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Chapter 1

Introduction

Two major concepts dominate the theory of computation: The concept using
machines such as Turing machines on the one hand, and the concept of recur-
sive functions, especially the p-recursive and primitive recursive functions on
the other hand. In the first approach, programs and functions computed by
these programs are given by machine instructions. The computations are car-
ried out by changing states of the machine, which can be seen as an iteration
on the memory of the machine. In the second one, programs are specified by
functions. Therefore we call the first approach the iterative approach, and the
second one functional approach. Obviously there are connections to program-
ming languages, since in imperative languages, programs are given by instruc-
tions, and in functional ones, they are given by functions. At first sight, these
two approaches are completely different. But, as one knows, they give the same
class of computable functions, the class of Turing-computable or p-recursive
functions.

These models deal with functions defined on the natural numbers. They can
easily be extended to the integers or the rationals, but they do not adequately
deal with real numbers. Therefore the concept of Turing machines has been
extended in recent years.

So an extended machine model for computations on the reals has been developed
by Blum, Shub and Smale [1], and there is a recursion theory and a complexity
theory for these machines. They are called R-machines, where R is any ring,
for example the reals R or the complex numbers C. One can define complexity
classes for these machines, formulate the P # N P problem and much more. See
[2], where this theory is presented.

So far, the machines are similar to Turing machines in the aspect that a com-
putation is a finite sequence of states of the machine (or something equivalent).
Going further, the next step is to allow infinite computations, to model limit
processes that are quite common in analysis. Some approaches have been made,
for example by Weihrauch [12], [13], [14]. The notion of analytic machines has
been introduced by Hotz [7], [8]. Here, infinite computations are admissible, if
the computation converges in some way to a limit. Chadzelek [4] has worked out
the theory of analytic machines. A shorter version of this has been published
by Chadzelek and Hotz [5].

To return to what has been said in the beginning, we see that the extension of
a theory of computation to the real or complex numbers has only been made
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6 CHAPTER 1. INTRODUCTION

for the machine approach. The question arises what can be done to extend the
functional approach of p-recursive and primitive recursive functions. This is
where we set in. We ask how we can define programs or computations on the
real and complex numbers by functions. As in the therory of recursive functions
over the natural numbers, the functions will be defined by functional equations,
or recursive equations, as we will also call them in our context. Given func-
tional equations, for example f(x + 1) = xf(z), for a function over the real
and complex numbers, the question arises whether they have solutions in a cer-
tain class of functions, and whether they have unique solutions under certain
circumstances. The last question is important, since we want to have unique
semantics for our functional program.

Since it appears natural to us, we require the solutions of our equations to be
analytic functions. This is reasonable, since there is an elaborate theory about
these functions, and, above all, they are computable in a certain sense: It is
known that one can represent analytic functions by power series. So, given the
coefficients of the power series in some way, it is clear that these functions are
computable by the analytic machines mentioned above. Moreover, one can view
a power series as an infinite tape that is labelled by the coefficients of the series,
see Hotz [7].

Our objective in this paper is to examine some classes of primitive recursive
equations in view of the questions above. We examine a class of recursions that
are linear, such as equations of the form f(z +1) = g(z)f(x) + h(z) and similar
ones. We call these linear primitive recursions. As it has been said, we focus
on analytic functions, i. e. we want our solutions to be analytic functions. So
the functions defining the recursions (in the example above the functions g and
h) should be analytic functions. Therefore we also call the recursions linear
primitive analytic recursions. For some cases, we show that analytic solutions
exist, and we give conditions under which those solutions are unique, so that
the semantics defined by the equations is unique. The solutions we give are all
defined by infinite series, infinite products or limits of analytic functions. So
they are computable by analytic machines.

Another point why extending the concept of recursion to C is interesting might
be the following: It is hard to decide if different programs compute the same
functions. So it would be of interest to find universal invariants for program
transformations. If we are able to construct well defined continuations of the
programs from N to analytical functions, the genus of the Riemann surface be-
longing to this function could serve as such an invariant. We can describe the
construction of the Riemann surface from a given power series as a nondeter-
ministic analytical machine [4], [5]. So the genus of the Riemann surface and
the structure of singularities of the function may be considered as invariants of
equivalent nondeterministic analytical machines in this sense.

1.1 Interpolation

We want to point out the difference between defining functions by recursions and
extending primitive recursive functions from the natural numbers to the complex
numbers. It is clear that an analytic function satisfying the same recursion as a
primitive recursive one over the natural numbers is an extension of this function.
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But it is more, since an extension of the function does not necessarily satisfy
the functional equation given by the recursion. Moreover, using theorems of
classic complex analysis, one can show that every recursive function over the
naturals has an analytic extension: Consider the class of u-recursive or the
one of primitive-recursive functions. These are functions defined on the natural
numbers. We can extend the domain of these functions to the complex numbers
C, such that these extensions are analytic functions. For any function f defined
on the natural numbers, there is an analytic function F' defined on C which
has the property F'(n) = f(n) for all natural numbers n. Using some complex
analysis, this is quite clear [6].

In fact, let f : N — N be any such function. By Weierstrass’ factorization
theorem, there is a holomorphic function g : C — C such that g has a zero
of order 1 at each n € N. By Mittag-Leffler’s theorem, there is a meromorphic
function A that has the principal parts % at each natural number. This means
that the Laurent series expansion of h at m has this principal part. Now put
F := gh. Then F : C — C is an analytic function with F|y = f.

But this construction has a flaw: It interpolates the recursive function f, but in
general, it is not the case that it is subject to the recursive equations by which
f is defined. Therefore this is not the solution to our problem.
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Chapter 2

Linear primitive recursion
over C

Let g, h be any functions which are defined on the complex numbers C. We call
the recursion

f@+1) =g(x) - f(2) + h(x) (2.1)

linear primitive recursion. It shall be called analytic if g and h are analytic
functions, and it will be called polynomial if g, h € C[z] are polynomials.

Our main objectives are whether the recursion (2.1) has an analytic solution f,
and if it is the case, how to distinguish a special one under the solutions in a
natural way. First, we use the term ’natural’ rather informally, we want to find
uniqueness criteria which appear sound to us. If we have found such criteria,
we call the solutions subject to these 'natural solutions’.

In the next section, we briefly discuss recursions which relate f(z + w), |w| =1
to f(z), generalizing the concept of the usual recursion relating f(z+1) to f(z).

2.1 Recursions in arbitrary directions

The recursive equation

fl@+1) =g(z) - f(z) + h(z) (2.2)

comes from calculations on natural numbers, where the case n + 1 is reduced
to the case n. We want to extend functions and recursions to the complex
numbers. In the complex plane, numbers can be interpreted as vectors, and
numbers of modulus 1 can be interpreted as directions. We want to examine
recursions not only in the direction of the positive real line, but in any direction.
If w e C, |w| = 11is such a direction, we want to solve the recursive equation

f(@+w) =g(z) - f(z) + h(z). (2.3)

Moreover, we want to know how the solutions of this equation are related to the
solution of the standard recursion (2.1). We will show that, given a solution of
(2.1), it is easy to solve (2.3). The idea is the following: Rotate the complex
plane transforming w into 1, then solve the recursion and finally undo the rota-
tion.
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Let g and h be analytic functions for which a solution of (2.3) is required. Then
the functions defined by

§(2) == g(w2),  h(z) = h(w?)

are analytic functions. Let f be a solution of
F(z+1) = §(2)- f(2) + h(2).

