Electronic Colloquium on Computational Complexity, Report No. 5 (2001)

The Computing Power of Programs over Finite
Monoids

Pascal Tesson Denis Thérien*
McGill University McGill University

Abstract

The formalism of programs over monoids has been studied for its
close connection to parallel complexity classes defined by small-depth
boolean circuits. We investigate two basic questions about this model.
When is a monoid rich enough that it can recognize arbitrary languages
(provided no restriction on length is imposed)? When is a monoid weak
enough that all its computations can be realized in polynomial length?
Surprisingly, these two properties appear to be dual to each other.

1 Introduction

Finite monoids can be used as language recognizers in many different
ways. Classically, one would use a morphism ¢ : A* — M and a
subset F' C M to recognize the language L = ¢~1(F) C A*. Tt is well-
known that this framework characterizes the class of regular languages
and the algebraic point of view provides a most powerful set of tools to
understand and classify the combinatorial properties of such languages
(see [Eil76] and [Pin86] for a detailed description of this approach).
In this model, the morphism can be seen as a very uniform way to
translate a string a; ...a, in A* to a string ¢(a1) ... ¢(a,) of monoid
elements which is then evaluated in the monoid to yield the value of
the “machine” M on its input.

In [Bar89] and [BT88], a more general device to transform a string
in A* into a string of monoid elements was introduced. An m-input
M-program takes as input a word of length n over the alphabet A and
it is allowed to query the positions in arbitrary order and each position

*School of Computer Science, McGill University. 3480 University, Montréal, Québec
H3A 2A7 Canada. Email: {ptesso,denis}@cs.mcgill.ca. Supported by NSERC and
FCAR. This work was completed while the second author was in Germany, supported by
the von Humboldt Foundation.

ISSN 1433-8092

can be queried several times. At each query, the letter read in the given
position is transformed to a monoid element (precise definition is given
in the next section). In this way, the input word w = a1 ...a, gives
rise to a string m; ...mg, which again is multiplied out in the monoid
to yield the value of the program on w. One recognizes a subset of
A* by considering a sequence of n-input programs, one for each input
length. The interest of this model comes from its close relationship to
parallel complexity classes defined by boolean circuits of small depth:
the circuit classes NC!, ACC?,CC?, AC? can all be characterized al-
gebraically by this approach, and many central open questions about
the power of circuits can be rephrased in purely algebraic terms: for
example, the conjecture that ACC? is strictly contained in NC! is
equivalent to the conjecture that a polynomial-length program over a
solvable monoid cannot simulate the multiplication of a non-solvable
group.

The combinatorial power of monoids in this new framework is far
from being understood: it is of course quite a bit more subtle than in
the case of morphisms, largely because the monoid is allowed to “look”
at its input many times. In this paper, we will study and compare two
natural properties relevant to the model. When is a monoid compli-
cated enough to allow recognition of arbitrary languages via programs
(with no restriction on length)? When is a monoid simple enough that
any program over it can be replaced by an equivalent program of poly-
nomial length? Our results lead to the surprising conjecture that a
monoid M is not universal iff it has this polynomial length property.
We prove that the conjecture holds for groups and provide several par-
tial results for aperiodic monoids. We offer a suggestion as to the
potential algebraic description of the general case.

2 Definitions

2.1 Finite Monoids

A monoid is a set with a binary associative operation and an identity
element. Throughout this paper, M, N will denote finite monoids.

The wreath product M o N is the set M x N with an operation
defined as

(fi,n1) - (f2,m2) = (f1 - f3*,m1n2)

where f3'*(z) = fa(xny), and - is the operation in M.

The monoid M is a group iff it satisfies an equation of the form
2?9 = 1 for some q¢ > 1. We say that M is aperiodic if no subset of
it forms a non-trivial group or, equivalently, if it satisfies the equation
mitl = mt for some ¢t > 0. Any finite monoid can be decomposed into
a wreath product of group and aperiodic components. The following

three aperiodic monoids will bear special importance in our discus-
sion. First, U; is the aperiodic monoid with two elements 1 and 0 and
multiplication given by 0-1=1-0=0-0=0and 1-1=1.

