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Approximability of Dense Instances of NEAREST
CODEWORD Problem

Cristina Bazgan* W. Fernandez de la Vega' Marek Karpinski*

Abstract. We give a polynomial time approximation scheme (PTAS) for dense in-
stances of the NEAREST CODEWORD problem.

1 Introduction

We follow [KST97] in defining the Nearest Codeword problem as the minimum constraint
satisfaction problem for linear equations mod 2 with exactly 3 variables per equation. It
is shown in [KST97] that the restriction imposed on the number of variables per equation
(fixing it to be exactly 3) does not reduce approximation hardness of the problem. The
problem is, for a given set of linear equations mod 2 to construct an assignment which min-
imizes the number of unsatisfied equations. We shall use in this paper clearly an equivalent
formulation of the problem of minimizing the number of satisfied equations. Adopting the
notation of [H97] we denote it also as the MIN-E3-LIN2 problem. MIN-Ek-LIN2 will stand
for the k-ary version of the Nearest Codeword problem.

The Nearest Codeword problem arises in a number of coding theoretic, and algorithmic
contexts, see, e.g., [ABSS93], [KST97], [DKS98], [DKRS00]. It is known to be exceed-
ingly hard to approximate; it is known to be NP-hard to approximate to within a factor
nS1)/toglogn Ty this paper we prove that, somewhat surprisingly, the Nearest Codeword
problem on dense instances does have a PTAS. We call an instance of Nearest Codeword
problem (MIN-E2-LIN2) problem dense, if the number of occurrences of each variable in
the equations is ©(n?) for n the number of variables. We call an instance of Nearest Code-
word (MIN-E2-LIN2) dense in average if the number of equations is ©(n?). Analogously,
we define density, and average density, for MIN-Ek-LIN2 problems.
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It is easy to be seen that the results of [AKK95] and [FdV96] on existence of PTASs
for average dense maximum constraint satisfaction problems cannot be applied to their
average dense minimum analogs (for a survey paper on approximability of some other dense
optimization problems see also [K97]). This observation can be also strenghten for the dense
instances of minimum constraint satisfaction by noting that dense instances of Vertex Cover
can be expressed as dense instances of minimum constraint satisfaction problem for 2DNF
clauses, i.e. conjunctions of 2 literals, and then applying the result of [CT96], [KZ97] to
the effect that there are no PTAS for the dense Vertex Cover. In [FdVK99] it was also
proven that the dense and average dense instances of MIN Tsp(1,2) and LONGEST PATH
problems do not have polynomial time approximation schemes.

In [AKK95] there were however two dense minimization problems identified as having
PTASs, namely dense Bisection, and Min-k CuT. This has lead us to investigate the
approximation complexity of dense Nearest Codeword problem. Also recently, PTASs have
been designed for dense MIN EQUIVALENCE and dense MIN-ASAT problems (cf. [BFdV99],
[BFKO00]). The main result of this paper is a proof of an existence of a PTAS for the dense
Nearest Codeword problem.

The approximation schemes developed in this paper for the dense Nearest Codeword
problem use some novel density sampler techniques for graphs, and k-uniform hypergraphs,
and extend available up to now approximation techniques for attacking dense instances of
minimum constraint satisfaction problems.

The NEAREST CODEWORD problem in its bounded arity (=3) form was proven to
be approximation hard for its unbounded arity version in [KST97] (Lemma 37). This
results in n(V)/1°81°8" 4 hproximation lower bound for the NEAREST CODEWORD problem
by [DKS98], [DKRS00], where n is the number of variables. No nontrivial approximation
ratios are known for this problem, other than of order n, where n is the number of variables.
It is also easy to show that NEAREST CODEWORD is hard to approximate to within a factor
nSH1)/loglogn average dense instances.

The paper is organized as follows. In Section 2 we give the necessary definitions and
prove the NP-hardness of dense instances of MIN-E3-LIN2 in exact setting, and in Section 3
we give a polynomial time approximation scheme for the dense instances of MIN-E3-LIN2.

2 Preliminaries

We begin with basic definitions.

Approximability. A minimization problem has a polynomial time approzimation scheme
(a PTAS, in short) if there exists a polynomial time approximation algorithm that gives for
each instance z of the problem a solution y of value m(z, y) such that m(z,y) < (1+¢)opt(z)
for every constant € > 0 where opt(z) is the value of an optimum solution.

