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Abstract. The general asymmetric TSP with triangle inequality is known
to be approximable only within an O(logn) factor, and is also known to
be approximable within a constant factor as soon as the metric is bounded.
In this paper we study the asymmetric and symmetric TSP problems with
bounded metrics, i.e., metrics where the distances are integers between one
and some upper bound B. We first prove approximation lower bounds of
321/320 and 741/740 for the asymmetric and symmetric TSP with distances
one and two, improving over the previous best lower bounds of 2805/2804
and 5381/5380. Then we consider the TSP with triangle inequality and
distances that are integers between one and eight and prove approximation
lower bounds of 131/130 for the asymmetric and 405/404 for the symmetric,
respectively, version of that problem, improving over the previous best lower
bounds of 2805/2804 and 3813/3812 by an order of magnitude.
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1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is the met-
ric TSP, where the distances between the cities satisfy the triangle inequality.
The decision version of this special case was shown to be NP-complete by
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Karp [13], which means that we have little hope of computing exact solutions
in polynomial time. Christofides [7] has constructed an elegant algorithm
approximating the metric TSP within 3/2, i.e., an algorithm that always
produces a tour whose weight is at most a factor 3/2 from the weight of the
optimal tour. For the case when the distance function may be asymmetric,
the best known algorithm approximates the solution within O(logn), where
n is the number of cities [10], although a constant factor approximation algo-
rithm has recently been conjectured [6]. As for lower bounds, Papadimitriou
and Yannakakis [15] have shown that there exists some constant, see also [1],
such that it is NP-hard to approximate the TSP where the distances are con-
strained to be either one or two—note that such a distance function always
satisfies the triangle inequality—within that constant. This lower bound
was improved by Engebretsen [8] to 2805/2804 — ¢ for the asymmetric and
5381/5380 — e for the symmetric, respectively, TSP with distances one and
two. Bockenhauer et. al [4, 5] considered the symmetric TSP with distances
one, two and three, and were able to prove a lower bound of 3813/3812 — e.
(For a discussion of bounded metric TSP, see also Trevisan [16].) It appears
that the metric TSP lacks the good definability properties which seem to
be needed for proving strong inapproximability results. Therefore, any new
insights into explicit lower bounds here seem to be of a considerable interest.

Papadimitriou and Vempala [14] recently announced lower bounds of
42/41 — e and 129/128 — ¢, respectively, for the asymmetric and symmetric
versions, respectively, of the TSP with graph metric, but left the question of
the approximability for the case with bounded metric open. However, their
proof contained an error influencing the explicit constants. A new proof with
the new constants of 98/97 — e and 234/233 — ¢, respectively, has been com-
municated to us by Papadimitriou and Vempala (April 2001). Apart from
being an interesting question on its own, it is conceivable that the special
cases with bounded metric are easier to approximate than the cases when
the distance between two points can grow with the number of cities in the
instance. Indeed, the asymmetric TSP with distances bounded by B can be
approximated within B by just picking any tour as the solution and the asym-
metric TSP with distances one and two can be approximated within 4/3 [3].

The symmetric version of the latter problem can be approximated within
7/6 [15].

Definition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) is
the following minimization problem: Given a collection of cities and a matriz
whose entries are interpreted as the distance from a city to another, find the
shortest tour starting and ending in the same city and visiting every city



exactly once.

Definition 1.2. (1,B)-ATSP is the special case of ATSP where the entries
in the distance matriz obey the triangle inequality and the off-diagonal entries
in the distance matriz are integers between 1 and B. (1,B)-TSP is the special
case of (1,B)-ATSP where the distance matriz is symmetric.

In this paper, we first prove that it is NP-hard to approximate the asym-
metric TSP with distances one and two within 321/320 — ¢, for any constant
€ > 0. For the symmetric version of the latter problem we show a lower
bound of 741/740 — e. The previously best known bounds for this case are
2805/2804 —€ and 5381/5380—¢, respectively [8|. Our proofs contain explicit
reductions from certain bounded dependency instances of linear equations
satisfiability. The main idea is to represent every equation by a gadget and
then link these gadgets together in a circle.

We then consider the case when the metric contains only integer distances
between one and eight and prove, by generalizing the recent construction of
Papadimitriou and Vempala, lower bound of 131/130 — € for the asymmetric
case and 405/404 — e for the symmetric case.* This is an improvement of an
order of magnitude compared to the previous best bounds of 2805/2804 — e
and 3813/3812 — ¢ for this case, respectively [4, 5, 8]. This requires us to
establish the existence of a 7-regular bipartite graph with certain expansion
properties—a result that may be of independent interest.

2 The hardness of (1,2)-ATSP

To prove a lower bound for (1,2)-ATSP we reduce from the problem Hybrid,
introduced by Berman and Karpinski [2] to prove hardness results for in-
stances of several combinatorial optimization problems where the number of
occurrences of every variable is bounded by some constant.

Definition 2.1. Hybrid is the following mazimization problem: Given a sys-
tem of linear equations mod 2 containing n variables, mo equations with ez-
actly two unknowns, and ms equations exactly with three unknowns, find an
assignment to the variables that satisfies as many equations as possible.

Theorem 2.1 [2]. There exists instances of Hybrid with 42v variables, 60v
equations with two variables, and 2v equations with three variables such that:

*In a preliminary version of this paper [9] we erroneously claimed slightly better bounds
for these two problems.



1. Each variable occurs exactly three times.

2. For any constant € > 0, it is NP-hard to decide if at most €'v or at
least (1 — €')v equations are left unsatisfied.

Since we adopt the construction of Berman and Karpinski [2], we can partly
rely on their main technical lemmas, which simplifies our proof of correctness.
In fact, every instance of Hybrid produced by the Berman-Karpinski
construction has a very special structure. It can be viewed as a collection
of wheels where the nodes correspond to variables and edges to equations.
Figure 1 gives an example of one such wheel. The (hyper)edges connecting
different wheels represent equations containing three unknowns. They are of
the form z + y + z = {0, 1}; the number of such equations with right-hand
side 0 is equal to the number of such equations with right-hand side 1. The
edges within a wheel all represent equations of the form z; + z; = 0. To
get exactly one negated occurrence and exactly two unnegated occurrences
of each variable, we rewrite the equations corresponding to the perimeter of
the wheel as 1 +Zo =1, 204+ Z3 =1, ..., 2, 1+ % =1, and 25 + 21 = 1.

Figure 1. The Hybrid instance produced by the Berman-Karpinski con-
struction can be viewed as a collection of wheels where the nodes correspond
to variables and edges to equations.

Corollary 2.1. There are instances of Hybrid with 42v variables, 42v equa-
tions of the form r+y = 1 mod 2, 18v equations of the form x+y = 0 mod 2,
v equations of the form x +y + z = 0 mod 2, and v equations of the form
z+y+z=1mod 2 such that:

1. FEach variable occurs exactly three times, one time negatively and two
times positively.



2. For any constant € > 0, it is NP-hard to decide if at most €'v or at
least (1 — €')v equations are left unsatisfied.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid
of the form described in Corollary 2.1 to instances of (1,2)-ATSP and prove
that, given a tour in the (1,2)-ATSP instance, it is possible to construct an
assignment to the variables in the original Hybrid instance with the property
that the number of unsatisfied equations in the Hybrid instance is related to
the length of the tour in the (1,2)-ATSP instance.

Theorem 2.2. Suppose that we are given an arbitrary instance of Hybrid
with n variables, mo equations of the form x +y = 0 mod 2, mo 1 equations
of the form z+%4 = 1 mod 2, m3 equations of the form x+y+2z = 0 mod 2,
and m3 1 equations of the form x +y+ z = 1 mod 2 such that mzo > 0 and
each variable occurs exactly three times, two times positively and one time
negatively.

Then we can construct an instance of (1,2)-ATSP with the property that
a tour of length 6n + moo + ma1 + 4m3zo + 4m31 + u corresponds to an
assignment satisfying all but u of the equations in the Hybrid instance.

Corollary 2.2. For any constant € > 0, it is NP-hard to approzimate (1,2)-
ATSP within 321/320 — €.

Proof. Select € > 0 such that (321 —€')/(320 + €') > 321/320 — e. Consider
an instance of Hybrid with the structure described in Corollary 2.1. By
Theorem 2.2 we can construct an instance of (1,2)-ATSP with the property
that a tour of length

6n—|—m2,0—|—m2,1+4m3,0—|—4m3,1—|—u = 6-42v+42v+18v+4v+4v+u = 320v+u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. By Corollary 2.1 it is NP-hard to distinguish the cases
u < € and u > 1 — ¢'; therefore it is NP-hard to approximate (1,2)-ATSP
within (321 — €/)/(320 + €¢') > 321/320 — e. .

The rest of this section is devoted to the proof of Theorem 2.2. On a high
level, the (1,2)-ATSP instance in our reduction consists of a circle formed
by equation gadgets representing the equations occurring in the correspond-
ing instance of Hybrid. These equation gadgets are also connected through
consistency checkers to ensure that it is possible to recover a consistent as-
signment from a tour.

To describe a (1,2)-TSP instance, it is enough to specify the edges of
weight one. We do this by constructing a graph G and then let the (1,2)-
TSP instance have the nodes of G as cities. The distance between two cities



u and v is defined to be one if (u,v) is an edge in G and two otherwise. To
compute the weight of a tour, it is enough to study the parts of the tour
traversing edges of G. In the asymmetric case G is a directed graph.

Definition 2.2. We call a node where the tour leaves or enters G an end-
point. A node with the property that the tour both enters and leaves G in
that particular node is called a double endpoint and counts as two endpoints.

If ¢ is the number of cities and 2e is the total number of endpoints, the
weight of the tour is ¢ + e since every edge of weight two corresponds to two
endpoints.

Figure 2. The above figure contains two partial tours—one entering the
graph at A and leaving at B, and one both entering and leaving at C. The
vertices A and B are endpoints and C is a double endpoint. The dashed
parts of the tour denotes parts where the tour traverses edges with weight
two.