a a
b b
Fig. 1: BAs automaton Fig. 2: U automaton

Next, BAs and U are the transformation monoids associated with
the partial automata of Figures 1 and 2 respectively. Note that miss-
ing transitions lead to an implicit sink state. Both monoids hold the
six elements {1, a, b, ab, ba, 0} but have slightly different multiplication
tables which we give here partially:

a | b |ab| ba a | b |ab| ba

a | 0|ab| 0| a a | a |ab|ab| a

blba| 0| b |0 b |ba| 0| b | O

ab| a | 0 |ab| O ab| a | 0 |ab| O

ba| 0 | b | 0 | ba ba |ba| b | b | ba
BAy’s mult. table U’s mult. table

The most basic tools of semigroup theory are Green’s relations. We
define on M four equivalence relations:

e xRy iff z and y generate the same right ideal, i.e. xM = yM.
e xLy iff x and y generate the same left ideal, i.e. Mz = My.
e z7y iff x and y generate the same two-sided ideal, i.e. MaxM =
MyM.
e zHy iff xRy and zLy.
It is known that £ and R commute. Moreover, when M is finite,
we have Ro L = Lo R = J. We will denote by R, the R-class of

a. An element e € M is idempotent if €2 = e. The next lemma shows
that idempotents play a special role in the algebraic structure of M.

Lemma 1 Let aJb. Then ab € R, N Ly iff Lo N Ry contains an
idempotent.

Moreover if e is idempotent and eRa (resp. eLa) then ea = a.
(resp. ae = a)

Two monoid elements z,y € M are said to be inverse if zyz = z
and yzy = y. A monoid is inverse if all its elements have a unique
inverse. As an example, BA, is inverse, whereas U is not since a
admits both itself and b as inverses.

We say that N divides M (denoted N < M) if it is a morphic
image of a submonoid of M. A class C of finite monoids is a (pseudo)-
variety if it is closed under direct product and division. The class of
finite groups (denoted G) and of finite aperiodic monoids both define
varieties. We will also be referring to the following varieties (always
denoted in bold):

For any prime p, Gp = p-groups = {M : exists k s.t. g*" = 1}
J1={M:s*=s,mn=nm}

DA = {M : there exists k s.t. (stu)*t(stu)* = (stu)*}
If V.and W are two varieties, we denote by V * W the variety gener-
ated by all monoids M o N for M € V and N € W.

2.2 Programs, Universality and the PLP

Let A be a finite alphabet. An n-input M-program of length s over
input alphabet A consists of a sequence of instructions

¢ = (ilafl)"'(i&fs)

where, for each j, 1 <i; <nand f; : A — M, and an accepting subset
F C M. On an input word £ = x; ...z, € A", the program produces
the monoid element ¢(x) = fi(zi,) ... fs(x;,): the word is accepted
iff ¢(x) is in F and the language L(¢) C A™ is the set of all words
accepted by the program.

We say that a monoid M is universal if, for each n and for each
subset L C A", there exists an n-input M-program ¢ such that L(¢) =
L. Examples of universal monoids will be given later. We first observe
the following;:

Lemma 2 The class of non-universal monoids is closed under division

Proof. Let N be a non-universal monoid. Let first M be a sub-
monoid of N. Since any M-program is also an N-program, M can-
not be universal either. Let next M = 6(N) for some morphism
and fix for each m € M an arbitrary preimage mn,, in N. Let
¢ = (i1, f1) - - - (is, fs) be an n-input M-program with accepting subset
F. Construct the N-program ¢ = (i1,91) ... (is,9s), where gj : A -+ N
satisfies gj(a) = ny;(,) for each letter a, and the accepting subset
G C N is declared to be §~(F). For any word z, we then have ¢(x)
is in F iff ¢(z) is in G, and thus L(¢) = L(v): this implies that M

cannot be universal. [|

On the other hand, we are unable to prove yet that the class of non-
universal monoids is closed under direct product, i.e. it is not known
if this class forms a variety.

We say that a monoid M has the polynomial length property (ab-
breviated PLP) if there is a constant k such that for each n and for
every n-input M-program ¢, there exists an equivalent n-input M-
program 1 of length n*. As a first example, any commutative monoid
has the PLP. Indeed, commutativity allows us to permute the order
of the instructions at will and consecutive instructions querying the
same position can be coalesced into a single one: hence, any n-input
M-program is equivalent to an M-program of length n. It is an easy
exercise to establish the following closure property.

Lemma 3 If M and N have the PLP, then so does M x N.

