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Abstract

Assuming the inractability of factoring, we show that the output of the exponentiation
modulo a composite function fy 4(z) = ¢ mod N (where N = P-(Q) is pseudorandom, even
when its input is restricted to be half the size. This result is equivalent to the simultaneous
hardness of the upper half of the bits of fx 4, proven by Hastad, Schrift and Shamir. Yet, we
supply a different proof that is significantly simpler than the original one. In addition, we
suggest a pseudorandom generator which is more efficient than all previously known factoring
based pseudorandom generators. Our work provides also an evidence for the difficulty of the
Decisional Diffie-Hellman problem, when considered modulo a composite.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

One-way functions play an extremely important role in modern cryptography. Loosely speak-
ing, these are functions which are easy to evaluate but hard to invert. A number theoretic
function which is widely believed to be one-way, is the exponentiation function over a finite
field. Its inverse, the discrete logarithm function, is the basis for numerous cryptographic
applications. Most applications use a field of prime cardinality, though many of them can
be adapted to work in other algebraic structures as well.

A concept tightly connected to one-way functions is the notion of hard-core predicates,
introduced by Blum and Micali. A polynomial-time predicate b is called a hard-core of a
function f, if all efficient algorithm, given f(z), can guess b(x) with success probability only
negligibly better than half. Blum and Micali showed the importance of hard-core predicates
in pseudorandom bit generation. Specifically, they showed that the modular exponentiation
function over a field of prime cardinality, fp,(z) = ¢* mod P, has a hard-core predicate,
and used it in order to construct a pseudorandom bit generator. The study of hard-core
predicates of fp, has culminated in the work of Hastad and Néaslund [HN], showing that all
bits of fp, are individually secure.

1.1.1 Hard core functions

The concept of a hard-core function (or the simultaneous security of bits) is a generalization
of hard-core predicates. Intuitively, a group of bits associated to a one-way function f is
said to be simultaneously secure, if no efficient algorithm can gain any information about the
given group of bits in z, given only f(z). Proving the simultaneous security of a group of bits
in fp, is a more desirable result, enabling the construction of more efficient pseudorandom
generators as well as improving other applications. However, the best known result regarding
the simultaneous security of bits in fp, is due to Long and Wigderson [LW], Kalisky [Kal]
and Peralta [P], who showed that O(logn) bits are simultaneously secure, where n is the
size of the modulus P.

Better results were demonstrated when the modulus was taken to be a composite, thus al-
lowing to relate hardness of bits to the factoring problem. Denote by fx , the exponentiation
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modulo a composite function, defined as fu 4(x) = ¢ mod N, where N is an n-bit compos-
ite equal to the multiplication of two large primes and g is an element in the multiplicative
group mod N. Hastad, Schrift and Shamir showed that under the factoring intractability
assumption, all the bits in fy , are individually hard, and that the upper [§] bits and lower
[5] bits are simultaneously hard.

In the same setting (and under the same assumption that factoring is hard), we show
that no efficient algorithm can tell apart fy4(r) from fy4(R), where r is a random [ ]-bit
string and R is a random string of full size. That is, one can work with an exponent z of half
the size, and still obtain an element which “seems random” to all efficient algorithms. Note
that all the cryptographic tools that use exponentiation in Z} (and base their security on the
discrete logarithm assumption) can greatly benefit from this fact, since the time consumed
for exponentiation grows linearly with the size of the exponent (and is thus cut by a factor
of two). Our result is in fact equivalent to the result of [HSS] on the simultaneous hardness
of the upper [5] bits of fn 4. Nevertheless, we give an alternative proof for it while using
some of their ideas and techniques. Our approach significantly simplifies the proof given in
[HSS] and sheds a different light on it.

Our work has also two additional implications (to be further discussed below). The
first one is the construction of a pseudorandom bit generator based on the computational
indistinguishability of fy ,(r) from fy 4(R). Our generator is somewhat more efficient than
all previously known factoring based pseudorandom generators. The second implication
regards the Decisional Diffie-Hellman Assumption. We give an evidence that adds to our
confidence in the above assumption, by showing a relation between the Decisional Diffie-
Hellman problem when considered modulo a composite and the problem of factoring the
modulus.

1.1.2 An efficient Pseudorandom generator

The notion of a pseudorandom bit generator, introduced by Blum and Micali [BM], plays a
central role in cryptography. It enables the user to expand a short random seed into a longer
sequence of bits, that can be used in any efficient application instead of a truly random bit
sequence. Blum and Micali presented a pseudorandom bit generator based on the discrete
log problem. Using the fact that the exponentiation function over a field of prime cardinality
has a hard-core predicate, they suggested an iterative generator that yields one bit of output
per each exponentiation. Furthermore, they conceived a general paradigm that constructs
an iterative pseudorandom generator, given any length preserving one-way permutation f,
and a hard-core predicate b for f.

The Blum-Blum-Shub pseudorandom generator [BBS|(referred to as the “BBS genera-
tor”), is based on the above paradigm, taking f to be the modular squaring function, where
the modulus N is a Blum integer.! Since, as shown by Rabin [Rab|, the problem of factor-
ing N can be reduced to the problem of extracting square roots in the multiplicative group
mod N, the function f is a one-way function assuming the intractability of factoring Blum
integers. Additionally, Blum, Blum and Shub showed that f induces a permutation over
the set of quadratic residues in the multiplicative group mod N, and used the results of

LA Blum integer is equal to the multiplication of two primes of equal size, each congruent to 3 mod 4.
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Alexi et.al. [ACGS]| and Vazirani and Vazirani [VV], implying that the least significant bit
constitutes a hard-core predicate for f. The BBS generator is by far more efficient than
the Blum-Micali generator.? In particular, the BBS generator stretches an n-bit seed into a
2n-bit pseudorandom string using 2n modular multiplications.

Another generator whose pseudorandomness is based on factoring, was suggested by
Hastad, Schrift and Shamir [HSS] (we will refer to it as the “HSS generator”). The HSS
generator relies on the simultaneous hardness of half of the bits in the exponentiation modulo
a composite function fx 4. Loosely speaking, the HSS generator takes an n-bit random seed
z, (where n is the size of the modulus N) and outputs fy ,(z) followed by the lower half
of the bits of .3 Observe that from an n-bit seed, the HSS generator obtains 1.5n bits of
output, using n modular multiplications on the worst case, and 0.5n modular multiplications
on the average case (we assume that the terms g20, ...,9%" are pre-computed together with
the other parameters of the generator).

Even though our main result is equivalent to the simultaneous hardness of half of the bits
in fy g, our result gives rise to a pseudorandom generator which is in a sense more natural
than the HSS generator, as well as more efficient than it. Informally, we suggest a generator
that takes a random seed z of size [n/2], and outputs fy 4(z). Observe that our generator
doubles the length of its input. In particular, it obtains n bits of output from an 0.5n-bit seed
using 0.5n modular multiplications on the worst case, and 0.257 modular multiplications on
the average case (once again, we assume that the terms 920, cen, gzr"/21 are pre-computed).

The following table compares the three factoring based generators discussed above, each
having the same security parameter n (the size of the modulus N). Note that the “cost”
column refers to the average number of multiplications done in every application of the
generator, and the “amortized cost” column refers to the average number of multiplications
per output bit of the generator.*

seed size | output size | cost | amortized cost
BBS construction n 2n 2n 1
HSS construction n 1.5n 0.5n 0.33
Our construction 0.5n n 0.25n 0.25

An additional point is that our generator (as well as the HSS generator) has an efficient
parallel implementation in time O(logn) using [n/2] processors Pi, ..., P,/ (the input of

2The Blum-Micali generator obtains each bit of output at the cost of one modular exponentiation that is
implemented by n modular multiplications, as opposed to one modular multiplication per output bit needed
by the BBS generator.

3 As a matter of fact, in order to achieve true pseudorandomness, universal hashing is applied. The formal
construction will be presented in Chapter 4.

‘Even though the correct way to compare the above generators is with respect to the same security
parameter, one might consider a comparison with respect to the same seed length. In order to do that we
must normalize the input/output sizes of our generator so that its seed length will be n. Thus, the output
produced by our generator will be of length 2n, the cost will be 0.5n and the amortized cost will be 0.25
multiplications per output bit. Note however, that the size of the security parameter in our construction
will be twice its size in the BBS and the HSS constructions. Thus, our construction will be safer. On the
other hand, we will need to work harder in order to produce the parameters N and g (but this is not too
bad since these parameters are only obtained once).



each processor P; is the i’th bit of the seed, s;, and the output is the multiplication of the
values ng_l'si contributed by each processor). This is opposed to the BBS generator which
is not known to have a fast parallel implementation (i.e. any faster than the straightforward
sequential implementation).

1.1.3 The Decisional Diffie-Hellman Assumption

Let us try to formalize the exact complexity assumption used by the following protocol,
called the Diffie-Hellman key exchange protocol [DH]: Alice and Bob fix a group G and a
generator g. They respectively pick random a, b in [1,|G|] and exchange g° and ¢° over a
public channel. The secret key they now share is ¢g?°.