NEAREST CODEWORD Problem
(MIN-E3-LIN2)

Input: A set of m equations in boolean variables z1,...,z, where each equation has the
form z; @2, Dy, =0o0r 2, Dy, Dy, = 1.
Output: An assignment to the variables that minimizes the number of equations satisfied.

Density. A set of instances of MIN-E3-LIN2 is d-dense if for each variable z, the total



number of occurrences of z is at least én? in each instance. A class of instances of MiN-
E3-LIN2 is dense, if there is a constant ¢ such that the class is §-dense.

Let us show now that Dense MIN-E3-LIN2 is NP-hard in exact setting. The reduc-
tion is from MIN-E3-LIN2, which is approximation hard for a ratio nf(1)/leglogn [DKS98],
[DKRS00], where n is the number of variables. Given an instance I of MIN-E3-LIN2 on a
set of n variables X = {zy,...,z,} with m equations z;, ® z4, ® x4, = b, where b € {0, 1},
we construct an instance I’ of Dense MIN-E3-LIN2 as follows: we extend the set of variables
X by two disjoint sets Y = {y1,...,y,} and 7 = {z,...,2,}. I’ contains aside from the
equations of I, the equations of the form z; & y; ® z;, = 0 and z; B y; & 2, = 1 for all
1 <4,j,h < n. Note that the system /' is dense. We note also that exactly n® of the added
equations are satisfied independently of the values of the variables in X, Y and Z. Thus
opt(I') = opt(I) + n®, proving the claimed reduction.

3 Dense MIN-E3-LIN2 has a PTAS

Let the system & = {Fy, ..., F\n} be a d-dense instance of MIN-E3-LIN2, on a set X of n
variables {z{,...,z,}.

We will run two distinct algorithms, algorithm A and algorithm B, and select the so-
lution with the minimum value. Algorithm A gives a good approximate solution for the
instances whose minimum value is at least an®. Algorithm B gives a good approximate

solution for the instances whose minimum value is less than an®, where « is a constant

depending both on § and the required accuracy .

3.1 Algorithm A

Algorithm A depends on formulating the problem as a Smooth Integer Program [AKK95]
as follows.

A smooth degree-3 polynomial (with smoothness e) has the form

Z QT2 + Z bijx;x; + Z c;ix;+d

where each |a;;n| < e, |b;;] < en, |¢;| < en?, |d] < en® (cf. [AKK95]).
For each equation x; & y; @ z; = b; in S, we construct the smooth polynomial

Pr=(0-2)(1—y)(1 —2z)+ry(l —z) + vzl —2) + zzi(1 — y)
if b; =0, and

Pi=zi(1—y)(1—2) (1 —zi) (1 = z) + zi(1 — i) (1 — yi) + iz
if b; = 1. We have then the Smooth Integer Program IP:

min Z;nzllji
s.t. gy, 2 € {0,1} Vi, 1 <7< n.

A result of [AKK95] can be used now to approximate in polynomial time the minimum
value of IP with additive error en® for every € > 0. This provides an approximation ratio
1 + ¢ whenever the optimum value is Q(n?).



3.2 Algorithm B

The algorithm B is guaranteed to give, as we will show, approximation ratio 1 4 ¢ for each
fixed €, whenever the optimum is at most an® for a fixed a, depending on ¢ and on the
density.

Algorithm B

Input: A dense system § of linear equations in GF[2] over a set X of n variables with
exactly 3 variables per equation.

1. Pick two disjoint random samples Sy, .52 C X of size m = © (l%%—n),

2. For each possible assignment a € {0, 1}/51Y%| for the variables y in S; U Sy (y* will
stand for the boolean value of y for the assignement a) do the following:

2.1 For each variable z ¢ Sy U S3 do the following:

Let Hy o and Hy, be the bipartite graphs with common vertexset V (H ) = V(Hy ) =
S1 U Sy and edge sets

E(Hz ) ={{y,2} x5, (y) @ xs,(2) =l Azdydz=beSAyY" 2" =b}
and
E(Hg) ={y: 2} i xsi (W) @ xsi () = 1Ae@yDz=beSA1DY & 2" =0}

E(HZ )|, mi = [E(HZ )|
m& 4+ mf), then set z to 1.

mg 4+ m$), then set z to 0.