On the other hand, it is not clear if the PLP is preserved by taking
submonoids or morphic images. Let N have the PLP and let M be
a submonoid of N: an M-program is also an N-program and this N-
program can be reduced to an equivalent one of polynomial length, but
this new N-program may involve in its instructions elements which
are outside of M, and hence may not be an M-program. Let next
M = §(N): for any M-program ¢, we have seen that we can construct
an N-program which recognizes the same set, and this N-program can
be reduced to an equivalent one of polynomial length, say ¥. We are
unfortunately not guaranteed that the accepting subset of v is the
preimage of some subset of M, i.e. it may be that 6(n;) = 6(n2) where
ny is accepting and ns is rejecting: hence, there is no clear way of
transforming 1) into an M-program.

In particular, there is a polynomial length program computing the
AND function over the group S3 x As, but any program computing
AND over the subgroup Ss has exponential length [BST90]. This does
not ruin the possibility that the polynomial length property is pre-
served under division, as PLP is provably false for S3 x As, but the
example shows that an argument to prove the closure property will
crucially depend on PLP holding for the larger monoid.

How do the two notions introduced compare? It is easy to see that
when M has the PLP, it cannot be universal. This follows since there
are doubly exponentially many subsets of A™, whereas we can construct
only singly exponentially many M-programs. This paper wishes to
offer, and argue in favor of, the following surprising conjecture.

Conjecture 4 A monoid M has the polynomial length property iff it
is not universal

The validity of the conjecture would in particular imply that the
class comprising those monoids forms a variety. We will prove that the
statement holds for groups, and that the property characterizes the
well-known class of nilpotent groups. The picture is not complete in
the general case but we are able to prove the following:

e any monoid in the variety DA has the PLP
e any monoid outside the variety DA x G is universal.

Moreover, we have examples of monoids which we can prove are not
universal but for which we cannot prove the PLP (although each of
them divides a monoid having the PLP). All this evidence enables us to
propose a candidate for the exact variety of monoids which correspond
to the class defined by the conjecture, namely we suggest that the
right answer could be those monoids which divide the wreath product
of a monoid in DA and a group but do not have any non-nilpotent
subgroup. Note that this is not the same as DA x Gy;).

3 The case of groups

In this section we will prove that the conjecture holds for the restricted
case of groups. This can be seen by putting together results that
have implicitly appeared earlier in [BST90], but we present here an
alternative proof.

Let G be a group and g, h be elements of G: the group element
g 'h~lgh is said to be a commutator of weight 2 and is denoted by
[9,h]. More generally, all elements of the group will be said to be
commutators of weight 1, and commutators of weight k£ will be those
elements which can be expressed as [g, h], where g and h are commu-
tators for which the sum of the weights is at least k. G is nilpotent
of class k iff the only commutator of weight k& + 1 is the identity, G is
nilpotent iff it is nilpotent of class k for some k.

Lemma 5 Let G be an arbitrary group and let G. be the subgroup
generated by all commutators of weight c. Then any function f : A° —
G, can be realized by a G-program of length (dg)¢, where dg depends
on G.

Proof. The proof is by induction on ¢. If ¢ = 1, the program is
simply ¢ = (1, f). For ¢ > 1, let g be a commutator of weight ¢; and
h be a commutator of weight c2, where ¢; + ¢z = ¢. By induction hy-
pothesis, for any fixed x in A, there is a program ¢, , that takes the
value g on input z and the value identity on any input different from
x. Similarly, for any fixed y in A°2, there is a program ¢, , that takes
the value h on input y and the value identity on any other input. Such
programs also exist for g7! and h~! since these are also in G, and

G, respectively. Let now z be in A¢, with z = zy, where x is in A“
and y is in A®: we construct @, [y n] = @y g-1Py n-10z,9Py,n, Where
it is understood that the first and third segments query the prefix of
length ¢; of the input while the second and fourth segments query the
suffix of length ¢;. This program is easily seen to have the property
that it yields [g, h] on input z and the identity element on any other
input. We finally get the desired program ¢; as the concatenation of
the various ¢, f(;), for all z in A°. Note that the program has length
exponential in c. |

Lemma 6 If G is nilpotent, it has the polynomial length property.

