output nodes are commonly used, for instance, in neural networks
constructed with the aim of approximating continuous functions (Pinkus, 1999).
Beyond analyzing single networks we also investigate the VC dimension of sets
of networks. In this case we refer to the VC dimension of a set of networks as
the VC dimension of the class of functions obtained by taking the union of the
classes which are associated with each particular network.

A problem occurs when considering the VC dimension of networks containing
product units that receive negative inputs and have weights that are not integers.
A negative number raised to some non-integral power yields a complex number
and has no meaning in the reals. Since neural networks with complex outputs are
hardly ever used in applications, Durbin and Rumelhart (1989) suggest a method
how to cope with this case. This method is also employed and studied further
by Leerink et al. (1995a,b). The idea is to discard the imaginary part and to use
only the real component for further processing. For Boolean inputs this implies
that the product unit becomes a summing unit that uses the cosine activation
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function. Although there are no problems reported from applications so far, this
manipulation would have disastrous consequences for the VC dimension if also
real-valued inputs were admitted. It is known that a summing unit with the sine
or cosine activation function can shatter finite subsets of R of arbitrarily large
cardinality (Sontag, 1992; Anthony and Bartlett, 1999). Therefore, no finite VC
dimension bounds can in general be derived for networks containing such units.

To avoid these problems arising from negative inputs in combination with
fractional weights we shall require that the following condition on the parameter
domain of product units is always satisfied in the networks we consider.

Condition. If an input x; of a product unit is negative, the corresponding weight
w; has to be an integer.

This presupposition guarantees that there are no complex outputs resulting
from product units, and it still permits to view the product unit as a general-
ization of the monomial and, hence, to look at a network containing product
units as a generalization of a network with higher-order units. One of the main
results in this article will be that networks with product units, where inputs and
parameters satisfy the above condition, have a VC and pseudo dimension that is
a low-degree polynomial in the number of network parameters and the network
size. This will then, because product units contain monomials, also lead to a
similar bound for higher-order networks.

3.2 Pseudo Dimension and Fat-Shattering Dimension

Besides the VC dimension several other combinatorial measures have been con-
sidered in the literature for the characterization of the variety of, in particular,
real-valued function classes. The two most relevant among these are the pseudo
dimension and the fat-shattering dimension. These dimensions are also well-
known for providing bounds on the number of training examples in models of
learning (Anthony and Bartlett, 1999). In the following we present some results
that simplify the views on these dimensions. We consider the pseudo dimension
first.

Definition. Let F be a class of functions that map R* to R. The pseudo di-
mension of F, denoted Pdim(F), is the VC dimension of the class {g : R*** —
{0,1} | there is some f € F such that for allz € R* andy € R : g(z,y) =

sgn(f(2) — y)}-

The pseudo dimension of a neural network is then defined as the pseudo
dimension of the class of functions computed by this network. Clearly, the VC
dimension of a network is not larger than its pseudo dimension. The following
statement shows that the pseudo dimension and the VC dimension of a network
with a summing unit as output node are even more closely related together. In
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particular, if one has an upper bound on the VC dimension of such a network in
terms of the number of weights and computation nodes then one can also obtain
an upper bound on the pseudo dimension.

Proposition 2. Let N be a neural network having as output node a summing
unit (threshold, sigmoidal, or linear). If the output node is a threshold unit then
Pdim(N) = VCdim(N). If the output node is a sigmoidal or a linear unit then
there is a network N' with the same computation nodes as N, one more input
node, and one more connection such that Pdim(N') = VCdim(N").

Proof. Suppose N has n input nodes and let the function class G be defined by

G ={g: R — {0,1} | there is some f computed by N such that
forallz € R" and y € R: g(x,y) = sgn(f(z) —y)}

according to the definition of the pseudo dimension of N. If the output node
of N is a threshold unit then it can easily be seen that for sq,...,s, € R"
and uy,...,u, € R, G shatters {(s1,u1),...,(Sm,um)} if and only if G shatters
{(51,1/2),...,(8m,1/2)}. Further, the latter set is shattered by G if and only if
the set {s1,...,sm} is shattered by A/. Thus, Pdim(N) = VCdim(N).

If the output node is linear or sigmoidal we construct N’ by adding to N a
new input node for the variable y and a connection with weight —1 from this
input node to the output node. Due to Proposition 1 we may employ without
loss of generality a linear unit for the output node of N'. Clearly, if N has a
linear output node then the set {(s1,41),-..,(Sm,un)} is shattered by G if and
only if the set {(s1,u1),...,(Sm,um)} is shattered by N’. Further, if N has a
sigmoidal output node then the set {(s1,u1),- .., (Sm,un)} is shattered by G if
and only if the set {(s1,0 *(u1)),..., (8m,0 (um))} is shattered by N’. O

Finally, we give the definition of the fat-shattering dimension. Let F be a
class of functions mapping R" to R and v a positive real number. The class F
v-shatters the set S = {s1,...,8m} C R" if there are real numbers uy, ..., Up
such that for each dichotomy (S}, S]) of the set {(s1,u1),..., (Sm,un)} there is
some f € F such that the function (z,y) — sgn(f(z) — y) induces (S}, S;) and
satisfies |f(s;) —uw;| >y fori=1,...,m.

Definition. The fat-shattering dimension of a class F of functions that map R”
to R is the function faty : Rt — N U {0, 00} where fatz(7) is the cardinality of
the largest set y-shattered by F.

This definition extends straightforward to neural networks by defining faty, :
Rt — NU{0, 00} of a network N to be the fat-shattering dimension of the class
of functions computed by N. From the definition it is immediately clear that
faty(y) < Pdim(N) for any network N and v > 0. In the following we state
some relationships between the fat-shattering and the VC dimension.
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Proposition 3. Let N be a neural network having a summing unit as output
node. If the output node is a threshold unit then faty(y) = VCdim(N) for
v < 1/2, and faty(y) = 0 for v > 1/2. If the output node is a sigmoidal or a
linear unit then there is a network N' with the same computation nodes as N,
one more input node, and one more connection such that faty () < VCdim(N')
for every v > 0 and

(a) if the output node of N is a sigmoidal unit then there is some vy < 1/2
such that faty () = VCdim(N”) for v < v,

(b) if the output node of N is a linear unit then faty(y) = VCdim(N”) for
every v > 0.

Proof. If N has a threshold unit as output node then it can easily be seen that
{s1,---,8m} is y-shattered for some v < 1/2 if and only if {sy,..., s,,} is shat-
tered. Thus faty(y) = VCdim(N) for v < 1/2. On the other hand, for y > 1/2
no set can be 7y-shattered, which implies faty(y) = 0.

For a sigmoidal or linear output node we construct N’ as in the previous
proof by adding a new input node and a connection from this node to the output
node with weight —1. According to Proposition 1 the output node of N can be
defined as linear. Clearly, faty(y) < VCdim(N”) for every v > 0.

(a) Let N have a sigmoidal unit as output node and assume that the set
{(s1,u1),- -, (Sm,um)} is shattered by N'. Without loss of generality we may
assume that every dichotomy of this set is induced by some function f’ computed
by N’ that satisfies f'(s;,u;) # 0 for ¢ = 1,...,m. Then, since o is strictly
increasing there is a real number 7y < 1/2 such that every dichotomy of the set
{(s1,0(u1)), -, (8m,0(un))} is induced by some function (z,y) — sgn(f(z) —y)
where f is computed by N and satisfies |f(s;) — o(us)| > 7 fori = 1,...,m.
Hence, {s1,...,sm} is y-shattered by N for every v < .

(b) If N has a linear output node then the set of functions computed by N
is closed under scalar multiplication. It is shown in Theorem 11.14 of Anthony
and Bartlett (1999) that any function class F closed under scalar multiplication
satisfies fatz(vy) = Pdim(F) for every v > 0. This implies faty(y) = Pdim(N)
for every v > 0. Using Proposition 2 we get that faty(y) = VCdim(N”) holds
for every v > 0. O

The results given in this section show that for the networks we are studying
the three combinatorial dimensions are closely related. For instance, the VC di-
mension yields bounds for the pseudo dimension and the fat-shattering dimension.
In particular, it is possible to obtain estimates in terms of the VC dimension for
the sample complexity and the misclassification error in models of learning where
bounds are known in terms of the pseudo dimension or the fat-shattering dimen-
sion, and vice versa. For specific classes of neural networks, however, sometimes
better bounds can be derived in terms of so-called scale-sensitive dimensions (see,
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e.g., Anthony and Bartlett, 1999). The fat-shattering dimension, for instance, is
such a scale-sensitive dimension, and network classes for which it has been proven
favorable are networks satisfying certain constraints on the weights. In this ar-
ticle, however, we do not go into the matter of such restrictions and, therefore,
present the results in terms of the VC dimension and the pseudo dimension only.

3.3 Known Bounds on the VC Dimension of Neural Net-
works

We give a short survey of some previous results on the VC dimension of neu-
ral networks. Most of the bounds are for networks consisting solely of summing
units. Since a summing unit can be considered as a multiplicative unit with order
restricted to one, special cases of these results are relevant for the networks con-
sidered in this article. Further, some of the results hold for polynomial activation
functions of restricted order and are given in terms of a bound on this order. It is
therefore interesting to see how these bounds are related to the order-independent
bounds derived here. We quote the results for the most part in their asymptotic
form. The reader may find constants in the cited references or in the book of
Anthony and Bartlett (1999). The bounds can be divided into three categories:
for single units, for networks, and for classes of networks.

The VC dimension of a summing unit is known to be n + 1, where n is the
number of variables, and is hence equal to the number of adjustable parameters.
This holds for the threshold, sigmoidal, and linear unit. The proof of this fact
goes back to a rather old result by Schlifli (1901). Pseudo and fat-shattering
dimensions are also known exactly for these units. The pseudo dimension is n+1
for each of them. Because of the invariance under scalar multiplication the fat-
shattering dimension of the linear unit is n + 1 as well (see, e.g., Anthony and
Bartlett, 1999, for derivations of this and the previous results). Using ideas from
the proof of Proposition 3 it is easy to see that for a threshold unit faty(7) is
n+ 1 for v < 1/2, and 0 otherwise. Further, the fat-shattering dimension of the
sigmoidal unit satisfies faty(y) = n+ 1 for v < 1/2, and is 0 otherwise.