2.1 The gadgets

The equation gadgets for equations of the form =z +y+ z = {0,1} are shown
in Fig. 3. For homogeneous equations, the gadget is syntactically the same
as the one used by Papadimitriou and Vempala [14]. The ticked edges are
syntactic sugar for a construction ensuring consistency among the three oc-
currences of each variable. As we noted above, exactly one of the occurrences
of a variable is negated. The construction in Fig. 4 ensures that the occur-
rences are given consistent values, i.e., that either x = 0 and z = 1, or
z =1 and £ = 0. We say that the consistency checker has an upper level,
corresponding to the negative occurrence of the variable, and a lower level,
corresponding to the two positive occurrences. We use the term occurrence
also to denote the path inside the consistency checker from an incoming
connecting edge to the corresponding outgoing one. We say that an occur-
rence of a literal is traversed if both of its connecting edges are traversed,
untraversed if none of its connecting edges are traversed, and semitraversed
otherwise.



Figure 3. The gadget for equations of the form x + y + z = 0 (left) and
z +y+ 2z =1 (right). There is a path of length 4 from A to B in the left
gadget only if an even number of ticked edges is traversed and a path of
length 5 in the right gadget only if an odd number of the ticked edges is
traversed. All other traversals have an extra cost of at least 1.

Figure 4. The gadget ensuring consistency for a variable. The ticked
edges corresponding to the two positive occurrences are represented by the
parts enclosed in the dotted curves and the ticked edge corresponding to the
negative occurrence is represented by the part enclosed in the dashed curve.



The equation gadgets for equations of the form z +y = {0, 1} are shown
in Fig. 5. Note that there is no vertex between the two ticked edges in
the gadget corresponding to equations of the form =z + y = 0. Instead, the
edge leaving the consistency checker corresponding to the first ticked edge
is merged with the edge entering the consistency checker corresponding to
the second ticked edge as shown in Fig. 6. This implies that the number
of traversed edges in a satisfying traversal of the gadget—a traversal where
either both or none of the occurrences are traversed—is 1, not counting the
6 edges that are attributed to each consistency checker.

The equation gadgets are hooked together in a circle in such a way that
the vertex B in each gadget is identified with the vertex A in another gadget.
The order of the gadgets is as follows: first all gadgets for equations of the
form z +y+ z = 1, then the gadgets for equations of the form z+y+ 2z = 0,
and finally the gadgets for equations with arity two. To make the amortized
cost of the gadgets for equations of the form x + y + z = 1 lower—to match
the cost of the gadgets for equations of the form x + y + z = 0—we combine
the three outgoing edges for one gadget with the incoming edges for the next
gadget as shown in Fig. 7.

The tour is intended to traverse the consistency checkers as shown in
Fig. 11. This makes, for every variable z, the ticked edges corresponding
to z and z, respectively, traversed in a consistent way. If we let a traver-
sal encode that the corresponding occurrence should be 1, it is easy to see
that there will be two endpoints in the equation gadgets corresponding to
unsatisfied equations and no endpoints anywhere else. A slight technicality
arises here since the three occurrences in a gadget corresponding to equa-
tions of the form = + y + z = 0 cannot be simultaneously traversed—that
would result in a short cycle. Therefore, we allow the tour to leave the
consistency checker corresponding to one of the occurrences just after the
bridge, see Figs. 12a—d, and then jump directly to B in Fig. 3. Similarly, we
allow gadgets corresponding to equations of the form = 4+ y = 0 to have one
untraversed and one semitraversed consistency checker. In both of the above
cases we still have two endpoints, one in the consistency checker and one in
the equation gadget.

Definition 2.3. We say that a tour is normal if all occurrences are either
traversed or untraversed, except for the case when there are two traversed
and one semitraversed occurrence in an equation gadget for equations of the
form x +y+ z = 0 or one untraversed and one semitraversed occurrence in
an equation gadget for equations of the form x +y = 0.

Definition 2.4. A tour is strictly normal, if it is normal and it is impossible
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Figure 5. The gadget for equations of the form x+y = 0 (left) and z+y =1
(right). There is a Hamiltonian path from A to B only if an even (left) or
odd (right) number of the ticked edges is traversed.

Figure 6. A more detailed view of the gadget for equations of the form
x +y = 0. In this figure the ticked edges have been expanded to show the
consistency checkers. The black edges correspond to the gadget shown in
Fig. 5

Figure 7. The cost of the gadgets for equations of the form z +y+2z =1 is
lowered by the above transformation. The last equation gadget for equations
of the form z+y+ 2z = 1 is joined with the first equation gadget for equations
of the form z + y + z = 0 in a similar way.



to change any traversal of the form shown in Fig. 9 into the form shown in
Fig. 11 without increasing the length of the tour.

Lemma 2.1. Suppose that we are given an instance of Hybrid and construct
from that instance an instance of (1,2)-ATSP as described above. Then it is
possible to obtain from a strictly normal tour in this (1,2)-ATSP instance an
assignment to the variables in the Hybrid instance such that there are two
endpoints in the tour for every equation that is left unsatisfied and no other
endpoints.

Proof. The variables are given assignments as follows: Variables whose con-
sistency checkers are traversed according to Figs. 9c and 11a are assigned 0;
variables whose consistency checkers are traversed according to Figs. 9a—
b, 11b and 12a-d are assigned 1. Since the tour is assumed to be strictly
normal, and therefore normal, this covers all possible cases.

The only equations that are unsatisfied by this assignment are the ones
where there are two endpoints within the corresponding equation gadget.
Moreover there are no endpoints in other equation gadgets. .

2.2 Normalizing a tour

We want to prove that every unsatisfied equation has an extra cost of one
associated with it. At first, it would seem that this is very easy—the gadgets
in Fig. 3 is traversed by a path of length four if the equation is satisfied and a
path of length at least five otherwise; the gadgets in Fig. 5 are traversed by a
path of length one if the equation is satisfied and a path of length at least two
otherwise; and the construction in Fig. 4 ensures consistency and is traversed
by a tour of length six, not counting the edges that were accounted for above.
Unfortunately, things are slightly more complicated than this. Due to the
consistency checkers, the tour can leave a ticked edge when it is half-way
through it, which forces us to be more careful in our analysis. Using a chain
of local alterations of the tour, we prove that any tour can be normalized,
i.e., converted into a strictly normal tour, of equal or lower cost. We can
then recover an assignment to the variables in the Hybrid instance from this
tour as described in Lemma 2.1. The normalization proceeds in four phases.

2.2.1 Make all bridges traversed

In the first phase, we first make all bridges, i.e., all pairs of undirected edges
in the consistency checkers, traversed. By Lemma 2.2, this does not increase
the length of the tour. Then we observe that some of the resulting traversals

10



are suboptimal and can be transformed into other traversals according to
Lemma 2.3.

Lemma 2.2. Any tour can be modified to traverse both bridges in every
consistency checker. Moreover, this transformation does not increase the
length of the tour.

Proof. By case analysis on the traversed connection edges. The lemma
is clearly true if either the upper two or the lower four connection edges
are traversed—then it is locally optimal to traverse the gadget as shown in
Fig. 11. The case when none of the upper (but a subset of the lower) edges
are traversed, and the case when none of the lower (but a subset of the
upper) edges are traversed are treated in the same way. We now cover the
remaining cases by an argument involving each bridge separately. When at
most one of the four attaching edges are traversed by the tour, it is clearly
locally optimal to traverse the bridge. The remaining cases are shown in
Fig. 8. "

1137
111}

Figure 8. It is possible to change the traversals in the left column into
the traversals in the right column without increasing the total number of
endpoints in the graph.
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Lemma 2.3. It is locally optimal to traverse the consistency checker as
shown in Figs. 9, 10a—d, 11, and 12a—h.

Proof. By Lemma 2.2 it is locally optimal to traverse both bridges in the
consistency checker. Therefore, an exhaustive list of possible traversals is
shown in Figs. 9, 10, 11, and 12. Without increasing the number of endpoints
in the tour, we can replace the traversals shown in Figs. 10e, g and i with
the traversal shown in Fig. 10a; the ones shown in Figs. 10f, h and j with
the one shown in Fig. 10b; and the ones shown in Figs. 12i-1 with the one
shown in Fig. 9c. .

2.2.2 Remove most of the semitraversals

In the second phase we remove most of the semitraversals on the lower level
of the consistency checkers by repeatedly using the following observation:

Lemma 2.4. A semitraversed occurrence on the lower level of the consis-
tency gadget can be made traversed without affecting the other occurrences
in the gadget.

Proof. By Lemma 2.2, we can assume that the semitraversed occurrence has
only one of its connecting edges traversed (see also Fig. 12). Therefore, we
can make the semitraversed occurrence traversed without changing the tour
on edges of the gadget outside that occurrence. .

Note that lower semitraversals always correspond to positive occurrences. We
now transform the equation gadgets in such a way that most of the lower
semitraversals disappear and the length of tour does not increase. Remember
that we allow an equation gadget to have one semitraversed occurrence in
certain cases according to Definition 2.3. We treat each type of equation
gadget separately. After the transformations, we can assume that the tour
has the following structure: The consistency checkers are traversed as shown
in Figs. 9, 10a—d, 11, and 12a~h. The only semitraversed occurrences that
remain appear in equations of the form z+¢ = 1 together with an untraversed
occurrence, in equations of the form x + y = 0 together with an untraversed
occurrence and in equations of the form x + y + z = 0 together with two
traversed occurrences. Moreover, the semitraversed occurrences in equations
of the form x + 4 = 1 always correspond to the negated variable.

12



(a) (b)

(c)

Figure 9. If there are no semitraversed occurrences in the consistency
checker but the occurrences are still inconsistent, the checker has to be tra-
versed as shown above.

(a) (b)

(c) (d)
(e) (f)
(8) (h)
(i) 4

Figure 10. If the negative occurrence in the consistency checker is semitra-
versed, the checker has to be traversed as shown above.

13



(a) (b)

Figure 11. If either the upper two or the lower four connection edges
are traversed in the consistency gadget, it is locally optimal to traverse the
gadget as shown above.

(a) (b)

(c (d)
() (f)
(8) (h)

(i) &)
(k) 1)
Figure 12. If there is at least one semitraversed occurrence in the con-

sistency checker but the upper level is untraversed, the checker has to be
traversed as shown above.