This protocol is totally breakable, if a passive eavesdropper that has seen the communi-
cation between Alice and Bob, can compute the secret key. An assumption which must hold,
therefore, is the Computational Diffie-Hellman Assumption (CDH), stating that no efficient
algorithm can compute g% given g, g* and ¢°. However, we need more than CDH in order to
deem the protocol secure: A protocol is considered secure, if no efficient adversary can tell
apart the secret key from a random value in GG. This guarantees that no partial information
about the secret key leaks to a computationally bounded eavesdropper. The assumption
which formalizes this security requirement, is called the Distributional Diffie-Hellman As-
sumption (DDH), which states that no efficient algorithm can tell apart the distributions
(g,9% ¢° g°°) and (g, g% g¢°, g%*), where R is uniformly distributed in [1, |G|]. An equivalent
form is the Decisional Diffie-Hellman Assumption, stating that given (g, g%, ¢°, y), no efficient
algorithm can tell whether y = g* (see [NR] for the proof of equivalence).

The DDH assumption enables one to construct efficient cryptographic systems with strong
security properties. One example for such application is an efficient public-key cryptosystem
of Cramer and Shoup [CS], which was shown to be secure against adaptive chosen ciphertext
attack.’

Although the Decisional Diffie-Hellman assumption appears to be a very strong assump-
tion, the best known method for breaking it is by computing discrete log. Some of the
evidence that adds to our confidence in the DDH assumption is surveyed by Boneh [B]. For
instance, such evidence was given by Boneh and Venkatesan [BV], who showed that com-
puting the k =~ y/log P most significant bits of the Diffie-Hellman secret (over a cyclic group
of prime order P) is as hard to compute as the entire secret.

Our work strengthens in a way the work of [BV] for the case of a composite modulus.
However, we refer to the decision problem and not to the (seemingly harder) computational
problem treated by [BV]. Specifically, we consider a hybrid between the two DDH dis-
tributions defined above, taken to be the distribution (g, g%, ¢°, ¢g¢), where the exponent ¢
constitutes of random bits in its upper half, and equals in its lower half to the lower half of ab
(modulo the order of g). We show that under the assumption that factoring Blum integers is
intractable, the above hybrid is computationally indistinguishable from (g, g%, ¢°, %), where
R is random in [1,|G|]. At this point we confess that the original goal of this thesis was
to show that the above hybrid is computationally indistinguishable from (g, g2, g°, g®*) as

5 Another example is the Naor and Reingold construction of a collection of efficient pseudorandom func-
tions [NR], recently superseded by [NRR].



well, and thus show that the factoring assumption implies the DDH assumption modulo a
composite. Unfortunately, we were only “half successful”.

Organization: The rest of this work is organized as follows: Basic definitions and no-
tations are given in Section 1.2. In Chapter 2 the main theorem is proven (regarding the
pseudorandomness of exponentiation with a short exponent), and is shown to be equivalent
to the [HSS| result (additionally, both proofs are compared). Chapter 3 exhibits further
results which are obtained using similar techniques. Among them, is the result regarding
the DDH assumption modulo a composite. In Chapter 4 we present our construction of a
pseudorandom generator versus the HSS construction.



1.2 Preliminaries

Statistical Difference: A basic notion from probability theory is the statistical difference
between probability ensembles { X, } .y and {Y,}, - The statistical difference measures
the distance between distributions and is defined to be

SD(X,,Y,) = % Y [Pr[X, = o] - Pr[Y;, = a]

Probability ensembles {X,}, .y and {Y,}, N are called statistically close if their statis-
tical difference is negligible in n (a function p : IN — [0, 1] is called negligible if for every
positive constant ¢ and all sufficiently large n’s, u(n) < =).

ne

Computational Indistinguishability: A weaker notion of closeness between probability
ensembles is the notion of indistinguishability by all efficient algorithms. When no effi-
cient algorithm (that may be probabilistic) can tell apart the two ensembles, we call them
computationally indistinguishable. Formally,

Definition 1 We say that two ensembles {X,}nen and {Y,}nen are computationally
indistinguishable, if for every probabilistic polynomial-time algorithm D, for every positive
constant ¢ and for all sufficiently large n’s

[Pr[D(X,,1") = 1] = Pr[D(Y,,1") = 1]| < ni

A notation: Let A be a finite set, then a € A denotes that the element a is uniformly
chosen from the set A (i.e. with probability ﬁ)

1.2.1 Pseudorandom Generators

Loosely speaking, a pseudorandom generator is a deterministic algorithm that stretches a
random seed (i.e. input) into a longer bit sequence which is “pseudorandom”. A pseu-
dorandom bit sequence is defined as computationally indistinguishable from the uniform
distribution (thus for all practical purposes we can use the output of the generator instead
of a truly random string).

Definition 2 A pseudorandom generator is a deterministic polynomial-time algorithm,
G, satisfying the following two conditions:

1. There exists a function l(n) : n — n satisfying that l(n) > n for alln € N, such that
|G(s)| = l(|s]) for all s € {0,1}*.

2. The ensembles {G(U,)}nen and {Ui(n)}nen are computationally indistinguishable.



1.2.2 The Factoring Assumption

We denote by N, the set of all n-bit integers N = P - @, where P and () are two odd primes
of equal size. The collection N, can be sampled efficiently. Specifically, given input 17, it is
possible to pick a random element in N, in polynomial time (using a polynomial number of
coin tosses).

The problem of factoring integers is widely believed to be intractable. Integers belonging
to the set N, are considered to be particularly hard to factor. Note that N, is a non-
negligible fraction of all n-bit integers. Currently, the best algorithm known can factor an
integer picked randomly from N, in (heuristic) running-time of ¢l-92n'/*logn®/?

Assumption 1 [Factoring Assumption] Let A be a probabilistic polynomial-time algorithm.

There 1s no constant ¢ > 0 such that for all sufficiently large n’s
1
Pr[A(P-Q)=P] > -

where N = P - Q is picked uniformly from N,,.

1.2.3 The group 73

Denote by Zj the multiplicative group that consists of all the naturals which are smaller
than N and are relatively prime to it. We represent the elements in Z3 by binary strings of
size n = [log N1|.

Notations:

e Let x be an element in Z3, and let 1 < j < ¢ < n. We denote by z; the 7’th bit in
the binary representation of z, and by z; ; the substring of z including the bits from
position j to position %.

e Denote by ordy(g) the order of an element g in Zj, which is the minimal £ > 1 for
which ¢* =1 (mod N).

e Denote by (g) the subgroup of Z3 generated by g. That is, (g) is the set of all elements
of the form ¢” mod N for some x < N.

e Denote by P, the set of pairs (N, g) where N € N, and g € Z}. Note that P, is
efficiently samplable.

We now define the exponentiation modulo a composite function and its inverse the discrete
logarithm modulo a composite function.

Definition 3 Let (N, g) be a pair in P,. The exponentiation modulo a composite function
fng :{0,1} — (g) is defined to be fny4(x) = g* mod N.

Definition 4 Let (N, g) be a pair in P,. The discrete logarithm modulo a composite function
DLy ,(Y) : (g) — [0,0rdn(g)) is defined to be the unique natural x < ordy(g) for which

fN’g(x) =Y.



Chapter 2

Exponentiation with a short
exponent is pseudorandom

We introduce two probability ensembles, which we show to be computationally indistinguish-
able assuming the intractability of factoring.

Definition 5 Let (N, g) be a uniformly distributed pair in P,, let R be uniformly distributed
in [0,0rdn(g)) and let v be uniformly distributed in {0,1}/21. We denote by Full, the
distribution (N, g, g% mod N) and by Half, the distribution (N, g,g" mod N).

Theorem 1 The ensembles { Hal f}nen and {Full,}nen are computationally indistinguish-
able.

We use the hybrid technique in order to prove the indistinguishability of F'ull,, and Half,,.
For i’s between [2] and n+w(logn) we define a hybrid distribution H; in the following way:
H: will consist of triplets of the form (N, g, ¢° mod N), where (N, g) is uniformly distributed
in P, and z is uniformly distributed in {0,1}" (see Figure 2.1).

For a specific choice of a pair (N, g) in P, we denote by H}'V’ o the distribution g* mod N
where z is uniformly distributed in {0, 1}!. (From now on we omit the expression “mod N”
whenever it is clear from the context).

Clearly, H"/?| = Half,. Note that the distribution H"t*(°8") ig statistically close to
Full,, as asserted by the following claim:

n/2

m

m<n

hhkkhkhkkhkkhkhkhkhhkhkhkhkhhkhkhkdhhkhhhhkhhk
1 >n/2

*hkkkkhkkkhkkhkkkhkkhkkhkkhkkkkx

@

©)

Figure 2.1: We denote random bits by '*’ and the length of the binary expansion of ordy(g)
by m. No. (1), (2), (3) show the exponents of Half,, Full, and the hybrid H, respectively.
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Claim 1.1 The distributions Full, and H' 08" gre statistically close.

Proof: Let M denote 2"+“(°8m) M can be written as k - ordy(g) + r where k is an integer
and 0 < r < ordy(g). We now calculate the statistical difference between the distributions
Full, and H+*°8™) Note that the first equality is implied from the fact that in fy ,(z)
the exponent z is reduced modulo ordy(g).

SD(Fully, Hy (") [r- (5 = ok ) + (ordn(9) = 1) - (it — %)
((ordw(g) = 2r) - (55 — &) + ]

[(ordw(g) = 21) + 575y + %]

|
Z[s ol ol ol

IN

Since 17 < 47 < srremsy» we have that SD(Full,, Hy<(°s™) is negligible in n. O

Consequently, if there exists a probabilistic polynomial-time algorithm D, that distin-
guishes the ensemble Half, from Full,, then D distinguishes (almost) as well Half, from
H7t@(ogn) - Ag the total number of hybrids is polynomial in 7, a non-negligible gap between
the extreme hybrids translates into a non-negligible gap between a pair of neighboring hy-
brids. Taking advantage of the structure of two neighboring hybrids, we use the distinguisher
D in order to factor a composite in N,, and thus contradict Assumption 1. In the following,
let n be a sufficiently large natural and let 7 belong to the set {121,...n+w(ogn)}.