There is a large body of results on the VC dimension for neural networks that
takes into account various unit types and network architectures. An upper bound
for networks of threshold units is calculated by Baum and Haussler (1989). They
show that a network with £ computation nodes, which are all threshold units,
and a total number of W weights has VC dimension O(W log k). This bound can
also be derived from an earlier result of Cover (1968). Its tightness in the case
of threshold units is established by two separate works. Sakurai (1993) shows
that the architecture with one hidden layer has VC dimension Q(W logk) on
real-valued inputs. Maass (1994) provides an architecture with two hidden layers
respecting the bound Q (W log W) on Boolean inputs. There are also some bounds
known for networks using more powerful unit types. A result of Goldberg and
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Jerrum (1995), which was independently obtained by Ben-David and Lindenbaum
(1998), shows that neural networks employing as computation nodes higher-order
units with an order bounded by some fixed value have VC dimension O(W?),
where W is the number of weights. This bound even holds if the activation
functions of the units are piecewise polynomial functions with an order bounded
by a constant. Koiran and Sontag (1997) construct networks of threshold and
linear units with VC dimension Q(W?) thus showing that the quadratic upper
bound of Goldberg and Jerrum (1995) is asymptotically optimal. Networks with
depth restrictions are considered by Bartlett et al. (1998). They establish the
bound O(W log W) for networks with piecewise polynomial activation functions,
a fixed number of layers, and polynomials of bounded order. Expressed in terms of
the number L of layers and the bound d on the order their result is O(W Llog W +
W L?logd). A similar upper bound is obtained by Sakurai (1999). Bartlett et al.
(1998) also show that Q(W'L) is a lower bound for piecewise polynomial networks
with W weights and L layers. An upper bound for sigmoidal networks is due to
Karpinski and Macintyre (1997). They show that higher-order sigmoidal networks
with W weights and k£ computation nodes of order at most d have VC dimension
O(W?2k?>+Wklogd). Koiran and Sontag (1997) establish Q(W?) as a lower bound
for sigmoidal networks.

Finally, some authors consider classes of networks. Hancock et al. (1994) show
that the so-called class of nonoverlapping neural networks with n input nodes and
consisting of threshold units has VC dimension O(nlogn). In a nonoverlapping
network all nodes, computation as well as input nodes, have fan-out at most one.
That this bound is asymptotically tight for this class of networks is shown by
Schmitt (1999) establishing the lower bound (nlogn). Classes of higher-order
units with order restrictions are studied by Anthony (1995). He shows that the
VC dimension of the class of higher-order units with n inputs and order not larger
than d is equal to (”;d). Hence this VC dimension respects the upper and lower
bound ©(n?). Karpinski and Werther (1993) consider classes of higher-order
units with one input node, or univariate polynomials, with a restriction on the
fan-in of the output node, or equivalently, on the number of monomials. They
show that the class of higher-order units having one input node and at most k
monomials has VC dimension ©(k). Noteworthy, this result allows higher-order
units of arbitrary order and does not depend on a bound for this order.

“For polynomial neural networks Goldberg and Jerrum (1995) derive no explicit bound in
terms of the order. The bound O(W?) for neural networks is obtained via an upper bound
on the time needed by an algorithm to compute the output value of the network. This latter
bound is linear in the running time of the algorithm. (More precisely O(Wt), if the number
of computation steps is bounded by ¢.) Since the algorithm may multiply two real numbers in
constant time, the time required for the evaluation of a polynomial grows linearly in the order
of the polynomial. These considerations lead to an upper bound that is linear in the order (see
also Anthony and Bartlett, 1999, Theorem 8.7).
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4 Upper Bounds

In the following we shall derive upper bounds on the VC dimension and the
pseudo dimension of various feedforward networks with multiplicative units in
terms of the number of parameters and the network size. We begin in Section 4.1
by considering networks with one hidden layer of product units and a summing
unit as output node. Then, bounds for arbitrary networks, where each node may
be a product or a sigmoidal unit, are established in Section 4.2. These results are
employed in Section 4.3 to determine bounds for higher-order sigmoidal networks.
In Section 4.4 we consider single higher-order units and, finally, in Section 4.5 we
focus on product units and monomials.

4.1 Product Unit Networks with One Hidden Layer

We consider first the most widely used type of architecture which has one hidden
layer of computation nodes such as shown in Fig. 1. Throughout this section we
assume that the output node is a summing unit. The use of this class of net-
works is theoretically justified by the so-called universal approximation property.
Results from approximation theory show that networks with one hidden layer of
product or sigmoidal units and a linear unit as output node are dense in the set
of continuous functions and hence can approximate any such function arbitrarily
well (see, e.g., Leshno et al., 1993; Pinkus, 1999).

We recall from the condition on the parameter domain of product units made
in Section 3.1 that for product units to yield output values in the reals the input
domain is restricted such that for a non-integral weight the corresponding input
value is from the set Rf = {x € R : > 0}. There is, however, still a problem
when a product unit receives the value 0 and this input is weighted by a negative
number. Then the output value of the unit is undefined. The possibility to forbid
0 as input value in general is certainly too restrictive and would go against many
learning applications. Therefore, we use a default value in case that a unit raises
the input value 0 to some negative power and say that the output value of such
a unit is 0.> With these agreements the following can be shown. (Here and in
subsequent formulas we use “log” to denote the logarithm of base 2.)

Theorem 4. Suppose that N is a neural network with one hidden layer consist-
ing of k product units and let W be the total number of parameters (weights and
threshold). Then N has pseudo dimension at most (Wk)? + 8Wklog(13Wk).

5 Another way would be to introduce three-valued logic such that the output of a network
that divides by 0 is some value ‘undefined’ that is neither 0 nor 1. This then leads to a different
notion of dimension that takes multiple-valued outputs into account. Ben-David et al. (1995)
study such dimensions and their relevance for learning. In particular, they show that a large
variety of dimensions for multiple-valued functions is closely related in that they differ from each
other at most by a constant factor. Therefore, should the three-valued approach be preferred
the bounds derived here can also be used to obtain estimates for these generalized dimensions.
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The main ideas of the proof are first to derive from N and an arbitrary set
S of input vectors a set of exponential polynomials in the parameter variables of
N. Then the next step is to consider the connected components of the parameter
domain that arise from the zero-sets of these polynomials. A connected component
(also referred to as a cell) of a set D C R? is a maximal non-empty subset
C of D such that any two points of C' are connected by a continuous curve
that lies entirely in C. The polynomials are constructed in such a way that the
number of dichotomies that N induces on S is not larger than the number of
connected components generated by these polynomials. Thus a bound on the
number of connected components also limits the number of dichotomies. The
basic tools for this calculation are provided by Karpinski and Macintyre (1997)
who combined work of Warren (1968) and Khovanskii (1991) to obtain for the
first time polynomial bounds on the VC dimension of sigmoidal neural networks.
These tools are explicated and further developed in the book of Anthony and
Bartlett (1999).

We introduce two definitions from this book for sets of functions, namely the
property to have regular zero-set intersections and the solution set components
bound (Definitions 7.4 and 7.5 of Anthony and Bartlett, 1999). A set {fi,..., fx}
of differentiable real-valued functions on R? is said to have reqular zero-set inter-
sections if for every non-empty set {iy,...,4} C {1,...,k} the Jacobian (i.e., the
matrix of the partial derivatives) of (fi,,..., f;) : R — R' has rank [ at every
point of the set

{aeR: f;(a)=--= fi,(a) = 0}.

A class G of real-valued functions defined on R? has solution set components
bound B if for every k € {1,...,d} and every {f1,..., fr} C G that has regular
zero-set intersections the number of connected components of the set

{aeR: fi(a) =--- = fu(a) = 0}

is at most B. The following solution set components bound is a consequence of
a result due to Khovanskii (1991).

Lemma 5. Let G be the class of polynomials of degree at most p in the variables
Yi,---,Y4 and in the exponentials e, ... e%, where gi,...,9, are fized affine
functions in Yy, ...,yq. Then G has solution set components bound

B = 299 02[p(p 4+ 1)d + p(p + 1)d(d + 1) + 1]

Proof. Consider for 1 < k < d an arbitrary set {fi,..., fr} C G that has regular
zero-set intersections and let p; be the degree of f;. It follows from Khovanskii
(1991), p. 91, Corollary 3, that if [ is the dimension of the set

{aeR: fi(a) =--- = fu(a) = 0}
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then this set has at most 29(@~1/2p, ..., SY(I +1)S — []7 connected components
where S = Y% p;+1+1. Fromp; <p, k < d,and | < dwe get S < (p+1)d+1
and (I+1)S —1<(p+1)d(d+ 1)+ 1, which implies the result. O

Lemma 6. Let q be a natural number and suppose G s the class of real-valued
functions in the variables vy, .. .,yq satisfying the following conditions: For ev-
ery f € G there exist affine functions gi,...,9,, where r < q, in the variables
Y1, - - -, Yq such that f is an affine combination of y1,...,yq and €9, ... e9. Then
G has solution set components bound

B = 2%4@12[2(dg + d) + 1]“"4[2(dg + d)(dg + d + 1) + 1]%.

Proof. Let k < d and consider some arbitrary set {fi,..., fr} € G that has
regular zero-set intersections. According to the assumptions, for ¢ = 1,...,k
each f; can be written in the form

(Y1,---,¥a) = ai +biiys + -+ + biaya + cip€®t + -+ cip €%,

where r; < ¢, the g;; are affine functions in yi,...,vq, and a;, bi1,...,big,
Ci1y-- -, Cip; are real numbers. We introduce new functions f; and h; j in y1, ..., yq
and in new variables z; ; by defining

filvi, oo Yas Zity -y Zigy) = @i+ Dy + -+ b gYq + ci€® + oo 4y €50
hi,j(l/la---,yd, zz',j) = gi,j(yla"'ayd) — Zij,

fors =1,...,kand 7 = 1,...,7;. Let G be the class of affine functions in
Yi,---,Yd, and in z;; and €%, for ¢ = 1,...,k and j = 1,...,q. Clearly, the
functions f; and hi; are elements of G. Furthermore, since fi, ..., fx are chosen
arbitrarily from G and at most ¢ new variables are introduced for each f;, the
classes G and G satisfy Definition 7.12 of Anthony and Bartlett (1999), that is,
G computes G with g intermediate variables. It follows from Theorem 7.13 of
Anthony and Bartlett (1999) that any solution set components bound for G is
also a solution set components bound for G. Since G consists of polynomials of
degree 1 in dq + d variables and dgq fixed exponentials, by virtue of Lemma 5 class
G has solution set components bound

