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Abstract. The general asymmetric (and metric) TSP is known to be ap-
proximable only to within an O(logn) factor, and is also known to be ap-
proximable within a constant factor as soon as the metric is bounded. In this
paper we study the asymmetric and symmetric TSP problems with bounded
metrics and prove approximation lower bounds of 54/53 and 131/130, re-
spectively, for these problems.

We prove also approximation lower bounds of 321/320 and 743/742 for
the asymmetric and symmetric TSP with distances one and two, improving
over the previous best lower bounds of 2805/2804 and 5381/5380 of Enge-
bretsen for the case of distances one and two, by the order of magnitude.
Furthermore, one of our constructions can be used to improve a recent lower
bound of Papadimitriou and Vempala for the case of symmetric TSP with
unbounded metric.
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1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is the met-
ric TSP, where the distances between the cities satisfy the triangle inequality.
The decision version of this special case was shown to be NP-complete by
Karp [8], which means that we have little hope of computing exact solutions
in polynomial time. Christofides [4] has constructed an elegant algorithm
approximating the metric TSP within 3/2, i.e., an algorithm that always
produces a tour whose weight is at most a factor 3/2 from the weight of the
optimal tour. For the case when the distance function may be asymmetric,
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the best known algorithm approximates the solution within O(logn), where
n is the number of cities [6], although a constant factor approximation algo-
rithm has recently been conjectured [3]. As for lower bounds, Papadimitriou
and Yannakakis [10] have shown that there exists some constant, see also [1],
such that it is NP-hard to approximate the TSP where the distances are
constrained to be either one or two—mnote that such a distance function
always satisfies the triangle inequality—within that constant. This lower
bound was improved by Engebretsen [5] to 2805/2804 — € for the asymmet-
ric and 5381/5380 — € for the symmetric, respectively, TSP with distances
one and two. The instances produced in Engebretsen’s construction also
has the property that every city is close to at most four other cities, i.e.,
that there are at most four other cities at distance one from it; Trevisan [11]
studies TSP for such metrics in greater detail.

It appears that the metric TSP lacks the good properties which have
been needed (so far) for proving strong nonapproximability results. There-
fore, any new insights into explicit lower bounds here seem to be of a con-
siderable interest. Papadimitriou and Vempala [9] recently announced lower
bounds of 42/41 — e and 129/128 — ¢, respectively, for the asymmetric and
symmetric versions, respectively, of the TSP with graph metric, but left
the question of the approximability for the case with bounded metric open.
Apart from being an interesting question on its own, it is conceivable that
the special cases with bounded metric are easier to approximate than the
cases when the distance between two points can grow with the number of
cities in the instance. Indeed, the asymmetric TSP with distances bounded
by B can be approximated within B by just picking any tour as the solution
and the asymmetric TSP with distances one and two can be approximated
within 17/12 [12]. The symmetric version of the latter problem can be ap-
proximated within 7/6 [10].

In this paper, we consider the case when the metric contains only in-
teger distances between one and six and prove a lower bound of 54/53 — €
for the asymmetric case and 131/130 — e for the symmetric case. This is
an improvement of several orders of magnitude compared to the previous
best known bounds of 2805/2804 — e and 5381/5380 — € for this case, respec-
tively [5]. We also prove that it is NP-hard to approximate the asymmetric
TSP with distances one and two within 321/320 — ¢, for any constant ¢ > 0.
For the symmetric version of the latter problem we show a lower bound of
743742 — €.

The method of our proofs depends on explicit reductions from certain
bounded dependency instances of linear equations satisfiability. The main
idea is to construct certain uniform circles of equation gadgets and, in the



second part, certain combined hybrid circle constructions.

Definition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) is
the following minimization problem: Given a collection of cities and a matriz
whose entries are interpreted as the distance from a city to another, find the
shortest tour starting and ending in the same city and visiting every city
exactly once.

Definition 1.2. (1,B)-ATSP is the special case of ATSP where the entries
in the distance matriz obey the triangle inequality and the off-diagonal en-
tries in the distance matriz are integers between 1 and B. (1,B)-TSP is the
special case of (1,B)-ATSP where the distance matriz is symmetric.

2 The hardness of (1,B)-ATSP

We reduce, similarly to Papadimitriou and Vempala [9], from Hastad’s lower
bound for E3-Lin mod 2 [7]. In fact, our gadgets for the (1,B)-ATSP case
are syntactically identical to those of Papdimitriou and Vempala [9] but we
use a slightly different accounting method. The construction consists of a
circle of equation gadgets testing odd parity. This is no restriction since
we can eagsily transform a test for even parity into a test for odd parity by
flipping a literal. Three of the edges in the equation gadget correspond to
the variables involved in the parity check. These edges are in fact gadgets,
so called edge gadgets, themselves. Edge gadgets from different equation
gadgets are connected to ensure consistency among the edges representing
a literal. This requires the number of negative occurrences of a variable to
be equal to the number of positive occurrences. This is no restriction since
we can duplicate every equation a constant number of times and flip literals
to reach this property.