Lemma 2 (Main Lemma) Suppose that the gap between the acceptance probability of D
on the hybrids H, and H.t' is greater than —=. Then, with probability at least g we can
factor a composite N, uniformly distributed in N,.

2.1 Factoring vs Discrete Logarithm in 73

It turns out that there is a tight connection between factoring NV and revealing the discrete
logarithm of a certain element in Z5. In order to factor a random integer N = P -Q in N,,,
it is sufficient to find the discrete log of gV for a randomly chosen g € Z%. This is due to
the following trivial fact:

Fact 1 Let (N, g) belong to P, (say that N = P - Q). Then, if ordn(g) > P+ Q — 1, the
discrete logarithm S = DLy 4(g") is equal to P+ Q — 1.

Proof: Recall that the order of g divides the order of the group Z3 which is equal to
©(N) = (P — 1)(Q — 1). Therefore, gV = gVN=¢(N) = ¢P+@=1  (mod N). Consequently, if
ordy(g) >P+Q—1thenS=P+Q—1. O

The following proposition, established by Hastad et al. [HSS], claims that an element
picked randomly in Z} is very likely to be of high order:

11



Proposition 3 (Hastad et al.) Let (N, g) be uniformly distributed in P,, where N is equal
to P-Q. Then,

Pr [ordy(g) < % (P -1)(Q - 1)] <0 (ﬁ)

The only use we make of the above proposition, is to show that with very high probability,
ordy(g) cannot be too small. Specifically, Proposition 3 implies that with overwhelming
probability ordx(g) is greater than P + @ — 1. Therefore, as was first observed by Chor
[Chor], we can solve the two equations P+ @ — 1 = S (according to Fact 1) and P-Q = N
for the unknowns P and @ and thus factor V.

2.2 Proof of Main Lemma

The proof of Lemma 2 is basically a reduction. We show how to use the algorithm D that
distinguishes H: and H'*! in order to calculate S and thus factor N.

2.2.1 Using D to discover the (i + 1)* bit of the exponent

Let W,, C P, be the set of pairs (IV, g) in P, for which it holds that D distinguishes H}'V’ ,and
Hﬁ; with advantage at least ic. A standard averaging argument shows that the probability
that a pair (N, g) chosen at random from P, is in the set W), is at least #

From now on we consider the case where (N, g) belongs to the set W,,, and therefore satisfies

. , 1
‘PI‘[D(N,g’gz) = 1|z €g {0,1}] = Pr[D(N, g, ¢%) = 1|z €r {0, 1}z+1]‘ > e (2.1)
Observe that
Pr[D(N,g,9°) = 1|z € {0,1}"*] = 5-Pr[D(N,g,9%) = 1|z €r {0,1}] + (2.2
: _ 2.2
L Pr[D(N, g, *+%) = 1]z € 0,1}
From 2.1 and 2.2 we obtain the following:
. ; , 1
‘Pr[D(N,g, g%) = 1|z €g {0,1}] — Pr[D(N, g, ¢* %) = 1|z € {0,1}]| > e (2.3)

Denote by F;V , the distribution g*** where z is drawn uniformly from {0,1}". Another
way to state Inequality 2.3 is to say that the distinguisher D has advantage at least - in

ne

distinguishing the distributions H;.V, , and FN - Let 0 and v be the acceptance probabilities
of D on input taken from H}, , and FN, 4> Tespectively. That is, let

8 PrD(N, g, ¢%) = 1|z €5 {0,1}] (2.4)

and def , .
v = Pr[D(N, g, 9***) = 1|z € {0,1}"] (2.5)

12



Without loss of generality assume that v > (. Note that good approximations of § and ~
can be easily obtained (i‘n polynomial-time) by performing a-priori tests on D, using samples
taken from HJiV, g and sz,g.

In the sequel we use the distinguisher D as an oracle, that enables us to “peek” into a
1-bit window on the (74 1)* location of an unknown exponent of length (74 1). Specifically,
we use D in order to derive the (i 4+ 1)** bit of an (i + 1)-bit string x, given g¢°.

2.2.2 Discovering S - a naive implementation

Suppose for a moment that we had a “perfect” oracle, that given input Z = ¢*, where x is

of length (i 4+ 1), would supply us, with success probability 1, the (i 4+ 1)** bit of z. It would
then enable us to extract x, using two simple operations:

Shifting to the left: By squaring Z we shift x by one position to the left.

Zeroing the j’th bit: By dividing Z by g2j_1 we zero the j'th position in z, in case it is
known to be 1.

Therefore, we extract x from the most significant to the least significant bit by “moving” it
under the (i + 1)** window. Specifically, we query the oracle and determine the (i 4+ 1)% bit
of z and zero it in case it equals 1. Next we shift = by one position to the left, query again
the oracle to discover the next bit and so on.

As was explained earlier, we try to factor N by discovering S = DLy ,(¢"). An important
property of S, is that with overwhelming probability its length is [n/2] + 1, and is therefore
smaller than 7 + 1. We can thus manipulate Y = g% = ¢° (mod N) and discover S.

However, as the oracle might give us erroneous answers and all we are guaranteed is that
there is a v — [ gap (which is greater than ni) between the probability to get a correct
l-answer and the probability to get an erroneous 1-answer, our implementation needs to be
more careful.

2.2.3 Discovering S - the actual implementation

We must randomize our queries to the oracle and learn the correct answer by comparing the
proportion of 1-answers with § and . A straightforward way to learn the (i + 1)% bit of =
given Z, would be to query the oracle on polynomially many random multiples Z - ¢g"* for
known r;’s chosen uniformly from {0, 1}, and based on the fraction of 1-answers to decide
between 0 and 1. However this approach fails, since despite our knowledge of r;, we cannot
tell whether a carry from the addition of the 7 least significant bits of the known 7, and the
unknown z effects the (i + 1)% bit of their sum. Thus we cannot gain any information on
the (7 + 1) bit of z from the answer of the oracle on Z - g"*.

We now give a rough description of a procedure that resolves this difficulty and computes
S. The procedure consists of [n/2] + 1 stages, where on the j’th stage we create a list L,
which is a subset of {0,...,27 —1}. We want two invariants to hold for the list L;:

1. L; contains an element e such that S — e - 2!() belongs to the set {0,201}, where

1(5) def [5]+1—j. (In other words, we want e to be equal to Srz141,())-
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2. The size of L, is small, that is, it contains up to a polynomial number of values (where
the polynomial is set a-priori).

On each stage, we keep the values of the list sorted. When we advance to the (5 + 1)* stage,
we first let L;;; be all the values v such that v = 2u or v = 2u + 1 where u is in L;, thus
doubling the size of the list L;. Obviously, by this we maintain the first invariant specified
above. In case the size of L, exceeds the polynomial bound we fixed, we use repeatedly
the Trimming Rule in order to throw false candidates out of the list L;,, until we are within
the maximal size allowed.

2.2.4 Keeping the size of L; bounded

Suppose that we decide to trim L; whenever the difference between the largest candidate
in it, denoted by v/ __, and the smallest candidate in it, denoted by 7., exceeds a certain
polynomial, say n® (for some constant a). At least one of the values v/ _, vl .. is not the
correct value Synyy1 ;). Therefore the trimming rule (to be defined in the sequel) may throw
one of them out of the list. For this purpose, we are going to define a new secret S’, for which
g% can be efficiently computed given Y = ¢%, v/ and v/, . We will examine a certain

position in it (which is a function of j), henceforth referred to as the crucial position (and
shortly denoted cp). Essentially, S” will have the following properties:

1. If v/, is the correct candidate (i.e. Se1y100) = v? ;) then the cp-bit in S’ is 0, so are

min

the [alogn]| bits to its right, and so are all the bits to its left.

2. If v},,, is the correct candidate (i.e. Srnyi1(j) = vl,,,) then the cp-bit in S’ is 1, the

[alogn] bits to its right are all 0’s, and so are all the bits to its left.

Consequently, in these two situations we will be able to perform the randomization we
wanted. We first shift S’ to the left until the cp-bit is placed in the (i + 1)* location
(by repeatedly squaring Y). We then multiply the result by g” for some randomly chosen
r € {0,1}*. The probability to have a carry into the (i + 1)* location from the addition of r
and the shifted S’, is no more than n% (a carry might occur only when 7;;_rq10gn) = 11...1).
Hence, by using a polynomial number of queries to the oracle (with independently chosen
r’s) we are able to deduce the value of the cp-bit by comparing the fraction of 1-answers
with 3 and 7.

As the value of the cp-bit is revealed, we can discard one of the candidates v? , or v/

from the list: If ¢p = 1 we are guaranteed that v

. sin 18 DOt correct, and if cp = 0 we are
guaranteed that v/ . is not correct.

S ] in are correct, we cannot ensure that the [alogn]
bits to the right of the ¢p-bit in S” will be zeros, so a carry may reach the (i + 1)** position.
Thus we can get the frequency of 1-answers altogether different from  and v. Yet in that
case, it is ok for the trimming rule to discard either one of the extreme values from the list.