B = 2WWDR[(dg + d) + 1%+ [2(dg + d)(dg + d + 1) +1]“

which is hence also a solution set components bound for G as claimed. O

A class F of real-valued functions is said to be closed under addition of con-
stants if for every ¢ € R and f € F the function z — f(z) + ¢ is a member
of 7. The following result gives a stronger formulation of a bound stated in
Theorem 7.6 of Anthony and Bartlett (1999).
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Lemma 7. Let F be a class of real-valued functions (yi,...,Ya, T1,---,Tn) —
flyi, -, Ya, &1, - .-, Ty) that is closed under addition of constants and where each
function in F is C? in the variables yi,...,yq. If the class G = {(y1,...,ya) —
flyr,...,ya,8) : f € F,s € R*} has solution set components bound B then
for any sets {f1,..., fr} € F and {s1,...,8m} C R*, where m > d/k, the set
T C {0,1}™* defined as

T = {(sgn(fa(a,51), -, sgn(f1(a, 5m), .
oysgn(fla s1)), - sgn(fu(a, sm))) : a € B}

satisfies

d mk emk\ ?
ni<m3 (") < n()’
)
i=0

Proof. Let {f1,..., fr} C F and {s1,...,8m} C R” be given, and T be defined
as above. In the proof of Theorem 7.8 in Anthony and Bartlett (1999) it is shown
that then there exist real numbers A;1,..., Ay, such that the following holds:
Let C denote the number of connected components of the set

k. m
RY — U U{a eR?: fi(a, Sj) - )"iyj = 0}

i=1j=1
Then T satisfies |T'| < C, and the set of functions
{a|—>f,-(a,sj)—)\,-,j:i=1,...,k;j= 1,...,m}

has regular zero-set intersections. Clearly, this set is a subset of G, which has
solution set components bound B. In the proof of Theorem 7.6 in Anthony and
Bartlett (1999) it is shown that this implies

d

oo () saf )

i=0
for m > d/k. Hence, the claimed result follows using |T'| < C. O
Now we have all that is required for the proof of Theorem 4.

Proof of Theorem 4. Assume that N is given as supposed, having k¥ hidden prod-
uct units and W parameters. Denote the weights of the hidden nodes by w; ; and
let vy, vy, ...,v; be the weights of the output nodes where vy is the threshold.
We first use an idea from Karpinski and Macintyre (1997) and divide for each
i € {1,...,k} the functions computed by N into three categories corresponding
to the sign of the parameter v;, that is, depending on whether v; < 0, v; = 0, or
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v; > 0. This results in a total of 3* categories for all vy, ..., v;. We consider each
category separately and introduce new variables v1, ..., v, for the weights of the
output node by defining

In v; if v; > 0,

’U; = 0 if V; = 0,

ln(—vi) if v; <0,
for i = 1,..., k. Thus, within this category we can write the computation of N/
on some real input vector s as a function of the network parameters in the form

W1,py
17171

Wk,py,

I v w11 vl Wk,1
(vo, v, w) = vo + bre"s 1T -8 + o+ brehsy Shons

where the s; ; are components of the input vector and b; € {0, 1} is defined by

0 ifvj=0o0rs;; =0 forsome j e {1,...,p},
b = . ’
1 otherwise,

for© = 1,...,k. Note that if s;; = 0 and w;; < 0 for some 7, j we define the
output of the affected product unit to be 0. Thus we may assume that s; ; # 0 for
all 7, 7 without loss of generality. Recall further that, according to the condition
on the parameter domain of product units stated in Section 3.1, for s; ; < 0 we
have required w;; to be an integer. In this case, however, the sign of s;; can
have an effect only when the weight is odd. And this effect on the product unit
consists only in a possible change of the sign of its output value. Since the sign
of s;; is not known we consider the worst case and assume that each input vector
generates all possible signs at the outputs of the product units. Therefore, we
can restrict the input vectors to the positive reals if we take note of the fact that
each input vector gives rise to at most 2* functions of the form

Wk,py,

! vl w1,1 .« e wLpl .« e vl wk’l .« e
(vo, v, w) = vo £ bre"1 sy s R S Skpr -

1,]31

For positive input values these functions can be rewritten as

(vo, v, w) — vg £ by exp(v] +wiglnsy s+ +wip Insyy )+

- £ bpexp(vy +wpiInspy 4 -0+ Wy, In sk, ).

To obtain a bound on the pseudo dimension we want to estimate the number
of dichotomies that are induced on some arbitrary set {(s1,u1),- -, (Sm,Um)},
where sq,...,s,, are input vectors for N and wuy,...,u,, are real numbers, by
functions of the form (z, z) — sgn(f(z) — z), where f is computed by N. We do
this for each of the categories defined above separately. Thus, within one such
category the number of dichotomies induced is at most as large as the cardinality
of the set T' C {0,1}™" satisfying

T = {(Sgn(fl(a7 Slla ul))7 R Sgn(fl(a" S;na um))7 e
o sgn(for(a, 81, u1)), - .., sgn(for(a, 8y, Um))) 1 a € RV}
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for real vectors si,...,s;, and functions fi, ..., for, where each of these functions
has the form

(y,z,2) = co+yo+crexp(yr + y1,121,1 + -+ Y1p Trp,) + -0
oot cp exp(Yk + YkaZra o F Ykpp Thip) — 2

for real numbers ¢y, c1,...,c; with ¢g = 0 and ¢; € {-1,0,1} for i = 1,... k.
The variables y; and y;; play the role of the network parameters, z;; are the
input variables receiving values s;,j = Ins;;, and z is the input variable for
Uy, ..., Un. Let F denote the class of these functions arising for arbitrary real
numbers ¢, cy,...,cx. We have introduced ¢y in particular to make this class

F closed under addition of constants. Now, for the vectors s},...,s; and the

S Sh
real numbers us, ..., u, we consider the function class G = {y — f(y, s}, u;) :
feF,i=1,...,m}. Clearly, every element of G is an affine combination of W
variables and k exponentials of affine functions in these variables. According to

Lemma 6, G has solution set components bound

B = 2WKWE DR WE 4+ W) + 1|V 2(WE+ W)Wk + W +1) 4+ 1]7*.
(1)

Since F is closed under addition of constants, we have from Lemma 7 that |T'| <
B(em2F /W)W which is by the construction of T an upper bound on the number
of dichotomies that are induced on any set of m vectors {(s1,u1),- .., (Sm, Um)}-
Since this bound is derived for network parameters chosen within one category, we
obtain an upper bound for all parameter values by multiplying with the number
of categories, which is 3*. This yields the bound

IT| < B(em2*/W)"3k. (2)

If there is a set of m vectors that is shattered then all 2™ dichotomies of this set
must be induced. Since |T'| is an upper bound on this number this implies

m < log B+ W log(em2*/W) + klog3.

From the well-known inequality Ina < af + In(1/8) — 1, which holds for all
a, > 0 (see, e.g., Anthony and Bartlett, 1999, Appendix A.1.1), we obtain for
a=m and B = (In2)/(2W) that Wlogm < m/2 + Wlog(2W/(eln2)). Using
this in the above inequality we get

m < logB+m/2+ Wlog(2"™/In2) + klog3,
which is equivalent to

m < 2logB+2Wk+ 2W log(2/1n2) + 2k log 3.
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Substitution of the value for B yields

m < Wk(Wk—1)+2(Wk+ W)log[2(Wk + W) + 1]
+ 2Wklog2(Wk+W)(Wk+ W +1) + 1]
+ 2Wk + 2W log(2/1n2) + 2k log 3.

Simplifying and rearranging we obtain

m < (Wk)>+ 2Wk+ 2W)log2(Wk + W) +1]
+ 2Wklog2(Wk+W)(Wk+ W +1) + 1]
+ Wk +2W log(2/In2) + 2k log 3.

The second and the third line together are less or equal to
2Wk(log[13(Wk)?] + 1/2 +log(2/1n 2) + log 3)

which is equal to 2Wk 1og[78+/2(Wk)?/1n 2] and hence less than 4Wk log(13Wk).
The last term in the first line is at most 4Wklog(5Wk). Using these relations
we arrive at

m < (Wk)?+4Wklog(5Wk) + 4Wklog(13Wk)

and hence at m < (Wk)? + 8Wklog(13Wk), which completes the proof of the
theorem. 0

The constants in the bound of Theorem 4 can be made slightly smaller and
one can get rid of the dependency on k of the term in the logarithm. Karpinski
and Macintyre (1997) show by means of a more direct application of the method
of Warren (1968) that for obtaining a solution set components bound for the class
of functions considered here it is not necessary to introduce additional parameters
as intermediate variables as we have done it in Lemma 6.% Instead, it is sufficient
to employ the bound provided by Lemma 5 for affine functions in W variables
and Wk fixed exponentials. This yields the improved solution set components
bound

B = 2WFWEDRRW 4 VW (W + 1) + 1] (3)

which can be used in the proof of Theorem 4 in place of equation (1) to derive
the following improved version of this theorem.

6Theorem 7.6 in Anthony and Bartlett (1999), which also builds on the method of Warren
(1968), provides a more general method suitable for any function class that satisfies the condi-
tions of Lemma 7. In particular, it applies to networks with more than one hidden layer. For
such networks the direct method of Karpinski and Macintyre (1997) bears no advantage. The
latter method also deals with these networks by introducing intermediate variables. We have
chosen to employ the result of Anthony and Bartlett (1999) in the proof of Lemma 7 because
it is more general and makes the proof of Theorem 4 shorter and easier to read.
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Corollary 8. Let N be a neural network with one hidden layer of k product
units and W parameters. Then N has pseudo dimension at most (Wk)* +
6Wklog(8W).

Proof. Using solution set components bound (3) in the proof of Theorem 4 we
get

m < (Wk)*+2W log(2W + 1)
+ 2Wklog2W (W + 1) + 1] + Wk + 2W log(2/ In 2) + 2k log 3.

The last line is less than 4Wklog(8W) and the last term of the first line is at
most 2W log(3W). This implies m < (Wk)? + 6Wk log(8W). O

One of the constants can be further improved for networks that operate in the
nonnegative domain only. The improvement is marginal, but the result demon-
strates how the input restriction affects the calculation of the bound.

Corollary 9. Let N be a neural network with one hidden layer of k product units
and W parameters. If the inputs for N are restricted to nonnegative real numbers

then N has pseudo dimension at most (Wk)? + 6Wk log(6W).

Proof. 1f all inputs are positive then no sign changes have to be taken into account
for the output values of the product units. Therefore, we can use in the proof of
Theorem 4 that each input vector gives rise to 1 instead of 2% functions. This
gives the new bound |T| < B(em/W)W3* for inequality (2). Using solution set
components bound (3) yields

m < (Wk)*+ 2W log(2W + 1)
+ 2Wklog2W (W + 1) + 1] — Wk + 2W log(2/ In 2) + 2k log 3.

