Electronic Colloquium on Computational Complexity, Report No. 6 (2001)

On Learning Monotone DNF under Product Distributions

Rocco A. Servedio*
Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
rocco@deas.harvard.edu

Abstract
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1 Introduction

A disjunctive normal form formula, or DNF, is a disjunction of conjunctions of Boolean literals.
The size of a DNF is the number of conjunctions (also known as terms) which it contains. In a
seminal 1984 paper [26] Valiant introduced the distribution-free model of Probably Approximately
Correct (PAC) learning from random examples and posed the question of whether polynomial-
size DNF are PAC learnable in polynomial time. Over the past fifteen years the DNF learning
problem has been widely viewed as one of the most important — and challenging — open questions
in computational learning theory. This paper substantially improves the best previous results for
a well-studied restricted version of the DNF learning problem.

1.1 Previous Work

The lack of progress on Valiant’s original question — are polynomial-size DNF learnable from random
examples drawn from an arbitrary distribution in polynomial time? — has led many researchers to
study restricted versions of the DNF learning problem. As detailed below, the restrictions which
have been considered include:

e allowing the learner to make membership queries for the value of the target function at points
selected by the learner;

e requiring that the learner succeed only under restricted distributions on examples, such as
the uniform distribution, rather than all distributions;

e requiring that the learner succeed only for restricted subclasses of DNF formulae such as DNF
with a bounded number of terms.

A SAT-k DNF is a DNF in which each truth assignment satisfies at most &k terms. Khardon [19]
gave a polynomial time membership query algorithm for learning polynomial-size SAT-1 DNF under
the uniform distribution; this result was later strengthened by Blum et al. [3] to SAT-k DNF for any
constant k. Bellare [5] gave a polynomial time membership query algorithm for learning O(logn)-
term DNF under the uniform distribution (a somewhat more general result was given by Blum
and Rudich [6]). Mansour [23] gave a n?(°81°67)_time membership query algorithm which learns
arbitrary polynomial-size DNF under the uniform distribution. In a celebrated result, Jackson
[15] gave a polynomial-time membership query algorithm for learning polynomial-size DNF under
constant-bounded product distributions. His algorithm, the efficiency of which was subsequently
improved by several authors [8, 20], is the only known polynomial time algorithm for learning the
unrestricted class of polynomial size DNF in any nontrivial learning model.

In the standard PAC model without membership queries positive results are known for various
subclasses of DNF under restricted distributions. A read-k DNF is one in which each variable
appears at most k times. Kearns, Li, Pitt and Valiant [17, 18] showed that read-once DNF are
PAC learnable under the uniform distribution in polynomial time. Hancock [12] extended this
result to read-k DNF for any constant k. Verbeurgt [27] gave an algorithm for learning arbitrary
polynomial-size DNF under the uniform distribution in time n?(1°8™) and Linial et al. [22] gave an
algorithm for learning any AC? circuit (constant depth, polynomial size, unbounded fanin AND/OR
gates) under the uniform distribution in nP?¥(1°87) time.

A monotone DNF is a DNF with no negated variables. Hancock and Mansour [13] gave a
polynomial time algorithm for learning monotone read-k DNF under constant-bounded product
distributions. Verbeurgt [28] gave a polynomial time uniform distribution algorithm for learning
poly-disjoint one-read-once monotone DNF and read-once factorable monotone DNF. Kucera et



al. [21] gave a polynomial-time algorithm which learns monotone k-term DNF under the uniform
distribution using hypotheses which are monotone k-term DNF. This was improved by Sakai and
Maruoka [25] who gave a polynomial-time algorithm for learning monotone O(logn)-term DNF
under the uniform distribution using hypotheses which are monotone O(logn)-term DNF. Subse-
quently Bshouty and Tamon [9] gave a polynomial-time algorithm for learning a class which includes
monotone O(log? n/(loglogn)?)-term DNF under constant-bounded product distributions.

1.2 Owur Results

logn

We give a simple polynomial time algorithm for learning monotone 920(v1987)_term DNF under the
uniform distribution. This is the first polynomial time algorithm which uses only random examples
drawn from a nontrivial distribution and successfully learns monotone DNF formulae with more
than a polylogarithmic number of terms. We also show that essentially the same algorithm learns
various classes of small constant-depth circuits which compute monotone functions on few variables.
Both results extend to learning under any constant-bounded product distribution.