14



x+y+z = 0: If there are three semitraversed occurrences we make two of
them traversed—that removes two endpoints. If there are two semitraversed
occurrences and one traversed we make one of the semitraversed occurrences
traversed—that keeps the number of endpoints constant. If there are two
semitraversed occurrences and one untraversed we make both semitraversed
occurrences traversed—that removes two endpoints. If there is one semi-
traversed occurrence and two untraversed ones we make the semitraversed
occurrence traversed—that keeps the number of endpoints constant. If there
is one semitraversed occurrence, one traversed and one untraversed we make
the semitraversed one traversed—that removes two endpoints. The remain-
ing cases—either no semitraversals or one semitraversal together with two
traversals—are left unchanged.

x4+ y+ z = 1: We can make any semitraversed occurrence traversed
and then adjust the tour on the gadget in such a way that the total num-
ber of endpoints does not increase: If there are initially three semitraversed
occurrences we remove at least two endpoints. If there are initially two semi-
traversed occurrences and one traversed, we remove two endpoints. If there
are initially two semitraversed occurrences and one untraversed, we keep the
number of endpoints constant. If there is initially one semitraversed occur-
rence and either two traversed or two untraversed, we remove two endpoints.
Finally, if there is initially one semitraversed, one traversed and one untra-
versed occurrence, we keep the number of endpoints constant.

x+y = 0: If both occurrences are semitraversed we make them traversed—
that removes two endpoints. If one occurrence is traversed and one is semi-
traversed we make the semitraversed one traversed—that removes two end-
points. It is impossible to have one traversed and one untraversed occurrence
due to the construction of the equation gadget (see Fig. 6). The remaining
two cases are left unchanged.

z+y = 1: If both occurrences are semitraversed we make z traversed and
1 untraversed—that keeps the number of endpoints constant but removes
the two semitraversals. If z is semitraversed and ¥ is untraversed we make
x traversed—that removes two endpoints. It is impossible to have two tra-
versed occurrences since that results in a vertex which the alleged tour leaves
in two different directions. Similarly, it is impossible two have one traversed
and one semitraversed occurrence. The remaining case, r untraversed and
7 semitraversed, is left unchanged.

15



2.2.3 Remove the upper semitraversals

In the third phase we remove the upper semitraversals. This is actually
the most non-trivial transformation, since it relies on the fact that the tour
already has a certain structure. Note, that if the occurrence is traversed as
shown in Fig. 12a-b it can be made traversed without affecting the lower
occurrences, otherwise a more careful argument is needed. After this phase,
the tour is normal. We repeat the following procedure for every semitraversed
upper occurrence ¥:

If y appears together with an untraversed occurrence z in an equation
of the form x 4+ § = 1 and ¢ is traversed as shown in Fig. 12a—b, we make
y traversed—that saves two endpoints.

If 4y appears together with an untraversed occurrence z in an equation of
the form z + g = 1 and ¢ is traversed as shown in Fig. 12c—d, we also make
1y traversed. This makes the lower traversed occurrence untraversed and adds
two endpoints in the equation gadget corresponding to that occurrence, but
this cost is set off against two saved endpoints in the gadget corresponding
to £ + 4 = 1. Hence, the total number of endpoints is unchanged by the
transformation.

2.2.4 Remove some inconsistent non-semitraversed checkers

In the fourth and final phase, we iterate through all consistency checkers that
are traversed according to Fig. 9. If it is possible to make them traversed
according to Fig. 11 without increasing the number of endpoints, we do so.
After this phase, the tour is strictly normal.

2.2.5 Construct the assignment

Since the tour is now strictly normal, we can construct an assignment to the
variables in the obvious way. Moreover, this assignment has the property
that there are two endpoints for every unsatisfied equation and no other
endpoints. Theorem 2.2 follows.

Proof of Theorem 2.2. Given an instance of Hybrid with the structure de-
scribed in Corollary 2.1, the instance of (1,2)-ATSP is constructed as de-
scribed above. By the normalization we can assume that the tour is strictly
normal. We can thus construct an assignment to the variables as described
in the proof of Lemma 2.1; this assignment leaves u equations unsatisfied
when the length of the tour is 6n 4+ mog + ma 1 + 4m3 o + 4m3 1 + u. "
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3 The hardness of (1,2)-TSP

It is possible to adapt the above construction for (1,2)-ATSP to prove a lower
bound also for (1,2)-TSP, yielding the following result:

Theorem 3.1. Suppose that we are given an arbitrary instance of Hybrid
with n variables, ma o equations of the form x4y = 0 mod 2, mg 1 equations
of the form z+%4 = 1 mod 2, m3 equations of the form x+y+2z = 0 mod 2,
and m3,1 equations of the form x 4+ 1y + 2z =1 mod 2 such that m3o > 0 and
each variable occurs exactly three times, two times positively and one time
negatively.

Then we can construct an instance of (1,2)-TSP with the property that
a tour of length 16n + moo + mo1 + 4m3zg + 4m31 + u corresponds to an
assignment satisfying all but u of the equations in the Hybrid instance.

Corollary 3.1. For any constant € > 0, it is NP-hard to approximate (1,2)-
TSP within 741/740 — e.

Proof. Select € > 0 such that (741 — €’) /(740 + €') > 741/740 — e. Consider
an instance of Hybrid with the structure described in Corollary 2.1. By
Theorem 3.1 we can construct an instance of (1,2)-TSP with the property
that a tour of length

16 -42v +42v + 18v +4v +4v +u = 740v + u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. By Corollary 2.1 it is NP-hard to distinguish the cases
u < € and u > 1 — €'; therefore it is NP-hard to approximate (1,2)-TSP
within (741 — €') /(740 + €') > 741/740 — e. .

We now describe how to construct the instances of (1,2)-TSP described in
Theorem 3.1. The equation gadgets for the symmetric case are shown in
Figs. 13 and 14. As in the asymmetric case the ticked edges are syntactic
sugar for a construction ensuring consistency among the three occurrences of
each variable. The construction is shown in Fig. 15 and expanded versions
of the gadgets for equations of the foom z +y+ 2z = 0 and z + y = 0,
respectively, are shown in Figs. 16 and 17, respectively. In the same way as
in the asymmetric case, the equation gadgets are connected in a circle. We
also use the same trick as in the asymmetric case to lower the cost for the
equation gadgets for equations of the form z + y + z = 1 by one, to make
it the same as the cost for the equation gadgets for equations of the form
z+y+2z2=0.

17
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Figure 13. The gadget for equations of the form z + y + z = 0 (left) and
z +y+ 2z =1 (right). There is a path of length 4 from A to B in the left
gadget only if an even number of ticked edges is traversed and a path of
length 5 in the right gadget only if an odd number of the ticked edges is
traversed. All other traversals have an extra cost of at least 1.

Figure 14. The gadget for equations of the form z +y = 0 (left) and
z +y =1 (right). There is a Hamiltonian path from A to B only if an even
(left) or odd (right) number of the ticked edges is traversed.

Figure 15. The gadget ensuring consistency for a variable. The ticked
edges corresponding to the two positive occurrences are represented by the
parts enclosed in the dotted curves and the ticked edge corresponding to the
negative occurrence is represented by the part enclosed in the dashed curve.
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Figure 16. A more detailed view of the gadget for equations of the form
x4+ y+ 2z = 0. The figure shows how the three variable gadgets meet in
the center of the gadget. The black edges above correspond to the ticked
edges in Fig. 13 and the three labeled vertices above are the same as the
corresponding vertices in Fig. 13.

Figure 17. A more detailed view of the gadget for equations of the form
x +y = 0. In this figure the ticked edges have been expanded to show the
consistency checkers. The black edges correspond to the gadget shown in
Fig. 14



The tour is intended to traverse the consistency checkers as shown in
Fig. 18. This makes, for every variable z, the ticked edges corresponding
to z and z, respectively, traversed in a consistent way. If we let a traversal
encode that the corresponding occurrence should be 1, it is easy to see that
there will be two endpoints in the equation gadgets corresponding to unsat-
isfied equations and no endpoints anywhere else. Again, a slight technicality
arises here since the three occurrences in a gadget corresponding to equa-
tions of the form x + y + z = 0 cannot be simultaneously traversed—this
technicality is resolved in the same way as in the asymmetric case. Similarly,
we allow gadgets corresponding to equations of the form z + y = 0 to have
one untraversed and one semitraversed consistency checker. In both of the
above cases we still have two endpoints, one in the consistency checker and
one in the equation gadget.

Lemma 3.1. Suppose that we are given an instance of Hybrid and construct
from that instance an instance of (1,2)-TSP as described above. Then it is
possible to obtain from a strictly normal tour in this (1,2)-TSP instance an
assignment to the variables in the Hybrid instance such that there are two
endpoints in the tour for every equation that is left unsatisfied and no other
endpoints.

Proof. The variables are given assignments as follows: Variables whose con-
sistency checkers are traversed according to Figs. 18a and 20c are assigned 0;
variables whose consistency checkers are traversed according to Figs. 18b,
20a—b and 21 are assigned 1. Since the tour is assumed to be strictly nor-
mal, and therefore normal, this covers all possible cases.

The only equations that are unsatisfied by this assignment are the ones
where there are two endpoints within the corresponding equation gadget.
Moreover there are no endpoints in other equation gadgets. "

3.1 Normalizing a tour

As in the asymmetric case, we need to prove that every unsatisfied equation
has an extra cost of one associated with it. The steps in the normalization
are exactly the same in the symmetric and the asymmetric cases; therefore
we only give the proof of the analogue of Lemma 2.2—the lemma establishing
that it is locally optimal to traverse the bridges in the consistency checkers.

Lemma 3.2. Any tour can be modified to traverse both bridges in every
consistency checker. Moreover, this transformation does not increase the
length of the tour.
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Figure 18. If either the upper two or the lower four connection edges
are traversed in the consistency gadget, it is locally optimal to traverse the
gadget as shown above.

A a4 X
X1 % ¥

Figure 19. It is possible to change the traversals in the left column into
the traversals in the right column without increasing the total number of
endpoints in the graph.
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(a) (b)

(c)

Figure 20. If there are no semitraversed occurrences in the consistency
checker but the occurrences are still inconsistent, the checker has to be tra-
versed as shown above.