The last line is less than 4Wklog(6W) implying m < (Wk)?+6Wklog(6W). O

The networks considered thus far in this section have in common a rigid archi-
tecture with a prescribed number of hidden nodes. In some learning applications,
however, it is customary not to fix the architecture in advance but to let the net-
works grow. In this case there is a variety of networks that can result from the
learning algorithm. It might be possible to accommodate all these networks in a
single large network so that a bound for the VC dimension of the class of networks
is obtained in terms of a bound for the large network. Often, however, better
bounds can be derived if one takes into account the constraint that underlies the
growth of the network. In the following we assume that this growth is limited by
a bound on the fan-out of the input nodes. Such networks with sparse connec-
tivity have been suggested, for instance, by Lee et al. (1986) and Hancock et al.
(1994).
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Corollary 10. Let C be the class of networks with one hidden layer of product
units and n input nodes where every input node has fan-out at most l. Then C
has pseudo dimension at most 4(nl)* + 18(nl)?log(23nl).

Proof. The number of networks in C is not larger than (n/)™ since there are at
most this many ways to assign nl connections to nl hidden units. Each network
has at most 2nl 4+ 1 parameters, where nl are for connections leading to hidden
nodes and nl 4+ 1 are for the output node. Thus, with » = nl, the number of
dichotomies induced by C, or more precisely, by functions of the form (z,z) —
sgn(f(z) — z) where f is computed by C, on a set of cardinality m is at most r"
times the number of dichotomies induced by a network with » hidden nodes and
2r + 1 parameters. Using solution set components bound (3) we get from the
proof of Corollary 8 with k =r and W =2r +1

m < (r(2r+1))*+2(2r + 1)log(2(2r + 1) + 1)
+2r(2r+1)logl2(2r + 1)(2r +2)+ 1]+ r(2r + 1)
+2(2r +1)log(2/1n2) + 2rlog 3 + rlogr,

where the last term is due to the factor »". From this we obtain m < 4r% +
67 log(7r) + 12r2log(23r), and hence m < 4r* + 18r%log(23r). Resubstituting
r = nl yields the claimed result. O

4.2 Networks with Product and Sigmoidal Units

We now consider feedforward architectures with an arbitrary number of layers.
The networks are non-homogeneous in that each node may be a product or a
sigmoidal unit independently of the other nodes. Pseudo dimension bounds for
pure product unit networks with the output node being a summing unit are known
from the previous section. We already noted in Section 2.2.2 that a network
of product units only is equivalent to a single product unit. A bound for the
single product unit will be given later in Section 4.5. Also, bounds for networks
consisting solely of sigmoidal units have been established earlier by Karpinski and
Macintyre (1997) and Anthony and Bartlett (1999). In the following we calculate
bounds for networks containing both unit types.

Theorem 11. Suppose N is a feedforward neural network with k computation
nodes and W parameters where each computation node is a sigmoidal or a product

unit. Then the pseudo dimension of N is at most 4(Wk)? + 20Wk log(36Wk).

Before giving the proof we determine a solution set components bound for
classes of functions arising from feedforward networks. The following result con-
sidering arbitrary many layers corresponds to Lemma 6, which was for networks
with one hidden layer only.
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Lemma 12. Let G be the class of real-valued functions in d variables computed
by a network with r computation nodes where q of these nodes compute one of
the functions a — c+1/(1+e %), a— c+e*, or a+— Ina for some arbitrary
constant ¢, and r — q nodes compute some polynomial of degree 2. Then G has
solution set components bound

B = 244 V2[6(2dr + d) + 224 +4[3(2dr + d)(2dr +d + 1) + 1]%.

Proof. Let {f1,..., fr} C G, where k < d, be some arbitrary set of functions that
has regular zero-set intersections. According to the assumptions, there is for each
fi a network that computes f; with » and ¢ computation nodes as described. We
number the nodes such that the computation of each node depends only on nodes

with a smaller number. Then for ¢ = 1,...,k and j = 1,...,r the computation
performed by node j in the network for f; can be represented by a function n; ;
in the variables y1, ..., yq that is recursively defined by

cij +1/(1+exp(—niy(y), <4y,

N _ cij £ exp(ni(y)), [ <y,
niiy) = In(n;,(y)), [ <y,

Di,j (ya ni1 (y)7 ey ni,jfl(y))a

depending on whether node j computes the function a — ¢;; +1/(1 + e™?),
a ¢ ;e a— Ina, or the degree 2 polynomial p; ;, respectively. We introduce
new functions g;;, §i; in yi, - .., yas and in new variables z; ;, Z; ; corresponding to
the above four cases for n;; as follows: If node j in the network for f; computes

e the function a — ¢;; + 1/(1 + e~ ) then

Gij(y, %) = nig(y)+ Zij,
9ij(2i4, Zij) = (zij—cij)(1+exp(Zi;)) — 1,

e the function a — ¢; ; == e® then

Gij(y, Zi;) = nig(y) — Zij,
9ij(2i4,%i5) = exp(Zij) £eij— 2,

e the function a — ln o then

gi,_f(ya E'L,]) = ni,l(y) - exp(z’i,j)a

9i,i(2i4, Zig) = Zij — Zig,
e the degree 2 polynomial p; ; then
gi,j(ya zz',l,---,zi,j) = pi,j(y,zz’,l,---,zi,j—l) — Zi,js
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where [, ¢; j, and p; ; are as in the corresponding definition of n; ; above. Let G be
the class of polynomials of degree at most 2 in the variables yi, ..., y4 and in z; ;,
%;,; and exp(Z; ;). There are at most kr variables z; ;, and—since the variables Z; ;
are introduced only for those nodes that compute a non-polynomial function—
at most kq variables Z; ; and kg exponentials exp(Z; ;). Clearly, G contains the
functions g; j, §; ;. Furthermore, G computes G with r + ¢ intermediate variables
and any solution set components bound for G is also a solution set components
bound for G (Definition 7.12 and Theorem 7.13 in Anthony and Bartlett, 1999).
The polynomials in G are of degree at most 2 in no more than 2dr+d variables and
dg fixed exponentials. Thus, Lemma 5 shows that G has solution set components
bound

B = 24@-V/2[6(2dr + d) + 2?4 +4[3(2dr + d)(2dr +d + 1) + 1],

and we conclude that this is also a solution set components bound for G. O

Now we give a proof of Theorem 11. Besides the above solution set compo-
nents bound it uses Lemma 7 from Section 4.1.

Proof of Theorem 11. We show first that we can confine the argumentation to
positive inputs. For some input vector s consider all functions computed by N
that arise when s is fed into the network and the signs of the parameters are
varied in all possible ways. Treating input values 0 to product units similarly
as in the proof of Theorem 4 and taking into account the at most 2" functions
thus generated by each input vector, we may henceforth assume without loss
of generality that all input values to product units are positive real numbers.
(A number of 2* functions is in general not sufficient, as it was in the proof of
Theorem 4, since changing the sign of the output of some input unit, for instance,
can modify the sign of an input to a sigmoidal unit. This cannot be compensated
for by changing the sign of the sigmoidal unit, but by changing the sign of a
weight.)

Thus, the number of dichotomies that are induced by functions of the form
(z,2) — sgn(f(z) — 2z) with f being computed by N on some arbitrary set
{(s1,u1), -, (Sm, um)} with input vectors sy, ..., S, and real numbers uy, ..., un
is at most as large as the cardinality of the set 7' C {0,1}™2" defined by

T = {(sgn(fi(a, s1,v1)), - --,sen(fi(a, s, um)), - - -
. sgn(fow (a, 87, u1)), - .., sgn(fow (a, 8., um))) 1 a € RV}

where s}, ..., s!, are positive real vectors and fi, ..., fow are the functions arising
from N after making the sign variations described above. We allow that any
arbitrary constant may be added to these functions and use F to denote this
class of functions (w,z,z) — f(w,z,z) in the network parameters w and the
input variables  and z. Clearly then, F is closed under addition of constants.

33



Consider the class G = {w — f(w,s},u;): f € F,i =1,...,m} of functions
in W variables. Every function in G can be computed by a network where each
computation node computes one of the functions o — c+1/(1+e %), a — cte®,
a +— Ina, or some polynomial of degree 2. Here, ¢ is some arbitrary constant
that is required for the output nodes due to the closedness of F under addition
of constants and also accommodates the subtraction of some u; from the output.
The “+” comes from the sign variation of the output of the product unit. The
networks result as follows: Each product unit receives only positive inputs and

can thus be written as
c; Eexp(w;1Inv g + - + wip, Inv;p.),
and each sigmoidal unit has the form
¢ +1/(1+ exp(—w; 101 — -+ - — Wip,Vip; + i),

where the v;; are output values of other nodes. Therefore, each product unit
can be decomposed into one function a — ¢ + €%, one polynomial of degree 2
and functions o — Ina applied to the outputs of other nodes. Further, each
sigmoidal unit can be decomposed into one function o — ¢+ 1/(1 4+ e ) and
one polynomial of degree 2. This leads to a network with at most £ — 1 nodes
computing o — Ina (the logarithm of the output node is not needed), at most
k nodes computing a polynomial of degree 2, and at most k£ nodes each of which
computes either a — cte* or a — c+1/(1+e™®). In total, every function in G
can be computed by a network with 3k — 1 computation nodes of which 2k — 1
nodes compute one of the functions o +— c¢+1/(14+e™%), o+ cte®, or a — Ina.
Lemma 12 with d = W, r = 3k — 1, and ¢ = 2k — 1 shows that G has solution
set components bound

B = W@ HWEE-1)-1/2[6(o)/ (3k — 1) + W) + 2J2W Gk D+W
- [3(2W(3k — 1) + W)(2W (3k — 1) + W + 1) 4 1]V @D,

Since F is closed under addition of constants, it follows from Lemma 7 that
B(2em2% /W)W is an upper bound on the cardinality of T' and, thus, on the
number of dichotomies induced on any set of cardinality m. If such a set is
shattered this implies

m < log B+ Wlog(em2V /W).

Using Wlogm < m/2 + Wlog(2W/(eln2)) (see the proof of Theorem 4) we
obtain

m < 2log B+ 2W? + 2W log(2/In 2)
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and, after substituting the value for B,

m < W(2k—-1)(W(2k—-1)-1)
+ (AW (3k — 1) + 2W) log[6(2W (3k — 1) + W) + 2]
+2W (2k — 1) 1og[3(2W (3k — 1) + W)(2W (3k — 1) + W + 1) + 1]
+2W? + 2W log(2/ In 2).