Our algorithm combines ideas from Linial et al.’s influential paper [22] on learning AC? functions
using the Fourier transform and Bshouty and Tamon’s paper [9] on learning monotone functions
using the Fourier transform. By analyzing the Fourier transform of AC? functions, Linial et al.
showed that almost all of the Fourier “power spectrum” of any AC? function is contained in “low”
Fourier coefficients, i.e. coefficients which correspond to small subsets of variables. Their learning
algorithm estimates each low Fourier coefficient by sampling and constructs an approximation to
f using these estimated Fourier coefficients. If ¢ is the size bound for low Fourier coefficients, then
since there are () Fourier coefficients corresponding to subsets of ¢ variables the algorithm requires
roughly n¢ time steps. Linial et al. showed that for AC? circuits c is essentially poly(logn); this
result was later sharpened for DNF formulae by Mansour [23].

Our algorithm extends this approach in the following way: Let C C AC? be a class of Boolean
functions which we would like to learn. Suppose that C' has the following properties:

1. For every f € C there is a set Sy of “important” variables such that almost all of the power
spectrum of f is contained in Fourier coefficients corresponding to subsets of S¢.

2. There is an efficient algorithm which identifies the set Sy from random examples.

(Such an algorithm, which we give in Section 3.1, is implicit in [9] and requires only that f be
monotone.) We can learn an unknown function f from such a class C by first identifying the set
S, then estimating the low Fourier coefficients which correspond to small subsets of S; and using
these estimates to construct an approximation to f. To see why this works, note that since f is in
AC? almost all of the power spectrum of f is in the low Fourier coefficients; moreover, property (1)
implies that almost all of the power spectrum of f is in the Fourier coefficients which correspond
to subsets of Sy. Consequently it must be the case that almost all of the power spectrum of f is
in low Fourier coefficients which correspond to subsets of Sy. Thus in our setting we need only
estimate the roughly (‘Scf |) Fourier coefficients which correspond to “small” subsets of variables in
S If |Sf| < n then this is much more efficient than estimating all () low Fourier coefficients.

In Section 2 we formally define the learning model and give some necessary facts about Fourier
analysis over the Boolean cube. In Section 3 we give our learning algorithm for the uniform
distribution, and in Section 4 we describe how the algorithm can be modified to work under any
constant-bounded product distribution.



2 Preliminaries

We write [n] to denote the set {1,...,n} and use capital letters for subsets of [n]. We write
|A| to denote the number of elements in A. Barred lowercase letters denote bitstrings, i.e. T =
(1,...,2y) € {0,1}™. In this paper Boolean circuits are composed of AND/OR/NOT gates where
AND and OR gates have unbounded fanin and negations occur only on inputs. We view Boolean
functions on 7 variables as real valued functions which map {0,1}" to {—1,1}. A Boolean function
f:{0,1}" — {—1,1} is monotone if changing the value of an input bit from 0 to 1 never causes
the value of f to change from 1 to —1.

If D is a distribution and f is a Boolean function on {0,1}", then as in [9, 13] we say that the
influence of x; on f with respect to D is the probability that f(z) differs from f(y), where 7 is T
with the ¢-th bit flipped and Z is drawn from D. For ease of notation let f;o denote the function
obtained from f by fixing z; to 0 and let f; 1 be defined similarly. We thus have

Ini(f) = Prlfio(®) # fir (@] = 3 Bollfir — fioll.

For monotone f this can be further simplified to

1 1
Ini(f) = 5 Eplfix — fiol = 5 (Eplfia] — Ep[fio]) - (1)
We use the following version of Chernoff bounds on sums of independent random variables [11]:

Theorem 1 Let x1,. ..,y be independent identically distributed random variables with E[z;] = p,
|z;| < B, and let s, = 1 + -+ + Zp,. Then
2B?