We proceed with a formal presentation of the proof.

Note that in case neither 7. nor v’

14



2.2.5 Definition of S’ and cp

Recall that [(j) = [§] + 1 — j. We define the new secret S’ (which is a function of j, S v’

min
J
and v/ ,.) to be

2[& logn|+m )

1 (S —d L ol)
S - ’vamm _ ’Uj ] (S Unmin 2 )
where m is a natural number. We will see that in the choice of m there is a tradeoff between
the running time and the probability of error: When m is large, the error probability is
smaller. On the other hand, when m is small, the running-time is shorter (we will see that
choosing m to be [alogn]| will be adequate). Note that g% can be efficiently evaluated given

Y =g¢° o). and v/ . The Crucial Position in S’ is defined to be

cp = [alogn| +m+1(j)+1

Since we decided to trim L; whenever the difference between the extreme values in it
exceeds n®, the trimming rule will be applied only for j’s greater than [«logn] (for smaller
g’s v . and v’ . will not differ by more than n®). Therefore, the maximal value for cp will
be [n/2] +m + 1. Thus, for i’s smaller than [n/2] + m it occurs that cp is greater than
i+ 1. For these i’s we have to guess the [n/2] + m — ¢ < m most significant bits of S (in
order to keep the number of guesses polynomial, we restrict m to be logarithmic in n and

prefered as small as possible).

2.2.6 The actual algorithms and their analysis

We first describe the procedure “find S” that on input N € N,, and ¢ (the index of the hybrid
for which the acceptance probability of D on Hj , and H , differs by more than 1), finds
S. We proceed with an analysis of the procedure which leads us to the exact formulation of
the trimming rule.

Procedure “Find S”:

On input N and ¢ execute the following steps:

1. Let jo = max([n/2] + m —,0)).
Recall that i > [n/2], therefore jo € {0,...,m}.

2. If jo > 0 guess the j, most significant bits of S, and let w € {0,...,2% —1} denote the

guess (if jo = 0 let w ¥ 0).

For each of these polynomial number of guesses do the following stages:
3. Let Ljo = {w}
4. For j = jo+ 1 to [n/2] + 1 do the following:

(a) Let L, Lf {2u, 2u+1 :u e L; 1} '
Order the resulting list from the largest element v/ . to the smallest element v

max main*
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(b) If vl . — ol > 2l%e] (we are guaranteed that vf  — o7, < 2.2[@lenl by
the previous stage) use the trimming rule (to be specified) repeatedly until the

difference between the largest element in the list and the smallest one is no more
than 2[@losn],

5. Check all values v € Lz, and see whether ¢g” equals Y. If such a value is found, then
it is S.

Two facts: We turn to make two observations which le_ad us to the formulation of the rule
by which we trim L; (assuming that 2/@enl < ¢J o . < ofalegn]+1y,

Fact 2 Suppose that vmm indeed equals Sn/2+1.(;)- Then, the cp-bit in S’ is 0, all the bits
to its left are 0’s, and the [alogn] bits to its right are 0’s as well.

Fact 3 Suppose that vl,,, indeed equals Sin/o141.()- Then, the cp-bit in S" is 1, all the bits
to its left are 0°s, and the | < min([oz logn|,m—1) — 1 bits to its right are 0’s as well.

Proof:(of Fact 2) Using v/, — > 2lelognl ghserve that

max m’L'fL

g - [Mw (Vi - 29+ Sy = i - 200)

S
< gmH()
— 9cp— [alogn]—1

O

Proof:(of Fact 3) Observe that

S = [ww  (Vhag - 29 + Sy = Vg - 2100)

J
Umaz 'U.,.,“n

= [M} (Ve = Vhin) - 29 + Sy )

VUmaz 71;,,,”'“

_ gladognl+mHG) 5. (pi ol Y. 9ll) 4 [Mw Sy

[olog n]4+m [alogn]+m
where § = [2- = -‘—2]- = e [0,1).

J J
VUmaz 71},,,”'“ Umaz 7’umin

mam

Let Uy = § - (v, — vhin) - 20 and let U, = [M} Siip.

max min

We can write S’ as
S' =297t L U, 4+ U,

Recall that 2@%snl < i 7 . < 9.2[«lan]  Therefore, Uy < 2-2[@legn]+l) = gep—m gapd
U, < 2mtl5) = gep—ledogn]=1 ~Also both Uy, Uy > 0.
Consequently S’ is of the following form:
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e The cp-bit in S’ is 1 and all the bits to its left are 0’s.

e Let I = min([alogn]|,m—1)—1. Then the [ bits to the right of the ¢p-bit in S are 0’s.

Fact 3 implies that we must choose m to be at least [alogn|, otherwise there wouldn’t
be enough 0’s to the right of the cp-bit to enable the randomization. On the other hand,
the larger m is, the more bits we have to guess in Step (1) of the procedure “Find S”. We
therefore set m to be [alogn], and respectively define

22 [alogn] ) ]
" _ (S =l . 9ld)
5= ’V?Jgnam — Uj : (S Umin 27 )
and
cp =2[alogn]| +1(j) +1

We now formally state the trimming rule:

Trimming Rule:

1. Shift 8" by i 4+ 1 — ¢p bits to the left (by computing Y’ = ¢5 2" ™) therefore placing
the crucial position in S’ on location 7 + 1.

2. Pick t(n) = n**™ random elements 1, ..., zyn) € {0, 1}

3. For each 1 < k < t(n) query the oracle on Y'- g% (mod N) and denote by by, its answer
t(n) b

(i.e. by = D(g5" > “+2)). Denote by M the mean kel =

4. If M < (B + %2) discard the candidate value vJ,,, from the list L;. Otherwise (i.e.

max

when M > (8 + 52)) discard the candidate value v

min*

Note that the trimming rule is applied only for j’s which are greater than jy, + [alogn].
Therefore, we have that i+1 is always greater or equal to cp, making Step (1) in the trimming
rule well defined.

For explanations on the choice of the parameters see the Appendix. The bottom line is,
however, that the probability of a mistake by the trimming rule (i.e. the probability that
the correct value will be discarded from the list) is exponentially small.

Claim 3.1 The Procedure “Find S” combined with the Trimming Rule above can factor inte-

gers picked randomly from N, with probability greater than 871Lc.

Proof: As previously mentioned, for a pair (N, g) uniformly chosen from P, (where N is
equal to P - ), the following two facts hold:

1. With overwhelming probability ordy(g) > P+ Q — 1.

2. With probability greater than 5= the pair (IV, g) belongs to the set W,,.
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Therefore, given a random N = P - @ in N,, we can pick ¢ randomly in Z3 and with
probability higher than 471Lc both of the above conditions hold. Hence, S will be equal to

P + @ — 1 (according to Fact 1) and the algorithm D will have advantage of at least zic

in distinguishing the distributions H} , and H?VJ (see Equation 2.3). Since the probability
of error by the trimming rule is exponentially small, and since the trimming rule is used
polynomially many times throughout the procedure “Find S”, with probability greater than

871LC the value S will be found. O

Note that the procedure “Find S” combined with the Trimming Rule yields at most
270 . gladogn] < 92falegn] — pO() possible values for S, and is therefore polynomial time.
Thus Claim 3.1 finishes the proof of Lemma 2.

We now go back to the proof of Theorem 1. Assume that the gap between the acceptance
probability of D on the extreme hybrids H|"/?! and H"*t<(°6™) is greater than n% We
construct an algorithm A that factors integers uniformly distributed in N,,. On input N,
algorithm A picks a random 7 in {[2],..,n+w(logn)} and runs the procedure “Find S” on (N, 7).
By Lemma 2, the probability that “Find S” indeed factors NV, is greater than one eight
of the gap between the acceptance probabilities of D on H! and H'™, for a random i as
above. Denote the number of hybrids, |n/2| + w(logn), by m(n). Then, we have that for
all sufficiently large n’s

1 n+w(logn)
Pr[A factors N] = —— Y Pr[“Find S” on input (N, 1) factors N]
m(n)
1 n+w(logn) - .
> —— Y o |PrD(HT) = 1] - Pr[D(H]) = 1]
m(n)
11
> —— = |[Pr[D(H"0sm)) = 1] — Pr[D(H"?1) = 1
> g [PrDUH ) = 1] - PrD(H]) = 1]
1
2 i

thus contradicting Assumption 1.

Note: In fact, Theorem 1 holds even when the distribution Half, is defined to include
all triplets of the form (N, g, ¢%) where (N, g) €r P, and x €x {0,1}[7/21=00ogn) (yather
than = €5 {0,1}/"/21). The only change is in the proof of Lemma 2, where on Step (1) of the
procedure “Find S”, j, may belong to the set {o,..,m+0(0ogn)}. Thus, we have to guess more
bits from S, however the total number of possible guesses remains polynomial in n.

2.3 Equivalence to the HSS result

Theorem 1 is actually equivalent to the result by [HSS| on the simultaneous hardness of the
upper [n/2] bits in the exponentiation function fy ,. In order to show that, we discuss first
an alternative version of Theorem 1. Recall the hybrid H?t“(°8™) defined in the proof of
Theorem 1, including triplets (N, g, %), where (N, g) is uniformly distributed in P, and R
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is uniformly distributed in {0,1}"t“(°8")  Let us denote it by Full,. The following is a
corollary from Theorem 1 and Claim 1.1:

Corollary 4 The probability ensembles {Half,}nen and {Full,}nen are computationally
indistinguishable.