Then define
f(2) = f(@2),

where @ is the complex conjugate of w. Now, since |w| = 1 and therefore ww = 1,
we have

fetw) =

Thus we have shown that we can solve (2.3), if we can solve (2.1) for slightly

different functions g, h.
In the following, we will therefore focus on the standard recursion (2.1).
2.2 Reduction to special cases

We first consider two special cases. If h = 0, then our recursion has the form

flz+1)=g(z)- f(z) (2.4)

For g(x) = z, a solution of this recursion is commonly known: It’s the I'-
function. We will generalize this solution to the case that g is any polynomial

in Clz].
The second special case is the case g =1, i. e.
fx+1) = f(z) + h(z) (2.5)

The case h(z) = z* has been solved already by Bernoulli, a slight modification
of the well-known Bernoulli Polynomials will satisfy this recursion.

Since the special cases (2.4) and (2.5) might be easier to solve, we want to reduce
the general case (2.1) to these special cases.

Let g, h be any analytic functions for which we want to solve (2.1), and let us
assume that we have a solution fi(z) of

filz+1) = g(z)- fi(z)

and a solution fy(z) of

fo(z+1) = fa(2) +
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These recursions are instances of the special cases (2.4) and (2.5). To solve
(2.1), put f := f1 - fo. Then we have

flz+1) = fi(z+1): fa(x+1)

= g(z) - f(2) + h(z)

Thus we have shown that it suffices to solve (2.4) and (2.5) in order to get a
general solution for (2.1). For this reason, we will separately focus on these
special cases, where (2.4) is called the multiplicative case and (2.5) the additive
case.
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2.3 The multiplicative case

2.3.1 A generalization of the ['-function

The well-known I-function solves I'(x + 1) = zI'(z). We want to generalize its
definition to obtain solutions of I'y(z + 1) = p(z)T',(x) where p is a polynomial.
Let p(2) € C[z] be a polynomial of degree m and f : N — C defined by the
primitive recursion

fn+1):=pn)-f(n), f(1):=a (2.6)

If p(N) C N, this recursion defines a primitive-recursive function f on the nat-
ural numbers N. If p(N) has values not in N, we have to generalize the notion
of primitive-recursive functions sucht that these can have complex values. We
look for a matural continuation of f to a function which is analytic on C. Note
that by an analytic function on a subset A C C of the complex numbers we de-
note functions which are holomorphic on A except for a discrete set of isolated
singularities.

From (2.6) it follows that a nontrivial extension of f cannot be defined every-
where. The reason for this is the following: If, for example, the polynomial p
has a zero at 0, then f(1) = 0- f(0), such that the requirement f(1) =1 can-
not be fulfilled. So any nontrivial extension must have a singularity at z = 0.
Regarding arbitrary polynomials p, we see that the extension of f can only be
defined on C\N, where N ={z€ C|In e N: p(z+n)=0}.

But how do we get a 'natural’ extension of f? The definition should best be
guided anyhow by the original definition, i. e. by the recursive equation. In
order to do this, let s, n € N. From (2.6) it follows that

fls) = a-p()-...-p(s —1)

= ap) e pls = 1) plnt ) 1

p(s)-...-p(n+s)
This gives the following identity, which holds for all n, s € N:

_ . p@) p(n) s [p(n+1) p(n +s)

fls) = a-=—=-...-————-p(n)®-

p(s) p(s+n) p(n) p(n)

Since we want to define the extension for complex numbers s instead of natural
numbers, an idea is to take this definition and let s be any complex number.
The problem is that we cannot do so in the term within the brackets, since there
are s factors, which does not make sense for nonnatural numbers. But because
the identity holds for all n € N, and the left side is independent of n, an idea is
to let n tend to oo. If the term in the brackets converges to 1, we could define
the extension as such a limit. So now we show that this is indeed true:

2.7)

If 21, 29,...,2, are the zeros of p in C, we have the factorization
m
p(z) =c]] (- =) (2.8)
k=1

For large n, we have p(n) # 0. Now we have for z € C

m

1 Z—Zk
lim 1’("7+)Z) = lim [] iin =1 (2.9)

Zk
n— 00 n n— 00 — =2
p( k=1 n
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Thus we have shown that the term in the brackets converges to 1 for all s. This
motivates the following: If we write 'y for the extension of f to C\N, we
define

Ipa(?) == lim o p(1)-p(2)-...-p(n)

n—00 p(z) -p(z + 1) C 'p(z T ’I’L) -p(n)z

In case the limit exists, this definition leads for all z such that n + z is no zero
of p for all n to a ’termination of the infinite recursion’. For all z € N the limit
exists because of (2.7) and (2.9) stated above.

For all n € N the function defined by

p(1)-p(2)-...-p(n)
p(2) - p(z+1)-...-p(z +n)

is analytic in C\N. A slight problem arises with the definition of p(n)*. If
p(N) ¢ RT then the definition might require a branch of the logarithm for
defining p(n)* = e*'°8(»(") Branches of the logarithm can only be defined on
simply connected regions. In the following, we assume that we have a simply
connected region and a branch of the logarithm such that the definitions make
sense. Furthermore, we assume that there do not arise problems with logarithm
identities. It is clear that for real positive numbers all calculations are valid.
But for complex numbers, some problems might arise with the logarithm, for
example the functional equation log(wz) = log(w) + log(z) is not in general
valid, but it requires a slight modification. In the following, we do not consider
these problems, we simply assume that all needed prerequisites are given. This
means no loss in generality, just a lot less to write down.

We show that T'p o, converges uniformly on compact subsets of C\N to a
function T'y o. Since the limit of a compact uniform convergent sequence of
analytic functions is again analytic (cf. [11]), it follows that I', , is an analytic
function.

Now, a simple manipulation of the definition of I, 4., gives

Lpan(z) =« -p(n)*

n

o P(E)  iog(p(n))
F an = . - g\p
ran® = oy 1y
_ egpm)—m—emy o 7 D(0) =m
= € 1 n . . - e i
p(2) H p(z +1)

s
I
-

Recall the factorization (2.8) p(n) = ¢, n(1 — 2&). This gives

log(p(n)) _ log(c) n % i (log(n) + log (1 - %k))

m m

Note that for large n the real parts of n and of 1 — 2 are positive and therefore
we can apply the functional equation of the logarithm.
Combining the calculations above we obtain

. (leglp(n)) _4_  _ 1 e .
lim emz( - 1—... n) —e v-m-z+log(c) z’

n—oo
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where

n—oe

1 1
v = lim <1+§+...+E—log(n))

is Euler’s constant.
Consequently, it remains to be shown that the product

converges uniformly on compact subsets of C\N. This is equivalent to the

absolute and uniform convergence of Y ;°, log (p('; (_?Z.) -e%) on compact sets
[6].

In order to show this, we show that the summands of this series are bounded on
compact sets by summands of a convergent series of positive numbers. To be
more precise, we show that for any compact set K C C\N there is a constant

Ry, such that for all z € K log( 2(i) -ez'im)‘ < & holds for large i. By

p(2+1)

Weierstrass’ criterion and the convergence of ), %2, this implies that the series
converges normally (for a definition cf. [9]) and therefore uniformly on compact
sets.

Recall the taylor series

log(1+2) = ZTZ
k=1

— 1
log(l—2) = _ZEZIC

for |z] < 1. For sufficiently large 4, consider the following:

p(é) SR

1 - 1 T
Og<p(z+i)> Og<1:[i+z—zk>
= log H71+z_’.zk>

Note that for sufficiently large ¢« we can use the taylor expansion of the logarithm.
Let K C C\N be a fixed compact set. Then there is a R > 0 such that
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|z| < R for all these z, and therefore |z — z;| < K for another constant K and
k € {1,...,m}. This shows that

l+2 0
Z—Zk
<
Z Taror | S FX T
=0 =0
~ l
N ¢ 1
= K? | —
l; (\ﬂ> 1+ 27

< C
for a C' > 0. The last sum converges for sufficiently large i. A similar calculation
shows that there is a constant Ry such that
m l+2

S o l+2z_zk)l+2
> (-3 i+ X )

k=1

<Ry

We have therefore for z € K

(i) m-z Ro
1
M%(Mz+ﬂ>+ s
and thus
e = Ry
Z ( z+z)e l )‘SZTQ@O
=Ny

if Ny is large enough.