2
m > ——In— implies that Pr [
€ )

s
—m—p‘>e]§6.
m

2.1 The Learning Model

Our learning model is a distribution-specific version of Valiant’s Probably Approximately Correct
(PAC) model [26] and has been studied by many researchers, e.g. [3, 5, 8, 9, 10, 13, 15, 19, 21, 22,
23, 27, 28]. Let C be a class of Boolean functions over {0,1}", let D be a probability distribution
over {0,1}", and let f € C' be an unknown target function. A learning algorithm A for C takes as
input an accuracy parameter 0 < ¢ < 1 and a confidence parameter 0 < ¢ < 1. During its execution
the algorithm has access to an ezample oracle EX(f, D) which, when queried, generates a random
labeled example (Z, f(Z)) where T is drawn according to D. The learning algorithm outputs a
hypothesis h which is a Boolean function over {0, 1}"; the error of this hypothesis is defined to be
error(h, f) = Prp[h(Z) # f(T)]. We say that A learns C under D if for every f € C and 0 < ¢,6 < 1,
with probability at least 1 — § algorithm A outputs a hypothesis h which has error(h, f) < €

2.2 The Discrete Fourier Transform

Let U denote the uniform distribution over {0,1}". The set of all real valued functions on {0,1}"
may be viewed as a 2"-dimensional vector space with inner product defined as

(frgy=27" > [f(= = Eu(fg]

ze{0,1}7

and norm defined as ||f|| = v/(f, f). Given any subset A C [n], the Fourier basis function x4 :
{0,1}» — {—1,1} is defined by x4(%) = (—1)/4"X|, where X is the subset of [n] defined by i € X



iff z; = 1. It is well known that the 2" basis functions x 4 (where A ranges over all subsets of [n]) form
an orthonormal basis for the vector space of real valued functions on {0, 1}"; we refer to this basis
as the x basis. In particular, any function f can be uniquely expressed as f(Z) = >4 f(A4)xa(Z),
where the values f (A) are known as the Fourier coefficients of f with respect to the x basis. Since
the functions y4 form an orthonormal basis, the value of f(A) is (f,x4); also, by linearity we
have that f(z) + ¢(Z) = Y 4(f(A) + §(A4))xa(ZT). Another easy consequence of orthonormality is
Parseval’s identity
B = VP = 3 J
[n]

If f is a Boolean function then this value is exactly 1. Finally, if g is any real valued function on
{0,1}"™ we have [9, 22]

Pr(f # sign(g)] < Bul(f — 9)" ey

where sign(z) takes value 1 if z > 0 and takes value —1 if z < 0.

3 Learning under Uniform Distributions

3.1 Identifying Relevant Variables

The following lemma, which is implicit in [9], gives an efficient algorithm for identifying the impor-
tant variables of a monotone Boolean function. We refer to this algorithm as FindVariables.

Lemma 2 Let f: {0,1}" — {—1,1} be a monotone Boolean function. There is an algorithm which
has access to EX(f,U), runs in poly(n,1/e,log1/d) time steps for all €,6 > 0, and with probability
at least 1 — 0 outputs a set Sy C [n] such that

i € Sy implies Z f(A)?2 > ¢/2 and i ¢ Sy implies Z fa)? <
Atie A AricA
Proof: Kahn et al. ([16] Section 3) have shown that
Lui(f) = Y (4> 3)
An€A

To prove the lemma it thus suffices to show that I ;(f) can be estimated to within accuracy e/4
with high probability. By Equation (1) from Section 2 this can be done by estimating Fy[f; 1]
and Ey[fipo]. Two applications of Chernoff bounds finish the proof: the first is to verify that with
high probability a large sample drawn from EX (f,U) contains many labeled examples which have
z; = 1 and many which have z; = 0, and the second is to verify that a collection of many labeled
examples with z; = b with high probability yields an accurate estimate of Ey[f; ). [ |

3.2 The Learning Algorithm

Our learning algorithm, which we call LearnMonotone, is given below:
e Use FindVariables to identify a set Sy of important variables.

e Draw m labeled examples (El? f@)),.... @™, f(@™)) from EX(f,U). For every A C Sy with
|A| < cset aq =L 3" f(T')xa(T'). For every A such that [A| > cor A Z Sy set a4 = 0.



e Output the hypothesis sign(g(z)), where ¢(Z) = > 4 aax ().

The algorithm thus estimates f (A) for A C Sy, |A| < ¢ by sampling and constructs a hypothesis
using these approximate Fourier coefficients. The values of m and ¢ and the parameter settings for
FindVariables are specified below.