Let m§
If mg >
If m$ >

|
(
(

whocons |

Otherwise, set = to be undefined.

2.2 In this stage, we assign values to the variables which are undefined after the
completion of stage 2.1. Let D?® be the set of variables assigned in stage 2.1, and let
U*=S1USuD*. V* = X\ U* denotes the set of undefined variables. For each undefined
variable y, let S, denote the set of equations which contain y and two variables in U". Let
kg (resp. ki) denote the number of equations in S, satisfied by ¢ and by setting y to 0
(resp. to 1).

If k§ < k{, then set y to 0. Else, set y to 1.
Let X* denote the overall assignment produced by the end of this stage.

3. Among all the assignments X* pick one which satisfies the minimum number of
equations of §.

Output that assignment.
4 Proof of the correctness of algorithm B when the value of
the instance is ”small”

We will use the following graph density sampling lemma. Recall that the density d of a
graph G = (V, F) is defined by




Lemma 1 Let d and ¢ be fized and let the graph G = (V, E) have |V| = n vertices and
density d. Let m = O(1/d e ?logn). Let X = {x1,....xm} and Y = {y1, ..., ym} be two
random disjoint subsets of V(G) with | X| = |Y| = m and let e(X,Y) be the number of
edges of G between X to Y. Then, for each sufficiently large n, we have

Prlle(X,Y) — m*d| < em*d] =1 — o(1/n).

Proof: We will use the following inequality due to Hoeffding [H64]. Let Xj,..., X,, be
independent and identically distributed. Let g = F/(X;) and assume that X, satisfies
0< Xy <A. Let Sy, =572, X;. Then:

Pr(|S,, — pm| > eAm) < 2exp(—2e?m). (1)

Clearly
E(e(X,Y)) = m*d.

For each z € V\X, write
T,=1I'(z)N X].

Let "= 3",ev\x 1> Then, T"="1"+ A where A < m(m —1)/2, and 1" is the sum of m
randomly chosen valencies from the set of valencies of G'. Thus using (1),

Pr[|T" = mnd| < emn + m(m — 1)?/2] > 1 = 2exp(=0(e*m)).
Clearly,

e(X,Y) = Y T.

say. Assume now, with negligible error, that the vertices of Y are produced by independent
trials. Then, the §; are independent random variables with the same distribution as &y,

defined by
1

Conditionally on 8 where # € mnd(1 +¢) and E(é;) = 6, and using again (1),
0
Prlle(X,Y) — m_| <em?] > 1 - 2exp(—2e*m)
n

or
Pr[le(X,Y) — m_0| <em?d] > 1 - 2exp(—2¢*d*m).
n

The conditioning event has probability at least 1 — 2 exp(—2¢2m?%d). We have thus, without
any conditioning,

60
Pr[le(X,Y) — %| <em*d] > 1-2exp(—2¢%d*m) — 2exp(—2¢*m?d)

v

1 — 3exp(—2¢%d*m).

This completes the proof. |



We now return to our proof of correctness. We assume, as we can, that a is the restriction
to 51 U Sy of an optimal assignment a*. For each y € X, we let y*" denote the value of y
in a*. Let z € X \ (51 USs).
Let G and G1 be the graphs with common vertex set V(G o) = V(Gg1) = X and
edge sets
E(Gzo)={{y,2}:z@ydz=beSAy" @2" =b}

and

EGe)={{y,2}:2®ydz=beSA1@y" &2 =b)

Let ng” = |E(Gro)|,nt = |B(Gza)], n* =nd +ni". Also, let m® = mg + mj.
Lemma 2 (i) Assume that x is such that we have

ng > 1
Then, with probability 1 — o(1/n), x is assigned (correctly) to 1 in step 2.1 of algorithm B.

(ii) Assume that x is such that we have

Then, with probability 1 — o(1/n),  is assigned (correctly) to 0 in step 2.1 of algorithm B.
(iii) With probability 1 — o(1), each variable y € D* is assigned to its correct value y*
by the algorithm B.