Simplifying and rearranging leads to

m < 4(WEk)? — 4W?k + 3W?2 + (12Wk — 2W) log[6(6Wk — W) + 2])
+ 2W (2k — 1) log[3(6Wk — W)(6Wk — W + 1) + 1]
—W(2k —1)+2Wlog(2/1n2).

The last two lines together are less than
AW k(log[109(Wk)?] + log(2/In 2))

which equals 4Wk log[218(Wk)?/1n 2] and is less than 8Wk log(18W k). The last
three terms of the first line together are less than 12Wklog(36Wk). Thus, we
may conclude that m < 4(Wk)? + 20Wk log(36Wk). O

The networks considered in Theorem 11 have fixed units in the sense that it
is determined in advance for a computation node whether it is to be a product
or a sigmoidal unit. One can imagine situations in which the learning algorithm
chooses the unit type for each node. Then the function class is no longer repre-
sented by a single network, but by a class of networks. An inspection of the proof
of Theorem 11 in this regard shows that its argumentation does not depend on
knowing which unit type is given. Hence, the same bound holds if the unit type
of each computation node is variable.

Corollary 13. Let C be a class of feedforward neural networks where each net-
work has k computation nodes and W parameters, and where each computation
node s a product unit or a sigmoidal unit. Then C has pseudo dimension at most

4(Wk)? + 20Wklog(36Wk).

4.3 Higher-Order Sigmoidal Networks

A neural network consisting of higher-order sigmoidal units can be considered
as a network of product and sigmoidal units where the weights of the product
units are restricted to the nonnegative integers. Thus, an upper bound on the
VC dimension or pseudo dimension for a higher-order network is obtained by
means of the same network with the monomials replaced by product units and
the exponents considered as variables. We distinguish between two ways of view-
ing higher-order sigmoidal networks: The exponents of the monomials can be
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parameters of the network or they can be fixed. We consider the latter case first,
that is, when the exponents are not variable. We further emphasize that we do
not explicitly count the number of monomials in a higher-order network. For
both cases we obtain bounds that do not impose any restriction on the order of
the monomials.

Theorem 14. Suppose N is a network with k computation nodes and W param-
eters where each computation node is a higher-order sigmoidal unit with fized ez-
ponents. Then N has pseudo dimension at most 36(Wk)*+136(Wk)*log(12Wk).

Proof. The parameters of a sigmoidal higher-order network are the weights and
thresholds of the sigmoidal units only. Further, a sigmoidal higher-order net-
work has the following properties: First, every input node and every non-output
node that is a sigmoidal unit feeds its output only to monomials. Second, ev-
ery sigmoidal unit receives its input only from monomials through parameterized
connections. Thus, after replacing the monomials by product units we can guide
the proof analogously to that of Theorem 11 with the following ingredients: Since
sign variations of input vectors affect product units only and there are at most
W product units, it suffices to consider as upper bound on the number of di-
chotomies that N induces via functions of the form (z,z) — sgn(f(z) — 2) on
a set of cardinality m the cardinality of a set T" with T C {0, 1}m2W defined as
in the proof of Theorem 11. The networks that give rise to the function class G
have at most

e k nodes computing the function o — c¢+1/(1+e~*) (due to the sigmoidal
units),

e W nodes computing the function o +— ¢ + e~ (due to the product units),

e k nodes computing the function o — Ina (only logarithms of sigmoidal
units are needed),

e W + k nodes computing a polynomial of degree 2 (due to the product and
sigmoidal units).

This yields networks having at most 2W + 3k < 5Wk nodes of which up to
W + 2k < 3Wk compute a non-polynomial function. Since each product unit,
receiving inputs from sigmoidal units only, has at most k exponents, the func-
tions in G have in total at most W + Wk < 2Wk variables. Thus, with these
assumptions we get from Lemma 12 using d = 2Wk, r = 5Wk, and ¢ = 3Wk
the solution set components bound

B = 2 COTNRIG0(WR)? + aWR) + 2] T
- [3(20(Wk)? + 2Wk)(20(WE)? + 2Wk + 1) + 1]6V0)?*,
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As in the proof of Theorem 11 we infer from Lemma 7 using T C {0,1}™2" that
B(em2W /(2Wk))?"* is an upper bound on the number of dichotomies induced
by N on any set of cardinality m. Thus, if such a set is shattered we have

m < log B+ 2Wklog(em2" /(2Wk)),
from which we get
m < 2log B+ 4W?%k + 4Wklog(2/1n?2)

using 2Wklogm < m/2 4+ 2Wklog(4Wk/(eln2)) (see the proof of Theorem 4).
With the above solution set components bound this implies

m < 6(Wk)?*(6(Wk)*—1)
+ (40(Wk)* 4 4W k) log[6(20(Wk)? + 2Wk) + 2]
+ 12(Wk)?1og[3(20(Wk)? + 2WE)(20(Wk)® + 2Wk + 1) + 1]
+ 4W?k + AWk log(2/1n 2).

From this we obtain
m < 36(Wk)* + (40(Wk)* + 4Wk) log[6(20(Wk)* + 2Wk) + 2]
+ 12(Wk)?1og[3(20(Wk)? + 2WE)(20(WE)? + 2WEk + 1) + 1]
— 6(Wk)*> + 4W?k + 4Wklog(2/1n 2).
The last two lines together are less than
12(Wk)?(log[1519(Wk)*] + log(2/1n 2))

which is equal to 12(Wk)?log[3038(Wk)*/In 2] and less than 48(Wk)? log(9Wk).
Since the second term of the first line is less than 88(Wk)?log(12Wk) we get
m < 36(Wk)* + 136(Wk)2log(12Wk) as claimed. O

The bound we derive next concerns higher-order sigmoidal networks with vari-
able exponents. As is to be expected, the bound is smaller since more parameters
are counted.

Theorem 15. Suppose N is a higher-order sigmoidal network with k computa-

tion nodes and W parameters that include the exponents of the monomaials. Then
the pseudo dimension of N is at most 9(W?2k)? + 34W?k log(68W2k).

Proof. In comparison to the case with fixed exponents in Theorem 14 the differ-
ence here is that the exponents of the monomials do not increase the number of
parameters since they are already counted in W. Thus, Lemma 12 with d = W,
r = 5Wk, and ¢ = 3Wk provides solution set components bound
B — 23W2k(3W2k—1)/2[6(10W2k + W) + 2]10W21c+W
[3(10W2k + W)(10W 2k + W + 1) + 177,
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and Lemma 7 yields B(em2" /W)W as upper bound on the number of dichotomies
induced on a set of cardinality m. Assuming that such a set is shattered we obtain

m < 2log B+ 2W? + 2W log(2/In2)

similarly as in the proof of Theorem 11. After substituting the above value for
B we get

m < 3W2k(W?k — 1) + (20W?k + 2W) log[6(10W 2k + W) + 2]
+ 6W 2k 1log[3(10W %k + W)(10W?k + W + 1) + 1]
+2W? + 2W log(2/ In 2),

which implies

m < 9(W?k)? + (20W2%k + 2W) log[6(10W %k + W) + 2]
+ 6W?2k1og[3(10W 2k + W)(10W?k + W + 1) + 1]
— 3W?%k + 2W? 4 2W log(2/1n 2).

The last two lines together are less than
6W2k(1og[397W*k?] + log(2/In2))

which is equal to 6W 2k log[794W4k2 /1n 2] and less than 12W 2k log(34W2k). The
second term of the first line is less than 22W?klog(68W?2k). Thus, we have
m < 9(W?2k)? + 34W 2k log(68W2k). O

4.4 Single Higher-Order Units

Since a single unit can be viewed as a small network, bounds on the VC di-
mension and pseudo dimension for product units and higher-order units can be
obtained from previous sections. For particular cases, however, we shall establish
significant improvements in the following. We look at single higher-order units
and classes of these units first, then, in the following section, we consider single
product units and classes of monomials.

We recall from Section 2.2.2 the definition of a higher-order unit which has
the form

w1M1+w2M2+---+wkMk—t

where My, ..., M are monomials. We also remember that the set {M,..., My}
is called the structure of the higher-order unit. We can view such a unit as a
network with one hidden layer and a linear unit as output node. If a threshold
or sigmoidal unit is employed for the output node, we have the higher-order
variants of the threshold and sigmoidal unit, respectively, which were also defined
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in Section 2.2.2. According to Proposition 1, when studying the VC dimension it
makes no difference which summing unit is employed for the output node. Thus,
we may focus on linear output units without loss of generality.

If the structure of a higher-order unit is fixed, its only parameters are the
weights and the threshold of the output node. Thus, with fixed structure the VC
dimension cannot be larger than the VC dimension of a summing unit with the
same number of parameters. This fact is employed in the following result.

Lemma 16. Let N be a higher-order unit with fized structure that consists of k
monomials. Then the number of dichotomies that N induces on a set of cardi-

nality m s at most
5 Zk: m—1 <9 e(m—1)\*
pre ) k ’

for m >k > 1, and the VC dimension of N is at most k + 1.

Proof. Let {Mj, ..., M} be the structure of the higher-order unit. Assume fur-
ther that S is a set of m input vectors and consider the set of vectors

S' = {(My(s),..., My(s)) : s € S}.

Obviously, every dichotomy induced by a summing unit on S’ corresponds to at
least one dichotomy induced by A on S. Hence, the number of dichotomies that
N induces on S cannot be larger than the number of dichotomies that a summing
unit with k input variables induces on S’. The latter quantity is known to be not
larger than 235 ; (™ '), an expression which is less than 2(e(m — 1)/k)* (see
Anthony and Bartlett, 1999, Theorems 3.1 and 3.7, respectively). Thus, we have
the claimed upper bound on the number of dichotomies. The VC dimension of a
summing unit with & input variables is known to be k+1 (Anthony and Bartlett,

1999, Section 3.3). O

We apply this result in the next two theorems where we consider higher-order
units with variable structure. The variability is given in terms of a class of units
which underly a certain connectivity constraint. In the first class the fan-in of
the output node, or the number of monomials, is limited. In the second class we
have a bound on the fan-out of the input nodes, or the number of monomials in
which each variable may occur. Both classes can be considered as multivariate
generalizations of a function class studied by Karpinski and Werther (1993). They
define a polynomial to be t-sparse if it has at most ¢ non-zero coefficients. Thus,
a t-sparse univariate polynomial has at most ¢ monomials, and each variable
occurs in at most ¢ of them. Karpinski and Werther (1993) show that the class
of t-sparse univariate polynomials has VC dimension O(t).
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Theorem 17. Let C be the class of higher-order units with n input variables and
at most k monomials where each variable has an exponent of value at most d.
Then C has VC dimension at most

min{(k(nk + k + 1))* + 6k(nk + k + 1) log(8(nk + k + 1)), 2nklog(9d)}.