3.3 Learning Monotone 2°V°6")_term DNF

Let f: {0,1}" — {—1,1} be a monotone k-term DNF. The proof that algorithm LearnMonotone
learns f uses a DNF called f; to show that FindVariables identifies a small set of variables S
and uses another DNF called f; to show that f can be approximated by approximating Fourier
coefficients which correspond to small subsets of Sy.

Let f1 be the DNF which is obtained from f by removing every term which contains more than
log % variables. Since there are at most k such terms each of which is satisfied by a random
example with probability less than €/32kn, we have Pry[f(Z) # f1(T)] < 33, (this argument was
first used by Verbeurgt [27]). Let R C [n] be the set of variables which f; depends on; it is clear
that |R| < klog @ Moreover, since Iy ;(fi1) = 0 for ¢ ¢ R, equation (3) from Section 3.1 implies
that f1(4) =0 for AZ R.

Since f and f; are Boolean functions, f — f; is either 0 or 2, so Ey[(f — f1)?] = 4Pry[f # f1] <
€¢/8n. By Parseval’s identity we have

Bul(f - £1)%] = Y_(F(4) - fi(4)?
A
= > (fA) =AM+ D (F(A) - fi(4)?
ACR AZR
= > (f(A) - A2+ 3 (F(4)?
ACR AZR
< €/8n.

Thus 3 4¢ g f(A)? < 3, and consequently we have
. . . P 2 i
i ¢ R implies AZ f(A)* < o 4)
HEA

We set the parameters of FindVariables so that with high probability

i1 € Sy implies Z f(A)? > ¢/8n (5)
AneA

i¢ Sy implies Y f(A)? <e/dn. (6)
AneA

Inequalities (4) and (5) imply that Sy C R, so |Sy| < klog @ Furthermore, since A Z Sy implies
i € A for some i ¢ Sy, inequality (6) implies

Y. fA)?<e/a (7)

AZSy
The following lemma is due to Mansour ([23] Lemma 3.2):

Lemma 3 Let f be a DNF with terms of size at most d. Then for all ¢ > 0
S A<

|A|>20dlog(2/¢€)



One approach at this point is to use Mansour’s lemma to approximate f by approximating the
Fourier coefficients of all subsets of Sy which are smaller than 20dlog(2/¢€), where d = log @ is
the maximum size of any term in f;. However, this approach does not give a good bound because d is
too large. Instead we consider another DNF with smaller terms than f; which closely approximates
f- By using this stronger bound on term size in Mansour’s lemma we get a better final result.
More precisely, let fo be the DNF obtained from f by removing every term which contains at

least log % variables. Let ¢ = 20 log % log %. Mansour’s lemma implies that

> f2(A)? < /8. (8)

|A|>c
Moreover, we have Pry[f # f2] < €/32 and hence
APif # fol = Bul(f — f2)"] = D_(F(4) - f2(4))* < ¢/8. (9)

A
Let a4 and g(Z) be as defined in LearnMonotone. We have

Prisign(g) # f] < Bullg— )*) =D (aa— f(A)’ =X +Y + Z,
A

where

X= 3 (ea-flA)? Y= (ma—fA))? Z= Y (aa—f(A)%

Al<c,AZLS Al>c A|<c,ACS
f f

To bound X, we observe that oy = 0 for A Z Sy, so by (7) we have
X= 3 fAWr<y f)’<da

|[A|<c,AZS¢ AZSy
To bound Y, we note that ay = 0 for [A| > ¢ and hence Y = 37 45, f(A)2. Since f(A)? <
2(f(A) — f2(A))? + 2f2(A)? for all A, we have
Y < 23 (Ff(A) - f(A)2+2 Y fo(A)?

|A|>¢ |A[>c
< 23 (F(A) - f2(A)? +¢/4

A
< €/2

by inequalities (8) and (9) respectively. X

It remains to bound Z = E\A|§c,AgSf(0‘A — f(A))2. As in Linial et al. [22] this sum can be
made less than €/4 by taking m sufficiently large so that with high probability each estimate a4
differs from the true value f(A) by at most y/e/4|S 7|¢. A straightforward Chernoff bound argument
shows that taking m = poly(|Sy|% 1/¢,10g(1/§)) suffices.

Thus, we have X +Y + Z < e. Recalling our bounds on |Sy| and ¢, we have proved:
Theorem 4 Under the uniform distribution, for any €,6 > 0, algorithm LearnMonotone learns
k-term monotone DNF in time polynomial in n, (klog k?")logélog% and log(1/4).