Since a series of functions ) f is normally convergent if for compact sets K
I fillx,00 < 00 by Weierstrass’ criterion [9], we have thus shown that the sum
converges uniformly to an analytic function on compact subsets of C\N, which
implies that the product above does the same. Here for a continuous function
f on a compact set K the sup norm ||f||k 00 := sup,cx |f(2)| is defined in the
usual way.

We have shown that

Ipo:i= nll}rn Tpan
is an analytic function on the domain where the definition makes sense.
I'p,o satisfies the required recursion:
p(1)-p(2)-...-p(n) +1
T a.n\2 + 1 = . n)®
pn( ) pz+1)-p(z+2)-...-p(z+n+1) p(n)
o PO p) o p(e) )
p(z) - p(z+1)-...-p(z+n) p(z+n+1)

= p(z) ' Fp,a,n(z)%

= p(2) -Tpal2) as n — o0

Furthermore, ', o|n = f, which shows that I', ,, is an extension of f on C.
The definition of I', , generalizes the definition of the classical I-function, just
take the polynomial p(z) = z and receive the I'-function.

We have shown
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Theorem 2.1
Let p € C[z] be a polynomial. Then the function Iy, , defined by

p(1)-p(2)-...-p(n)

Tra(2) = lim o o P (2.10)
is an analytic function. It satisfies the recursion
fz+1)=p(2)-f(2), )=«
We have the representation
0o .
T,(z) = e~ -m-z+zlog(c) | R H p(é) e (2.11)

) L5+
where c is the leading coefficient of p.

This result is a generalization of the well-known I'-function. In the following,
we will just write I', instead of Iy, ,, since it is clear that we can modify the
value of the function at 1 by a multiplication.

The definition shows that I', is computable by an analytic machine, since it is
defined as a uniform limit of computable functions. (Provided the polynomial
p is computable.)

Note that the definition p(n)? requires a branch of the logarithm. So it may be
necessary to confine the definition of I', to a simply connected region excluding
the zeros of p and p(z + n), n € N. This problem can be avoided if we define
I', on a suitable Riemann surface. In this work, we tacitly assume that the sets
where the functions are defined have the required properties.

As it has been said in the introduction, the Riemann surface of I') may be an
invariant of the functions defined by such recursion, which may have some ap-
plications.

2.3.2 Uniqueness

In the last section, we have found a solution for the recursive equation (2.6).
But, as it has been said, the question arises whether there are more solutions,
and if there are, how we can identify a certain solution in a natural way to make
the 'program’ defined by the equation unique. This is important for possible
applications, because the programs we define by equations should have unique
semantics.

For the T'-function, the uniqueness question has been dealt with before. In
1922, Bohr and Mollerup have shown that the I'-function is the only continuous
solution on the positive real line which is logarithmically convex (see [3]). This
is a uniqueness criterion which seems natural to the authors, since the function
n! has this property on the natural numbers.

It is easily seen that I', is not the only solution for (2.6). For example, the
functions

T,(z) :=Tp(z)-(sin(2rkz)+1), keLZ

are also solutions of this recursion. We shall determine all functions which are
solutions. If fi(z), f2(z) are both solutions of (2.6), then

LG+D) _ A)
fo(z+1) fa(z)’
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i. e. ;—; is a periodic function with period 1. If we demand the solutions to be

analytic, we have thus that the quotient of two solutions is an analytic function
with period 1. So our solution is unique modulo the periodic functions.

In the next paragraph, we use the notion of logarithmic convexity to make T’
the unique solution of our recursion which has this property.

2.3.3 Logarithmic convexity

First, recall some basic properties of convex functions. A function g is called
convez, if for 0 < A <1 and all a, b the following inequality holds:

g(Aa+ (1 = A)b) < Ag(a) + (1 — N)g(b) (2.12)

This means that the graph of g lies below each secant. It is easy to show that
for differentiable functions this is equivalent to

g"(z) > 0.

Let p be a polynomial such that p(z) > 0, Vz > zo for some zp € R. We
show that the function Iy above is logarithmically convex in an interval (a, o)
for some a > 0. Recall that a function f is logarithmically convex, if log f is
a convex function, which is equivalent to (log f)" > 0. By I', we mean I',; in
order to simplify our calculations. Using (2.11)

— ,—v-m-z+log(c)z L - p(i) L
Ty(z)=¢e +log ) Zl;[l e e,
we obtain
log Ty(¢) = —yma + zlog(c) ~log(p(a)) + . (log(p() — log(p(z +1) + )
and

(08T, ) (2) = —m + log(e) — * 5

~ plz+i)
wey o p@p" (@) —p(@)° <~ ple+p (@ +i) —p(z+19)
(logrp,l) (SL’) - - p($)2 + Zzzl p(.CL'+Z)2
_ D@ —p@)p" (@) Pz +9) —pla+i)p"(z +9)
= OIS Po +10)? >0

if x is large enough. The last inequality holds, because p'(z)? > p(z)p"(x)
for large z. This is true because the degrees of p' ? and pp" are equal, but the
leading coefficient of the first is greater. In fact, deg(p'?) = 2(m—1) = deg(p-p")
and if p(z) = @, 2™ + ..., then p'(2)? = m2a2,22(™=Y + ... but p(z)p’(z) =
m(m — 1)a2,22(m=Y 4 .

We have shown

Proposition 2.2

Let p € R[z] be a polynomial with real coefficients such that the leading co-
efficient is positive. Then there is an xy > 0 such that the function I',; is
logarithmically convex on the interval (zg,0).
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Furthermore, we show that I'j 1 is uniquely determined by this property, more
precisely, we show the following

Theorem 2.3
Let p be a polynomial with p(x) > 0 if z > 0. Let f be an analytic function
with the following properties:

o flz+1)=p(z) f(z) (z>0)
e f logarithmically convex on the positive real line
e f(1)=1

Then f =T,

Proof:

The proof is almost the same as the uniqueness proof for the I'-function un-
der the logarithmic convexity condition. Because of the functional equation it
suffices to show the uniqueness for 0 < z < 1. Since we have the convex combi-
nationn+2x =(1—xz)-n+z-(n+1) (note that 0 < z < 1), it follows with the
logarithmic convexity of f (see (2.12)):

log f(n+z) < (1—x)-(log f(n))+z-log f(n+1)  and thus

fnt+a) < f(n)' 72 f(n+1)* = f(n)-p(n)*

fln+z) <p(1)-...-p(n—1)-p(n)* (2.13)
In the same way n+1= (1 —x) - (n + 14 z) + = - (n + =) implies

f(n+1) < f(n+1+2)' % f(n+2)* = f(n+z)-pn+z)' =

fn+1)-p(n+2)*"" < f(n+z)

p(1)-...-p(n) -p(n+z)" ' < f(n+2) (2.14)
Combining (2.13) and (2.14) leads to

p(1)-...p(n)-p(n+xz)* ' < f(n+z) < p(1)-....p(n—1)-p(n)*
Since f(n+z) = f(z) -p(n+x —1)-...-p(x), this is equivalent to

p(1)-...-p(n) . p(1)-...-p(n—1)
p(w)p(w—}—n) p(n+2) Sf(gv)Sp(:/v)-...-p(:l:-l-n—l) p(n)

v ~ v
~ ~

an bn

it follows that

L p(l)p(n_l)
f(x)—,}Lnéop(x)....-p(x+n—1)

-p(n)® = lim

This completes the proof. O
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Remark 2.4

Obviously 'y, is also uniquely determined by the logarithmic convexity for
positive a. In our proof, we assume that I', is logarithmically convex on the
whole positive real line. But this is not necessarily the case, we have shown
merely that I',; is logarithmically convex on an Interval (a,0c0) C R*. But
intuitively, this does not matter, since we simply can translate the polynomial p
and correspondingly I',,. If T, is logarithmically convex on (a, co) for an a > 0,
then translate the function to the left such that it is logarithmically convex on
the positive real line. Then, by our theorem, the solution of the recursion of the
translated polynomial is unique under the condition of logarithmic convexity,
and since we demand a certain consistency of our solutions, the original I',-
function is also uniquely determined. The following proposition shows that
translation of the defining polynomial results in the same translation of the
corresponding I',-function, multiplied with a certain factor.