We show that Corollary 4 is equivalent to the result of [HSS]. But first, let us give the
exact formulation of their result.

Definition 6 Let (N, g) be uniformly distributed in P,, let x be uniformly distributed in
{0,1}" and let v be uniformly distributed in {0,1}121. We define the following probability

distributions:
def

Xn = <N,97 fN,g(‘r)’:L‘”:[”/ﬂ)
and

de
Yn :f <N7 g, fN,g(x)’ T)

Theorem 5 (Hastad et al.) The probability ensembles { X, }nen and {Y,}nen are compu-
tationally indistinguishable.!

2.3.1 The Equivalence
Proposition 6 Theorem 5 holds if and only if Corollary 4 holds.

Proof: We show how to transform a probabilistic polynomial-time algorithm D that dis-
tinguishes the ensemble {X,} from {Y,} into a probabilistic polynomial-time algorithm D’
that distinguishes the ensemble {Half,} from {Full,}, and vice versa.

Transforming D into D': On input (N, g,), pick z uniformly from {0,1}/"/2!, run D on
(N,g,y-g°2"""" z) and output D’s answer. Observe that

1. If (N, g,y) is taken from Half,, then y = ¢g" where r € {0,1}/"/?]. Therefore,
(N, g, g2+ 2} is distributed as X,,.
2. If (N, g,y) is taken from Full,, then y = g%, where R € {0, 1}n+eogn),

Let ~ denote statistical closeness. Note that

(Untw(iogn) + 2 - 2(”/21) mod ordy(9) = Uptw(iogn) mod ordy(g)
~ U, mod ordy(g)

(the proof of each of the above transitions is similar to the proof of Claim 1.1).
Therefore, (N, g, g>2""" T 2) is statistically close to Y.

! Actually, the simultaneous hardness of the upper [%] in fn,, was defined differently by [HSS]. Their
definition states that the two distributions (%, n/21,Z) and (r,Z) are computationally indistinguishable,
where Z = g* (for v €r Z%), # = DLy 4(Z) and r €g {0,1}"/2]. However, this definition is problematic:
At least the most significant bit in the first distribution, Z,,, will be always 0, since ordy (g) is always smaller
than N/2. Hence the above two distributions can be easily distinguished.
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Thus, Theorem 5 is implied by Corollary 4.

Z.an/ﬂ)

Transforming D’ into D: On input (N, g,y,z), run D' on (N,g,y/g and output

D"s answer. Observe that

1. If (N, g,y, 2) is taken from X,,, then y = fy () = ¢* and 2 = %y [n/27. Therefore,
y g7 = g=m/0 and thus (N, g, y/g=*"""") is uniformly distributed in Half,.

2. If (N, g,y, 2) is taken from Y,,, then y = fy ,(z) = ¢* and z is independent of x.
Note that

(U — z- 2"y mod ordn(g) = U, mod ordy(g) — z - 2?1 mod ordn(g)
~  Uptw(iogn) mod ordy(g) — 2 - 217/ mod ordy(g)
= (Untw(iogn) — 2 - 2[”/21) mod ordy(g)
~  Untw(logn) mod ordy(g)

Therefore, (N, g,y/g72"""") is statistically close to Full,.

Thus, Theorem 5 implies Corollary 4.
|

2.3.2 Discussion

Our proof of Theorem 1 simplifies to a great extent the proof given by [HSS] to Theorem 5.
Basically, this is due to the following reasons:

1. Unlike in [HSS], we do not require that the order of g in Z% will be very high (i.e.
greater than = - (P — 1)(Q — 1)). Tt suffices that the order of g will be greater than
P+Q-1

2. We do not need to consider separately the O(logn) most significant bits as done in
[HSS] (where a very complex proof is given for these bits).

3. As a consequence from the different nature of the oracles, the randomization conducted
by us (randomizing the bottom i bits) is different from the randomization done in
[HSS] (randomizing the full range [0,0rdn(g))). Therefore many of the difficulties
encountered in the work of [HSS] are not relevant in our proof. For example, we do
not need to avoid a wrap around the order of g.

2.3.3 A refinement

Observe that Corollary 4 actually states that the hybrids HTE”/ 2l and Hﬁ“’(log ) are computa-
tionally indistinguishable. An equivalent phrasing would be to say that for all i’s satisfying
that [n/2] < i < n + w(logn), the hybrids H! and H:'! are computationally indistin-
guishable. Theorem 5 can be formulated differently as well: As was shown by [HSS]|, the
simultaneous hardness of the upper [n/2] bits in fy , is equivalent to saying that for all i’s
satisfying that [n/2] < i < n, the i’th bit in fy , is relatively hard to the left.
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Definition 7 Let (N,g) €r P,. The i’th bit of fn, is relatively hard to the left?, if
for all probabilistic polynomial-time algorithms A, for all constants ¢ and for all sufficiently
large n’s

|P1"[A(N, 9, fN;g(x)axn,Hl) = 1‘37,‘ = 1] - PI[A(N, 9, fN,g(x)’xn,Hl) = 1‘.%1' = OH < %
[Note that a more natural definition, saying that no efficient algorithm can predict the i’th bit
of z given N, g, ¢° and z,,;+; with probability of success significantly greater than %, works
only for the n — O(logn) bottom bits of 2. The reason is that the O(logn) upper bits of =
might be biased (since N is smaller than 2" it can be that Pr[z; = 1|z €g [0, V)] significantly
differs from 5, for i € {n —O(logn),...,n}). Thus these bits can be trivially predicted with
success probability substantially greater than % Definition 7, however, remains valid for
these bits as well.]

Recall Proposition 6 above, asserting that Theorem 5 is equivalent to Corollary 4. We
now demonstrate that Proposition 6 can be refined, by showing that the hybrids H: ! and
H} are computationally indistinguishable if and only if the 7’th bit of fy , is relatively hard
to the left.

We begin by specifing what is an index function, in order to properly define a probability
ensemble indexed by IN, which has the hybrid H: as its n’th random variable.

Definition 8 An index function ¢ : N — N is an integer function satisfying the following
two conditions:

1. for all sufficiently large n’s, [§] < i(n) < n.
2. 1 1s polynomial-time computable.’

Proposition 7 Let i be an index function, and let (N, g) €r P,. The probability ensembles
{HIM-1Y cn and {H™},cn are computationally indistinguishable if and only if the i(n) 'th
bit of fn 4 s relatively hard to the left.

Proof: For the sake of simplicity we treat ¢ as a constant throughout the proof. We show how
to transform a probabilistic polynomial-time algorithm A, that on input (N, g, fn (), Tn,it1)
tries to find x;, and has a non-negligible gap between the probability of giving a correct 1-
answer and the probability of giving an erroneous 1-answer, into a probabilistic polynomial-
time algorithm D, that distinguishes with a non-negligible gap between the ensembles { H: '}
and {H!}, and vice versa.

Transforming A into D: On input (N, g,y), pick z uniformly from {0,1}"~* and output
= A(N,g,y-g*%,2). Using z = z- 2 + DLy 4(y), observe that

PrD(HI™) = 1] = PrIA(N, g, fry (), ninr) = Ui = O

2 Analogously, one can define a bit being relatively hard to the right.
3In fact, since the input n for 4 can be given in unary, we can allow i to be computed in time exponential
in n.
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nd
* Pr[D(H:) =1] = Pr[A(N, g, fng(T), Tniy1) = 1]

= % : PT[A(Na 9, fN,g(x)axn,i—H) = 1‘:1;1 = 0] +
% : PT[A(Na 9, fN,g(x)a xn,H—l) = 1‘:1:1 = 1]
where in both cases © €, {0,1}". Thus,
[Pr[D(H,™") = 1] — Pr[D(H,) = 1]| =
% : |PI‘[A(N, g, fN,g(x)axn,i-i—l) = 1|xz = 0] - PI‘[A(N, g, fN,g(x)amn,i—i—l) = ]-‘-7;1 = 1”
Therefore, the computational indistinguishability of { H*™~'} and {H!™} implies that
the i(n)’th bit of fy , is relatively hard to the left.

Transforming D into A: Oninput (N, g, fn¢(z), Tnit1), lety = fNig(x)/g‘”‘":i“'?i and out-
put b = D(N, g,y). Observe that y = ¢g*! and thus

Pr[A(N, g, fn (), Trnit1) = 1] = Pr[D(H:) = 1]
and .
Pr[A(N, g, fng(z), Tpit1) = 1|z; = 0] = Pr[D(H:™) =1]
On the other hand,

PI[A(Na g, fN,g(x)a xn,i-l—l) = 1] = : PI[A(Na g, fN,g(x); xn,i—i—l) = 1|$z = ]-] +

-Pr[A(N, g, fng(z), Tnit1) = 1|z; = 0]

N[—= N[

and so,

PrA(N, g, fng(2), Tnit1) = 1z = 1] =
2- PI‘[A(N, g, fN,g(x)a xn,i—l—l) = 1] - PI‘[A(N, g, fN,g(:L‘)a -Tn,'H—l) = 1|$2 == 0]

Combining the above, we get

[Pr{A(N, 9, fng(%), Znis1) = Uas = 1] = PrlA(N, g, fn,4(2), Tnit1) = 1|z = 0] =
2- (Pr[D(H,) =1] — Pr[D(H,™") = 1))

Therefore, if the i(n)’th bit of fu, is relatively hard to the left, then the ensembles
{H™~1} and {H™} are computationally indistinguishable.
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Chapter 3

Additional Results

3.1 Shifted exponents

When looking closely at the proof of indistinguishability of the ensembles Full, and Half,,
one sees that it relies on the fact that the ensemble Half, has a block of [n/2] consecutive
random bits in the exponent of g. Recall that the problem of factoring N is reduced to
computing S (where S is congruent to N mod ordy(g)). Since S is of size [n/2] + 1, we
discover it by using the [n/2]-bit block of random bits. At this point one may ask: Is the
distribution obtained by shifting the block of [n/2] random bits by & positions to the left,
where k is polynomial in n, still pseudorandom (i.e. computational indistinguishable from
Full,)? The answer is yes, provided that N is a Blum-integer and that g is a quadratic
residue in Zy.