Taking k = 20(V1987) we obtain the following corollary:

Corollary 5 For any constant € algorithm LearnMonotone learns 2°(V1°8™) _term monotone DNF
in poly(n,log(1/9)) time under the uniform distribution.

We note that Bshouty and Tamon’s algorithm [9] for learning monotone O((logn)?/(log logn)?3)-
term DNF also requires that € be constant in order to achieve poly(n) runtime.



3.4 Learning Small Constant-Depth Monotone Circuits on Few Variables

Let C be the class of depth d, size M circuits which compute monotone functions on r out of
n variables. An analysis similar to that of the last section (but simpler since we do not need to
introduce auxiliary functions f; and fy) shows that algorithm LearnMonotone can be used to learn
C. Instead of Mansour’s lemma we use the main lemma of Linial et al. [22] which bounds the
Fourier spectrum of constant-depth circuits:

Lemma 6 Let f be a Boolean function computed by a circuit of depth d and size M and let ¢ be
any integer. Then

S f(A)? < 2nm2 e,

|[Al>c¢

Taking m = poly(r¢, 1/¢,1log(1/6)) and ¢ = O((log(M/¢))¢) in LearnMonotone we obtain:

Theorem 7 Fix d > 1 and let C be the class of depth d, size M circuits which compute monotone
functions on v out of n variables. Under the uniform distribution, for any €,§ > 0, algorithm
LearnMonotone learns class C in time polynomial in n, rllos(M/e) g g log(1/9).

One interesting corollary is the following:

Corollary 8 Fizd > 1 and let C be the class of depth d, size 20((108 mYD) circuits which compute
monotone functions on 20((08 YD) yariables. Then for any constant € algorithm LearnMonotone
learns class C in poly(n,log(1/8)) time.

While this class C is rather limited from the perspective of Boolean circuit complexity, from
a learning theory perspective it is fairly rich. We note that C' strictly includes the class of depth
d, size 90((logm) /@) i cits on 20((ogm)V/ @) yariables which contain only unbounded fanin
AND/OR gates. This follows from results of Okol’nishnikova [24] and Ajtai and Gurevich [1] (see
also [7] Section 3.6) which show that there are monotone functions which can be computed by AC?
circuits but are not computable by AC? circuits which have no negations.

4 Learning under Product Distributions

A product distribution over {0,1}" is characterized by parameters p1,. .., u, where y; = Pr[z; = 1].
Such a distribution D assigns values independently to each variable, so for @ € {0,1}" we have

D(a) = (Hai:l Hz‘) (Haizo(l — p,)) . The uniform distribution is a product distribution with each

pi = 1/2. The standard deviation of z; under a product distribution is o; = \/pi(1 — ;). A product
distribution D is constant-bounded if there is some constant ¢ € (0,1) independent of n such that
pi € [c,1—c|foralli=1,...,n. We let 8 denote max;—1,._n(1/p;,1/(1—p;)). Throughout the rest
of this paper D denotes a product distribution.

Given a product distribution D we define a new inner product over the vector space of real
valued functions on {0,1}" as

(f.9p= D D@)f(@)9(@) = Eplfy]

Te{0,1}n

and a corresponding norm || f||p = /(f, f)p. We refer to this norm as the D-norm. Fori=1,...,n
let z; = (z; — pi)/oi. Given A C [n], let ¢4 be defined as ¢p4(T) = [;c4 #i- As noted by Bahadur
[4] and Furst et al. [10], the 2" functions ¢4 form an orthonormal basis for the vector space of
real valued functions on {0,1}" with respect to the D-norm, i.e. (¢pa,¢p)pis1if A= B and is 0
otherwise. We refer to this basis as the ¢ basis. The following fact is useful:



Fact 9 ([4, 10]) The ¢ basis is the basis which would be obtained by Gram-Schmidt orthonormal-
ization (with respect to the D-norm) of the x basis performed in order of increasing |A|.