Proposition 2.5
Let N € N, p be a polynomial and q be the polynomial defined by

q(z) := p(z + N),
and

a:=Tp1(N+1).
Then

Ipi(z+N) =Tga(z),

i. e. if we translate p, Iy, is translated in the same way.

Proof:

Fio(z) = lim «

= 1551) = }(Z(TN Ty PO D Dt N) - pln+ N
_ p(1)-...-p(n) .
p(n+N)® p(n+1) p(n + N)
p(n)* p(n) p(n)
= Tpi(z+N) o

O

In the next section, we will examine some identities for the I',-functions. We
show that the mapping p — I', is multiplicative, and that I'; for a constant ¢
is the exponential with base ¢, as one expects. This will lead to an interesting
representation of I';, by the original I'-function.
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2.3.4 Representation theorem
Proposition 2.6
a,) Fp’a = Oé].—‘p,l

b) For a constant ¢ > 0, T'c 4(2) = ac®™!

c) Lpg,ag =T'pale,s

d) If p is the monomial p(z) = (z — a), then T} 1(z) = ll:ﬁizg, where T is the

original T'-function.

Proof:
a) This is trivial. But this is the reason why we just write I', and mean T'p ;.

b) The definition of T, o for the constant polynomial p(z) = ¢ gives

c) Just use the definition of T'p 4:

o pg() - ... - pg(n) 2
Tpoap(z) = lim af a2 (z ) -pq(n)
_ p(l) -p(n) VAT g(1)-...-q(n) .
N (nll)ngo ap(z) (z +n) () ) (nh—{%oﬁq(z) ..o q(z+n) 4(n) )
= Tpa(2)lq(2)
d) Since a standard definition of T is (cf. [6])
nln?
P& = lim e e n)
we obtain
'z—a) nln*~ @ l1-a)-...-(1—a+mn)
(l—a) nlgrgo ((z —a)-...-(z—a+n) nlpt-a )
~ lim p(1)-...-p(n) B 21
o n1—>oo (p(z) (Z+n)(1 a+n)n )

where we used that

. (1-a+n)n*! . n \*'1-—a+n
lim (———— ) = lim =1
n—oo (n —a)? nsoo \ \n—a n—a

This completes the proof. O

This lemma leads to the following representation theorem:
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Theorem 2.7 (Representation theorem of T'))
Let p € C[z] be a polynomial. If

p(z) = CH (z — aj)

is the factorization of p, where a; are the zeros, then

I(z —a;)
[pa(2) = ac® /
b i I'(1—ajy)
Proof:
This follws immediately from Proposition 2.6. O

2.3.5 Rational functions

In the last paragraph, we found solutions for (2.6) in the case that p is a polyno-
mial. A simple consideration shows that we can extend these results to rational

functions r. Since rational functions are quotients of polynomials, r(z) = %,

.. . . . r .
it is an immediate calculation that [ solves the recursion for r:
q

—

_P 1) =
@+

Now we can generalize the results of the last sections to rational functions and
summarize them in

Theorem 2.8 (Multiplicative recursion for rational functions)
Let r(z) = % 8 be a rational function. Then

T o= Ji o gy @19

defines an analytic function which solves the recursion
Ty o(z4+1) = r(2)Tra(2), Io(1)=«

If

n

p(z) =c]] (z—ay)

j=1

and

we have the representation

ey Me—a)) 1 T - b))
Lraf2) = (3) T —ay) ]1;[1 T(z—b;)
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Proof:

The compact uniform convergence of the limit follows from the proof of the
compact uniform convergence of Iy, since we simply can write r = % and ex-
amine the limits of the numerator and denominator separately.

The representation is an immediate consequence of the representation theorem
for I', and the observation I‘% = %, which immediately follows from the defi-

nitions. U

2.3.6 Uniqueness of rational solutions

We have already shown that the I', function is uniquely determined by conti-
nuity and logarithmic convexity. But this was shown only for real polynomials
that have positive values on the positive real line. We want to give constraints
which make all I'p-functions unique. The representation theorem and lemma 2.6
show that the mapping p — I', has the properties of a homomorphism. These
properties motivate the following:

Theorem 2.9
Consider the recursion

flz+1)=p(2)-f(2), fQ)=1 (2.16)
where p is a polynomial. The solutions of all these recursions are required to
fulfill the following properties:

(i) The solution of f(z+ 1) = c- f(z), i. e. the case that p(z) = ¢ is constant,

is the exponential function ¢*~!.

(ii) The solution of the linear polynomial p(z) = z — a is the shifted I'-function

(up to a factor), i. e. the solution of f(z +1) = (z — a) f(2) is %

(iii) The solutions are multiplicative, i. e. if f, is the solution of fy(z + 1) =

p(2) fp(2) and fy is the solution of fy(z + 1) = q(z) f4(2), then the solution
Fpg Of fpq(z +1) = p(2)q(2) fpq(2) is fp - fo-

Then the solution of (2.16) is uniquely determined as I'p. If we add the require-
ment

(iv) The solution of f(z + 1) = ;15 f(2) is the multiplicative inverse of the
solution of (2.16),

then the solution for all rational functions p is uniquely determined by T'y,.

Proof:

The fact that the functions I'), fulfill these constraints follows from Lemma 2.6
and the representation theorem.

Conversely, let p be any polynomial, and let f be a solution of (2.16). Then p
has the factorization

p(z)=c H (z — 2k)- (2.17)
k=1

By (i) and (ii), the solutions of f(z + 1) = ¢f(2) and f(z+ 1) = (z — zx) f(2)

are ¢~ and ?g:; :3, respectively, it follows from (iii) and the representation
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theorem that f(z) = I'p(2).
For rational functions, the proof is the same. O

Remark 2.10

If we have the uniqueness requirement of logarithmic convexity for the solu-
tions for positive real polynomials, then this requirement is consistent with the
requirements of the theorem above.

2.3.7 A new proof of Legendre’s formula

This section contains a mathematical application of our I'j, theory. We present
a new proof for the known duplication formula by Legendre

T(27) = %ZQZ_lf(z)F(z%—%).

Proof:

The function F : z — I'(22) is an analytic function which satisfies the recursion
F(z+1) =T(22+2) = 22(224+1)'(22) = p(2)F(2), F(1)=1

with the polynomial p(z) = 22(2z + 1) = 2%z (2 + 1).

By our uniqueness theorem (since I'(2z) is logarithmically convex on the positive

reals), it follows

F(z) = Typ(x)

on the reals, and since these are holomorphic it follows for all z that apply here.
By our representation theorem 2.7, we have

_ T(z+3)
T = (227 ) —n 2]
(0 = @) T
_ I'(z+1)
— (92)*! T(2)—e 2]
%) i)
— L 22—-1 | 1
= \/772 T'(z)T (z+ 2) ,
where we used the known fact ['(3) = /7. O
Remark 2.11

This proof sheds new light on this formula, since it shows that the two I'-
functions appearing on the right hand come from the fact that I'(2z) is simply
a I', function for a polynomial p of degree 2.