We say that N = P-(@ is a Blum integer, if N belongs to N,,, and both P and @ are
congruent to 3 mod 4. It is known that for such N’s, squaring is a permutation in Z3. We
say that x € Z3 is a quadratic residue if z = y? for some y € Z}. We denote by P, the set
of pairs (NN, g) where N is a Blum integer of size n and g is a quadratic residue in Z3. Note
that one can efficiently pick a pair (N, g) uniformly distributed in P,. When limiting N and
g as above, and under the assumption that factoring Blum integers is hard, we can show that
for every k£ > 0 which is polynomial in n, the ensembles g”‘k and F'ull,, are computationally
indistinguishable (where r is a bit string of size [n/2]). Note that the assumption that
factoring Blum integers is hard, is implied by Assumption 1 (again, a non-negligible fraction
of the Blum integers is a non-negligible fraction of all the integers in N,,). That is:

Definition 9 Let (N, g) be a uniformly distributed pair in P,, and let r be uniformly dis-
tributed in {0,1}/31. We denote by Half* the ensemble (N, g, g">").

Theorem 8 Under the assumption that factoring Blum integers is hard, the ensembles
{Half*},en and {Full,},en are computationally indistinguishable (as long as k is poly-
nomial in n).

We remark that the results of this section (including the above theorem) are based on the
previous chapter, and particularly on the main Lemma.
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Figure 3.1: We denote random bits by '*’, zeros by ’0’, and unknown bits of S by ’?’. (1),
(2), (3), (4), (5) show the exponents of Full,, Half¥, H["?1** the hybrids H: and Htl,
respectively. (6), (7) show the exponents of Y’, on the j’th stage of the procedure that
discovers S, before and after the randomization, respectively.

3.1.1 A right-shift technique

In order to prove the above assertion, it is required to perform right-shifts of the exponent S.
Specifically, we use a technique of [HSS] for the following operation: Suppose the j bottom
bits of S (i.e. S;1) are already known. We would like to truncate S off these bits and to

shift it by one position to the right (i.e. we want to obtain Z = 1/¢°~%i1). In general, one
cannot efficiently compute a square root modulo N without knowing the factorization of .
However, by choosing ¢ in a clever way, such that its square root modulo /V is known, we can
derive Z efficiently by computing (,/g)¥ ). In particular, we can perform a polynomial
number of shifts to the right. By choosing g to be (g')¥, where ¢’ is a quadratic residue in
Z and t is polynomial in n, we can shift S to the right by up-to ¢ positions. Observe that
although chosen in this manner, g is still a random quadratic residue in Zj.

3.1.2 Proof of Theorem 8

Recall the hybrid H/*/?I*% = (N, g, ¢*) as defined in the proof of Theorem 1, where z is
uniformly distributed in {0,1}/"/?1+¥ By Lemma 2 and by Claim 1.1, the hybrid H["/2l+*
is computationally indistinguishable from Full,,. Therefore, by showing that the ensembles
HalfF and H]"/?1** are computationally indistinguishable, we will be done (see Figure 3.1,

No. (1), (2) and (3)).

Defining new hybrids: We use again the hybrid argument, and define a hybrid ﬁfz, in
which the exponent of length [n/2]+ k —i is shifted by 7 positions to the left. More formally,
for every 0 <14 < k, we define

H: = (N,g,9°%)
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where z € {0,1}["/21++~ (see Figure 3.1, No. (4)). Note that H® = H["/2I+% and that
HF = Half*.

Assume there exists a probabilistic polynomial-time algorithm D, that distinguishes the
extreme hybrids with a non-negligible gap. Then D distinguishes a pair of neighboring
hybrids H: and Hit! with a non-negligible gap.

An outline of the proof: Given a Blum integer N, we want to find S = DLy ,(¢") as
done in Theorem 1. Taking advantage of the structure of the two neighboring hybrids ﬁ}l
and Hit! (see Figure 3.1, No. (4) and (5)), we reveal S bit after bit from right to left, in ||
stages, where on each stage the least significant bit of S is discovered and then truncated.
Note that this is different than the proof of Theorem 1, where S is discovered from left to
right (due to the different structure of the hybrids there, see Figure 2.1). In fact, this proof
will be much simpler than the proof of Theorem 1, since we will not encounter difficulties in
the randomization as we did there (where a carry from the addition of the random exponent
affected the tested bit).!

The procedure that discovers S (while operating on Y = g% = ¢"V) will be as follows: On
the j’th stage, we assume the (j — 1)’st least significant bits of S are already known. We
zero them, and shift the exponent S, such that its j’th bit will be located at the (i + 1)’st
position. Call Y the element obtained after these transformations (see Figure 3.1, No. (6)).
Then, after several invocations of D on randomized instances of Y, we infer the value of the
7’th bit of S. Two issues need to be further clarified:

1. shifting S: In order to shift S (after zeroing its (j — 1)’st least significant bits) as
described above, we need either to shift it to the left, if # +1 > j, or to shift it to
the right, if 4 + 1 < j. In the first case, the (i + 1) — j left shifts are done simply
by raising Y/g%i-11 to the power of 2°*1=. In the second case, the j — (i + 1) right
shifts are done by a-priori choosing g to be (¢')%" (for an appropriate choice of ¢, to be
specified below), and by using the right-shift technique described in Subsection 3.1.1,
which allows up-to ¢ shifts to the right (implying that ¢ must be at least j — (i + 1)).
Since on the j’th stage (for every ¢ +1 < j < [§]+ 1) we need to shift S by j — (¢ +1)
positions?, the maximal number of shifts to the right that is needed throughout the
procedure is [§] + 1 — (i 4+ 1) = [§] — . Thus, setting ¢ = [] suffices.

2. randomizing Y': In order to randomize Y’, we multiply it by a random element of
the form ¢*2" | where z €5 {0, 1}["/21+¥==1 (see Figure 3.1, No. (7)).
For large i’s (and small j’s) a problem of a wrap-around might arise; that is, the value of
the shifted S plus -2+ may exceed 2/"/217% We solve it by guessing at the beginning
of the procedure [ bits of S (the [ bottom bits), where I = maz(i+1—k+ [alogn],0).
Thus, our procedure will have [5] +1 — [ stages, for j =1+1,...,[5]+ 1. In the j’th
stage, after zeroing the (j — 1) bottom bits of S and shifting it as explained above, the
binary length of S will be [§]4+1+4+(i4+1—j) < [§]+14+i—1=[5]+k—[alogn].

'We have already benefited from Theorem 1: Due to its proof (i.e., Claim 1.1 and Lemma 2), we may
focus on the hybrids H?, which “bridge” Half* = H* and HI™*1** = 0.
*Note that if ¢ > [%] no right shifts are needed.
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Therefore, the shifted S will become smaller than 2["/21+k=lalogn] g5 we can add to
it a random number of size approximately 2["/?14* without risking in causing a wrap-
around (in general). Note that if i + 1 < k£ — [alogn] no bits from S need to be
guessed.

A more formal description: Assuming that D distinguishes the hybrids H? and Hit!
with a gap greater than — implies that the ensembles (N, g, ¢"2™"y and (N, g, g% 2"+
(where (N, g) €g P, and & €5 {0,1}/21%¥=i~1) are distinguishable by D with a gap greater
than nl

Given a Blum integer N, we pick a random quadratic residue ¢ in Z% and let g = (¢')%,
thus allowing up-to ¢ shifts to the right. From a standard averaging argument, we get that

with probability at least #, for these specific N and ¢

Pr[D(N,g,g"*"") = 1] = Pr[D(N, g,¢"” " +*) = 1]| > ni (3.1)
where the probability is taken only over the choice of z €5 {0,1}/™/2176=i~1 We assume
for the rest of the proof that Equation 3.1 holds. Thus, the distinguisher D is used as an
oracle, that on input g*?" (where z € {0, 1}/217%~%) distinguishes with a gap greater than
# between the cases where the least significant bit of z is 0 or 1.

We begin by guessing the | = maz(i+1—k+ [alogn],0) bottom bits of S. Since i < £,
we have that [ < [alogn]| + 1, thus the number of possible guesses is polynomial in n.

Recovering S:

We reveal S from right to left, while operating on Y = g%, as follows:

1. Let jo =1". For j = jo+ 1 to [n/2] +1 find the j’th bit of S (assuming the j — 1 least
significant bits S;_1; are known):

(a) Zero the j — 1 least significant bits of S and shift it such that its j’th bit will be
located in the (i + 1)’st position:
e If j < i+ 1 shift S to the left by computing Y’ = (Y/gsf—l’l)QiH_j.
e If j > 4+ 1 shift S to the right by computing Y’ = (¢")¥~%-11 where
t=(j=i=1)
gll — g/2 .