Proof. Obviously, a network with one hidden layer of product units and a linear
unit as output node comprises the set of functions computed by the units in C.
Thus, the first bound is obtained from Corollary 8 considering the exponents of
the variables as parameters and using the fact that a product unit can compute
any monomial. Since in a higher-order unit with at most k£ monomials there
are no more than nk occurrences of variables, this leads to a total number of
nk + k + 1 parameters.

The second bound is established as follows: Each occurrence of a variable can
have an exponent from {0,1,...,d} (where we consider a monomial to be 0 if all
its variables have exponent 0). Therefore, (d + 1)™* is an upper bound on the
number of structures in C. From this bound and Lemma 16 we infer that the
number of dichotomies induced by C on a set S of m input vectors is at most

(d+1)"*- 2(‘3(7”7];1))19

If S is shattered, its cardinality satisfies
m < nklog(d+ 1)+ klog(e(m —1)/k) + 1.

Now we use that Ina < af + In(1/8) — 1 for o, 3 > 0 (see, e.g., Anthony and
Bartlett, 1999, Appendix A.1.1). Assuming m > 1, we may substitute o = m—1
and 8 = (In2)/(2k) to obtain klog(m—1) < (m—1)/2+klog(2k/(eln2)). From
this we have

m < 2nklog(d+1)+ 2klog(2/In2) + 1.

The right-hand side is at most 2nk(log(d + 1) +1og(2/In 2) + 1/2) which is equal
to 2nklog(2v/2(d + 1)/1n2), and this is less than 2nklog(9d). O

Theorem 18. Let C be the class of higher-order units with n input variables
where each variable occurs in at most | monomials and has an exponent of value
at most d. Then C has VC dimension at most

min{4(nl)* 4+ 18(nl)?log(23nl), 2n*l1log(9d), 2nllog(5dni)}.

Proof. The first bound is due to Corollary 10 by considering a higher-order unit
as a network with one hidden layer of product units and a linear unit as output
node. The second bound is obtained from Theorem 17 using the fact that every
unit in C has at most nl monomials.
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We derive the third bound as follows: Since there are at most nl connections
between the input nodes and the monomials, there are at most (nl)™ possibilities
of connecting the input nodes with the monomials. Further, there are at most
d™ ways to assign exponents from {1,...,d} to the occurrences of the variables.
Thus, there are at most (dnl)™ different structures in C. This bound together
with Lemma 16 implies that the number of dichotomies induced by C on a set S
of cardinality m is not larger than

(dnl)™ - 2(@)@

nl
This expression is equal to 2(ed(m — 1))™. If S is shattered by C it follows that
m < nllog(ed(m — 1))+ 1.

Similarly as in the previous proof, assuming m > 1, we can make use of nl log(m—
1) < (m —1)/2+ nllog(2nl/(eln2)) to obtain

m < 2nllog(2dnl/In2)+ 1.

The right-hand side is not larger than 2nl(log(2dnl/1n2) + 1/2) which equals
2nllog(2+/2dnl/1n2). Since this is less than 2nllog(5dnl), the third bound fol-
lows. U

4.5 Single Product Units and Monomials

Next, we look at a single product unit. Since it can be viewed as a (trivial)
network with one hidden unit, an upper bound on its VC dimension is immedi-
ately obtained from Corollary 8 in the form of n? + 6nlog(8n), where n is the
number of variables. The following statement shows that the exact values for its
VC dimension and pseudo dimension are considerably smaller. This result also
contains the first lower bound of this article.

Theorem 19. The VC dimension and the pseudo dimension of a product unit
with n input variables are both equal to n.

Proof. That n is a lower bound easily follows from the fact that a monomial with
n variables shatters the set of unit vectors from {0, 1}", that is, the set of vectors
with a 1 in exactly one position. We show now that n is an upper bound on the
pseudo dimension, so that the theorem follows. The idea is to derive the upper
bound by means of the pseudo dimension of a linear unit.

Let (w,z) — f(w,z) be the function computed by a product unit, that is,

Wn

f(w,:):) = x;ﬂlw’l;z Ty,
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where wy,...,w, are parameters and zi,...,z, are input variables. Consider
some arbitrary set S = {(s1,u1),...,(Sm,um)} where s; € R* and u; € R for
1 =1,...,n. According to the definition, the pseudo dimension of a product unit
is the cardinality of the largest such S that is shattered by functions of the form

(w,z,y) — sgn(f(w,z) —y)

with parameters wy,...,w, and input variables zq,...,z,,y. We use the same
idea as in the proof of Theorem 4 to get rid of negative input values: According
to the assumptions on the parameters (see Section 3.1), if some input value is
negative, its weight may take on integer values only. The sole effect of changing
the sign of an input value, therefore, is to possibly change the sign of the output
of the product unit. Hence, if we consider the set S' = {(s},u1),-.., (s, um)},
where s, arises from s; by taking absolute values in all components, then the
number of dichotomies induced on S is less or equal to the cardinality of the set
T C {0,1}*™ defined by

T= {(sgn(f(a, sll) - ul)a R Sgn(f(aa s;n) - Um),
sgn(—f(a,sy) —w1),...,sgn(—f(a,s..) — um)) :a € R*}.

Since we are interested in an upper bound for |T|, we may assume without loss
of generality that no s} has some component equal to 0, because in that case the
value sgn(f(a, s;) — u;) is the same for all ¢ € R*. Thus, for inputs from S’ the
function f can be written as

flw,z) =exp(wy Inzy + -+ - + wy, Inxy,).

Since f(a,s;) > 0 for every a € R* and i = 1,...,m, we may suppose that each
of uy, ..., u, is different from 0. Now, depending on whether u; > 0 or u; < 0,
exactly one of

sgn(f(a, s;) — u;),sgn(—f(a, s;) — u;)
changes when a varies while the other one remains constant. Hence, by defining

b, — 1 ifui>0,
v -1 ifui<0,

we select the varying components and obtain with
T' = {(sgn(b1 f(a,s}) — u1),-..,sgn(bmf(a,s,) — um)) : a € R*}.

a set 7" C {0,1}™ which has the same cardinality as 7. Consider the function
(w, z) — g(w, z) defined for positive input vectors z as

g(w,z) = wilnz +---+w,Inz,,
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that is, g =Inof. If u; > 0 then

sgn(bif(a,s;) —u;) = sgn(f(a,s;) — biug)
= sg(In(/(a, ) — In(b;)
= sgu(g(a, s;) — In(biw;)),

and if u; < 0 then
sgn(bif(a,s;) —wi) = sgn(—f(a,s;) + biws)

sgn(—1In(f(a, 5;)) + In(biu;))
= sgn(—g(a, s;) + In(b;u;)).

This implies that
sgn(b;f(a,s)) —uw;) = sgn(big(a,s;) — b;In(bu;))

for every a € R* and ¢ = 1,..., m. From this we have that |T"| is not larger than
the number of dichotomies induced on the set

S" = {(by In(s}), b1 In(byuy)), . .., (b In(s.,), by In(bryum))}
(where logarithms of vectors are taken component-wise) by functions of the form
(w,z,y) — sgn(wizy + - - - + Wy, — Y). (4)

To conclude the proof, assume that some set of cardinality n + 1 is shattered
by a product unit with n input variables. Then from the reasoning above we
may infer that some set of cardinality n + 1 is shattered by functions of the
form (4). This, however, contradicts the fact that the pseudo dimension of a
linear unit with n parameters is at most n (see, e.g., Anthony and Bartlett, 1999,
Theorem 11.6). O

Since a single product unit can compute any monomial, the previous result
implies that the VC dimension and the pseudo dimension of the class of mono-
mials do not grow with the degree of the monomials, but are identical with the
number of variables.

Corollary 20. The VC dimension and the pseudo dimension of the class of
monomials with n input variables are both equal to n.

5 Lower Bounds

The results presented thus far exclusively dealt with upper bounds, except for the
single product unit and the class of monomials for which a lower bound has been
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given in Section 4.5. In the following we establish some further lower bounds
for the VC dimension which are then, by definition, also lower bounds for the
pseudo dimension. The results in Section 5.1 concern classes of higher-order units
and show that some upper bounds given in Section 4.4 cannot be improved in
a certain sense. The main result of Section 5.2 is a superlinear lower bound for
networks that consist of product and linear units and have constant depth.

5.1 Higher-Order Units

Two types of restrictions have been considered for classes of higher-order units
in Section 4.4. First, a bound £ was imposed on the number of monomials or,
equivalently, on the fan-in of the output node. Second, the number of occurrences
of each variable or, equivalently, the fan-out of the input nodes was limited by
some bound [. We give a lower bound for the latter class first. The following
result provides the essential means.

Theorem 21. Let m,r > 1 be natural numbers. Suppose C is the class of higher-
order units with m + 2" wvariables, where each variable occurs in at most one
monomial and, if so, with exponent 1. Then there is a set of cardinality m -r that
18 shattered by C.

Proof. We show that the class C shatters some set S C {—1,1}™?" which is
constructed as the direct product of aset U C {—1,1}™ and aset V C {-1,1}*".
First, let U = {u1, ..., un} be defined by

1 ifi=j

otherwise,
for ¢,7 = 1,...,m, where u;; denotes the j-th component of u;. Second, given
an enumeration Li,..., Lo of all subsets of the set {1,...,7}, we define V =
{v1,...,v.} by
e -1 ifkelLy
kg 1 otherwise,

fork=1,...,rand 7 =1,...,2". Then the set
S = u:i=1,...ompx{vy:k=1,...,r}

obviously has cardinality m - r.

To verify that S is shattered by C, assume that some dichotomy (Sy, S;)
of S is given. We denote the m + 2" input variables of the units in C by
X1y--eyTmy Y1, ---,Yor such that xq,..., z, receive inputs from U and yy, ..., yor
receive inputs from V. We construct monomials M, ..., My in these variables
as follows: Let the function h: {1,...,m} — {1,...,2"} satisfy

Lh(,’) = {k DUV € Sl},
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where u;vy, is the vector resulting from the concatenation of w; and v,. Clearly,
h is well-defined. Then we build the monomials by defining

M; =y ] =

i:h(i)=j

for 5 =1,...,2". Obviously, every variable occurs in at most one monomial and
with exponent 1. Hence, the function f : R™*?" — R with

f(xla"'axmayla---ayT) = M1+M2+"‘+M2r

can be computed by a member of C. We claim that the function sgn o f induces
the dichotomy (Sp, S1).

Let w;vy be some element of S. Since k occurs in exactly half of the sets
Ly, ..., Ly, we have from the definition of v, that

Vg1 + Vg + -+ vgor = 0.