Definition 2.1. E3-Lin mod 2 is the following problem: Given an instance
of n variables and m equations over Z9 with exactly three unknowns in each
equation, find an assignment to the variables that satisfies as many equations
as possible.

Theorem 2.2 [7]. There ezists instances of E3-Lin mod 2 with 2m equa-
tions such that, for any constant € > 0, it is NP-hard to decide if at most
em or at least (1 — e)m equations are left unsatisfied by the optimal assign-
ment. FEach variable in the instance occurs a constant number of times, half
of them negated and half of them unnegated.



Figure 1. The gadget for equations of the form z + y + z = 0. There is
a Hamiltonian path from A to B only if zero or two of the ticked edges are
traversed.

To describe an instance of (1,B)-ATSP, it is enough to specify the edges of
weight one. We do this by constructing an unweighted directed graph G
and then let the (1,B)-ATSP instance have the nodes of G as cities. For two
nodes u and v in G, let £(u,v) be the length of the shortest path from u to v
in G. The distance between two cities u and v is the (1,B)-ATSP instance
is then defined to be min{B, £(u,v)}.

2.1 The gadgets

The equation gadget for equations of the form z + y + z = 0 is shown in
Fig. 1. The key property of this gadget is that there is a Hamiltonian path
through the gadget only if zero or two of the ticked edges are traversed. To
form the circle of equation gadgets, vertex A in one gadget coincides with
vertex B in another gadget.

The ticked edges in Fig. 1 are gadgets themselves. This gadget is shown
in Fig. 2. Each of the bridges, i.e., the pairs of undirected edges in the
gadget, is shared between two different edge gadgets, one corresponding
to a positive occurrence of the literal and one corresponding to a negative
occurrence. The precise coupling is provided by a perfect matching in a 5-
regular bipartite multigraph with the following property: For any partition
of the left k£ vertices into subsets Si, U; and 77 and any partition of the
right k vertices into subsets Sz, Uy and T» such that there are no edges from
Ui to Us, |S1| + |SQ| < k and |U1| + |T2| < |T1| + |U2|, the total number of
edges from vertices in 77 to vertices in T5 is greater than

1 .
o min{|Us| + |Tof, k — |S1] — [S2[}.



Figure 2. The edge gadget consists of five bridges—each of the bridges are
shared between two different edge gadgets.

Figure 3. A traversed edge gadget represents the value 1.

(We sketch the proof that such graphs exist in Sec. 2.3.) The purpose of this
construction is to ensure that it is always optimal for the tour to traverse
the graph in such a way that all variables are given consistent values. The
edge gadget gives an assignment to an occurrence of a variable by the way
it is traversed.

Definition 2.3. We call an edge gadget where all bridges are traversed from
left to right in Fig. 2 traversed and an edge gadget where all bridges are
traversed from right to left untraversed. All other edge gadgets are called
semitraversed.

2.2 Proof of correctness

If we assume that the tour behaves nicely, i.e., that the edge gadgets are
either traversed or untraversed, it is straightforward to establish a corre-
spondence between the length of the tour and the number of unsatisfied
equations.

Figure 4. An untraversed edge gadget represents the value 0.



Lemma 2.4. The only way to traverse the equation gadget in Fig. 1 with a
tour of length 4—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traver-
sals have length 5.

Proof. 1t is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. Any tour traversing one ticked edge
and leaving the other two ticked edges untraversed has length at least 5.
Strictly speaking, it is impossible to have three traversals since this does not
result in a tour. However, we can regard the case when the tour leaves the
edge gadget by jumping directly to the exit node of the equation gadget as
a tour with three traversals; such a tour gives a cost of 5. O

Lemma 2.5. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is 15.

Proof. Each bridge has length 2 and every bridge must have one of the
outgoing edge traversed. Thus, the total cost is 5- (24 1) = 15. O

Lemma 2.6. Suppose that there are 2m equations in the E3-Lin mod 2 in-
stance. If the tour is shaped in the intended way, i.e., every edge gadget
is either traversed or untraversed, the length of the tour is 53m + u, where
u 1s the number of unsatisfied equations resulting from the assignment rep-
resented by the tour.

Proof. The length of the tour on an edge gadgets is 15. There are three
edge gadgets corresponding to every equation and every bridge in the edge
gadget is shared between two equation gadgets. Thus, the length of the tour
on the edge gadgets is 2m - 3 - 15/2 = 45m. The length of the tour on an
equation gadgets is 4 if the equation is satisfied and 5 otherwise. Thus, the
total length is 53m + wu. O

The main challenge now is to prove that the above correspondence between
the length of the optimum tour and the number of unsatisfied equation holds
also when we drop the assumption that the tour is shaped in the intended
way.