Proof. Earlier, we argued that commutative monoids have the PLP
using the fact that blocks of instructions could be permuted at will in
the program. This is obviously not possible in general but nilpotent
groups allow a similar construction. Formally, let G be nilpotent of
class k and ¢ be an n-input G-program. For any function f : A — G,
denote by f~! the function defined by f~'(a) = (f(a))~! for every a.
Similarly, for any G-program ¢ = (i, f1) ... (is, fs), we define ¢~ =
(igy £1) ... (i1, f;). Note that for all z, ¢(z) - ¢~'(x) = 1. Note that
just as gh = hglg, h], for any two program segments ¢;, ¢2 we have:

D162 = adi[d1, 2] = D219y b3 1o (1)

We will say that a program segment ¢; is a t-block if it depends
on at most ¢ variables and always has output in G;. In particular, any
single instruction can be viewed as a 1-block and if ¢1, 2 are t1- and
ta-blocks respectively, [¢1, 2] is a t-block for some ¢ > t; +t5. Because
G has nilpotency class k, any t-block with ¢ > k outputs the identity
and can thus be deleted from the program.

Let I4,...,I, be some enumeration of the subsets of {1,...,n}
of cardinality < k, such that the sequence of cardinalities of the I; is
non-decreasing. Note that m = O(n¥). We claim that ¢ is equivalent
to a program ¢ = 9192 ..., where the segment 1); is a product of
|I;|-blocks depending only on variables in I;. Observe that we can
achieve this by repeatedly using (1): we can push any misplaced block
further left by introducing a new block of strictly heavier weight on the
right. This process terminates since we can delete the (k + 1)-blocks.

Now, the segment 1); is, by definition, computing a function from
ALl into G|1;| so by Lemma 5 it can be replaced by an equivalent

program of length bounded by a constant (dg)/%! < (dg)*. n

Lemma 7 If G is not nilpotent, then it is universal.

Proof. If G is not nilpotent, then for every n there is a commutator
h € G, that is not the identity. Fix such an h arbitrarily. Let L be an
arbitrary subset of A™. Let f : A™ — G,, be defined by f(w) = h if
w € L and f(w) = 1 otherwise. By Lemma 5, f can be realized by a
G-program and so L is G-recognized. |

The two lemmas combine into:

Theorem 8 IfG is a group, then G has the polynomial length property
iff it is mot universal.

4 The General Case

In this section, we study the general case, first focusing on aperiodic
monoids. Although we are not able to settle completely the main
conjecture, several interesting partial results will be proved. It turns
out that, as is often the case, the aperiodic variety DA is a convenient
case to deal with. We will use the following two results about DA.

Lemma 9 ([Sch76]) Let Mbe a monoid in DA and consider the nat-
wral evaluation morphism Eval : M* — M. Then for any F C M,
the language Eval~(F) can be expressed as a finite disjoint union of
languages of the form MgmiM; ... m;M;, where each M; is a subset
of M and the concatenation is unambiguous (i.e. any given word w in
M* may have at most one factorization as w = womqwy - .. Myw; with
each w; in M}.)

Lemma 10 ([BMT92]) If M is an aperiodic monoid not in DA,
then M is divided either by U or by BA,.

It is now possible to show the following:

Theorem 11 If M is in DA, then M has the polynomial length prop-
erty.

Proof. Consider an n-input M-program ¢ with accepting subset
F. Suppose w is accepted: by Lemma 9 the sequence of monoid el-
ements produced by ¢ spells out a word ¢(w) = womiw; ... myw; in
L = MgmiM;...mM} C Eval *(F) C M*. Let us refer to these
occurrences of the m;’s in ¢(w) as the bookmarks of ¢(w). The t in-
structions producing these bookmarks together query a set I of at most
t positions in the input word. The key observation is that whenever
another word y agrees with w on the positions I and is such that ¢(y)
is also in L, the ¢t bookmarks of ¢(y) must be produced by exactly
the same instructions as those producing the bookmarks of ¢(w): to
see this, construct the program i by deleting all instructions of ¢ that

query positions outside of I. It is clear that ¢¥(w) = ¢(y) € L. More-
over, this word can be factorized using either the bookmarks used for
¢(w) or for ¢(y), but the unambiguity condition then forces these book-
marks to be at the same location. This observation implies that only
polynomially many instructions, say O(n") can ever be responsible for
producing some bookmark in an accepted word. Construct a new pro-
gram by taking these instructions, plus, for each pair of consecutive
instructions in this sequence, exactly one occurrence of each instruction
that appears in the segment separating the two bookmark-producing
instructions in the original program. Since there are only O(n) possi-
ble instructions, this will produce a program of length O(n"t1). We
claim that the new program is equivalent to the original one. Any word
accepted by ¢ is still accepted, since all bookmark-producing instruc-
tions have been preserved, and the new program is obtained from the
old one by deleting instructions. Conversely, any word accepted by the
new program must have its output factorized using some unique set of
bookmarks: the same valid bookmarks exist in the original program
since all instructions appearing between any two consecutive ones also
appear in the reduced program. |