A similar proof, which requires more calculation, also applies to Gauss’ multi-
plication formula

ron = (&) 7 w2 rer (4 L)r (54220,
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2.4 The additive case

We are interested in analytic solutions of the recursion

fle+1) = f(x) +hz),  f(0)=0 (2.18)

where h is an analytic function.
Let us first make some general considerations. Given two additive recursions

filx+1) = fi(x)+hi(z), i=1,2
then

(fitfo)(@+1) = (fi+f2) (@) +ha () +ha(z)

If « is a constant, then

(af)(@+1) = (af)(z) + ah(z)

This shows that the recursion is linear, i. e. if A(h) denotes the solution f of
(2.18), then the relation A has the properties

A(g+h)=A(g) + A(h),  A(ag) = aA(g)

We have to be careful about the equality sign, since we do not know yet anything
about uniqueness of solutions let alone their existence. But our goal is to define
such an operator on the space of analytic functions or at least on a subspace of
this space. In order to do this, we will introduce an operation on power series
which we call the Bernoulli Transform.

2.4.1 The Bernoulli Transform

We want to define functions si(z) which are continuations of the primitive-
recursive functions defined by

se(n +1) = sg(n) + n*, s,(0) = 0. (2.19)

Since the recursion is definied by a polynomial, we might expect that the solution
is again a polynomial. Bernoulli has already dealt with this problem, and the
solutions are modifications of the known Bernoulli Polynomials. The following
definition of s (z) satisfies this recursion, and the sg(z) are indeed polynomials:

Definition 2.12
The B-polynomials sy (z) are defined by the functions appearing in the following
power series expansion [9]:

ewz

—eF = sp(w)
T Tl g A tw-lL s=0 (2.20)
k=1

F =
(wJZ) ez k

In an analogous way, the well-known Bernoulli Polynomials By(z) are defined

[9]:

Hiw,z) = 267 =y Belw) 4 (2.21)

The number By, = By,(0) is the k-th Bernoulli Number.
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By a simple calculation, one can show that the functions defined by the coeffi-
cients of these power series expansions are indeed polynomials. Here are some
basic properties of the B-Polynomials and the Bernoulli Polynomials:

Proposition 2.13
a) The Bernoulli Polynomials can be written explicitly as

Bw) =3 (§)Baut—, (222

=0
where B; = B;(0) are the well-known Bernoulli Numbers.

b) The B-Polynomials and the Bernoulli Polynomials are connected by the fol-
lowing identity:

() = 5 (B () — By (1), (2.23)

¢) The Bernoulli Numbers can be expressed as

(=)™ 12m)! S 1 (=1)™=1(2m)!

Bom =2 (27)2m 2 (2m)2m ¢(2m)

(2.24)

And it is BQm+]_ =0.
Here ((z) denotes Riemann’s Zeta function.

These are well-known facts, for a proof see [9)].
Since the B-polynomials solve (2.19) and because of the linearity one might try
to solve

fz+1)=f(z)+h(z), F0)=0, h(z)=) az* (2.25)
k=0

by putting
f(Z) = Zaksk(z)a
k=0

i. e. we simply replace the powers z* in the taylor expansion of h by the k-th
B-polynomial sx(z). This replacement we will call Bernoulli Transform. Note
that this Bernoulli Transform is, in our sense, computable, since by Proposition
2.13 we can compute the s.

Definition 2.14
Let h(z) = Y po, arz® be an analytic function. The formal sum

A(h) = iaksk(z) (2.26)

is called the Bernoulli Transform of h.
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Note that this is only a formal sum, it may not converge.
If h is a polynomial, however, this is obviously a solution of the recursion:

Ah)(z+1) = Zaksk(z +1)
k=0
= Zak(sk(z) + 2)
k=0

= iaksk(z) +iakzk
k=0 k=0
= A(h)(2) + h(2).

This solution is a natural one, since if we demand the solution to be polynomial,
it is necessarily unique. In fact, since we want a continuation of the function
f defined on the natural numbers, infinitely many values of the continuation
are fixed. So there can be only one polynomial having these values at the
natural numbers. For polynomials, the uniqueness question of the introduction
can easily be answered, and so for polynomials h, we can define polynomial
solutions of (2.25) as natural.

But if h is any analytic function, it is not clear when ) agsg(z) converges, and
we will see that it does not so in the general case.

2.4.2 Pointwise Convergence

In order to achieve pointwise convergence of the Bernoulli Transform on C,
consider the following.

The function defined by F(w, 2) = ©£-=2 hasfor w ¢ Z in {z € C||z| < 2} its
only isolated singularity in 27i. Therefore the convergence radius of the series
POyt ‘9’“,5—;”)2:’“ +2z—1is 2m. By Cauchy-Hadamard’s formula for the convergence
radius of a power series,

1
— =limsup ¥/|an|,
R n—o00

where R is the convergence radius of the series ) >~ anz", it follows for all

weC wegQ
lim sup ( y |sk(w)|> -1 (2.27)

k— o0 k! 2w

A sufficient criterion for pointwise convergence of the Bernoulli Transform is
then

lim sup (\"/ |ak|k!) < 2m
k—o0
Since under this condition we have
lim sup (  |ak| - |sk(w)|) = limsup | { |ak|k!w <1
k—o0 k—o0 k!
and the series )~ axsy(z) converges absolutely for all z € C.

But if we want to assure that the limit function is analytic, we need uniform
convergence. A criterion for this will be shown in the next section.
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2.4.3 Uniform Convergence

Now we will show that

limsup ( 4/Jaclk!) < 27 (2.28)

k—oo
is a sufficient criterion for uniform convergence on compact subsets of C. In
order to prove this, we will first prove an estimation for the B-Polynomials.

Proposition 2.15
There is a constant M > 0 which is independent of k and z, such that

Isk(2)] < M%e%lz| (2.29)

Proof:
By Proposition 2.13, we have

—1)F1(2k) & 1
Bok1 =0, sz=2wz—

and therefore for k£ > 1:
oo 1
B < 2 —
Bl < 2005 2
n=1
w2 k!
< 2——
- 6 (2m)k’

which holds because
21 _ w2
IEEES

which is a commonly known fact. With the representation of the Bernoulli
Polynomials in Proposition 2.13 we obtain for a constant C

k
Bl < 3 (5Bl

=0

ck i
Zi!k—i!%ri'w'

<
27r|w|
= 27T k Z
k!
< C 27| w|
= T enre

and therefore by Proposition 2.13 with another constant M

k! lw
|3k(2)| SMWeZ | |,

which completes the proof. O
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Now we are able to show that (2.28) is sufficient for the uniform convergence of
the Bernoulli Transform of f. If for the series

o
5
k=0
the criterion
lim sup (\k/ |ak|k!) <27
k— o0

holds, there is by the definition of the limes superior a kg, such that for all
k> ko

\k/ |ak|k! <a<2r
for some a and thus
|ak|k! S ak.

Let U C C be compact and

A= vee  (Ifllv,eo = sup |£(2)])
zeU
k! a\k
o < |laxM 22| < MA (—)
ool < oM rge™™|| <4 (57

Because a < 27, the series

Z arsi(2)
k=1

is on U normally convergent, it is then uniformly convergent on compact sets
and converges therefore to an analytic function. Let us summarize this result in

Proposition 2.16
Let

o0
h(z) = Z apz"
k=0
be an analytic function, such that
lim sup (\"/ |ak|k!) < 2m
k— o0
holds. Then the Bernoulli Transform
A(h)(2) =D arsi(2)
k=0

defines an analytic function on C, which satisfies

A (2 + 1) = A(h)(2) + h(z).



2.4. THE ADDITIVE CASE 29

Proof:
Since the sum converges absolutely and uniformly on compact sets, the function
A(h) is a well-defined analytic function, and

M8

Ah)(z+1) = apsk(z +1)

~
Il
<}

(arsk(z) + akzk)

I
NE

~
Il
<

I
NE

(o9}
arsk(z) + Z apz®
k=0

(h)(2) + h(2)

I
>

2.4.4 Necessary criterion

If we examine what has been said about pointwise convergence, we easily obtain
a necessary criterion for pointwise convergence of the Bernoulli Transform: If

k:lggo (W) > 2m,

then there are points w € C such that ) agsi(w) does not converge absolutely.
In fact this holds for all w ¢ Q: Under these circumstances, by (2.27) it is

1
li k |Sk(’11])| -
nsup ( k! o

and thus for some a > 0

1imsup<'c M) =b>a>1

k—o0 k!