To count the excessive cost due to traversed edges of weight more than
one, we note that every traversed edge of weight w > 1 corresponds to
a path of length min{w, B} on edges of weight one. To ease the analysis
of the impact of such tours, we reroute every such tour its corresponding
path if w < Bj; if w > B we make the tour follow the first B/2 and last
B/2 edges of the path and then pretend that the tour does a jump of zero



Figure 5. A traversed edge gadget that shares a bridge with another tra-
versed edge gadget..

cost between these two vertices. For clarity we color these new traversals
red. This produces something which is not a tour—we call it a pseudo-
tour—since some edges are traversed more than once and some vertices are
connected to more than two traversed edges. From now on, most of the
reasoning concerns this pseudo-tour. The following sequence of lemmas give
a lower bound on the extra cost, not counting the “normal” cost of 15 per
edge gadget and 4 per equation gadget, that results from a non-standard
behavior of the tour.

We have already seen that an unsatisfied equation adds an extra cost
of 1. Edge gadgets that are either traversed or untraversed do not add any
extra cost, except for the case when two traversed equation gadgets share
a bridge; this results in a bridge being traversed in both directions by the
pseudo-tour. A pseudo-tour resulting from a proper TSP tour can never
result in two untraversed edge gadgets sharing a bridge; this would imply a
cycle containing three vertices in the original TSP tour.

Lemma 2.7. Two traversed edge gadgets that share a bridge give an extra
cost of 2 to the length of the tour.

Proof. If two traversed edge gadgets are connected, there must be a bridge
that is traversed in both directions. Such a bridge gives an extra cost of 2.
O

So far we have dealt with the traversed and the untraversed edge gadgets.
What remains is the difficult case—the semitraversed edge gadgets.

Lemma 2.8. Suppose that B > 6. Then every semitraversed edge gadget
adds an extra cost of at least one to the length of the tour.

Proof sketch. We call a bridge balanced with respect to a pseudo-tour if
there is at least one edge of the pseudo-tour adjacent to each endpoint of
the bridge. Note that an unbalanced bridge always gives an extra cost of
two, since the bridge must be traversed in both directions by the pseudo-
tour. Thus, we always obtain an extra cost of two if any of the bridges



Figure 6. An unbalanced bridge always gives an extra cost of 2.

Figure 7. A balanced bridge always gives an extra cost of 2.

are unbalanced. This cost can be divided between two semitraversed edge
gadgets, resulting in a cost of at least one per semitraversed edge gadget.
We show one such case in Fig. 6, the other cases are handled similarly.
Now assume that all bridges are balanced. Since the edge gadget is
semitraversed, all bridges cannot be traversed in the same direction. Thus,
there are two adjacent bridges that are traversed in different directions.
When B > 6 this gives an extra cost of two that may be shared by two
different semitraversed edge gadgets. We show one such case in Fig. 7, the
other cases are handled similarly. m|

Lemma 2.9. Suppose that there are 2k occurrences of the variable x. Then
at most k of the equation gadgets corresponding to x can be semitraversed.

Proof. Assume that there are e semitraversed edge gadgets corresponding
to z. Then it is possible to change the length of the tour by making all edge
gadgets corresponding to x either traversed or untraversed—whatever sat-
isfies the largest number of equations. This transformation itself decreases
the length of the tour by at least e, but since we may introduce up to k un-
satisfied equations in the process, we may also get an increase of at most .
Summing up, the length of the tour decreases by at least e — k. This number
is positive when e > k. O

Lemma 2.10. There exists a coupling of the equation gadgets with the prop-
erty that there can never be advantageous to have inconsistently traversed
equation gadgets.



Proof. For any variable z, the number of semitraversed occurrences is at
most k. Consider now the bipartite graph with occurrences of x at one side
and occurrences of z on the other side. Each vertex in this graph can be
labeled as T, U or S, depending on whether it is traversed, untraversed
or semitraversed. Let 77 be the set of traversed positive occurrences and
T5 be the set of traversed negative occurrences. Define Uy, Us, S1, and So
similarly. We can assume that |Ui| + |T2| < |Us| + |T1|—otherwise we just
change the indexing convention.

We now consider a modified tour where the positive occurrences are
traversed and the negative occurrences are untraversed. This decreases the
cost of tour by at least |S1|+ |Sa| + 2|(T1,T2)|, where |(71,T5)| denotes the
number of edges between T} and T», and increases it by min{k, |S1|+ |Se| +
|U1| + |T»|}. But the bipartite graph has the property that

2(T1, To)| > min{|Us| + | T, k — |S1] — [Sa[},

which implies that the cost of tour decreases by this transformation. Thus,
we can assume that z is given a consistent assignment by the tour. O

Theorem 2.11. For any constant € > 0, it is NP-hard to approzimate
(1,6)-ATSP within 54/53 — €.