JUT U
U

Figure 21. The semitraversals shown above are the only ones that can
occur in a strictly normal tour.
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Proof. The proof is very similar to the proof for the asymmetric case. The
only additional complication is that some occurrences actually have two con-
nection edges on one side due to the construction of the gadget for equations
of the form z +y+ z = 0 (Fig. 16). However, it can never be locally optimal
to traverse both of these connection edges since that introduces an endpoint
in the consistency checker. Figure 22 shows one example of this—the other
cases are treated similarly.

If either the upper two or the lower four connection edges are traversed,
the lemma clearly holds—then it is locally optimal to traverse the gadget
as shown in Fig. 18. The case when none of the upper (but a subset of
the lower) edges are traversed, and the case when none of the lower (but a
subset of the upper) edges are traversed are treated in the same way. We now
cover the remaining cases by an argument involving each bridge separately.
When at most one of the four attaching edges are traversed by the tour, it
is clearly locally optimal to traverse the bridge. The remaining cases are
shown in Fig. 19. n

Figure 22. Some consistency checkers have double connection edges at one
point, see also Fig. 16. By the above local transformation we can assume
that at most one of the double edges are traversed.

The other steps in the normalization are identical to the corresponding steps
for the asymmetric case—we omit the details. As in the asymmetric case,
the theorem follows.

Proof of Theorem 3.1. Given an instance of Hybrid with the structure de-
scribed in Corollary 2.1, the instance of (1,2)-ATSP is constructed as de-
scribed above. By the normalization we can assume that the tour is strictly
normal. We can thus construct an assignment to the variables as described
in the proof of Lemma 3.1; this assignment leaves u equations unsatisfied
when the length of the tour is 16n 4+ mgo g + mo 1 + 4m3 o + 4m3 1 + u. "
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4 The hardness of (1,B)-ATSP

In this section, we establish that the construction introduced by Papadim-
itriou and Vempala [14]| can be adapted to bounded metrics. We reduce,
similarly to Papadimitriou and Vempala [14], from Héstad’s lower bound for
E3-Lin mod 2 [12]. In fact, our gadgets for the (1,B)-ATSP case are syn-
tactically identical to those of Papadimitriou and Vempala [14] but we use
a slightly different accounting method. The construction consists of a circle
of equation gadgets testing odd parity. This is no restriction since we can
easily transform a test for even parity into a test for odd parity by flipping
a literal. Three of the edges in the equation gadget correspond to the vari-
ables involved in the parity check. These edges are in fact gadgets, so called
edge gadgets, themselves. Edge gadgets from different equation gadgets are
connected to ensure consistency among the edges representing a literal. This
requires the number of negative occurrences of a variable to be equal to the
number of positive occurrences. This is no restriction since we can dupli-
cate every equation a constant number of times and flip literals to reach this

property.

Definition 4.1. E3-Lin mod 2 is the following problem: Given an instance
of n variables and m equations over Zo with exactly three unknowns in each
equation, find an assignment to the variables that satisfies as many equations
as possible.

Theorem 4.1 [12]. For any constant € > 0, there exists instances of E3-
Lin mod 2 with 2m equations such that it is NP-hard to decide if at most em
or at least (1 — €)m equations are left unsatisfied by the optimal assignment.
FEach variable in the instance occurs a constant number of times, half of them
negated and half of them unnegated.

We describe our instance of (1,B)-ATSP by constructing a weighted directed
graph and then let the (1,B)-ATSP instance have the nodes of this graph as
cities. The distance between two cities u and v is the (1,B)-ATSP instance is
then defined to be min{B, ¢(u,v)}, where £(u, v) be the length of the shortest
path from u to v in the graph.

4.1 The gadgets

The gadgets are parametrized by the parameters a, b and d; they will be
specified later. The equation gadget for equations of the form z +y+ 2z =10
is shown in Fig. 23. The key property of this gadget is that there is a
Hamiltonian path through the gadget only if zero or two of the ticked edges
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are traversed. To form the circle of equation gadgets, vertex A in one gadget
coincides with vertex B in another gadget.

The ticked edges in Fig. 23 are gadgets themselves. This gadget is shown
in Fig. 24. Each of the bridges is shared between two different edge gadgets,
one corresponding to a positive occurrence of the literal and one correspond-
ing to a negative occurrence. The precise coupling is provided by a perfect
matching in a d-regular bipartite multigraph (V1 UVa, E) on 2k vertices with
the following property: For any partition of Vi into subsets S1, Uy and T}
and any partition of V5 into subsets S5, Us and T» such that there are no
edges from T to 15 and no edges from U; to Us,

(|S1] + |S2|) min{a/2,b,a/2 + b/2 — 1,a/2 + b/4 — 1/2} >
min{k, |U1| + |To| + [S1| + |Sa2|, |Uz| + |T1| + |S1| + | S2|}-

The purpose of this construction is to ensure that it is always optimal for
the tour to traverse the graph in such a way that all variables are given
consistent values. The edge gadget gives an assignment to an occurrence of
a variable by the way it is traversed.

Definition 4.2. We call an edge gadget where all bridges are traversed from
left to right in Fig. 2/ traversed and an edge gadget where all bridges are
traversed from right to left untraversed. All other edge gadgets are called
semitraversed.

4.2 The lower bound

If we assume that the tour behaves nicely, i.e., that the edge gadgets are
either traversed or untraversed, it is straightforward to establish a corre-
spondence between the length of the tour and the number of unsatisfied
equations.

Lemma 4.1. The only way to traverse the equation gadget in Fig. 23 with a
tour of length 4—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traversals
have length 5.

Proof. 1t is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. Any tour traversing one ticked edge
and leaving the other two ticked edges untraversed has length at least 5.
Strictly speaking, it is impossible to have three traversals since this does not
result in a tour. However, we can regard the case when the tour leaves the
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Figure 23. The gadget for equations of the form « +y + z = 0. There is a
Hamiltonian path from A to B only if zero or two of the ticked edges, which
are actually gadgets themselves (Fig. 24), are traversed. The non-ticked
edges have weight 1.

Figure 24. The edge gadget consists of d bridges. Each of the bridges
are shared between two different edge gadgets and consist of a undirected
edges of weight 1 each. The leftmost directed edge above has weight b/2, the
rightmost has weight b/2 + 1, all other horizontal edges entering or leaving
a bridge have weight b.

Figure 25. A traversed edge gadget represents the value 1.

Figure 26. An untraversed edge gadget represents the value 0.
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edge gadget by jumping directly to the exit node of the equation gadget as
a tour with three traversals; such a tour gives a cost of 5. "

Lemma 4.2. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is d(a+Db).

Proof. Each bridge has length a, and every bridge must have one of the
incoming edge traversed. Thus, the total cost is d(a + b). n

Lemma 4.3. Suppose that there are 2m equations in the E3-Lin mod 2 in-
stance. If the tour is shaped in the intended way, i.e., every edge gadget is
either traversed or untraversed, the length of the tour is 3md(a+0b)+4m+u,
where u is the number of unsatisfied equations resulting from the assignment
represented by the tour.

Proof. The length of the tour on an edge gadgets is d(a+b). There are three
edge gadgets corresponding to every equation and every bridge in the edge
gadget is shared between two equation gadgets. Thus, the length of the tour
on the edge gadgets is 2m - 3d(a + b)/2 = 3md(a + b) The length of the tour
on an equation gadget is 4 if the equation is satisfied and 5 otherwise. Thus,
the total length is 3md(a + b) + 4m + u. .

The main challenge now is to prove that the above correspondence between
the length of the optimum tour and the number of unsatisfied equation holds
also when we drop the assumption that the tour is shaped in the intended
way. Our proof uses the following technical lemma (we provide a proof in
the appendix):

Lemma A.1. For every large enough constant k, there exists an 7-regular
bipartite multigraph on 2k wvertices such that for every partition of the left
vertices into sets T1, Uy and S1 and every partition of the right vertices into
sets Ty, Uy and Sy such that there are no edges from Ty to To, and there are
no edges from Uy to Us,

2(|S1[+[S2]) > min{k, |Ui| + [To| + |S1] + [S2|, |Ua2| + |T1| + | S1] + | S}
with equality only if S =So=U1=To =0 or S1 =S, =T1 = Uy = {).

Given the above lemma, the following argument gives a lower bound on
the extra cost, not counting the “normal” cost of d(a + b) per edge gadget
and 4 per equation gadget, that results from a non-standard behavior of
the tour. We have already seen that an unsatisfied equation adds an extra
cost of 1. Edge gadgets that are either traversed or untraversed do not add
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any extra cost. Note that traversed edge gadgets never can share the same
bridge, neither can untraversed edge gadgets. The following lemma gives a
lower bound on the additional length of the tour due to semitraversed edge
gadgets (we provide a proof in § 4.3):

Lemma 4.4. Consider an instance of (1,B)-ATSP constructed as described
above from an instance of E3-Lin mod 2 with equations of the form x +y +
z = 0 where =, y and z are variables or negated variables and each variable
occurs equally many times positively and negatively. For any tour in such
an instance, it is possible to associate a cost of at least min{a/2,b,a/2 +
b/2 — 1,a/2 + b/4 — 1/2} with every semitraversed edge gadget given that
B > min{3b,a + b,2a + b — 2}.

By combining the above two lemmas we can prove that it is never optimal
to have inconsistent traversals. The parameters a, b and d are chosen to
give a lower bound that is as good as possible. By Lemma A.1 we must
have d = 7 and by choosing a = 2b in Lemma 4.4 we get a cost of at least
min{b,3b/2 — 1,5b/4 — 1/2}. This cost must be at least 2 for Lemma A.1 to
apply; therefore we select b = 2 which in turn implies that a =4 and B = 8.

Lemma 4.5. Fora=4,b=2,d =17, and B = 8§, there exists a coupling of
the equation gadgets with the property that it can never be advantageous to
have inconsistently traversed equation gadgets.