If usvy € Sp then k & Ly according to the definition of h. Then vy satisfies
Uk,n@) = 1. Since u;; is the only component of u; with value —1 and x; occurs
only in monomial My;y, we have M) (uivg) = —1 and thus f(uvg) = —2.

On the other hand, if w;vy € S; then & € Lpu) and vppe = —1. Now
M) (uive) = 1 implies f(u;vg) = 2. Thus, (So, S1) is induced by sgn o f. d

We can now derive a lower bound for the class of higher-order units where
the number of occurrences of the variables is restricted. The result implies that
the bound O(nllog(dnl)), where n is the number of variables, [ the number of
occurrences, and d the largest degree, given in Theorem 18 is asymptotically
optimal with respect to n. Moreover, this optimality even holds if each variable
is allowed to occur at most once and with exponent 1.

Corollary 22. Suppose C 1is the class of higher-order units with n wvariables,
where each variable occurs in at most one monomial and, if so, with exponent 1.
Then the VC dimension of C is at least |n/2] - |log(n/2)].

Proof. If m = |n/2] and r = |log(n/2)] then m + 2" < n. Hence, Theorem 21
shows that there exists a set S C R" of cardinality m-r = |n/2]-|log(n/2)]| that
is shattered by C, even if each variable has exponent 1. O

The next result paves the way to a lower bound for the class of higher-order
units with a limited number of monomials.

Theorem 23. Let m,r > 1 be natural numbers. Suppose C is the class of higher-
order units with m + 2r wvartables such that each unit consists of at most 27
monomials and each variable occurs with exponent 1 only. Then there is a set of
cardinality m - 2" that is shattered by C.
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Proof. We construct S C {—1,0,1}™" as the direct product of two sets U C
{=1,1}™ and V C {0,1}*". As in the previous proof we define U = {uy, ..., un}
with u; ;, the j-th component of u;, being

-1 =)
Yig = 1 otherwise,

fori,j = 1,...,m. For the definition of V' = {v,...,ver} let Ly,..., Ly be an

enumeration of all subsets of the set {1,...,7}. Then the components of v are
defined by
1 ifj e Ly, N 0 ifj e Ly,
Uk.d { 0 otherwise, and - Vkrij = { 1 otherwise,

fork=1,...,2" and j = 1,...,r. Clearly, the set
S = {u:i=1,...omx{y:k=1,...,2"}

has cardinality m - 2". It remains to show that C shatters S.
Let (Sp,S1) be some arbitrary dichotomy of S. Denote the input variables

by z1,...,%m,Y1,...,Yor such that z1,...,z, and y1, ..., ys, receive inputs from
U and V, respectively. First, we define monomials Ny,..., Nor in the variables
Yi,- - Yor by

Ny = Hyj'Hyr-l-j

JELy Jé€Lyg

for k=1,...,2". Next, we use them to construct monomials M, ..., My defined
by
My = N- H T
11U VR €S1
for k =1,...,2", where u;v; denotes the concatenation of u; and vg. Then, the
function f : R™*% — R with
f(.’L‘l,...,.’I]‘m,yl,...,ygr) = —M1 — "‘_M2r

can clearly be computed by a higher-order unit in C. We show that (Sp, S;) is
induced by sgno f. Let u;vr be some element of S. The definitions of vy and the
monomials Ny, ..., Nor imply that

1 ifl =k,
Ni(ugvg) = {0 otherwise,

forl =1,...,2". Hence, we have

fluvg) = —M(uvg) = — H Ui by

h:upvg €51
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which together with the definition of u; implies

f(uzvk) { —1 if u;v, € 9,

1 if UV € Sl.

Thus, sgn o f induces the dichotomy (Sy, S1) as claimed and, consequently, S is
shattered by C. O

Finally, we obtain a lower bound for the class of higher-order units with a
restricted number of monomials. In particular, the result shows that the bound
O(nklogd), where k is the number of monomials, obtained in Theorem 17 cannot
be improved with respect to nk.

Corollary 24. Suppose C is the class of higher-order units with n variables where
each wvariable has exponent 1 and each unit consists of at most k monomials
for some arbitrary k satisfying k < 2"/*. Then C has VC dimension at least

[n/2] - |k/2].

Proof. Let r be the largest integer satisfying 2" < k. Clearly, then 2" > |k/2].
If we choose m = |n/2] then m + 2r < [n/2] 4+ 2logk < n, and Theorem 23
implies that there is a set S C R™ of cardinality m - 2" > |n/2| - |k/2]| that is
shattered by the class of higher-order units with at most 2" < k monomials where
each variable has exponent 1. O

We conclude by observing that the previous result also yields a lower bound
for the class of higher-order units with restricted fan-out of the input nodes since,
clearly, each variable occurs in at most £ monomials.

5.2 Networks with Product Units

Multiplication is certainly the simplest type of arithmetical operation that can
be performed by a product unit. All weights just need to be set to 1. Koiran and
Sontag (1997) show that there exist networks consisting of linear and multiplica-
tion units that have VC dimension quadratic in the number of weights. Hence,
this bound remains valid when product units are used instead of multiplication
units and Corollary 1 of Koiran and Sontag (1997) implies that for every W there
is a network with O(W') weights that consists only of linear and product units
and has VC dimension W2. This lower bound is based on the use of networks
with unrestricted depth.

An extension of the result of Koiran and Sontag (1997) is obtained by Bartlett
et al. (1998) who give a lower bound for layered sigmoidal networks in terms of
the number of weights and the number of layers. Using the the constructions
of Koiran and Sontag (1997) and Bartlett et al. (1998) in terms of linear and
multiplication units we deduce that for every L and sufficiently large W there

47



is a network with L layers and O(W) weights that consists only of linear and
product units and has VC dimension at least |L/2] - |[W/2].

Thus, in terms of the number of weights we have a quadratic lower bound
for arbitrary networks and a linear lower bound for networks of constant-depth.
It is known, however, that networks of summing units can have constant depth
and superlinear VC dimension. For threshold units such networks have been con-
structed by Sakurai (1993) and Maass (1994). We show now that also product
unit networks of constant depth can have a superlinear VC dimension. In par-
ticular, we establish this for networks consisting of product and linear units and
having two hidden layers. The numbering of the hidden layers in the following
statement is done from the input nodes toward the output node.

Theorem 25. Let n,k be natural numbers satisfying k < 2"t2. There is a net-
work N with the following properties: It has m input nodes, at most k hidden
nodes arranged in two layers with product units in the first hidden layer and lin-
ear units in the second, and a product unit as output node; furthermore, N' has

2n|k/4]| adjustable and 7|k /4| fized weights. The VC dimension of N is at least
(n — [log(k/4)]) - [k/8] - [log(k/8)].

With the aim of proving this we first establish a lemma in which we introduce
a new kind of summing unit and make use of a property of sets of vectors. A set of
m vectors in R" is said to be in general position if every subset of at most n vectors
is linearly independent. Obviously, a set in general position can be constructed for
any m and n. The new summing unit has weights and a threshold as parameters
and computes its output by applying the activation function 7(y) = 141/ cosh(y)
to the weighted sum. This function has its maximum at y = 0 with 7(0) = 2 and
satisfies lim7(y) = 1 for y — —oo as well as for y — oo.

Lemma 26. Let h,m,r be arbitrary natural numbers. Suppose N is a network
with m+1r input nodes, one hidden layer of h+2" nodes which are summing units
with activation function 1+ 1/ cosh, and a monomial as output node. Then there
1s a set of cardinality h - m - r that is shattered by N .

Proof. The construction is based on methods due to Sakurai and Yamasaki (1992)
and Sakurai (1993). We choose a set {s1,..., Sp.m} € R™ in general position and
let eq,...,e, be the unit vectors in R", that is, they have a 1 in exactly one
component and 0 elsewhere. Clearly then, the set

S = {si:i=1,...,h-m}x{e:j=1,...,7}

is a subset of R™*" with cardinality h - m - r. We show that it can be shattered
by the network N as claimed.

Assume that (Sp, S1) is a dichotomy of S. Let Ly, ..., Lar be an enumeration
of all subsets of the set {1,...,r} and define the function g : {1,...,h-m} —
{1,...,2"} to satisfy

Lywy = {j:siej € Si},
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where s;e; denotes the concatenated vectors s; and e;. For [ = 1,...,2" let
Ry C {s1,...,Shm} be the set

R, = {si:9(i) =1}

For each R; we use [|R;|/m] hidden nodes of which we define the weights as
follows: We partition R; into [|R;|/m] subsets R;,,p =1,...,[|Ri|/m], each of
which has cardinality m, except for possibly one set of cardinality less than m.
For each subset R;, there exist real numbers w; 1, ..., w;pm,tip such that every
si € {s1,..., Spm} satisfies

(Wipts-- s Wipm) - Si—tip =0 1if and only if s; € Ry, (5)

This follows from the fact that the set {s1,..., Sp.m} is in general position. (In
other words, (wip1, .- -, Wpm, tip) represents the hyperplane passing through all
points in R;, and through none of the other points.) With subset R;, we asso-
ciate a hidden node with threshold ¢;, and with weights w;,1,...,w;pm for the
connections from the first m input nodes. Since of all subsets R;, at most h have
cardinality m and at most 2" have cardinality less than m, this construction can
be done with at most h + 2" hidden nodes.

Thus far, we have specified the weights for the connections outgoing from
the first m input nodes. The connections from the remaining r input nodes
are weighted as follows: Let ¢ > 0 be a real number such that for every s; €
{s1,.-.,8nm} and every weight vector (wip 1, .-, Wipm,tip):

If S; Q’ Rl,p then |(wl,p,1, ceey wl,p,m) -8 — tl,p > E.

According to the construction of the weight vectors in (5), such an ¢ clearly exists.

We define the remaining weights wjpm+1, - - -, Wipm+r bY
_ 0 ifj e Ly
Wipmti = { £ otherwise. (6)

This completes the definition of the hidden nodes. We show that they have the
following property:

Claim. If s;e; € Si then there is exactly one hidden node with output value 2; if
sie; € Sy then all hidden nodes yield an output value less than 2.

In order to establish this we observe that according to (5) there is exactly
one weight vector (wyp1, ..., W pm,tip), Wwhere [ = g(7), that yields 0 on s;. If
s;e; € Si then j € Ly, which together with (6) implies that the weighted sum
(Wipmt1s-- -, Wipmtr) - €5 18 equal to 0. Hence, this node gets the total weighted
sum 0 and, applying 1 + 1/cosh, outputs 2. The input vector e; changes the
weighted sums of the other nodes by an amount of at most €. Thus, the total
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weighted sums for these nodes remain different from 0 and, hence, the output
values are less than 2.