By the definition of the limes superior, this implies that there is a subsequence
(|an, ||8n, (w)|) converging to b, which implies that almost all |ap, sn, | are > a.
But this means that in the series Y |agsk(2)| infinitely many summands are
> 1, which shows that this series cannot converge.

2.4.5 The Space B,

We will see that the set of all functions satisfying (2.28) is a vector space, which
has some additional closure properties.

Definition 2.17
The space By is defined as

By := {i apz®

k=0

limsup ({/Jax[k!) < 27r} (2.30)
k—o0
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We show that By is a linear space: If
lim sup (\’“/ |ak|k!) < 2m,
k—o0
then for all A € C

lim sup (\"/ |)\ak|k!) <2m

k—o00
and if
lim sup (\"/ |ak|k!) < 2m, lim sup (\k/ |bk|k!) <27
k—o0 k—oo
then also
lim sup ({“/|ak + bk|k!) < max <lim sup (\'“/ |ak|k!) ,lim sup ({“/ |bk|k!)>
k—o0 k—o0 k—o0

< 2m.

This shows that By is a vector space. The Bernoulli Transform A is a linear
operator on this vector space:

A:By— OQ), f > Af

Moreover, this space is closed under differentiation: If h(z) = Y72, arz”, then
h'(z) = Y po karz""!. Examining the coefficients, we get

lim sup ( Vv (k+ 1)|ak+1|k!) <2

k—o0

2.4.6 Uniqueness

As in the multiplicative case, the solutions of f(z + 1) = f(z) + h(z), f(0) =0
are not unique, since we simply can add periodic functions. So we look for
criteria under which the solutions are unique. These criteria should be as simple
as possible. For example, the requirement that for polynomials the soulutions
are again polynomials is simple, and it’s plausible to make this requirement.
This is what we informally call 'natural’. Our aim is to give plausible criteria
for uniqueness, and the solutions that are subject to these conditions we then
call natural. We will see that we can define solutions of the additive recursion
uniquely for those h for which the Bernoulli Transform converges, if we require
the two following uniqueness conditions:

(i) First, we demand that the solution f of f(x + 1) = f(z) + p(z), f(0) =0,
where p is a polynomial, is again a polynomial.

(ii) A should be a linear operator, i. e. if fi, fo are solutions of fi(z + 1) =
f1(z) + hi(2), fa(z + 1) = f2(2) + ha(z), then for A, u the solution of
f(z+1) = f(2) + Ay (2) + pha(2) should be Afi(z) + pf2(z). Note that
this restriction has to be made, indeed it is clear that Afi (z)+uf2(z) solves
the new recursion, but we could have taken a different solution. But this
would be not consistent with linearity.
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(iii) A should be a continuous linear operator, it should be continuous with
respect to the topology of the ring O(C) of holomorphic functions, which
is given by uniform convergence on compact subsets, i. e. if (h,)52, is a
convergent sequence of functions with

hn, — h

and f, = A(hy,) is a solution of f,(z+1) = f,(z)+h,(z), then we demand
that

fa > 1,
where f = A(h) is solution of f(z + 1) = f(z) + h(x).

It is easily seen that these restrictions make our solutions unique:
If f(0)=0and f(x+1) = f(z) + p(z) for a polynomial p, then f is uniquely
determined on the natural numbers, and therefore there can only be one poly-
nomial f which satisfies the recursion.
The general case f(z + 1) = f(x) + h(z) is unique because of the continuity,
since for any h there is a sequence of polynomials p,(z) with p,(z) = h(z). In
fact, we simply can take the n-th Taylor approximation of h as py,.
The next step would be to show that our solution satisfies these conditions:
First, it is clear that for a polynomial p(z) = Y",_, axz* the Bernoulli Trans-
form Ap(z) = Y.7_, arsk(z) is again a polynomial, since the s;(z) are and so
are linear combinations of the sy(z).
But unfortunately, the linear operator A is not continuous on By with respect to
the topology of uniform convergence on compact subsets of C, as the following
counterexample shows: Let
’nl n
fale) =

Clearly, f, — 0 uniformly on compact K C C. But

Afa(z) = sn(2)10™

n!
does not converge to A(0) = 0, since, by (2.27) we have for w ¢ Q:

. |sr (w)] 1
limsup | {/ = | = —
k— 00 ( k! 27

and therefore by the definition of the limes superior, there is a subsequence

<k./|skj<w>|>°°
K)o

converging to s=. But this means, since + < -1, that
gIng 1o o, 10

Pra)
sk, ()] s (L ki
kj! — \ 10

for j large enough and therefore
[Afn(2)] > 1

for infinitely many n. Thus, A f,, does not converge to 0.
This problem, however, can be avoided if we define a suitable norm on Bj.




32 CHAPTER 2. LINEAR PRIMITIVE RECURSION OVER C

2.4.7 The Bernoulli Space B

We will define a norm for analytic functions which are subject to a certain
condition.

Definition 2.18

For an analytic function h(z) = > p- ; arz*, define

> k!
k=0

The Bernoulli Space B is defined as
B:={heOQ)]||hllg < x}. (2.32)
We used the term ’space’. In fact, we have

Proposition 2.19
The space (B, ||.||8) is a normed linear space, and it is By C B.

Proof:
Let f =Y arz*, g => bpz* bein B and A € C.

o f=0ar,=0k< ||fllz=0
o [IF +9lls = 2520 lar + bil e < o larl miye + Xheo bkl e
o NI = 020 hanl gise = 1M 50 lakl e

This shows that B is a normed linear space. Now, let h(z) = Y 7o, ar2® € Bo,
then, by (2.28) we have

k!
limsup | {/|ag <1
e ( I mp ) <
and this implies that the series in ||h||s converges by a convergence criterion for
infinite series. u

Now we can extend the linear operator A to B. If h(z) = Y ;2 ax2® € B, then
we have by Proposition 2.15 and any compact U C C and a constant C

k! e27r\z\
k

(2m)

< Cla] K
ar|—
Uoo k (2m)k

But by Weierstrass’ majorant criterion, this implies that the series Y~ 2~ ; aj sk (2)
converges uniformly on compact sets to an analytic function. Therefore, we have
that

akM

||ak8k (Z)HU,OO <

A:(B,]-lB) = O(C)

is a linear operator. We now show that this operator is continuous, where
on O(C) the standard-topology of uniform convergence on compact subsets is
assumed and B is normed with || - ||s.
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Proposition 2.20
The linear operator

A (B,|-]ls) = O(C)

is a continuous linear operator from the space B to the space of holomorphic
functions.

Proof:
Let (f,)%, be a sequence of functions in B with f,(z) = > 3. ank2¥, such
that f, — f € B with respect to || - ||, where f has the power series expansion
f(2) = Y p2 o arz® This means

oo

k!
§:|ahn-—akﬁ———z -0
pard (2m)

We have to show that Af,, — Af uniformly on compact sets in C. Let K C C
be any such set, and denote || - ||x,00 the sup-norm on K. Then, using (2.29),

o0

IAF = Afalle <D lak — anl - [skllx
0

ES
Il

k!

oo
- 27|z
< Z |a, an,k|M(2ﬂ_)k |le"™ |
k=0
S CTE:lak——an$|Ezax'—)0
k=0
with the constant C = M||e>™*l||x < oo, since K is compact. But this means
that Af,, - Af on compact sets K C C. O

Now we are able to show that the solution of the additive recursion for f € B
is indeed unique, if we demand the solution of polynomials to be polynomials
and if we demand the recursion to be continuous (with respect to the norm
introduced above). We only have to show that the polynomials are dense in B
with respect to the norm || - ||z, because if we establish this fact, then for any
f € B there is a sequence of polynomials p, € B with ||f — p,||s = 0 and,
because of continuity it is necessary that

A(f) =A(lim (p,)) = lim A(p,),

n—oo

n—o0

where the limit on the right hand means uniform convergence on compact sub-
sets and the one on the left hand means convergence with respect to || - ||s,
which means that A : B — O(C) is continuous.