We next investigate what happens for aperiodics outside of DA.
The following result, originally proved in [Thég89], deals with part of
this situation.

Theorem 12 U is universal.

Proof. Fix some word w € A™ and consider the program ¢ =
(1, f1)...(n, fn), where fi(c) = b if ¢ = w; and f;(c) = e otherwise.
Then ¢(z) fixes state 1 in the automaton for U iff z = w, otherwise
¢(z) sends state 1 to state 2. Concatenating programs of this form for
each word in the language to be recognized, with in-between instruc-
tions that produce b, we get a program such that ¢(x) sends state 1 to
the sink state iff z belongs to the desired language. |

This implies that any monoid divided by U is universal. When
restricted to aperiodic monoids, our conjecture states that the converse
is also true. Aperiodic monoids outside of DA that are not divided
by U include, in particular, all aperiodic inverse monoids that are not
in DA, BA, being a prime example. We can show that BAs is not
universal, but we are so far unable to prove that it has the PLP.

Lemma 13 The monoid BAs cannot recognize the language PARITY.

Proof. A proof of this fact was first given in [Thé89] using represen-
tation of languages by polynomials and it can also be obtained as a

corollary to theorem 14. Tt is unlikely that these arguments will gener-
alize to more complicated cases and we provide here a new proof whose
ideas could help resolve the case of all inverse aperiodic monoids.

Suppose that the n-input BAs-program ¢ is computing PARITY
for some n > 5. W.L.0.G we can assume’ that ¢(0") = 0 and that ev-
ery instruction produces one of {1, a, b}. Note that a string in {1, a, b}*
evaluates to 0 in BA, iff it contains either two a’s not separated by
a b or two b’s not separated by an a. Thus if ¢(0™) = 0, we can find
instructions j, k querying (not necessarily distinct) bits i;,4; and pro-
ducing two a’s (or b’s) while all instructions in between them output
the identity.

Let 1 be the subprogram of ¢ consisting of instructions

(G415 fj+1) oo (k=1 fr—1)

. Since ¢ is computing PARITY, ¢(w) cannot be 0 for any w of weight
1. Hence, if a bit other than i; or iy is turned on, the number of in-
structions of ¥ that now produce a b exceeds the number of those now
producing an a by 1 in order to separate the two a’s still output by
instructions j and k. Thus, for an input of weight three, 1 outputs
a string with 3 more b’s than a’s so it must evaluate to 0 in BA,, a
contradiction. [

As we mentioned earlier, it is unclear whether the PLP is preserved
under the formation of submonoids or morphic images. In particular,
it was observed in [Thé89] that for all m € N, BA, is a divisor of
Uy o Cy, where C,, denotes the cyclic group of order m. It is puzzling
to note that, as we will show next, the latter has the PLP whenever
m is prime, even though we can not restrict the arguments to the case
of BA2 .

Theorem 14 Let M = (U,)¥ o G, where (Uy)* is a k-fold direct prod-
uct of Uy and G is a p-group. Then M has the PLP.

Proof. For simplicity, we will assume that M = U; o G and that the
input alphabet? is {0,1}.

By results of [BST90], we know that for any n-input program) over
a p-group G, there exists a polynomial r in Z,[Xy, ... X,] of degree at
most dg such that » = 1 whenever ¢ outputs h € F C G and r = 0
otherwise.

Tn fact, if 0 is not in the image of ¢, we have to appeal to an easy variation of our
argument

2This a priori seems to be a strong restriction. In particular, representing Gp-programs
as bounded-degree polynomials in Z, is more tricky. We include this construction in the
appendix for completeness.