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,6)-ATSP. This can be done in polynomial time. By the above
lemma, we can assume that all edge gadgets are traversed consistently in
this instance. The assignment obtained from this traversal satisfies 2m — u
equations if the length of the tour is 53m + u. If we could decide if the
length of the optimum tour is at most (53 + €1)m or at least (54 — e2)m, we
could decide if at most e;m or at most (1 — e2)m of the equations are let
unsatisfied by the corresponding assignment. But to decide this is NP-hard
by Theorem 2.2. O

2.3 The bipartite graph

In this section we sketch the proof that there exist bipartite graphs with
good enough expansion properties for the particular set of parameters we
have in our case. The exact statement on all parameters involved is given
in Theorem 2.12 below.

Theorem 2.12. For d > 5 and a large enough constant k, there exists
a bipartite d-regular multigraph on 2k vertices with the following property:



For any partition of the left k vertices into subsets S1, Uy and 11 and any
partition of the right k vertices into subsets So, Uy and T such that there are
no edges from Uy to U, [S1|+[S2| < k and |Ur| + |T2| <k — (|S1]+[52])/2,
the total number of edges from vertices in Ty to vertices in Ts is greater than
S min{|U1] + T,k ~ [$1] - |51}
We view a d-regular bipartite graph as a perfect matching on a dk x dk
bipartite graph—every node in the d-regular graph corresponds to d nodes
in the larger graph. We select a matching uniformly at random and want to
estimate the probability of failure. To do this, we upper bound the number
of “bad” matchings and divide by (dk)!, the total number of matchings.
First note that for any choice of si,t1,u1, s9,t2,us such that s; + ¢ +
u1 = k and so + t9 + ug = k, there are less than 9k ways to partition the
nodes of the d-regular bipartite graph into sets Si,71,U1,S2,T5,Us with
sizes s1,t1,u1, S2, L9, g, respectively. Given such a partition, there are

P(Sla t1,u1, 82,12, U2, €515, et1t2)

d81 d82 dtl dtQ
= e ! e !
<63152> <65152>( 8182) (etltg) (et1t2>( tltz)

X (d(k — u1 — u2) — ey, — €sys,)) ! (dur)!(dus)!
different matchings such that there are e s, edges from S; to Sz and ey,
edges from T to T». Thus, we can bound the probability of failure by
gk
m Z P(Sl, tl, Ui, 892, tg, U2,€51599 etth).
Since the number of terms in the above sum is polynomial in k, we can
approximate the bound by

gk
pOIy(k)WP(Sl, tlaula 52, t?a U2, €559, et1t2)7

where the parameters are chosen to maximize P. Since

d81 d32 dtl dtz
€s155)! €ty
<65152> <68152>( 1 2) <6t1t2> <6t1t2>( t1tz)

is at most

<d(81+t1) ><d(82+t2) )(6 +€tt)!

€s159 + €1t €s159 + €1t

it suffices to consider P(0,t1,u1,0,t2,u2,0, et ,). Furthermore, s1 = s9 =0
implies t; = t2 A u1 = ug, which, in turn, implies that e, = d(t; — u2) =

10



d(ta —u1). Thus, it suffices to consider P(0,k — u,u,0,k — u, u,0,d(k — 2u))
for all u. Write u = ak, then the probability of failure can be bound from
above by

(S0-2k % (g(1 — 2a)k)!((dar)!)?

k \d(1—20a)k
poly(k)9 @n)!

which is equal to

(d(1 — a)k)!(d(1 — a)k)!
(d(1 — 2a)k)I(dk)!

poly(k)9"
By Stirling’s formula, this can be written as

—a 2(1—a) \ dk
pOIY(k) (%((i _ 2201204 )

The latter quantity is strictly less than one for large enough k if

. (1 _ 04)2(1_&)
\/§(1 ~2q)l2a

When d > 5 this is true for 2a > 1—1/(2d), which translates into e, < k/2.

<1

3 The hardness of (1,B)-TSP

To adapt the construction from the previous section for the symmetric case
we need to change some of the gadgets. Most changes in the equation gadgets
are minor—the main change being that we test odd instead of even parity for
equations with three variables (Fig. 8). There is a more substantial change
in the edge gadget; it is changed according to Fig. 9.

If we assume that the tour behaves nicely, it is straightforward to prove
a correspondence between the length of a tour and the number of equations
left unsatisfied by the corresponding assignment.