Proof. Repeat the following argument for every variable z:

Let k be the number of occurrences of z (and also the number of occur-
rences of Z). Pick a bipartite multigraph on 2k vertices such that for every
partition of the left vertices into sets T7, Uy and S7 and every partition of the
right vertices into sets Ts, Uy and Sy such that there are no edges from T}
to 15, and there are no edges from U; to Us,

2(151] + [S2) = min{k, [Ur] +[To| + [S1] + (52, [Ua| + [Ta| + 51| + |52}

with equality only if S1 =S =U; =To =0 or S1 =5, =T, =Us = (. We
know by Lemma A.1 that such a graph exists—since the graph has constant
size, we can try all possible graphs in constant time.

Put occurrences of x at one side and occurrences of £ on the other side
of the bipartite graph. Each vertex in the graph can be labeled as T', U
or S, depending on whether it is traversed, untraversed or semitraversed.
Let Ty be the set of traversed positive occurrences and T be the set of
traversed negative occurrences. Define Uy, Us, S1, and Sy similarly. We can
assume that |Uy| + |T2| < |Us| + |T1|—otherwise we just change the indexing
convention.
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We now consider a modified tour where the positive occurrences are tra-
versed and the negative occurrences are untraversed. This decreases the cost
of tour by at least 2(|S1|+|S2|) and increases it by min{k, |S1|+|S2|+|U1|+
|T>|}. But the bipartite graph has the property that

2(|S81] + |S2|) > min{k, |Ui| + |To| + [S1| + |S2[}

which implies that the cost of tour decreases by this transformation. Thus,
we can assume that x is given a consistent assignment by the tour. "

Theorem 4.2. For any constant € > 0, it is NP-hard to approzimate (1,8)-
ATSP within 131/130 — e.

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,8)-ATSP with a = 4, b = 2 and d = 7. This can be done
in polynomial time. By the above lemma, we can assume that all edge
gadgets are traversed consistently in this instance. The assignment obtained
from this traversal satisfies 2m — u equations if the length of the tour is
3md(a+ b) +4m +u. If we could decide if the length of the optimum tour is
at most (3d(a+b)+4+¢€1)m or at least (3d(a+b)+5—e2)m, we could decide
if at most e;m or at least (1—e2)m of the equations are left unsatisfied by the
corresponding assignment. But to decide this is NP-hard by Theorem 4.1.
Therefore it is NP-hard to approximate (1,8)-ATSP within
3d(a+0b)+5—e S 131

—— — €. ]

3d(a+b)+4+¢6 — 130

4.3 Proof of Lemma 4.4

The theorem follows from a direct combination of the following lemmas. We
first note that we can assume that the tour has a certain structure inside the
bridges.

Lemma 4.6. Let (u,v) be an edge of the tour and suppose that u and v both
belong to the same bridge. Then u and v are neighbors in the graph defining
the (1,B)-ATSP instance if B > a.

Let w and v be neighbors on the same bridge and assume that there is no
edge between u and v in the tour. Let (u,u') and (v,v") be edges of the tour
and assume that d(u,u') < B and that d(v,v") < B. Then we can assume
that the shortest path from u to u' does not intersect the shortest path from v
to v'.
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Figure 27. Switching from traversing an edge gadget representing an oc-
currence of = to traversing another edge gadget representing an occurrence
of = gives an extra cost of at least b. The dotted edge above has length 3b;
that gives an extra cost of 2b which is then shared evenly among the two
semitraversed edge gadgets.
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Figure 28. Switching from traversing an edge gadget representing an oc-
currence of x to traversing an edge gadget representing an occurrence of T
gives an extra cost of at least a/2. The dashed edges above has length a + b;
that gives an extra cost of a which is then shared evenly among the two
semitraversed edge gadgets.

Figure 29. Switching from traversing an edge gadget representing an oc-
currence of x to traversing an edge gadget representing an occurrence of T
gives an extra cost of at least a/2. The dashed edges above has length a +b;
that gives an extra cost of a which is then shared evenly among the two
semitraversed edge gadgets.
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Proof. Suppose that u and v are not neighbors. Then we can produce an-
other tour with equal or shorter cost as follows: Let the tour follow the
shortest path from u to v in the graph defining the instance instead of jump-
ing directly from u to v. Since B > a this does not increase the length
of the tour. This change will make the tour pass through some cities—the
cities that are on the shortest path from u to v in the graph—twice. For
all such cities w, do the following: Let w’ be the city visited immediately
before w and w” be the city visited immediately after w. Then replace the
edges (w',w) and (w,w") by the single edge (w', w") in the tour. By triangle
inequality this procedure does not increase the length of the tour.

Let the tour follow the shortest path from u to u' in the graph defining
the instance instead of jumping directly from u to «’. This change will make
the tour pass through some cities—the cities that are on the shortest path
from u to u' in the graph—twice. For all such cities w, do the following:
Let w' be the city visited immediately before w and w"” be the city visited
immediately after w. Then replace the edges (w',w) and (w,w"”) by the
single edge (w',w") in the tour. By triangle inequality this procedure does
not increase the length of the tour. "

Consider a semitraversed edge gadget. We now argue by case analysis that
it introduces an extra cost in addition to the “standard” cost of a + b per
bridge. When analyzing the extra cost due to semitraversals, we use the
following convention: Suppose that the tour leaves some bridge following
an edge of length £. If £ < B, there is a corresponding path of length £ in
the graph defining the (1,B)-ATSP instance. Then penalties corresponding
to the part of the path that is inside bridge, including b/2 of the penalty
corresponding to traversed edges connecting the bridge to other bridges, is
attributed to the bridge that the tour is leaving. if £ > B, a cost of B/2 is
attributed to both of the involved bridges. We use a similar convention for
tours entering a bridge following a long edge; only the length “inside” the
bridge is attributed to the cost of that bridge.

Lemma 4.7. Given that B > min{3b,a+ b} it is possible to associate a cost
of at least min{a/2,b} with every semitraversed edge gadget where no bridge
has an undefined traversal.

Proof. We first consider the case when the metric is not bounded; we will
show later how to extend the argument to cover also bounded metrics. In
the unbounded case, the distance between two vertices u and v is exactly the
length of the shortest path from u to v in the graph defining the instance.
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If no bridge has an undefined traversal, there must be two adjacent
bridges that are traversed in different directions. Suppose that the left of
these bridges is traversed from left to right and that the right one is traversed
from right to left, i.e., that two parts of the tour “collide”. Consider the tour
leaving the left bridge. Since its natural way to escape the bridge is blocked
by the tour on the right bridge, it has to make a jump. There are three
subcases.

1. The tour goes down (Fig. 27). The earliest available free city is
a distance of 2b away; that blocks the tour leaving the right bridge,
forcing it to also make a jump of at least 2b. The next available free city
is a distance of 3b away. Both these cases give a total extra cost of 2b,
which is split evenly between the two involved semitraversed edges.
Note that the above argument is valid also when the right bridge is close
to the vertex connecting the edge gadget with the equation gadget—
this corresponds to replacing the bottom right bridge with the final
vertex of the edge gadget in Fig. 27.

2. The tour goes forwards (Fig. 28). The earliest available free city
is a distance of a + b away, giving a total extra cost of a. This cost is
split evenly between the two involved semitraversed edges.

3. The tour goes backwards (Fig. 29). The earliest available free city
is a distance of a + b away, giving a total extra cost of a. This cost is
split evenly between the two involved semitraversed edges.

Now suppose that the left of these bridges is traversed from right to left
and that the right one is traversed from left to right, i.e., that the tours
“depart”. Consider the tour entering the left bridge. As in the “colliding
case” above, we get three subcases—each of them corresponds to a subcase
of the “colliding” case.

1. The tour comes from above (Fig. 27). The earliest available free
city is a distance of 2b away, but that blocks the tour entering the
right bridge, forcing it to also make a jump of at least 2b. The next
available free city is a distance of 3b away. Both these cases give a
total extra cost of 2b, which is split evenly between the two involved
semitraversed edges. Note that the above argument is valid also when
the right bridge is close to the vertex connecting the edge gadget with
the equation gadget—this corresponds to replacing the top right bridge
with the final vertex of the edge gadget in Fig. 27.
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2. The tour comes from the front (Fig. 28). The earliest available
free city is a distance of a + b away, giving a total extra cost of a. This
cost is split evenly between the two involved semitraversed edges.

3. The tour comes from behind (Fig. 29). The earliest available free
city is a distance of a + b away, giving a total extra cost of a. This cost
is split evenly between the two involved semitraversed edges.

If the tour makes a larger jump than the shortest possible jumps stated
above, the additional cost can never decrease, thanks to the triangle inequal-
ity. In all cases, the extra cost is split evenly between the two semitraversed
edges that are involved—the one where the jump starts and the one where
the jump ends. Therefore, each semitraversed edge that does not have an
undefined traversal has an extra cost of at least min{a/2, b}.

Finally, since the distance of a shortest jump has to be at least max{3b, a+
b} for the penalty to be high enough, the argument generalizes to metrics
with integer distances between 1 and B as soon as B > max{3b,a + b}. ]

Lemma 4.8. Given that B > 2a + b — 2 it is possible to associate a cost of
at least min{a +b—2,a+b/2 — 1} with every bridge containing an undefined
traversal.

Proof. Since the bridge has an undefined traversal, there must be two adja-
cent cities u and v that are not neighbors in the tour. Consider the edges
(u,u') and (v,v") in the tour—thanks to Lemma 4.6 we can assume that
neither ' nor v’ belong to the bridge.

1. d(u,u’) = B. By our convention, we can attribute half of that
cost to the bridge. The tour must visit the other cities on the bridge
with one incoming and one outgoing edge of length at least min{b/2, 1}
each—mnote that the edge leaving one city could potentially be the edge
entering another city an the bridge. If v is the first or last city of the
bridge, this gives a total cost of at least B/2+3b/2+a—1 > 2a+2b—2,
i.e., an extra cost of @ + b — 2 in addition to the normal cost of a + b
for the bridge. If v is an interior city, but w is the first or last city, it
gives a total cost of at least B/2+b+a > 2a+3b/2 — 1, i.e., an extra
cost of a + b/2 — 1. If both w and v are interior cities, it gives a total
cost of at least B/2+ b+ a, i.e., an extra cost of a + b/2 — 1.