(b) Derive the j’th bit of S by querying the oracle on n
Y’, of the form Y’ - ¢g*2"" | where z €p {0, 1}[*/21+k=i=1,

2¢+4 randomized instances of

2. After finding all bits of S, check whether ¢° =Y.

Taking @« = ¢+ 1 and using a similar analysis to what is done in the proof of Theorem
1 (see Claim 3.1), it can be shown that for a uniformly distributed Blum integer N, the
probability to factor N, given that we guessed correctly the I’ bits of S, is Q(ni) Therefore,

the probability to factor N is at least pol;(n) . #
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Figure 3.2: We denote random bits by '*’| and zeros by '0’. (1), (2), (3), (4), show the
exponents of Half,, Full,, Half¥ and Full®, respectively.

3.1.3 Further Observations

Consider the following probability distribution, denoted Full®, in which the exponent of g
is a full size bit string, shifted by k& positions to the left:

Definition 10 Let (N, g) be a uniformly distributed pair in I3n, and let R be uniformly
distributed in [0, 0ordy(g)). We denote by Full® the ensemble (N, g, g®%%") (see Figure 3.2).

An immediate corollary from Theorem 1 is the following:

Corollary 9 Under the assumption that factoring Blum integers is hard, the ensembles
{Half*}en and {Full*},cn are computationally indistinguishable (as long as k is poly-
nomial in n).

Proof: Consider the (polynomial-time computable) mapping f : (N, g,y) — (N,g,ka).
Observe that f sends Half, to Half*, and similarly sends Full, to Full®. By Theorem 1
the ensembles Hal f,, and F'ull,, are computationally indistinguishable, therefore f(Half,) =
Half* and f(Full,) = Full® are computationally indistinguishable. i

At a first glance it looks as though the ensembles { Full*},cn and {Full,},en are sta-
tistically close. Indeed, that would be the case if ordy(g) and 2¥ would have been relatively
prime (the above ensembles would then be identical, since multiplying by an element in
Zdy(g) induces a permutation over {1,...,0rdy(g)}). However, since it is very likely that
ordy(g) is even, the above ensembles have a statistical difference of at least half. In light of

the above, the following corollary may be of interest:

Corollary 10 Under the assumption that factoring Blum integers is hard, the ensembles
{Full*},.cn and {Full,}nen are computationally indistinguishable (as long as k is polynomial

Corollary 10 is implied directly from Theorem 8 and Corollary 9. In fact, Corollary 10
together with Corollary 9 implies Theorem 8 as well.
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3.2 Towards justifying the DDH Assumption

In order to strengthen our confidence in the DDH assumption, it is desirable to show a link
between it and a known hard problem. We provide here an evidence, that when consid-
ering the DDH problem modulo a composite, there is some connection between DDH and
factoring. Recall the two distributions (N, g, g%, ¢°, ¢®°) and (N, g, g%, ¢°, g%) (where N is a
Blum integer and ¢ is a quadratic residue in Z3%) that the DDH assumption claims to be
computationally indistinguishable. We consider a hybrid between these distributions, de-
fined as (N, g, g% ¢°, g¢), where the exponent c constitutes of random bits in its upper half,
and equals in its lower half to the lower half of ab modulo the order of g. We show that
assuming the intractability of factoring Blum integers, the latter hybrid is computationally
indistinguishable from (N, g, g%, ¢°, g%). Details follow.

Definition 11 Let (N, g) be uniformly distributed in P,. Let & = ordy(g). Let m denote
def

the size of ordn(g), that is, let m = [log&]. Let topy , denote the upper m—i bits in ordy(g),
that is, we let topf\,’g = Emir1 (ie, E=2- topfv’g +&1).% Let r be uniformly distributed in
[O,top][\%ﬂ), and let a,b, R be uniformly distributed in [0,€). Let [ab] “I ab mod £ We now
define the following probability distributions:

Iy
(x)

DDH, “(N,g,¢% ¢, g

e T [‘ﬂ] a n
MZdn d:f <N,g’ga’gb,g 2 b}r7-|’1>
def a
R, = (N, 9,9% 9" g™

(see Figure 3.3, No. (1), (2), (3)).

Theorem 11 Under the assumption that factoring Blum integers is hard, the ensembles
{Mid,}nen and {R,}nen are computationally indistinguishable.

We remark that the proof of the above theorem will use ideas from Section 3.1 (and will not
be based at all on Chapter 2).

Proof (sketch): We use the hybrid argument and define for every 0 < i < [n/2] the hybrid

H.=(N,g,g¢" g ¢"% k)

n

Again, assuming the existence of an efficient algorithm D that distinguishes the extreme
hybrids with a non-negligible gap, implies that there is an i for which D distinguishes H?
and H:™ with a non-negligible gap (say the gap is greater than —-, for some constant c).

We use D in order to factor Blum-integers.

where z € [0, toply ;) (see Figure 3.3, No. (4)). Clearly, H. = R,, and H["/*l = Mid,.

3We allow ourselves to use freely the transition between strings and numbers.
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Figure 3.3: We denote random bits by *’, bits from [ab] by ’[ab]’, and unknown bits of S
by 7. (1), (2), (3), (4), (5) show the exponents of DDH,,, Mid,, R,, the hybrids H} and
Hitt respectively. (6), (7) show the exponent of Y, on the j’th stage of the procedure that
discovers S, before and after the randomization, respectively.

An outline of the proof: Assuming that D distinguishes the hybrids H® and H! (see
Figure 3.3, No. (4), (5)), implies that D distinguishes as well (in fact, with a doubled gap)

between '
Hi' = (N, g,g% ¢°, g™ " Fleblir)

and s B
— e a - i+1 abl. 9 abl:
Hn = <Nag,g ,gb,g 22T+ [ab]; 428+ b]z,1>

where [ab];,, denotes 1 — [ab;;; and where z €p [O,topé\}t;) (ie. |zj=m—1i—1).

Note that £ = ordy(g) is not known to us. Therefore, even if ¢ and b are known, we
cannot compute [ab] = ab mod ¢ and in particular [ab];; (but we can compute gl*tl = gab).
Let e = 2'-2°+ab, where 2’ € [0,topy ) (i-e. |2'| = m—i) and let ¢’ = e mod £ = z'-2"+[ab]
(assume for now that z’ - 2° + [ab] < &). Observe that e can be computed given a, b and z’,
and although €’ is not known, ¢¢ = ¢¢ can be efficiently computed. The key point is that

e;1 = [abl;,y and that e{,, = [ab];;1 ® 7. Therefore, we have that
e if 2/ = 0 then (N, g, g% ¢°, ¢°) is distributed according to H:*L.
e if 2/ =1 then (N, g, g% ¢° ¢°) is distributed according to Ffl.

Given a Blum integer N, we find S = DLy ,(¢") in a method which exploits the former
observations. As in the proof of Theorem 8, we reveal S bit after bit from right to left in
|S| stages (while operating on Y = ¢g"). On the j’th stage, we assume the (j — 1)’st least
significant bits of S are already known. We zero them, and shift the exponent S, such that
its 7’th bit will be located at the (i + 1)’st position (this is done as in the proof of Theorem
8). Call Y’ the element obtained after these transformations (see Figure 3.3, No. (6)). The
j'th bit of S is discovered by querying D on several randomized instances of Y - g®. A
randomized instance will (roughly) be of the form Y- g® . g*2™" where z € [0, toply ;) (see

Figure 3.3, No. (7)). Again, we have to deal with several difficulties:

29



1. First, without knowing & (the exact order of g), how can we choose a and b from
[0,€), and z (during the randomization) from [0, top}y})? We therefore obtain an

approximation of £, by guessing its size and its [alogn| most significant bits.

2. Second, we want that £ will be large enough in order to avoid a problem of a wrap
around.* Specifically, we need that m = [log&]| will be at least n — [alogn|. Using
Proposition 3, this is assured with high probability.

3. Third, we should be careful not to cause a wrap around { when adding (during the
randomization) the shifted S, [ab] and z-2! (where z € [0, top}y;)). For this purpose,
we do the following:

o We guess the [alogn] most significant bits of [ab] (i.e. [ab]mm—[alogn]+1) and
compute Z = ¢ [®lmm-fatogn1+1 Since we multiply Y’ by ¢® in order to add
lab]i+11 to the exponent and the rest of the bits of [ab] are masked anyway (by
x - 2771, we can multiply Y’ by Z instead of g®. Note that this forces us to use
the same @ and b throughout the whole procedure.

e We guess up-to 2[alogn| bits from S and then truncate them, thus reducing the
size of the unknown part in S. The goal is to make the shifted S smaller than
2n—2[alogn] which is (by comment 2 above) smaller than 2™~[*l8”l  Thus, with
high probability over the choice of z € [0, top’}\}f;), when z - 2! + [abl[alogn] 1
is added to the shifted S, the sum will not cause a wrap around.

A more formal description: Given a Blum integer N = P-(@), we pick a random quadratic
residue g in Z}% in the same way as in the proof of Theorem 8. Let ¢ denote ordy(g). By
Proposition 3, we know that with high probability,

£> - (P-1D@-1) (3.2)

where v = 4c+ 4 (thus the probability that Equation 3.2 does not hold is O(—7)). For the
rest of the proof we assume that Equation 3.2 holds.