Proof: We first prove (iii). Suppose that y is assigned to 1 in stage 2.1. The case where
y is assigned to 0 is similar. We have to prove that nd" > n%" with probability 1 — o(1/n)
since if in an optimum solution z; = 1 then ng* > nf*. Thus, Lemma 1 applied to the

graph G, o with d = HQ%T and the samples S; and SS9 gives

8- 2nd" m?
Pr (mg < 77170) =1-o0(1/n),

and so,

Pr <n8* > 5.8
- 8m

7m8n(n; 1)) — 1= o(1/n).

Also, Lemma 1 applied to the union of the graphs G, and G with d = n%:i*l) and the
samples S7 and S5 gives

.ot m2

Pr mazu =1-o0(1/n),
9n(n —1)

and so,

4 9min(n—1)



Since y takes value 1 in stage 2.1 and m{ > 2/3m*,

ng” 7.2
> 2 -
Pr (n“* > 93) 1—-o(1/n),

and so

a* 1
Pr (ZS* > 5) =1-o0(1/n).

Assertion (iii) follows.

Now we prove (i). The proof of (ii) is completely similar to that of (i). Lemma 1 applied

to the graph G, o with d = n?:g_l)

and the samples S; and Sy gives

a 2m2 a

Pr (mo >(1- E)Wno*) =1-o(1/n).

Let m® = m§+m{. We apply now Lemma 1 to the union of the graphs GG, o and G ;. This
gives

2m?

7)7#*> =1-o0(1/n).

n(n—1

Pr (m“ <(1+4¢)

Substraction gives

. 2m° 2m? " 2 +n8)\\ _
Pr(mo— 3 > )((1—5)77,0 —(1+5)f)>_1—0(1/n).

n(n—1

*

Using the inequality ng* + n‘f* < 47;)8 , we obtain

2m? 2m?  1-20e .
a > a — 1 =
Pr (mo 3 21 9 ng ) 1-o(1/n),

and fixing ¢ = 1/20,
2m*

Pr(mg— 3 20):1—0(1/71),

concluding the proof.
O

Lemma 3 With probability 1 —o(1), the number of variables undefined after the completion
of stage 2.1 satisfies
4 opt

/4 < .
Vel < on?

Proof: Assume that z is undefined. We have thus simultaneously nd" < %(ng* +n§") and

a* 3¢ a* a* a* 1/ a* a* a* 1(,a* a* : :
n{ < 3(ng +mni ) and so mj > 7(n5 4+ nt) and ng > Z(n§ +n{ ). Since z appears in
at least dn® equations, ng + nd > dn?. Thus,

dn?

opt > min{ng*,n‘f*} Ve > T|Va|-
The assertion of the lemma follows. O

We can now complete the correctness proof. Let val denote the value of the solution
given by our algorithm and let opt be the value of an optimum solution.



Theorem 1 et ¢ be fived. If opt < an® where a is sufficiently small, then we have that
val < (14 ¢€)opt.

Proof: Let us write
val = val; + valy + vals + valy

where:
- valy is the number of satisfied equations with all variables in U*
- valy is the number of satisfied equations with all variables in V¢
- valz is the number of satisfied equations with two variables in U® and one in V*

- valy is the number of satisfied equations with one variable in U® and two in V.
With an obvious intended meaning, we write also
opt = opt; + opt, + opts + opty
We have clearly val; = opt; and valz < opts. Thus,

val < opt + valy — opty 4 valy — opt,
< opt + valy + valy

< - |Va|3 N |Va|2
S op 6 n 5
and, using Lemma 3,
43opt? 4%opt?
val < opt+ 653n8 +n252n4
<

2opt? t
opt(l-l—?)i—}—&)p).

36°05 ' 52n?

Since opt< an® then,

+

320 Sa
val < opt (1—}— e 5—2)

< opt(l+e¢)

for a < 5%5 and sufficiently small ¢. |

5 Extensions to Dense MIN-Ek-LIN2

We are able to extend our result to arbitrary k-ary versions of the problem, i.e. to Dense
MiN-Ek-LIN2 for arbitrary k. This requires a bit more subtle construction, and the design
of a density sampler for (k — 1)-uniform hypergraphs. This extension will appear in the
final version of the paper [BFKO00].
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