By the orthonormality of the ¢ basis, any real function on {0,1}" can be uniquely expressed as
(@) =4 f(A)da(T) where f(A) = (f,da)p is the Fourier coefficient of A with respect to the ¢
basis. Note that we write f(A) for the ¢ basis Fourier coefficient and f(A) for the x basis Fourier
coefficient. Also by orthonormality we have Parseval’s identity

Eplf’ = Iflp= Y f(4)
AC[n]

which is 1 for Boolean f. Finally, for any real valued function ¢ we have ([10] Lemma 10)
Pr(f # sign(g)] < Bol(/ - g)?} (10)

Furst et al. [10] analyzed the ¢ basis Fourier spectrum of AC? functions and gave product
distribution analogues of Linial et al.’s results on learning AC? circuits under the uniform distribu-
tion. In Section 4.1 we sharpen and extend some results from [10], and in Section 4.2 we use these
sharpened results together with techniques from [10] to obtain product distribution analogues of
our algorithms from Section 3.

4.1 Some ¢ Basis Fourier Lemmas

A random restriction pp p is a mapping from {z1,...,z,} to {0,1, x} where z; is mapped to * with
probability p, to 1 with probability (1 — p)u;, and to 0 with probability (1 — p)(1 — p;). If f is a
Boolean function then f[p represents the function f(p, p(Z)) whose variables are those z; which
are mapped to * and whose other z; are instantiated as 0 or 1 according to p) p.

The following is a variant of Hastad’s well known switching lemma [14]:

Lemma 10 Let D be a product distribution with parameters u; and B as defined above, let f be a
CNF formula where each clause has at most d literals, and let pp p be a random restriction. Then
with probability at least 1 — (408pd)?,

1. the function f[p can be expressed as a DNF formula where each term has at most s literals;
2. the terms of such a DNF all accept disjoint sets of inputs.

Proof sketch: The proof is a minor modification of arguments given in Section 4 of [2]. |

The following corollary is a product distribution analogue of ([22] Corollary 1):

Corollary 11 Under the conditions of Lemma 10, with probability at least 1 — (48pd)° we have

that f[p(A) =0 for all |A| > s.

Proof: Linial et al. [22] show that if f[p satisfies properties (1) and (2) of Lemma 10 then
flp(A) =0 for all |A| > s. Hence such a f[p is in the space spanned by {x4 : |A| < s}. By Fact 9

and the nature of Gram-Schmidt orthonormalization, this is the same space which is spanned by
{¢4 : |A| < s}, and the corollary follows. [ ]

Corollary 11 is a sharpened version of a similar lemma, implicit in [10], which states that under

the same conditions with probability at least 1 — (58pd/2)* we have f[p(A) = 0 for all |[A]| > s2.
Armed with the sharper Corollary 11, using arguments from [10] it is straightforward to prove



Lemma 12 For any Boolean function f, for any integer t,

Z f(A)? < 2pPr [ﬂ';)(A) # 0 for some |A| > tp/2].
|A|>t D

Boolean duality implies that Lemma 10 and Corollary 11 also hold if f is a DNF with each term
of length at most d. Taking p = 1/86d and s = log% in this DNF version of Corollary 11 and
t = 16(dlog % in Lemma 12, we obtain the following analogue of Mansour’s lemma (Lemma 3) for
the ¢ basis:

Lemma 13 Let f be a DNF with terms of size at most d. Then for all € > 0

Y fAr <

|A|>163dlog(4/¢€)

Again using arguments from [10], Corollary 11 can also be used to prove the following version
of the main lemma from [10]:

Lemma 14 Let f be a Boolean function computed by a circuit of depth d and size M and let ¢ be
any integer. Then

> F(a)? < 2nra e,

|A|>c

The version of this lemma given in [10] has 1/(d + 2) instead of 1/d in the exponent of c. This
new tighter bound enables us to give stronger guarantees on our learning algorithm’s performance
under product distributions than we could obtain using the lemma from [10].

4.2 Learning under Product Distributions

4.2.1 Identifying Relevant Variables

We have the following analogue to Lemma 2 for product distributions:

Lemma 15 Let f : {0,1}" — {—1,1} be a monotone Boolean function. There is an algorithm

which has access to EX(f, D), runs in poly(n,3,1/¢,log 1/8) time steps for all €,6 > 0, and with
probability at least 1 — 0 outputs a set Sy C [n] such that

i € Sy implies Z f(A)? > ¢€/2 and i ¢ Sy implies Z f(A)? <e.
AneA AneA

The proof uses the fact ([9] Lemma 4.1) that 402Ip ;(f) = 3 asica f(A)? for any Boolean function
f and any product distribution D. The algorithm uses sampling to approximate each p; (and thus
o0;) and to approximate I'p ;(f). We call this algorithm FindVariables2.