On the other hand, if s;e; € Sp then j € Ly;) and the node that yields 0 on
s; receives an additional amount ¢ through weight w; ;. This gives a total
weighted sum different from 0 and an output value less than 2. All other nodes
fail to receive 0 by an amount of more than ¢ and thus have total weighted sum
different from 0 and, hence, an output value less than 2. Thus the claim is proven.

Finally to complete the proof, we do one more modification with the weight
vectors and define the weights for the ouptut node. Clearly, if we multiply all
weights and thresholds defined thus far with any real number o > 0 the claim
above remains true. Since lim(1 + 1/ cosh(y)) = 0 for y — —oo0 and y — oo we
can find an a such that on every s;e; € S the output values of those hidden nodes
that do not output 2 multiplied together yield a value less than 2. Thus, if we
employ a monomial with all exponents equal to 1 for the output node, it follows
from the reasoning above that the output value of the network is at least 2 if and
only if s;e; € Si. This shows that S is shattered by N. O

We now employ the previous result and give a proof of Theorem 25.

Proof of Theorem 25. The idea is to take a set S’ constructed as in Lemma 26
and, as shown there, shattered by a network N’ with a monomial as output
node and one hidden layer of summing units that use the activation function
14 1/cosh. Then S’ is transformed into a set S and N’ into a network A such
that for every dichotomy (S;,S;) induced by N’ on S’ the network N induces
the corresponding dichotomy (Sp, S1) of S.

Assume that n and k are given as supposed and let S’ be the set defined in
Lemma 26 choosing h = |k/8|, m = n — |log(k/4)], and r = |log(k/8)|. Note
that the assumption k < 2"*2 ensures that m > 0. Then S’ has cardinality

m-h-r = (n—[log(k/4)])-[k/8] - [log(k/8)].

Furthermore, we have m + 7 = n — 1 and hence S’ C R*" !, and Lemma 26
implies that S’ is shattered by a network N’ with n — 1 input nodes, a monomial
as output node and one hidden layer of h + 2" < |k/4] summing units with
activation function 1 + 1/ cosh. From S’ we construct S C R* by defining

S = {(en,... e 1.e):(sh,...,s ;)€ S}

n—1

In other words, S is obtained from S’ by appending a component containing 1 to
each vector and applying the function y — exp(y) to every component. On some
input vector s’ € S’ a hidden node of N' with weight vector w and threshold ¢
computes

1 _ exp(w-s' —t) —exp(—w-s' +1t)+2
cosh(w-s' —t)  exp(w-s' —t)+exp(—w-s' +1)

1+ (7)
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If s = (s1,...,8,) is the vector in S obtained from the (unique) vector s’ =
(s},...,s. 1) in S’ then according to the construction of S

n—1
(s,--»8n_1,1) = (In(s1),...,In(sp_1),1n(syn)),

which implies that an exponential in the right-hand side of (7) with weights w
and threshold ¢ yields on input vector s’ the same output as a product unit with
weights w, t on input vector s. (It is clear now that the reason for appending one
component to the vectors in S’ was to accommodate the threshold ¢ as a weight in
a product unit.) Therefore, the computation of a summing unit with activation
function 1+ 1/ cosh on s’ € S’ can be simulated by feeding the vector s € S into
a network with two hidden layers, where the first layer consists of two product
units, the second layer has two linear units, and the output node computes a
division. Furthermore, this network of 4 hidden nodes has 2n connections with
adjustable weights and 7 connections with fixed weights (two for each linear unit,
one for the threshold of the linear unit computing the numerator, and two for
the division).

Replacing all |k/4] hidden nodes of N’ in this way we obtain the network A/
which has at most k£ hidden nodes arranged in two layers where the first hidden
layer consists of product units and the second of linear units. The output node
has to compute a product of divisions which can be done by a single product
unit. Further, N has 2n|k/4| adjustable and 7|k/4| fixed weights. Thus, A has
the properties as claimed and shatters the set S which has the same cardinality
as S’ O

From the previous result we derive the following more simplified ascertainment
of a superlinear lower bound.

Corollary 27. Let n,k be natural numbers where 16 < k < 2%/2*2 There is
a network of product and linear units with n input units, at most k hidden

nodes in two layers, and at most nk weights that has VC dimension at least
(nk/32)log(k/16).

Proof. The network constructed in the proof of Theorem 25 has 2n|k/4] +
7|k/4| < nk/2 + 2k weights, which are, using 2 < n/2 from the assumptions,
not more than nk weights. The VC dimension of this network was shown to be
at least

(n — [log(k/4)]) - |k/8] - [log(k/8)].

Now, k < 27/2+2 implies n — |log(k/4)| > n/2, from k > 16 we get |k/8] >
k/8 —1 > k/16, and at last we use |log(k/8)| > log(k/8) — 1 =log(k/16). O
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(44

Architecture

Class/Single Unit Types

Bound

Remarks

Reference

general feed-
forward

two hidden
layers

one hidden
layer

single unit

class

single

single
single
class

class

single
class

product and
sigmoidal
higher-order
sigmoidal

product and
summing
product and
summing
product and
summing
higher-order

product
monomial

4(Wk)?+ O(Wklog(Wk))
9(W2k)? + O(W?k log(W?2k))

36(WE)* + O((Wk)?log(WE))
Q(W logk)

(Wk)? + O(Wklog W)

4(nl)* + O((nl)? log(nl))

O((nl)*), O(n2llog d), O(nllog dnl)
Q(nl)

Q(nlogn)

O(n2k*), O(nklog d)

Q(nk)

n
n

unit type variable
exponents as parameters

exponents fixed
summing units in second

hidden layer

k hidden nodes
input nodes fan-out <
input nodes fan-out < [,

exponents < d
input nodes fan-out <,

exponents 1

input nodes fan-out 1,

exponents 1

k monomials, exponents

<d

k monomials, exponents

1

Corollary 13
Theorem 15

Theorem 14
Corollary 27

Corollary 8

Corollary 10
Theorem 18
Corollary 24
Corollary 22
Theorem 17
Corollary 24

Theorem 19
Corollary 20

Table 1: A survey of the results. If not otherwise stated, W, k, and n refer to the number of parameters, computation nodes,
and input nodes, respectively. Upper bounds are valid for the pseudo dimension, lower bounds for the VC dimension.



6 Summary and Conclusions

Multiplication is an arithmetical operation that when used in neural networks
certainly helps to increase their computational power by allowing neural inputs
to interact nonlinearly. The question is how this gain is reflected in quantita-
tive measures of complexity and of, in particular, analog computational power.
In this article we have dealt with two such measures: the Vapnik-Chervonenkis
dimension and the pseudo dimension. We have derived upper and lower bounds
on these dimensions for neural networks in which multiplication occurs as a fun-
damental operation in the interaction of network elements. An overview of the
results is given in Table 1, where we present the bounds mainly in asymptotic
form, abstracting from most of the constant factors.

The bounds are given in terms of the numbers of network parameters and
computation nodes and, for classes, in terms of the restrictions that characterize
the architectures in the respective class. We would like to highlight two features:
First, the upper bounds are all polynomials of low order. In particular, the
bound for general feedforward networks exhibits the same order of magnitude as
the best known upper bound for purely sigmoidal networks. And this even in
the case when it is not predetermined whether a node is to become a summing
or a product unit. Second, the upper bounds for higher-order networks, and the
larger bounds for classes of higher-order units, do not involve any constraint on
the order. Therefore, it is impossible to find lower bounds that exhibit a growth
in terms of the order only. This is also indicated by the fact that some lower
bounds for classes of higher-order units are already tight for order one. In this
case, the degree of multiplicativity cannot help in proving better lower bounds.
In general, the results show that multiplication in neural networks does not lead
to an immeasurable growth of VC and pseudo dimension.

In practical uses of artificial neural networks, such as, for instance, in pattern
recognition, higher-order networks and product unit networks are considered as
natural extensions of the classical linear summing networks. We have reported
about some applications where learning algorithms have been designed for train-
ing multiplicative networks. The question, how well networks resulting from these
algorithms generalize is theoretically studied in numerous models of learning. In
a major part of them the VC dimension and the pseudo dimension play a central
role. They can be used to estimate the number of training examples required by
learning algorithms to generate hypotheses with low generalization error. The re-
sults given here imply that estimates can now be given for higher-order sigmoidal
networks that do not come with an a priori restriction of their order. Hence, one
need not cope with a sample complexity that grows with the order. For learning
applications this suggests the use of higher-order networks without any limit on
the order. Further, the estimates are valid for a class of neural network learn-
ing algorithms that has yet to be developed: They hold even if the algorithm is
allowed to decide for each node whether it is to be a summing or a product unit.
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Apart from applications of learning, multiplicative neural networks are used
for modeling the behavior of biological nervous systems or parts thereof. In this
context questions arise as to what type of functions have been captured in a
model that has been constructed in accordance with experimental observations.
The VC dimension and the pseudo dimension are combinatorial measures for the
complexity and diversity of function classes. As such they can be used to compare
networks with respect to their expressiveness. Moreover, using upper bounds on
these dimensions, lower bounds on the size of networks for the computation and
approximation of functions can be calculated. By means of the results given here,
such calculations can now be done for multiplicative neural networks. Thus, a
new tool is available for the assessment of these networks and for the verification
of their proper use in neural modeling.

Our investigations naturally raise some new questions. Most prominently,
since also an open problem for networks of sigmoidal units, is the issue whether
significantly better upper bounds can be shown for networks of fixed depth. The
bounds for depth-restricted networks established so far coincide with the bounds
for general feedforward networks. For the latter, however, quadratic lower bounds
have been derived using a method that does not apply to constant-depth net-
works. Thus, the gap between upper and lower bound for depth-restricted net-
works is larger than in the general feedforward case.

Furthermore, the results yield upper bounds on the fat-shattering dimension.
These bounds, however, are independent of the scaling parameter of the fat-
shattering dimension. If the output node is a linear unit, the fat-shattering
dimension is equal to the pseudo dimension. For the complementary cases it
would be interesting to know whether there are bounds showing that the fat-
shattering dimension decreases with scale.

The lower bounds we presented are all derived for the VC dimension and,
hence, are by definition also valid for the pseudo dimension. It is currently not
known how to obtain lower bounds for the pseudo dimension of neural networks
directly.

Finally, our calculations resulted in several constants being expressed in the
bounds. We did not strive for obtaining optimal values but were content with
the constants being small. Certainly, improvements might be possible using more
detailed calculations or new approaches.
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