2. d(v,v") = B. This case is identical to the case when (u,u') has
length B.

34



3. d(u,u’) < BAd(v,v') < B. In this case, the edges (u,u') and (v, v)
correspond to paths on the edges of the graph defining the (1,B)-ATSP
instance. By Lemma 4.6 we can assume that the path from u to u' and
the path from v to v’ do not intersect. This gives a total cost of at least
a+b—1+c(u,u')+c(v,v"), i.e., an extra cost of c(u,u’) + c(v,v') — 1,
where ¢(-,-) denotes the part of the cost associated with the bridge
according to our convention. Since the path from u to v’ and the path
from v to v' do not intersect, c(u,u’) + ¢(v,v") > a + b — 1, therefore
the extra cost is at least a + b — 2.

To sum up, we have established that an extra cost of min{a+b—2,a+b/2—1}
can be associated with each bridge that has an undefined traversal. "

Corollary 4.1. Given that B > 2a + b — 2 it is possible to associate a cost
of at least min{a/2+b/2—1,a/2+b/4—1/2} with every semitraversed edge
gadget containing an undefined traversal.

Proof. Every bridge is shared between two edge gadgets. "

To complete the proof of the theorem, we note that the fact that a jump
may start from a semitraversed gadget with no undefined traversal and end
in an undefined traversal, and vice versa, does not void the above analysis.

Proof of Lemma 4.4. Suppose that B > max{3b,a+b,2a+b—2}. Consider
a semitraversed edge gadget. If it has no undefined traversals, it is possible
to associate a cost of at least min{a/2,b} to the edge gadget according to
Lemma 4.7. If it has an undefined traversal, it is possible to associate a cost
of at least (a + b)/2 — 1 with it according to Corollary 4.1.

The analysis in Lemmas 4.7 and 4.8 is valid also if the tour jumps from
a semitraversed edge gadget with no undefined traversals to a semitraversed
edge gadget with an undefined traversal by the convention we use when
attributing the cost of long edges in the tour to the involved bridges. "

5 The hardness of (1,B)-TSP

To adapt the construction from the previous section for the symmetric case
we need to change the gadgets. The equation gadget is replaced with the
gadget in Fig. 31—mote that this gadget tests odd parity instead of even
parity—and the edge gadget is changed according to Fig. 32. If we assume
that the tour behaves nicely, it is straightforward to prove a correspondence
between the length of a tour and the number of equations left unsatisfied by
the corresponding assignment.
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Figure 30. We can assume that traversals shown in the left figure above
never occur since they can be transformed into the traversal shown in the
right figure without increasing the length of the tour. A bridge with a
traversal of that form gives an extra cost of at least min{a+b—2,a+b/2—1}
if B>2a+b—2.

Figure 31. The symmetric gadget for equations of the form z +y + z = 1.
There is a Hamiltonian path from A to B ouly if zero or two of the ticked
edges are traversed.

et

Figure 32. To transform the edge gadget from Fig. 24 into a gadget that
can be used in the symmetric case, all occurrences of the structure to the
left above are replaced with the structure to the right above. All edges in
the right figure have weight 1.
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Lemma 5.1. The only way to traverse the equation gadget in Fig. 31 with a
tour of length 5—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traversals
have length 6.

Proof. Tt is easy to see that any tour traversing either zero or two of the
ticked edges and leaving the third one untraversed has length 5. Any tour
traversing an odd number of ticked edges gets stuck in the center node and
needs an extra cost of at least one to get out to a corner of the enclosing
triangle. .

Lemma 5.2. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is 119.

Proof. The total cost is 7-19 = 133. .

Lemma 5.3. Suppose that there are 2m equations in the E3-Lin instance.
If the tour is shaped in the intended way, i.e., every edge gadget is either
traversed or untraversed, the length of the tour is 404m + u, where u s the
number of unsatisfied equations resulting from the assignment represented by
the tour.

Proof. There are three edge gadgets corresponding to every equation and
every bridge in the edge gadget is shared between two equation gadgets.
Thus, the length of the tour on the edge gadgets is 2m - 3 - 133/2 = 399m.
The length of the tour in the equation gadgets is 5 if the equation is satisfied
and 6 otherwise. Thus, the total length is 404m + w. .

In the same way as in the asymmetric case, it can now be shown that the
tour can be assumed to behave in the intended way. This gives the following
lemmas (we omit the proof):

Lemma 5.4. Suppose that B > 8. Then every semitraversed edge gadget
adds an extra cost of at least 2 to the length of the tour.

Lemma 5.5. There exists a coupling of the edge gadgets with the property
that there can never be advantageous to have inconsistently traversed edge
gadgets.

Given the above lemmas, the main theorem follows in exactly the same way
as in the asymmetric case.

Theorem 5.1. For any constant € > 0, it is NP-hard to approzimate (1,8)-
TSP within 405/404 — e.
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Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,8)-TSP. This can be done in polynomial time. By the above
lemma, we can assume that all edge gadgets are traversed consistently in
this instance. The assignment obtained from this traversal satisfies 2m — u
equations if the length of the tour is 404m + u. If we could decide if the
length of the optimum tour is at most (404 + €;)m or at least (405 — ea)m,
we could decide if at most €;m or at most (1 — ea)m of the equations are let
unsatisfied by the corresponding assignment. But to decide this is NP-hard
by Theorem 4.1. -

6 Conclusions

It should be possible to improve the reduction by eliminating the vertices
that connect the equation gadgets for z + y + z = {0,1} with each other.
This reduces the cost of those equation gadgets by one, which improves our
bounds—but only by a miniscule amount. The big bottleneck, especially
in the (1,2) case, is the consistency gadgets. If, for the asymmetric case,
we were able to decrease the cost of them to four instead of six, we would
improve the bound to 237/236 — ¢; if we could decrease the cost to three, the
bound would become 195/194 — e. We conjecture that some improvement
for the (1,2) case is still possible along these lines.
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A The bipartite graph

This section is devoted to the proof of the following technical lemma:

Lemma A.1. For every large enough constant k, there exists an 7-reqular
bipartite multigraph on 2k vertices such that for every partition of the left
vertices into sets T, Uy and S1 and every partition of the right vertices into
sets Ty, Uy and So such that there are no edges from Ty to Ts, and there are
no edges from Uy to Us,

2(|51[+82]) = min{k, [Us[+|T2[+|S1[+[S2[, |Ua|+|T1[+]S1]+]|S2[} (1)
with equality only if S =Sy =U1 =To =0 or S1 = So =T, = Uy = 0.

The proof uses the same main idea as the proof of a similar expansion theo-
rem for 8-regular graphs communicated to us by Papadimitriou and Vempala
in April 2001: It uses a lemma that bounds the size of neighbor sets in 7-
regular bipartite graphs.

Lemma A.2. For every large enough constant k, there exists a 7-reqular
bipartite multigraph on 2k vertices such that every subset U of vertices con-
tained entirely in Vi or V, has a set N(U) of neighbors satisfying the following
constraints:

0<|U|<Kk/10 = |N(U)| > 29|U|/10, (2)

k/10 < |U| < 3k/10 = |N(U)| > 13k/100 + 8|U|/5, (3)

3k/10 < |U| < 39k/100 = |N(U)| > 31k/100 + |U], (4)

39k/100 < |U| < 62k/100 = |N(U)| > k/2+|U|/2, (5)

62k/100 < |U| < k = |N(U)| > max{85k/100,k/2 + |U|/2}.  (6)
Proof. We select a d-regular bipartite graph on 2k vertices by selecting d per-
fect matchings independently and uniformly at random. Let Ay n be the
event that the set U has neighbors only inside the set N and let {2 be the
subset of {0,1,2,...,k} x {0,1,2,...,k} such that if (a,b) € £2,

0<a<k/10 = b<29a/10,

k/10 < a < 3k/10 = b < 13k/100 + 8a/5,

3k/10 < a < 39k/100 = b < 31k/100 + a,

39k/100 < a < 62k/100 = b<k/2+a/2,
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62k/100 < a < k = b < max{85/100,k/2 + a/2}.

Denote the vertex set of the bipartite graph by V3 U V. We need to prove
that

2
PI[U U U U AU,N]<1
i=1 (a,b)e2 UCV; NCVa_;

|U|=a |N|=b

and we do this by using the union bound, i.e., we prove that

i > ) PrlApn] <L

i=1 (a,b)e? UEV; NEVa_;
|U|=a |N|=b

First note that Pr[Ay,n] = 0 when |U| > |N|, therefore it suffices to consider
only (a,b) such that a < b. Since {2 contains less than k? pairs and

o (AN @k - do) G
Pt = (i) -

when a < b it is enough to prove that

2k% max ) (F (jz) = max P(a,b) < 1.
(ab)e \aJ\b) (%) (@ber "

G.Sb da

We prove this inequality by case analysis. When a can be written as ak and
b can be written as Bk where 107° < o < 8 < 1—107° we expand the above
expression using Stirling’s formula. The cases when either a or b are very
close to either 0 or k are dealt with separately.

Case I: 1075k < a < b < (1 —107%)k. By Stirling’s formula

(fk> = (@ (1 = a)""=)* poly (k).

Now write ¢ = ak and b = Bk and apply Stirling’s formula to the expression
we want to bound. This gives us the equality

(1— a)(dfl)(lfa)g(dfl)ﬂ
0 (1= B (5 — )P~

P(ak, k) = ( . ) k poly(k)
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This expression is certainly strictly less than 1 for all («, 8) such that a <
and (ak, Bk) € {2 as soon as there exists a universal constant ¢ < 1, strictly
bounded away from 1, such that

1—a (d—l)(l—a)ﬁ(d—l)ﬁ

Qo) = =0 o <

aa(1 = B (5 — a)P—

for all (o, 8) such that a < § and (ak, Bk) € £2. The validity of the latter
inequality is established in Lemma B.1.