But the fact that polynomials are dense in B is clear, since for f(2) = Y, ar2¥,
the sequence (p,)52; with

n
pn(2) = Z apz"
k=0

converges to f in the norm || - ||5:

oo

k!
f=palls= D |%|W -0,

k=n-+1
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: : 00 k!
which holds because of the convergence of the series ).~ |ak|W'
Let us summarize our results

Theorem 2.21

Let B be the Bernoulli Space as defined above. Then, for any function h € B, the
Bernoulli Transform Ah is a well-defined analytic function on C which satisfies
the recursion

Ah(z +1) = Ah(z) + h(z),  Ah(0) = 0.

If we demand that the solution of this recursion of a polynomial is again a
polynomial and that the linear operator mapping a function to its solution is
continuous with respect to the norm on B, then the solution of this recursion is
unique for all h € B.

Before closing this section, we will examine some analytic properties of the
space B. If one has a normed space, then the question arises whether this space
is complete with respect to the norm. The space is complete, if any Cauchy
sequence of elements of B has a limit that is again in B. Such complete normed
spaces are called Banach spaces. We now show that B is a Banach space.

Proposition 2.22
The Bernoulli Space B with respect to the norm ||.||g is a Banach space.

Proof:
Let (fn(2) = X an,12%)3%, be any Cauchy sequence in B. This means that for
all € > 0, there is a ng, such that for all n,m > ng

D lank - am,k|W <e
k=0

It follows that on compact sets K C C

[
sup [fu(2) = fn(2)] < 5up 3 Jasn — aiumll2* = 0 (m,n — o0)
z€K z€K =0

which implies that (f,)nen is a Cauchy sequence in the topology of O(C), and
because of the completeness of this space, there is a function f € O(C) with
fn — [ uniformly on compact sets. This implies, if f(z) = Y, arz*, that
ap = lim,_, ap,; because uniform convergence of holomorphic functions im-
plies uniform convergence of all derivatives, and azk! = f*)(0). Now, we show
that f, — f in the norm || - ||z, which in particular implies that f € B.

By assumption that (f,)nen is a || - || s-Cauchy sequence, we have for all N

z — < E _ <«
k=0 |an7k am’k| (27r)k B k=0 |an’k am,kl (27r)k ‘

and, if we let m tend to oo

al k!
Z |,k — ak|W <e
k=0
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Now let N — oo and obtain

= k!
Z |U/n7k - aﬂw S €.
k=0

Since € > 0 was chosen arbitrarily, this shows that ||f, — f||s — 0, which
completes the proof. O

Next, we will consider some functions which are not in B.

2.4.8 The recursion f(z +1) = f(z) + £
The recursion
fle+1) = 1@+ (2.33)

cannot be solved by the Bernoulli Transform, since % is not in B. But the I'-
function leads to a solution of this recursion. If we derive I'(x + 1) = zI'(z), we
obtain

IM(z+1) =T(z) + 2 (z)

and thus
- (o

Therefore the function Ty (z) := (1%) solves (2.33). Consider the derivative on
both sides of

which leads to

(—1)*k!
1

T (z+1) = TW (z) +
Thus, if we define

T ()

1) = ety

we obtain
1

These considerations lead to a general result.
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2.4.9 General rational solution

The results of the last paragraph and the Bernoulli Transform lead to a general
solution of

fz+1)= f(z) + R(z) (2.35)
where R(x) is a rational function.

Theorem 2.23
Let R(z) be a rational function which has a partial fraction expansion

n ng
_ Qi
R(z) = p(x) + Z Z @) (2.36)
i=1 k=1
where p(x) is a polynomial and «ay,--- ,a, are the zeros of the denominator-

polynomial of R(z). Let

f(z) = Ap(z) + Z Z airTr(z — ) (2.37)

i=1 k=1

where Ap is the Bernoulli Transform of the polynomial p and the T}, are defined
as in the preceding paragraph. Then f is analytic except at isolated singularities
and satisfies

fe+1) = f(z) + R(z)

Proof:
By former results, it is clear that f is analytic. It satisfies the recursion, since

fle+1) = +ZZ airTh(z — a; + 1))

i=1 k=1

n o n
Ak
= Ap( +;§<aszk .Z'—Oéz)‘f'i(x_ai)k)
n i n
= Ap(e)+ 3 Y (@iTh(@ = o)) + plo +ZZ T aF
i=1 k=1 i=1 k=1
= f(z)+ R(z)

O

Remark 2.24

Concerning uniqueness of our solution of (2.35), consider the following. Take
the uniqueness conditions of 2.4.6. If we can give a requirement for uniqueness
of solutions of (2.34), then, because of (i) and the linearity (ii), the combination
of the criteria gives unique solutions of (2.35).

(iv) The recursion should commute with differentiation, i. e. if f(z +1) =
f(2) + h(z), has the unique solution f, then f'(2 + 1) = f'(2) + h'(z) has
the unique solution f’. It is clear that f’ is indeed a solution of the second
recursion.

(v) The solution of f(z+1) = f(z) + 1 should be T} (z).
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The second of these criteria is plausible if you accept that the I'-function is the
unique natural solution of f(z+ 1) = zf(z), f(1) =1, and that the recursions
should be consistent with taking the logarithm, i. e. log f(z + 1) = log(z) + log f(2)
has the unique solution log I'(z). Differentiating the last recursive equation gives
the recursion for Ti(z).
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2.4.10 Periodic Functions

The following consideration will lead to the solution for periodic functions with
period w ¢ Q. Let G be a region which is of the form G = {z € Cla < Imz < b}
with R C G, and let h : G — C be a holomorphic periodic function on G with
h(z4+w)=h(z) foraw € R, w ¢ Q. Then it is a known theorem (cf. [9]) that
h is of the form

h(z)= Y cpes ™, (2.38)

n=—oo

where the sum converges normally to h. To solve the recursion f(z + 1) =
f(2) + h(z), define

2mi

esnr 1
Fn(z) = T2mig,
ew -1
and obtain
62;”-”(24'1) -1
Fo(z+1) = ——
ew -1
62:inzez;”n _ 62;”'nz -1+ e%nz
- 2ni
ewm"—1
2mi 2mi 2mi
(ew™=—1)ew ™ tew ™ —1
= 2mi
ew -1
2mi

= F,(z) +e5

Since the series in (2.38) converges normally, the function definied by

o0

f2) = > enFul2) (239)
n=-—oo
also converges normally. Now, it is clear that

o

fet1) = Y cFu(z+1)

n=—oo
oo omi
= Z en(Fn(z) + e ™)

n=—oo

= f(2)+h2)

Thus we have proven

Theorem 2.25

Let G = {z € Cla < Imz < b} with R C G, and let h : G — C be a holomorphic
periodic function on G with h(z + w) = h(z) for an w € R, w € Q. The fourier
expansion of h is

h(z) = i ez,

n=—oc
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Then the function f defined by

oo 2mi

ew " —1
z) = cnFr(z), where F,(2) = 57— 2.40
f(2) n;m (2) (2) Er— (2.40)

solves the additive recursion f(z + 1) = f(z) + h(2).
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Chapter 3

Some nonlinear recursions

So far, we only have dealt with linear recursions. Now we will consider some
nonlinear cases, especially those which are reducible to the linear case. But since
the main theme of this work are linear recursions, we will only sketch some basic
ideas and will not go further into details.