Lemma 3.1. The only way to traverse the equation gadget in Fig. 8 with a
tour of length 5—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traver-
sals have length 6.

Proof. Tt is easy to see that any tour traversing either one or three of the
ticked edges and leaving the third one untraversed has length 5. Any tour
traversing zero or two ticked edges end up on the wrong side of the gadget
and needs an extra cost of at least one to get back to the other side. O

11



Figure 8. The gadget for equations of the form z +y + 2z = 1. Thereis a
Hamiltonian path from A to B only if one or three of the ticked edges are

traversed.

Figure 9. To transform the edge gadget from Fig. 2 into a gadget that can
be used in the symmetric case, all occurrences of the structure to the left
above are replaced with the structure to the right above.

Lemma 3.2. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is 48.

Proof. The total cost is 5 - (7 + 1) = 40. O

Lemma 3.3. Suppose that there are 2m equations in the E3-Lin instance.
If the tour is shaped in the intended way, i.e., every edge gadget is either
traversed or untraversed, the length of the tour is 130m + u, where u is the
number of unsatisfied equations resulting from the assignment represented
by the tour.

Proof. The length of the tour on the edge gadgets is 18. There are three
edge gadgets corresponding to every equation and every bridge in the edge
gadget is shared between two equation gadgets. Thus, the length of the tour
on the edge gadgets is 2m - 3 - 40/2 = 120m. The length of the tour in the
equation gadgets is 5 if the equation is satisfied and 6 otherwise. Thus, the
total length is 130m + u. |

In the same way as in the asymmetric case, it can be shown that the tour
can be assumed to behave in the intended way. This gives the following
lemma, (we omit the proof):

12



Lemma 3.4. Two traversed edge gadgets that share a bridge give an extra
cost of at least 2 to the length of the tour.

Suppose that B > 6. Then every semitraversed edge gadget adds an extra
cost of at least one to the length of the tour.

Suppose that there are 2k occurrences of the variable x. Then at most k
of the equation gadgets corresponding to = can be semitraversed.

There exists a coupling of the equation gadgets with the property that
there can never be advantageous to have inconsistently traversed equation
gadgets.

Given the above lemma, the main theorem follows in exactly the same way
as in the asymmetric case.

Theorem 3.5. For any constant € > 0, it is NP-hard to approzimate (1,6)-
TSP within 131/130 — .

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,6)-TSP. This can be done in polynomial time. By the above
lemma, we can assume that all edge gadgets are traversed consistently in
this instance. The assignment obtained from this traversal satisfies 2m — u
equations if the length of the tour is 130m + w. If we could decide if the
length of the optimum tour is at most (130 4 €;)m or at least (131 — e3)m,
we could decide if at most e;m or at most (1 — ea)m of the equations are let
unsatisfied by the corresponding assignment. But to decide this is NP-hard
by Theorem 2.2. O

4 The hardness of (1,2)-ATSP

To prove a lower bound for (1,2)-ATSP we apply the construction used by
Berman and Karpinski [2], a reduction from systems of linear equations
mod 2 with exactly three unknowns in each equation to a problem called
Hybrid, to prove hardness results for instances of several combinatorial op-
timization problems where the number of occurrences of every variable is
bounded by some constant.

Definition 4.1. Hybrid s the following mazimization problem: Given a
system of linear equations mod 2 containing n variables, ms equations with
exactly two unknowns, and ms equations exactly with three unknowns, find
an assignment to the variables that satisfies as many equations as possible.

13



Theorem 4.2 [2]. There exists instances of Hybrid with 42v wvariables,
60v equations with two variables, and 2v equations with three variables such
that:

1. Each variable occurs exactly three times.

2. For any constant € > 0, it is NP-hard to decide if at most ev or at
least (1 — €)v equations are left unsatisfied.

Since we adopt the construction of Berman and Karpinski [2], we can partly
rely on their main technical lemmas, which simplifies our proof of correct-
ness.

On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-
cle formed by equation gadgets representing equations of the form z+y+2z =
0 and z+y = 1. These gadgets are coupled in a way ensuring that the three
occurrences of a variable are given consistent values. In fact, the instances of
Hybrid produced by the Berman-Karpinski construction have a very special
structure. Every variable occurs in at least two equations with two un-
knowns, and those equations are all equivalences, i.e., equations of the form
z + y = 0. Since our gadget for equations with two unknowns tests odd
parity, we have to rewrite those equations as = + y = 1 instead. Similarly,
the equations of the form z + y + z = 1 must be rewritten with one variable
negated since our gadgets for equations with three unknowns only test even
parity. Turning to the coupling needed to ensure consistency, we have three
occurrences of every variable. Since we do not have any gadgets testing odd
parity for three variables or even parity for two variables, we may have to
negate some of the occurrences. We now argue that there are either one or
two negated occurrences of every variable. The Hybrid instance produced by
the Berman-Karpinski construction can be viewed as a collection of wheels
where the nodes correspond to variables and edges to equations. The edges
within a wheel all represent equations with two unknowns, while the equa-
tions with three unknowns are represented by hyperedges connecting three
different wheels. Figure 10 gives an example of one such wheel. The equa-
tions corresponding to the edges forming the perimeter of the wheel can be
written as x1 +Zo =1, 29+ Z3 =1, ..., 2 1+ T = 1, and =z + 71 = 1,
which implies that there is at least one negated and at least one unnegated
occurrence of each variable.