Case IT: 0 < @ < 107 5k. For every fixed a in that range and every b such
that a < b < 10a, P(a,b) is increasing with b. Therefore it suffices to prove
that P(a,b) < 1 when b = 3a; that implies (2). Let us first note that

P(1,3) = 22 (!;) @ () 240k

GINCED
therefore P(1,3) < 1 when k£ > 250. We now show that P(a,3a)/P(a +
1,3(a +1)) > 1 when 0 < a/k < 107® and k > 105, thereby establishing
that (2) holds in that region. Since

a2 (B)[(F) ()
rien =2 (0) (0)

we need to bound quotients of the following forms:
k / k _a+1
a a+1) k-1’
k / k _ (3a+3)!(k — 3a — 3)! S <3a+1)3
3a 3a+3 (3a)!(k — 3a)! k—3a)’
7k / 7k (Ta)l(k — 7a)! S (k—a—1)7
Ta+7 Ta (7a+7)'( —Ta —17)! a+1 ’

2la 2la+21 (21a) (Ta + 7)!(14a + 14)! 1
Ta / Ta+7 (21a + 21))(7a)!(14a)! > 547 °

The above bounds imply that when 0 < a < §k, where § = 10~° and k& > 10°,
P(a,3a) >a—|—1(3a+1)3( a+1 >7L
Pla+1,3(a+1)) " k—1\k—3a k—a—1) 547

(k—0k—1)7 (1-6-1/k)7
E4(0k 4 1)3547 ~ (6 + 1/k)3547
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J1-u 1075 o 9900 99 102
8.10-15.547 7 8.10-10.547 ~ 8.97 .67
11-10% 11.5

8.67  48-36
36 ~ 729
> 1.

Case III: (1 — 107%)k < b < k. Note that P(a,b) = P(k — b,k — a)

d(k — a) dk (dk —da)!  (dk — db)!(db)!
d(k — b) // d(k—b)) ~ (dk — db)!(db — da)! (dk)!

—

_ (dk — da)\(db)!

~ (dk)!(db — da)!

_ (dk — da)!(da)! (db)!
(dk)! " (db — da)!(da)!

- i)/ (i)

Therefore, (6) in the region 1—107° < b/k < 1 follows by a direct application
of Case II. .

Proof of Lemma A.1. We use the shorthands |T1| = ¢1, |U1| = u1, |S1| = s1,
|To| = ta, |[Ua| = ug, and |Sa| = s9. We can assume without loss of generality
that u; < wug. This implies that u; < 7k/20; otherwise to 4+ so > |N(Uy)| >
k — w1 which is equivalent to ug = k — to — s9 < w1, a contradiction. The
proof now proceeds by case analysis on to and .

Case Ia: 0 < t2 < 3k/10 and u; < 3k/10. Then u; +s1 > |N(T32)| >
2t9 and to+s9 > |N(Ur)| > 2uq by (2) and (3)—we use non-strict inequality
to also cover the case when u; = 0. Adding these two inequalities gives the
inequality s1+s2 > to+wu; which is equivalent to 2(s1+s2) > u1+to+51+59;
therefore (1) holds.

Case Ib: 0 < to S k/lO and uq Z 3k/10. Then t9 + s9 > |N(U1)| >

31k/100 4 uy by (4) which is equivalent to so > 31k/100 + uy — to > k/2;
therefore (1) holds.
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Case Ic: k/10 < t2 < 3k/10 and u; > 3k/10. Then u; + 51 >
IN(T3)| > 13k/100 + 8t/5 by (3) and to + so > [N(U1)| > 31k/100 + u
by (4). Adding these inequalities gives the inequality s; + so > 44k/100 +
3t2/5 > k/2; therefore (1) holds.

Case ITa: 3k/10 < t2 < 39k/100 and u; < k/10. Then u; + s1 >
|N(T2)| > 31k/100+t2 by (4) which is equivalent to s; > 31k/100+t —u; >
k/2, therefore (1) holds.

Case ITb: 3k/10 < t2 < 39k/100 and w; > k/10. Then u; + 81 >
|N(T2)| > 31k/100 + to by (4) which is equivalent to s; + s2 > 31k/100 +
to + s2 — u1, and sg + to > |[N(Uy)| > 13k/100 + 8uy/5 by (3). Therefore
s1+ 82 > 31k/100 + o + 5o — uy > 44k /100 + 3u1 /5 > k/2 and (1) holds.

Case IlTa: 39k/100 < t2 < k and u; < 3k/10. Then uj + s; >
|IN(T)| > k/2 + t2/2 by (5) and (6), which is equivalent to s; + s2 >
k/2 + s9 4+ ta/2 — u1, and ta + s9 > |N(Uy)| > 2u; by (2) and (3); therefore
81+ 82 > k‘/2 + S92 + t2/2 —up > k/2 + 89 + t2/2 — (82 + tg)/Q > k‘/2 and
(1) holds.

Case IIlb: 39k/100 < t2 < 62k/100 and w; > 3k/10. Then u; +
s1 > |N(Ty)| > k/2 + t2/2 by (5), which is equivalent to s; + so > k/2 +
So + to/2 — w1, and to + s2 > |N(Up)| > 31k/100 + u; by (4); therefore
81+ 82 > k/2+ so +1t2/2 —uyp > 81k/100 — t2/2 > k/2 and (1) holds.

Case Illc: 62k/100 < t3 < k and w; > 3k/10. Then u; + s; >
|N(T2)| > 85k/100 by (6), which is equivalent to s; > 85k/100 — uy > k/2
where the last inequality follows since u; < 7k/20; therefore (1) holds.

Case IV: t3 = 0. Since u; < ug and to = 0, u; + to < ug + t1, therefore
it suffices to show that 2(s; + s2) > min{u; + s1 + s2,k}. But this always
holds if u; > 0 since then s9 > |N(U1)| > u1. And if u; = 0, the inequality
holds trivially as soon as either s; or so are non-zero. Therefore, (1) holds
when t; = 0.

Case V: to = k. Since vertices in 77 are not connected to vertices in 75,

to = k implies that t; = 0. Moreover, since u; < ug = 0, also u; = 0.
Therefore, s; = k, which implies that (1) holds when to = k. .
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B The function Q(a, 3)

The proof of Lemma A.2 relies on the fact that a certain inequality holds in
a certain region. In this section we prove this fact using a blend of analytic
techniques and computer-assisted verification using interval arithmetic.

Lemma B.1. Let
1 — g)@—D(1-a)gld-1)8
Qonf) = L= — TP
ac(1— F)A-P (5 — a)#P—a)

Then Q(a, B) < 1—2.8:10~* for all (a, B) such that 1075 < a < < 1-107°
and

107°<a<1/10 = a < < 29a/10,

1/10 < @ <3/10 = a < [ <13/100 + 8a/5,

3/10 < @ < 39/100 = a < (< 31/100 + a,

39/100 < a < 62/100 = a < S <1/2+ /2,

62/100 < a <1—-107° = a < 8 < max{85/100,1/2 + a/2}.
if (B — )P s defined to be 1 when a = .

The fact that we define (8 — a)*#~®) to be 1 when o = A can be mo-
tivated by a continuity argument and it also gives the right interpreta-
tion to the probabilistic experiment that @ is describing. If we in addi-
tion define Q(0,0) = Q(0,1) = Q(1,1) = 1, @ is continuous in the region
{(a,0) :0<a<1Na<pB<L1}

The overall structure of the proof of the above lemma is as follows: We
first rotate the coordinate system to be able to exploit that Q(«, 5) is sym-
metric along the line a + 8 = 1. We then prove that maximizing @ over a
closed set with a certain structure is equivalent to maximizing ) over the
border of that set. Finally, we prove that the region we are interested in
can be extended to a convex set and then establish that @Q is strictly less
than 1 — 2.8 - 10~* on the border of that set.

We first make the substitutions 8+ a =z + 1 and 8 — a = y, which is
equivalent to o = (1 +z —y)/2 and 8 = (1 + z +y)/2. That changes Q to

Qz,y) =2 4D (2y) ¥
(1 + z + )@ DA+z+y) (1 — g 4 ) (d=1)(1-z+y)
(1+z—y)0+2-9)(1 — g — y)(-2-v)

~—~
=
SN—r

where =% is defined to be 1 when y = 0 and Q(—1,0) = Q(0,1) = Q(1,0) =
1. Again, this function is continuous in the region {(z,y) : =1 <z <1A0 <
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y < min{l — z,1 + z}}. The following lemma relates the area of interest in
the (z,y) plane to the area of interest in the («, 8) plane.

Lemma B.2. Let A be the convex hull of the points

( )=
(332, y2)
(z3,y3) =
(334, y4)
(z5,95) =
(6, Y6)
(z7,y7)
(8, ys)
(9, 99)
(

-’EI()ayl()) =

(1—2-10°,0),
(1—3.9-107°,1.9-107°),
(0.61,0.19),

(0.47,0.23),

(0.09,0.31),

(—0.09,0.31),
(—0.47,0.23),
(—0.61,0.19),
(=143.9-1075,1.9-107°),
(-=1+2-1075,0).

If Q(z,y) <1—2.8-10"% in A, Lemma B.1 holds.

Proof. We transform the (z;,y;) pairs into (a4, §;) pairs using the transfor-
mations a = (1+z—y)/2and B = (1+ 2z +y)/2:

a9, ﬁ?
asg, /83

pr) =
)=
)=
s, B) =
)=
)=
)=
)=

Q

5,ﬁ5
a6aﬁ6
Ot7,ﬁ7

ag, ﬁS

(&
(
(
(
(
(
(
(
(ag,fo) =

(a10, Pro) =

(1-10751-1079),
(1-2.9-107°,1-107°),
(0.71,0.90),

(0.62,0.85),

(0.39,0.70),
(
(
(
(

0.15,0.38),

0.10,0.29),

107°,2.9-10°),
(107°,1079).