10

Let us denote by the pair (f;,3;) € (US, G) the product of the first
i instructions of ¢ on some input. If (f;,g;) is the result of the i*®
instruction, we have

(F5,9:) = (fia f?i_l ,9i—19i)

We will say that instruction ¢ is an “h-crash site” for 2 € {0,1}"
if on z we have f;,_;(h) = 1 but f;(h) = 0. In particular, this implies
that f{"""(h) = 0.

Our main claim is that for all & in G there can only be polynomially
h-crash sites querying bit X;. Consider in particular all such instruc-
tions such that a crash occurs on an input where X; = 1. Since the
value g,_; is computed by a G program, we know by preceding remarks
that there exists a fixed degree Z, polynomial r; associated with this

instruction such that fig “='(h) = 0 if and only if r; = 1. There are only

(dT;) many linearly independent such r’s, hence if we have more than
(d’;) crash sites it must be the case that some r; can be expressed as
a linear combination of r;’s with j < 4. Hence if r; = 1, there must be
j <4 with r; = 1. This shows that ¢ is actually not a crash site since
whenever X; = 1 and f/*~*(h) = 0 we already had 7j(h) =0.
Therefore, we have at most |G| -2-n - (d’;) instructions which are
crash sites, i.e. where the U part of the computation is truly active.
For all but polynomially many instructions in ¢, we can thus replace
the UZ component of the instruction by the identity without affecting
the result of our computation. In between any two potential crash
sites, we are thus left with subprograms over the subgroup G but these
can be made to have polynomially bounded length using Lemma 6. R

It is known that a monoid M belongs to the variety J; if and only
if it divides the direct product of & copies of U;. One corollary of our
theorem is that any monoid dividing some (U;)F o G with G € Gp
is non-universal. It had in fact already been shown in [Thé89] that
programs over M € J; o G can not recognize the function MOD, for
any primes p # gq.

Finally, we show that any monoid which does not divide the wreath
product of a monoid in DA and a group is universal.

Lemma 15 If M does not belong to the variety (DA x G) then M is
universal.

Proof. It has been proved in [ST] that if M ¢ (DA * G) then there
exist two idempotents e, f € M such that eJ fJ(ef) but ef is not
idempotent. Lemma, 1 insures the presence of an idempotent s in the
H-class L N Ry.

11

Suppose first that there is no idempotent in H.y = R.NLs. Then it
is easy to verify that there is a surjective morphism from the submonoid
generated by {1,e, f,s} into U. Since U is universal, M must also be.

Suppose now that there exists an idempotent dH(ef). Note that
Lemma 1 can be used to show that ed = d, de = e and df = d. Also,
since efef # ef we have efe # e.

Let L be an arbitrary subset of A™. Fix a word w € L and consider
the program ¢ = e-(1, f1) ... (n, fn) - fe where, for any c € A, fi(c) =1
if ¢ = w; and f;(c) = d otherwise. For any = # w, at least one instruc-
tion outputs a d and, since d?> = d, ¢(x) = edfe = e. On the other
hand ¢(w) = efe. Concatenating such programs for all elements of L,
we get a program 1 with the property that ¢(x) = e for x ¢ L. On
the other hand, if z does belong to L then exactly one of the segments
will output efe and so we will get ¢ (z) = efe #e. |

5 Conclusion

As we mentioned in the introduction, we conjecture that a finite monoid
is non-universal if and only if it has the PLP if and only if it belongs
to the variety (DA * G) N Mpuq, where My; denotes the variety of
monoids in which every subgroup is nilpotent. We have shown in the
paper that PLP implies non-universality which in turn implies mem-
bership in (DA *G)NMy; by Lemmas 7 and 15. This variety is closely
linked to the one studied in a descriptive complexity context in [ST].

We have more or less implicitly indicated some possible steps to
take towards a proof of our main conjecture. Theorem 14 in particular
raises many questions. For one, it is reasonable to hope that similar
arguments could show that a monoid of the form (U;)* o G has the
PLP if G is nilpotent. Indeed, nilpotent groups are the direct product
of p-groups, the case covered by our theorem, but even the apparently
simple case of U; o Cg has so far eluded proof. It is not even known
whether this monoid is non-universal.

As we mentioned, Theorem 14 does imply non-universality for the
whole variety J1 o Gp, but not the PLP. An important step would be
to show that BA, for instance does have the PLP but it is unclear how
or even if the proof of our theorem can help in achieving such a goal.