Corollary 4.3. There are instances of Hybrid with 42v variables, 60v equa-
tions of the form z+ vy = 1 mod 2, and 2v equations of the form x+y+2z =
Omod 2 or x +y+ z = 0 mod 2 such that:

14



Figure 10. The Hybrid instance produced by the Berman-Karpinski con-
struction can be viewed as a collection of wheels where the nodes correspond
to variables and edges to equations.

1. Each variable occurs exactly three times.

2. There is at least one positive and at least one negative occurrence of
each variable.

3. For any constant € > 0, it is NP-hard to decide if at most ev or at
least (1 — €)v equations are left unsatisfied.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid
of the form described in Corollary 4.3 to instances of (1,2)-ATSP and prove
that, given a tour in the (1,2)-ATSP instance, it is possible to construct an
assignment to the variables in the original Hybrid instance with the property
that the number of unsatisfied equations in the Hybrid instance is related
to the length of the tour in the (1,2)-ATSP instance.

To describe a (1,2)-TSP instance, it is enough to specify the edges of
weight one. We do this by constructing a graph G and then let the (1,2)-
TSP instance have the nodes of GG as cities. The distance between two cities
u and v is defined to be one if (u,v) is an edge in G and two otherwise. To
compute the weight of a tour, it is enough to study the parts of the tour
traversing edges of G. In the asymmetric case G is a directed graph.

Definition 4.4. We call a node where the tour leaves or enters G an end-
point. A node with the property that the tour both enters and leaves G in
that particular node is called a double endpoint and counts as two endpoints.

If ¢ is the number of cities and 2e is the total number of endpoints, the
weight of the tour is ¢ + e since every edge of weight two corresponds to two
endpoints.

15
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Figure 11. The gadget for equations of the form z +y = 1. There is a
Hamiltonian path from A to B only if one of the ticked edges is traversed.

Figure 12. The gadget ensuring consistency for a variable. If there are two
positive occurrences of the variable, the ticked edges corresponding to those
occurrences are represented by the parts enclosed in the dotted curves and
the ticked edge corresponding to the negative occurrence is represented by
the part enclosed in the dashed curve. If there are two negative occurrences,
the roles are reversed.

4.1 The gadgets

The equation gadget for equations of the form z + y + z = 0 is shown in
Fig. 1—the same gadget as in the (1,B) case. However, the ticked edges
now represent a different structure.

The equation gadget for equations of the form z 4+ y = 1 is shown in
Fig. 11. The key property of this gadget is that there is a Hamiltonian path
through the gadget only if one of the ticked edges is traversed.

The ticked edges in the equation gadgets are syntactic sugar for a con-
struction ensuring consistency among the three occurrences of each variable.
As we noted above, either one or two of the occurrences of a variable are
negated. The construction in Fig. 12 ensures that the occurrences are given
consistent values, i.e., that either z =0 and z =1,orzx =1 and z = 0. If
there is one negated occurrence of a variable, the upper part of the gadget
connects with that occurrence and the lower part connects with the two
unnegated occurrences. If there are two negated occurrences, the situation
is reversed.

4.2 Proof of correctness

We want to prove that every unsatisfied equation has an extra cost of one
associated with it. At first, it would seem that this is very easy—the gadget
in Fig. 1 is traversed by a path of length four if the equation is satisfied and
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a path of length at least five otherwise; the gadget in Fig. 11 is traversed
by a path of length one if the equation is satisfied and a path of length
at least two otherwise; and the gadget in Fig. 12 ensures consistency and is
traversed by a tour of length six, not counting the edges that were accounted
for above. Unfortunately, things are more complicated than this. Due to
the consistency gadgets, the tour can leave a ticked edge when it is half-way
through it, which forces us to be more careful in our analysis.

We count the number of endpoints that occur within the gadgets; each
endpoint gives an extra cost of one half. We say that an occurrence of a
literal is traversed if both of its connected edges are traversed, untraversed
if none of its connecting edges are traversed, and semitraversed otherwise.
To construct an assignment to the literals, we use the convention that a
literal is true if it is either traversed or semitraversed. We need to show that
there are two endpoints in gadgets that are traversed in such a way that
the corresponding assignment to the literals makes the equation unsatisfied.
The following lemmas are easy, but tedious, to verify by case analysis:

Lemma 4.5. It is locally optimal to traverse both bridges, i.e., both pairs
of undirected edges, in the consistency gadget.