4.2.2 The Learning Algorithm

We would like to modify LearnMonotone so that it uses the ¢ basis rather than the x basis. However,
as in [10] the algorithm does not know the exact values of y; so it cannot use exactly the ¢ basis;
instead it approximates each y; by a sample value p; and uses the resulting basis, which we call
the ¢’ basis. In more detail, the algorithm is as follows:

e Use FindVariables2 to identify a set Sy of important variables.



e Draw m labeled examples (z', f(z')), ..., (™, f(z™)) from EX(f, D). Compute pu} = L @
for 1 <i < n. Define 2} = (z; — p})/+/pi(1 — p) and @'y = [l;c4 %

o For every A C Sy with |A| < cset oy = = Y f(T) ¢/, (7). If |4 | > 1 set oy = sign(cl}y).
For every A such that |A| > cor AZ S set oy = 0.

e Output the hypothesis sign(g(z)), where g(Z) = 3 4 &4 x4(T)-

We call this algorithm LearnMonotone2. As in [10] we note that setting o/y to £1 if |/y| > 1 can
only bring the estimated value closer to the true value of f(A).

4.2.3 Learning Monotone 2°(V1%8")_term DNF

For the most part only minor changes to the analysis of Section 3.3 are required. Since a term of

size greater than d is satisfied by a random example from D with probability less than (%)d, the

new term size bound for f is log 5 % = O(Slog ’%"), so we now have |S¢| = O(Bklog an) We
31

similarly obtain a term size bound of ©(8log %) on fo. We use the ¢ basis Parseval identity and
inequality (10) in place of the x basis identity and inequality (2) respectively. Lemma 13 provides
the required analogue of Mansour’s lemma for product distributions; using with the new term size
bound on f» we obtain ¢ = O(3? log % log %)

The one new ingredient in the analysis of LearnMonotone2 comes in bounding the quantity
Z = 3| A|<c,ACS; (o!, — f(A))2. Tn addition to the sampling error which would be present even if 1
were exactly p;, we must also deal with error due to the fact that o/, is an estimate of the ¢’ basis
coefficient rather than the ¢ basis coefficient f (A). An analysis entirely similar to that of Section
5.2 of [10] shows that taking m = poly(c,|S¢|, 3¢ 1/¢€,1og(1/6)) suffices. We thus have

Theorem 16 Under any product distribution D, for any e, d > 0, algorithm LearnMonotone?2 learns
k 1
k-term monotone DNF in time polynomial in n, (Ok log an),(# log clogc ' and log(1/6).

Since a constant-bounded distribution D has § = ©(1), we obtain
Corollary 17 For any constant ¢ and any constant-bounded product distribution D, algorithm

LearnMonotone?2 learns 20(VI°6™) _term monotone DNF in poly(n,log(1/8)) time.

4.2.4 Learning Small Constant-Depth Monotone Circuits on Few Variables

Using Lemma 14 and an analysis similar to the above, we obtain

Theorem 18 Fizxd > 1 and let C be the class of depth d, size M circuits which compute monotone

functions on T out of n variables. Under any product distribution D, for any €,§ > 0, algorithm
M

LearnMonotone?2 learns class C in time polynomial in n, r(#1°8 ) and log(1/9).

Corollary 19 Fiz d > 1 and let C be the class of depth d, size 20((108 YD) cireuits which com-
pute monotone functions on 90((1og )/ @) i riables. Then for any constant € and any constant-
bounded product distribution D, algorithm LearnMonotone?2 learns class C in poly(n,log(1/6)) time.

10



5

Open Questions

The major open problem in this area is clearly to find a polynomial time algorithm which learns
arbitrary polynomial size DNF under an arbitrary distribution; however this seems to be a very
difficult problem. Even the discovery of a polynomial time algorithm for ¢(n)-term DNF under the
uniform distribution, for some ¢(n) = w(1), would be a substantial step forward. From another
angle, the positive results reported in this paper provide some hope for a polynomial time algorithm
for polynomial size monotone DNF under the uniform distribution.
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