3.1 Powers of functions reduced to linear cases

Consider

f@+1) =g(@) - f(z)"™ (3.1)
Let f; be a solution of fi(z+1) = p(x) f1(z) +¢(z), and put f(z) = e/1(®). This
gives

flx+1) = ehle+D)
eP(@) f1(z)+q(z)

TES (eﬁ(z))”(””’

= 1@ . f(z)P@
Therefore we can solve (3.1) if we can generally solve (2.1). If we set §(x) =
log(g(z)) we get from the solution of f(z + 1) = p(z) f(z) + §(x) by taking the
exponential function a solution of f(z + 1) = ¢(z) - f(z)?(®).
Of course we have to be careful about defining f(x)?(*), since over the complex
numbers this is not generally possible. Furthermore, we have to consider that
it can pose problems to define log(p(x)). So these equations above are to be

understood for those z, for which this is possible and the common power laws
hold.

3.2 Nonlinear recursions solved by infinite pro-
ducts

Let f be an analytic function such that the product

o0
—k

F(z):=[[ (f@+k)", n>1 (3.2)

k=0

41
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converges absolutely and uniformly on compact sets and defines therefore an
analytic function. For the definition of absolute convergence of products cf. [6]
or [11]. Then F satisfies

(flz+k+1)"

[
3

Flz+1)

~
Il
<

—k+1

(f(z+ k)"

I
3

~
Il
-

n~F "
(f(z + k)
k
1
7@ |
f(z)

Now, the question arises for which functions (3.2) converges uniformly on com-
pact subsets. A sufficient condition for the uniform convergence of a product
[15=o 9% on compact sets is the absolute convergence of - ; log(gi) for some

ko which may be dependent on the compact set [6]. With this tool we can
examine some interesting classes of functions.

1

| Il
EN=h
3

U@+mr*>

g

1. Monomials of the form f(z) = (z — a)’, j € N. We want to show that

Zlog( z—a))" _k)

k=ko

converges absolutely and uniformly on compact sets. Since

10g(((a:—a+k)j)"_k) = n "5 -log(x —a+k)

_ ( =)

= n_k-j-<log +log<1

=: hk(m),

)

and since it is clear that the sum ) hg(z) converges uniformly on compact
sets, the product (3.2) converges for these functions f. Note that the func-
tional equation log(ab) = log(a) +1og(b) applies to k and 14 232, si
some sufficiently large k, the real parts of these numbers are positive. (In
general, this functional equation is not valid for complex numbers, cf. [9].)

2. Rationals of the form (m_—la)]-, j € N. The same computation as above

shows that the product (3.2) converges for f(z) = ﬁ Just replace
—j for j in the computation for the monomials.
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3. Rational functions r(z) = % where p and ¢ are polynomials. Since the
product converges for the former two types of functions, it is clear that it
does the same for rational functions, since we simply can factorize:

r(z) = H;:1 (x — a;)" ‘

H;n:1 (z — b;)vi

4. Generalization of the first two types: (z — a)t,t € R. We have to be
careful with the definition of the general power. If there is a branch of the
logarithm on a suitable region, one defines (z — a)! = exp(log(z — a) - t).
To show the convergence of the product (3.2) for these functions we want
to make the same computation as in 1. But, as it is with the functional
equation of the logarithm, the equation log(exp(z)) = 2 does not in general
hold. Instead, we have log(exp(z)) = z — 2min, where n is dependent on
the section (2n — 1)m < Imz < (2n + 1)7. But, similar as above, the imag-
inary part of tlog(1+ “”T’l) remains in the same section if ¢ is constant and &
is large enough. In fact, we can achieve that —r < Im (tlog(1 + 2:2)) <
for all k > kg for some ky. Therefore, for large k,

log (((:c —a+ k)t)"_k) = n*.log (exp <t (log(k) + log (1 +7 ; a))))
R (t (log(k) +1log (1 +Z - a)))

With the same argument as before we see the convergence of (3.2).

The last class of functions and products and quotients of these show that (3.2)
can be applied to roots of rational functions.

Theorem 3.1
Let r(z) be a rational function. Put

s(z) == )t (3.3)
and define
F(z) = ﬁ s(z)" " (3.4)
k=0
Then the product defines an analytic function which satisfies
Flz+1)=r(z)F(z)". (3.5)
Proof:

The convergence of the product has already been shown. By the results above,
it follows that

Flz+1) = (F(”C)

s(z)

)n = r(z)F(z)"
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With this theorem we conclude our investigation of nonlinear recursions. We
remark that there are a lot more functions for which (3.2) converges, and this has
to be examined further. There are lots of interesting nonlinear cases, especially
the recursion

fz+1) =p(f(2)),

where p is a polynomial. For some cases we have found solutions, but it is an
open question whether there exist solutions for all polynomials p and how such
solutions can be defined.



Chapter 4

Further work

This work has dealt mainly with linear primitive recursions. We gave solutions
for a large class of functions including the rational functions. We further gave
uniqueness criteria for the multiplicative and additive recursions and showed
that our solutions fulfill these criteria.

We did not solve the linear primitive recursion for all analytic functions, it is
still open whether there are solutions for all functions. This has to be further
investigated. The nonlinear cases have to be examined more closely. For appli-
cations, recursions in several variables is important, and the theory of primitive
recursive analytic functions has to be extended in this direction.

We want to remark that continuing the concept of primitive recursion to C by
functional equations is not the only way to define functional specifications of
analytic continuations. In the following last section, we briefly give the idea of
an approach to the functional specification of analytic continuations of recursive
functions, which differs from the one given by recursive equations. We have not
examined this approach very closely, we just want to give the idea. Future work
will show whether this approach is sound.

In recursion theory over the natural numbers, one has some initial functions,
as the functions given by I, x(21,...,2n) = @k, On(21,...,2,) = 0, and the
successor function S(z) = z + 1. The scheme of primitive recursion is given by

F(X,0) =g(X), F(X,Sy) = MX,y,F(X,y)), X =(z1,...20),n>0.
In addition, we have the scheme of y recursion, we can define the function F' by

F(X) = py{g(X,y) = 0},

where the p-operator refers to the smallest y such that g(X,y) = 0. The class
of general recursive functions, or u recursive functions is obtained by the initial
functions and repeated substitution and recursion.

Now, Julia Robinson [10] has shown that one can obtain all general recursive
functions by taking the initial functions, adjoining a certain function E, the
function (z,y) — x + y, inversion A~ 'z = puy{Az = y} and substitution. This
means that the class of general recursive function is the smallest class of func-
tion closed under all these operations and which contains the initial functions,
E, and x + y. In this approach, the y operator is replaced by inversion. If the
function A is not injective, the smallest inverse is taken. One can prove that it

45
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is possible to replace the function A by a function B, such that the equation
Bz = y has a unique solution, cf. [10]. The function E referred to above is
given by Ex =z — [\/7]?.

We want to apply these ideas to specify analytic continuations of general re-
cursive functions. The idea behind this is that inversion of analytic functions
should be computable with analytic machines. Locally one can give the inverse
of an analytic function by an integral formula. Another possibility is to locally
invert the power series of the function. So the inverse of an analytic function
is, in a certain sense, locally computable. Generally, the inverse of an analytic
function is not a function on C or a subset, but it is given by a Riemann surface.
To give a functional specification of analytic recursive functions, define an ana-
lytic function E which interpolates the function E on the naturals. That such
a function exists follows from the interpolation theorem (cf. 1.1). Now take the
initial functions, the analytic function E and x + y. A general recursive func-
tion over the naturals can be obtained by repeated application of the schemes
inversion and substition. The analytic continuation (which is then defined on a
Riemann surface) is given by the same repeated application.
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