Proof. By case analysis. |

Lemma 4.6. Every semitraversed occurrence introduces at least one end-
point.

Proof. By case analysis on traversed connection edges. O

Lemma 4.7. It is always possible to change a semitraversed occurrence into
a traversed one without introducing any endpoints in the consistency gadget.

Proof. By case analysis on traversed connection edges. O

Given the above lemmas, the following two lemmas prove the properties we
need regarding the equation gadgets.

Lemma 4.8. A “satisfying traversal” of the gadget in Fig. 11 has length 1,
all other locally optimal traversals have length at least 2, i.e., contain at least
two endpoints within the gadget.

Proof. If one of the ticked edges is traversed and the other is untraversed,
the gadget is traversed by a tour of length 1. It is suboptimal to have one
semitraversed and one untraversed edge, in this case it is possible to shorten
the tour by transforming the semitraversed edge into a traversed one.
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Two untraversed edges give a total cost of at least 2. It is impossible to
have either two traversed edges or one traversed and one semitraversed ticked
edge, since that gives a traversal which is not a tour. Two semitraversed
edges give an extra cost of 3 each, giving a total cost of at least 2. O

Lemma 4.9. A “satisfying traversal” of the gadget in Fig. 1 has length 4,
all other locally optimal traversals have length at least 5, i.e., contain at least
two endpoints within the gadget.

Proof. 1t is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. The case with two semitraversed
occurrences and one untraversed is suboptimal since a shorter tour can be
produced in this way: Make the semitraversed occurrences traversed and
then adjust the tour on the non-ticked edges to get a tour of length 4.
Similarly, the case with one traversed and one semitraversed occurrence can
be transformed into two semitraversed occurrences.

Any tour traversing one ticked edge and leaving the other two ticked
edges untraversed has length at least 5. A tour semitraversing one ticked
edge and leaving the other ticked edges untraversed can be transformed into
a tour with one traversal and two non-traversals. It is impossible to have
three traversals since this does not result in a tour. The case with two
traversals and one semitraversal gives a cost of 5, and so does case with one
traversal and two semitraverals, since each semitraversal has an extra cost
of 4 associated with it. O

When the above lemmas have been proven, we only need to prove that the
gadget we use for consistency actually implements consistency.

Lemma 4.10. The gadget in Fig. 12 ensures consistency and is traversed
by a tour of length 6, not counting the edges or endpoints that were accounted
for in the above lemmas.

Proof. If there are no semitraversed occurrences, the gadget implements
consistency correctly.

Suppose that the upper occurrence in Fig. 12 is semitraversed in such a
way that the leftmost connecting edge is traversed but the rightmost is not.
Then it is possible to have the lower left occurrence untraversed and the
lower right occurrence traversed. Since a semitraversed occurrence is always
part of an unsatisfied equation gadget, the following procedure produces a
tour with equal cost: Make the upper occurrence untraversed and the lower
left occurrence traversed. This makes the equation gadget that the upper
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occurrence is connected to satisfied and may make the equation gadget that
the lower left occurrence is connected to unsatisfied.

Suppose that the lower left occurrence in Fig. 12 is semitraversed in such
a way that the leftmost connecting edge is traversed but the rightmost is not.
Then it is possible to have the lower right occurrence untraversed and the
upper occurrence semitraversed. Since a semitraversed occurrence is always
part of an unsatisfied equation gadget, the following procedure produces a
tour with equal cost: Make the upper occurrence untraversed and the lower
right occurrence traversed. This makes the equation gadget that the upper
occurrence is connected to satisfied and may make the equation gadget that
the lower right occurrence is connected to unsatisfied.

With similar arguments it can be shown that the lemma holds for all
other possible cases. O

By combining the above lemmas, we have shown the following connection
between the length of an optimum tour and the number of unsatisfied equa-
tions in the corresponding instance of Hybrid.

Theorem 4.11. Suppose that we are given an arbitrary instance of Hybrid
with n variables, ma equations of the form x4y = 1 mod 2, and m3 equations
of the formx+y+2=0mod 2 or z +y + Z = 0 mod 2 such that:

1. Each variable occurs exactly three times.

2. There is at least one positive and at least one negative occurrence of
each variable.

Then we can construct an instance of (1,2)-ATSP with the property that a
tour of length 6n 4+ mo + 4ms + u corresponds to an assignment satisfying
all but u of the equations in the Hybrid instance.

Corollary 4.12. For any constant € > 0, it is NP-hard to approrimate
(1,2)-ATSP within 321/320 — €.