Finally, a slightly different line of progress could be the case of
inverse aperiodic monoids. All such monoids lie in DA * G but only
those in J1 * G are known to be non-universal. The proof of Lemma
13, on the other hand, argues that if the program leads one string
to the automaton’s sink state, it leads almost all input strings to the
sink state. Similar phenomena seem to occur in all inverse aperiodic
monoids and this intuition could help in proving non-universality for

12

this class.
We wish to thank Peter Kadau of the University of Tiibingen for
his helpful comments and suggestions concerning this paper.

References

[Bar89] David A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC*. Journal of Computer and System Sciences, (1):150—
164, 1989.

[BMT92] M. Beaudry, P. McKenzie, and D. Thérien. The membership
problem in aperiodic transformation monoids. Journal of the
ACM, 39(3):599-616, 1992.

[BST90] David A. Mix Barrington, Howard Straubing, and Denis

Thérien. Non-uniform automata over groups. Information
and Computation, 89(2):109-132, December 1990.

[BT88] David A. Mix Barrington and Denis Thérien. Finite monoids
and the fine structure of NC'. Journal of the ACM,
35(4):941-952, October 1988.

[Eil76] S. Eilenberg. Automata, Languages and Machines, vol-
ume B. Academic Press, 1976.

[Pin86] J.-E. Pin. Varieties of formal languages. North Oxford Aca-
demic Publishers Ltd, London, 1986.

[Sch76] M. P. Schiitzenberger. Sur le produit de concaténation non
ambigu. Semigroup Forum, (13):47-75, 1976.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower
bounds for boolean circuit complexity. In Proc. 19" Annual
ACM STOC, pages 77-82, 1987.

[ST] Howard Straubing and Denis Thérien. Two-variable defin-
ability.

[Thé83] Denis Thérien. Subword counting and nilpotent groups. In
L.J. Cummings, editor, Combinatorics on Words: Progress
and Perspectives, pages 195-208. Academic Press, 1983.

[Thé89] Denis Thérien. Programs over aperiodic monoids. Theoreti-
cal Computer Science, 64(3):271-280, 29 May 1989.

Appendix

The technical arguments given in this appendix are a generalization of

the ones presented in [BST90]. Let A = {ay,...,as} be some finite
alphabet. Generalizing the construction of [Smo87], we will represent

13

subsets of A™ by polynomials over Z, in the k - n boolean variables
zitel?, . 2y, 29", ..., 2% . The intended meaning of these vari-
ables, of course, is that :c;.” is equal to 1 if the i*" letter of the input is
a; and is 0 otherwise. For this reason we will in fact be working over
the semi-ring Z,[z{",... ,2%] modulo the identities (z;?)? = z;’ for
all i,j and z;’ - z$* =0 for all 4 and all j # I.

We say that L C A™ is recognized by the polynomial r if for all
z € A", r(z) = xr(2).

Lemma 16 Let G be a p-group. For every n-input G-program ¢ over
the alphabet A and any accepting subset F' C G, the language L(¢) is
recognized over Z, by a polynomial of degree at most dg.

Proof.

We will use the following subword characterization of languages
recognized by p-groups presented in [Thé83]. Let G be a p-group of
order p* for some prime p. For strings w,u € G*, we say that u
occurs as a subword of w if there is a sequence of indices 1 < i3 <

- <y < |w| with u = wj,w;, ... w;,, and we define (¥) as the
number of occurrences of u as a subword of w. Then the set {w € G* :
wy-ws-...-w, = g} is a boolean combination of sets {w € G* : (¥) =j
(mod p)} for |u| < k.

Let ¢ be an n-input G-program over the alphabet A = {ay,... ,as}.
Note that if the polynomials r1,r recognize L1, Lo € A™ respectively,
then (1 — r1) recognizes A™ — Ly and 7175 recognizes Ly N Ly. Thus,
in light of the previous remarks, it is sufficient to show that for all
u€GFand all 0 <i < p—1, the set {x € A" : ("Y)) =i (mod p)}
is recognized over Z, by a polynomial of bounded degree. To see this,
note that for each possible occurrence of u as a subword of ¢(z), there
are k instructions and thus at most k input values responsible for its
presence or absence. We can thus count the number of occurrences of
u modulo p using a polynomial of degree bounded by k. |

14

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