)
)
0.30,0.61),
)
)

The convex hull of these points contains the region defined in Lemma B.1,
therefore Lemma B.1 holds as soon as Q(z,y) <1 —2.8-107* in A. .
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We now prove that the function f(x) = InQ(z;y) is convex on a certain
interval, depending on y. This in fact implies that also @ is convex for
fixed y since

"y ()2 12

since () is non-negative, but we do not need this in our proof.

fll —

Lemma B.3. Let f(z;y) = InQ(x,y) be a function of x. Then f is convex
in the interval

N e

for every fized y € [0, (d — 2)/d].
Proof. We can write f as f(z;y) = C(y) + 1g(z;y) where
Cly) =—dy(l+ny)—(d-2) (8)
g(z;y) =d-1)1+z+y)In(1 +z+y)
+d-1)(1-z+y)In(l—z+1y)
—(4e—yh(l4zs—y) —(1-z—y)n(l-z—y). ()

To establish that f is convex in some region, it is enough to prove that g is
convex in that region. To this end we take the first and second derivatives
of ¢:

d(zy) =d-1)((1+z+y)In(l+z+y) —In(l —z+vy))
—(In(l+z—9y)—In(l —z—1y)),
d—1 d—1 1 1
g”(m;y):1+$+y+1—a:—|—y_1+a:—y_1—:c—y
We now rewrite the second derivative as
d—1 n d—1 _ 1 _ 1
1+z4+y 1—-2z4+y 1—-z—9y 14+z—y
d-1@2+2y 2 -2y
(I+z+y)l-z+y) (Q-z-y)(l+z-y)
(d—2) —dy — (d—2)z? — (d — 2)y? — dz’y + dy®
I+z+y)l-z+y)l-—z-y)(l+z—y)

g (z;y) =

47



(d—2)(1 —z* —¢?) —dy(1 + 2> — 3*)
I+tz+y)l-—z+y)l-—2z-y)(l+z-y)

and obtain that ¢”(z;y) is non-negative when
(d—=2)(1 - 2% —y®) > dy(1 + 2% — y°)

which is equivalent to
22 < dl—y) -2

“d(l+y) -2

The above lemma implies that along a horizontal line, the function @ is
maximized at one of the endpoints. Let us state this more formally:

(1-9°). .

Lemma B.4. Let zy and x1 be functions satisfying

_\/m(l_y ) < @o(y) < z1(y) < \/m(l—y)

on the interval [yo,y1] C [0, (d — 2)/2] and define
A={(z,y) :yo <y <y Azo(y) <z < z1(y)}-

Then max (s e Q(T,y) = max(; y)coa Q(x,y) where OA denotes the border
of A.

Proof. Suppose that () attains it maximum at (z*,y*). If (z*,y*) is an
interior point of A, then either f(zo(y*);y*) > f(z*,y*) or f(z1(y*);y*) >
f(z*,y*) since f is convex for every fixed y € [0, (d —2)/2] in the interval

o< D20

by Lemma B.3. But since f(z;y) = InQ(z,y) and the logarithm is a
one-to-one mapping, this implies that either Q(zo(y*),y*) > Q(z*,y*) or
Q(z1(y*),y*) > f(z*,y*), therefore the maximum is also attained at a point
in 0A. .

Lemma B.5. Let A be the convexr hull of the points

(z1,y1) = (1—2-1075,0),

(z2,72) = (1—3.9-107°,1.9-107°),
(z3,y3) = (0.61,0.19),

( ) = (0.47,0.23),

( ) = (0.09,0.31),

T4,Y4
Z5,Ys5
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(z6,ys) = (—0.09,0.31),
(z7,y7) = (—0.47,0.23),
(zs,ys) = (—0.61,0.19),
(z9,y9) = (—1+3.9-107°,1.9-107°),

(z10,y10) = (-1 +2-107°,0).
Then Q(z,y) <1—2.8-10"% in A.

Proof. Let yg =0, y1 = 0.31, zg = —z1, and let z; be the piecewise linear
function defined by z1(0) = 1 — 21075, 21(1.9-107%) = 1 — 3.9 - 1075,
21(0.19) = 0.61, z1(0.23) = 0.47, and 2(0.31) = 0.09. These choices fulfill
the requirements in Lemma B.4; therefore it is enough to show that Q(z,y) <
1 along the curves zy(y) and z1(y) when y € [yo,y1] in order to complete the
proof. Furthermore, it is enough to consider Q(z,y) along the curve z1(y)

since Q(z,y) = Q(—=,y).

Case I: 1.9 - 107° < y < 0.31. Substituting d = 7 in Eq. (7) gives the

expression

(2y)77y(1 +r+ y)3(1+ac+y)(1 —r+ y)3(1—z+y)
32(1 +x — y)(“‘w—y)/?(l —x — y)(l_@'_y)/Z

Qz,y) = (10)

We now need to verify that this expression is less than 1 — 2.8 - 10™* along
the lines

r=1-39y/19  wheny € [1.9-107°,0.19],
z =0.61 — 3.5(y — 0.19) when y € [0.19,0.23],
z =047 — 4.75(y — 0.23) when y € [0.23,0.31].

Substitution these expressions into (10) gives the expressions

(2y)~™(2 — 20y/19)5~%/1 (58y/19) ' 7*v/19

Qi) = 5505 — 58y /19)1 9719 (20y/19) 104719
(2y)—7y(2275 _ 2.5y)6.825—7.5y(4.5y _ 0.275)13.531—0.825
Q2(y) = 32(2.275 _ 4.5y)1.1375—2.25y (2.5y _ 0.275)1.25;1/—0.1375
Q3(y) _ (2y)_7y(25625 _ 3.75y)7.6875—11.25y (575y _ 0.5625)17.2511—1.6875

32(2_5625 — 5_75y)1.28125—2.875y (3_75y _ 0_5625)1.875y—0.28125

To verify that these functions are less than 1 — 2.8 - 10™* in the intervals
[1.9-1075,0.19], [0.19,0.23] and [0.23,0.31], respectively, we first prove that
the functions assume their maximum value in one of the endpoints of the
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intervals where they are defined. To do this, we use the same approach as we
did earlier in this section: We prove that In Q); is convex. Using the identity

d*(In(ay + b)) 42c
dy? ay+b
we obtain that

PnQ) 7, 3-20/19° 174 58/(2-19) 10

dy> oy 2-20y/19 19y 2-58y/19 19y
_ 31 N 600 292
C 19y 192190y 192 2919y
31 292

~ 19y T 197 —29- 19y

where the inequality follows since 600/(19% — 190y) > 0 in 1.9 - 107°,0.19].
The last expression above is minimized when y = 0.19; therefore

d*(In Q) - 3100 292 . 3100 —2-29% 1418 S0
dy? 192 192 —29-192/100 192 192 )
In a similar way we obtain the bounds
dP(In@y) 7 N 750 N 2430 405 125
dy2 y  91—-100y 180y —11 91 —180y 100y — 11

7 750 2430 405 125

019 T 72 T 3242 1960 8
>—40+104+69—9 — 16 = 14 > 0,

d*(In Q3) 7 675 1587 529 75

dy? y 41—60y+92y—9_82—184y_40y—6
o7 675 1587 529 75
023 ' 27.2 ' 1952 24.96 3.20
7 675 1580 530 75

02 30 T 20 20 3
= 354225479 —26.5—25 =15 > 0.

Therefore, it is enough to show that the function @ is less than 1—2.8-10~% at
the points (1—3.9-1075,1.9-107?), (0.61,0.19), (0.47,0.23), and (0.09,0.31).
To do this, we computed an upper bound on the values of the function @ at
the above four points using interval arithmetic [11]. The source code for the
program computing the bounds is presented in Appendix C.
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Case IT: 0 < y < 1.9-1075. In this interval z = 1 — 2-107° —y. With
this substitution, equation (9) becomes

g(z;y) =(d—1)(2—2-10"°)In(2 — 2-107°)
+(d—1)(2-1075 + 2y) In(2 - 105 + 2y)
—(2-2-10°—-2y)In(2 —2-10"° — 2y)
—2-10"°In(2-107°);

therefore we can write h(y) = InQ(z1(y),y) as

h(y) = —dy(1 +1ny) + (d — 1)(10™° + y) In(2 - 1075 + 2y)
—(1-10°—y)In(2—2-107° —2y) + C.
Taking the derivative of h we obtain
h'(y) = —dlny + (d—1)In(2- 107 + 2y) + In(2 - 2- 107" — 2y)
> —dIny + (d — 1) In(2- 107° + 2y)
> —dIn(2-107%) 4 (d — 1) In(2- 105)
=4In2+5In5 > 0,

where the first inequality follows since 2—2-107°% —2y > 0 in the interval and
the second one follows since —dIny is decreasing in the interval [0,2 - 1079
and (d—1)In(2-1075 + 2y) is increasing in the same interval. Therefore, the
maximum value of Q(z1(y),y) in this region is Q(1 — 3.9 -107%,1.9 - 1079)
which, by Case I, is less than 1 — 2.8 - 1074, .

C Source code

This section contains the Fortran 90 source code for the program that verifies
Case I in the proof of Lemma B.5 using interval arithmetic. It needs Sun
Forte 6.0, update 1, to compile. The only option given to the complier was
-xia, which enables interval arithmetic.

PROGRAM QPOINTS
IMPLICIT NONE
INTERVAL Q, X, Y

(2.0%Y) *x(-7*Y) / 32.0 &
(1.0+4X+Y) ** (3.0% (1.0+X+Y)) * (1.0-X+Y)**(3.0%(1.0-X+Y)) &
(1.0+X-Y)**((-1.0-X+Y)/2.0) * (1.0-X-Y)**((-1.0+X+Y)/2.0)

QEx,Y)

* ¥

PRINT #, "Q(0.999961,0.000019) IS IN", Q([0.999961]1, [0.000019])

ol



PRINT #, "Q(0.61,0.19) IS IN", Q([0.61]1, [0.19]1)
PRINT #*, "Q(0.47,0.23) IS IN", Q([0.47], [0.23])
PRINT #*, "Q(0.09,0.31) IS IN", Q([0.09], [0.31])

END PROGRAM QPOINTS

When the above source code was compiled with the command £90 -xia on a
Sun Ultra Sparc running SunOS 5.6 and the resulting program was executed
on the same computer it produced the following output:

Q(0.999961,0.000019) IS IN [0.99971203376169426,0.99971203376170371]
Q¢0.61,0.19) IS IN [0.96016606004041482,0.96016606004042105]
Q(0.47,0.23) IS IN [0.91593524118552094,0.9159352411855265]
Q€0.09,0.31) IS IN [0.96341302921105986,0.96341302921106676]
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