Proof. We connect Theorem 4.11 with Corollary 4.3 and obtain an instance
of (1,2)-ATSP with the property that a tour of length
6n+mo+4dms+u=6-42v +60v+4-2v+u = 320v + u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. Since, for any constant ¢ > 0, it is NP-hard to distinguish
the cases u < ¢ and u > 1 — ¢, it is NP-hard to approximate (1,2)-ATSP
within 321/320 — ¢ for any constant € > 0. O
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Figure 13. The gadget for equations of the form z +y = 1. There is a
Hamiltonian path from A to B only if one of the ticked edges is traversed.

5 The hardness of (1,2)-TSP

It is possible to adapt the above construction for (1,2)-ATSP to prove a lower
bound also for (1,2)-TSP. The equation gadget for equations containing three
variables is changed in the same way as in the (1,B) case, the consistency
gadget is change in a similar way.

5.1 The gadgets

The equation gadget for equations of the form z +y = 1 is shown in Fig. 13.
The key property of this gadget is that there is a Hamiltonian path through
the gadget only if one of the ticked edges is traversed.

The equation gadget for equations of the form = +y + z = 1 is shown in
Fig. 8—the same gadget as in the (1,B) case.

The ticked edges in the equation gadgets are syntactic sugar for a con-
struction ensuring consistency among the three occurrences of each variable.
As we noted above, either one or two of the occurrences of a variable are
negated. The construction in Fig. 14 ensures that the occurrences are given
consistent values, i.e., that either z =0 and z =1,orz =1 and z = 0. If
there is one negated occurrence of a variable, the upper part of the gadget
connects with that occurrence and the lower part connects with the two
unnegated occurrences. If there are two negated occurrences, the situation
is reversed.

5.2 Proof of correctness

In the same way as in the asymmetric case, it can be shown that the tour
can be assumed to behave in the intended way. When this result is com-
bined with the lower bound on the approximability of Hybrid, we obtain the
following theorem:

Theorem 5.1. Suppose that we are given an instance of Hybrid with n vari-
ables, mg equations of the form x +y = 1 mod 2, and m3 equations of the
formz+y+2z=0mod 2 or x +y + z = 0 mod 2 such that:

1. Each variable occurs exactly three times.
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Figure 14. The gadget ensuring consistency for a variable. If there are two
positive occurrences of the variable, the ticked edges corresponding to those
occurrences are represented by the parts enclosed in the dotted curves and
the ticked edge corresponding to the negative occurrence is represented by
the part enclosed in the dashed curve. If there are two negative occurrences,
the roles are reversed.

2. There is at least one positive and at least one negative occurrence of
each variable.

Then we can construct an instance of (1,2)-TSP with the property that a
tour of length 16n 4+ mgy + 5ms + u corresponds to an assignment satisfying
all but u of the equations in the Hybrid instance.

Theorem 5.2. For any constant € > 0, it is NP-hard to approzimate (1,2)-
TSP within 743/742 — €.

Proof. We connect Theorem 5.1 with Corollary 4.3 and obtain an instance
of (1,2)-TSP with the property that a tour of length

16n+mo +5mg+u=16-42nu +60v +5-2v 4+ u = 742v 4+ u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. Since, for any constant €’ > 0, it is NP-hard to distinguish
the cases u < ¢ and u > 1 — ¢, it is NP-hard to approximate (1,2)-TSP
within 743/742 — € for any constant € > 0. O

6 The unbounded metric case

Finally, we note that the equation gadget in Fig. 8 can be used to improve
the bound given by Papadimitriou and Vempala [9] for the symmetric TSP
with graph metric. Their construction has the property that the cost of a
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standard tour that corresponds to an assignment satisfying all but K equa-
tions is

3
4(8+1)-7n+10n+K,

where the first term corresponds to the cost of traversing the edge gadgets
and the other two terms correspond to the cost of traversing the equation
gadgets [9]. By removing the center node in every bridge in the edge gadgets
and replacing the equation gadget with our gadget from Fig. 8, the cost
becomes

3
4(7+1)-7n+5n+K:53n+K,

which gives a lower bound of 107/106 + e.

7 Conclusions

It should be possible to improve the reduction by eliminating the vertices
that connect the equation gadgets for z + y + z = {0,1} with each other.
This reduces the cost of those equation gadgets by one, which improves our
bounds—but only by a miniscule amount. The big bottleneck, especially
in the (1,2) case, is the consistency gadgets. If, for the asymmetric case,
we were able to decrease the cost of them to four instead of six, we would
improve the bound to 237/236 — ¢; if we could decrease the cost to three, the
bound would become 195/194 — e. We conjecture that some improvement
for the (1,2) case is still possible along these lines.
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