The procedure that discovers S is composed of two main stages, of which the first one
includes initializations required prior to the actual computation of S, which is conducted in
the second stage of the procedure.

Stage 1: preprocessing

1. We obtain an approximation of &, by guessing m = [log&], and the upper [alogn|
bits of £, that is, &m m—[alogn]+1-

e We denote by gthe approximation of £, equal t0 §m m—[alogn]+1 * gm—[alogn] (i.e.,
5 = 5 + gmffozlogn],l)-

4Note that this difficulty is not encountered in the proofs of Theorems 1 and 8. The reason is that in the
distribution Mid,, (and the hybrids H}), the distribution of the exponent of the last element depends on
ordn(g), whereas in Theorem 8 and in the Main Lemma (in Chapter 2), the distribution of the exponents
does not depend on ordy(g).
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e For i < m — [alogn] we have that
topé\],g = gm,i—{—l = fm,m— [alogn]+1 ° 2mii7{a logn] + gm— [alogn],it+1

We denote by @é\]’g = Enyn—Tatogn]+1 - 2™ 11871 the approximation of toply 4
(i.e., topﬁv,g = topzv,g + &m—[alogn],i+1)- Note that for i > m — [alogn], the value
of topﬁv’g is known precisely.

2. We pick random a,b € [0,€).

3. We guess [ab]m m—[alogn]+1, and compute Z = g[8 m—fatognl+1 = globlm—falognl,1

4. We guess the [ least significant bits of S, where [ = maz(i — [n/2] + 2[alogn],0).
We choose [ in that way in order that [5]+1—1+4 (the size of S after truncating its
[ least significant bits and shifting it by 7 positions to the left) would be smaller than
n — 2[alogn]. Note that since i < [F], we have that [ < 2[alogn]| + 1.

5. We approximate by sampling
Brgap = Pr[D(N, g, g% g, g=* " Hlotlerr) = 1]

and def .
€ a -2t 4 [ab]. , -2t +[ab];
TN,g,ab = PI‘[D(N, 9,9 agba g S b]H—l 2 b}i,l) = 1]

where the probabilities are taken over the choice of z uniformly from [0, topé\}t;) (whereas

N, g, a, and b are fixed). Note that when sampling, we use the approximation tféf?i;,t;

in order to choose z’s. Call 3 and 4 the approximations of By ;.5 and 4.4 Obtained
in this way. Assuming the guesses from Step 1 were correct and using a standard

averaging argument, we have that with probability at least ni (over the choice of N,

g, a and b), the value |5 — | is greater than - (w.l.o.g. say that # > ). For the rest

nec

of the procedure, we assume that this is the case (i.e., ¥ — B> ni)

Note that during Stage 1 no more than a polynomial number of guesses were made.

Stage 2: recovering S

1. Let jo = I. For j = jo+ 1 to [5] + 1 find the j'th bit of S (assuming the j — 1 least
significant bits S;_;; are known):

(a) By operating on Y = g%, zero the j — 1 least significant bits of S and shift it such
that its j’th bit will be located in the (¢ + 1)’st position (this is done as in the
proof of Theorem 8). Call Y’ the element obtained after these operations.

(b) Derive the j’th bit of S by querying D on t(n) = n*** randomized instances of
Y" = Y'- Z (recall that Z = gl®¥lm-rersn11 was computed during Step 3 of the
first stage of the procedure).
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i. Pick @1,...,Zyn) Er [0,10py ).

ii. For every 0 < ¢ < t(n), let b, = D(N, g,¢% ¢",Y" - g**""). Let M denote
)by
t(n)

iii. If M < 352 infer that S; = 0, otherwise (if M > 752, infer that S, = 1.

the mean

2. After finding all bits of S, check whether g% =Y.

It can be shown (analogously to Claim 3.1 in the proof of Theorem 1) that for a uniformly
distributed Blum integer N, the probability to factor N, given that the guesses of the
preprocessing stage were correct, is Q(HL) Therefore, the probability to factor NV is at least

1 1 .

poly(n) ~ e
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Chapter 4

Application to Pseudorandom
Generators

An immediate application of Theorem 1 is an efficient factoring-based pseudorandom gen-
erator which nearly doubles the length of its input. The key tool used is a construction by
Goldreich and Wigderson of a tiny family of functions which has good extraction properties
[GW]. We discuss as well how the parameters of the generator (a composite N € N,, and an
element g € Z%) can be chosen in a randomness-efficient way (which is polynomial-time).
In particular, we present a method of choosing a random n-bit prime using only a linear
number of random bits. This translates to a hitting problem which can be solved efficiently
using methods described in the survey of Goldreich on samplers ([G2]).

4.1 Owur construction vs. the HSS construction

Looking at Theorem 1, the first application that comes to mind is a pseudorandom gener-
ator that takes a seed r of length [n/2] and outputs g" mod N (for a fixed pair (V, g) in
P,). However, the output of the above so-called ”pseudorandom generator” is not really
pseudorandom. Even though it is computationally infeasible to distinguish between it and
the distribution g mod N (for a random R in [0, 0rdy(g))), we are not guaranteed that it
cannot be easily told apart from the uniform distribution on n-bit strings. The same applies
for a ”pseudorandom generator” implied directly by Theorem 5 (of [HSS]), which takes a
seed z of length n, and outputs g® mod N followed by z[/21,1 (again, for fixed (N, g) in P,).
Denote by Halfn, the distribution ¢" mod N, where 7 is uniformly distributed over
[n/2]-bit strings, and by Fully, the distribution g mod N, where R is uniformly dis-
tributed over [0,0rdy(g)). Observe that the “amount of randomness” that Fully , encap-
sulates in it is high, in the sense that it does not assign a too large probability mass to any
value. More formally, we measure the “amount of randomness” in terms of min-entropy.

Definition 12 Let X be a random variable. We say that X has min-entropy k, if for every
x we have that Pr(X = z) < 27%.

The distribution F'ully 4, has min-entropy greater than x, where

<, 5) < Logordy(0)
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The following fact is an immediate consequence of Proposition 3:

Fact 4 Let (N,g) be a uniformly distributed in P,, then k < n — %loan with negligible
probability.

Using hash functions which have good extracting properties, we are able to “smoothen”
the distribution Fully 4, and extract from it an almost uniform distribution over strings of
length n — logZn. To be more formal, we use a family of functions F' having an extraction
property, satisfying that for all but an e fraction of the functions in F', a distribution over
strings of length n having min-entropy n — %log2 n is mapped to a distribution over strings
of length n — log® n which is e-close to uniform (we refer to €, which is generally taken to
be negligible in n, as the quality-parameter of the extraction property achieved by F'). The
price we pay for the use in extractors, hides in a lower expansion factor of the pseudorandom
generators. Specifically, we need to use a part of the random seed in order to choose a
random function in the family F' we are using. Additionally, we lose a small quantity of
pseudorandom bits when applying the extracting function.

Hastad et.al. used a universal family of hash functions [CW] in their construction of
a pseudorandom generator. The quality parameter achieved by this family of functions is
exponentially small in n (and therefore has the best possible quality). However, a universal
family of hash functions has to be large: exponential in n. Thus the number of random bits
needed to generate (and represent) a function in this family is polynomial in n, resulting in
a considerably large loss in the expansion factor of their generator.

More recently, Goldreich and Wigderson [GW]| presented an explicit construction of a
family of functions, which exhibits a trade-off between the size of the family and the quality
parameter € of the extraction property it achieves. Specifically, they demonstrate a con-
struction of a family of functions of size poly(n/e) achieving the extraction property with
quality e (taking, for example, ¢ = n~1°8" yields a family of functions of very good quality
- not exponentially small but still negligible in n, where each function in the family can be
represented using O(log® n) bits).

4.1.1 The HSS construction

We present now the construction of the HSS pseudorandom generator. Even though the
expansion factor of the HSS-generator can be increased using the function families of [GW],
we bring the original construction which uses universal hashing.

Construction 1 ([HSS]): Let H,’f_l"gQ” be a universal family of hash functions which maps
n-bit strings to (k — log® n)-bit strings, and suppose that every h € H,’f_logzn 18 represented
using 2n bits. The mapping G357 : {0,1}°* — {0, 1}3:5n=000g’n) 45 defined as follows::

Let z € {0,1}" and let h € HF8°™ . Then,

def T
G0 e

1 As a matter of fact, in the HSS construction, IV is restricted to be the multiplication of two safe primes,
see [HSS].
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Note that applying the hash function causes a loss of O(log®n) bits in the length of
the output. Therefore, the fact that [n/2] bits are simultaneously hard in fy, (and not
just O(log®n)) is essential for the construction of G5, since the addition of the [n/2] least
significant bits to the output of the generator more than compensates for the loss of O(log® n)
bits. Observe that the expansion factor obtained by the HSS-construction is approximately
7

L (whereas using the [GW] construction one can improve it to approximately 2).

4.1.2 Our construction

We now present our construction of a pseudorandom generator achieving an expansion factor
of nearly 2. But first we need to bring the exact formulation of the GW result (the GW
construction itself is brought in Appendix C).

Theorem 12 (Extractors for High Min-Entropy [GW]): Let k < n and m < n — k be
integers, and € > max{2~(M=O0®)/0() 9=(n=m=O®)/OUDY = (Tn particular, m < n — O(k).)
There exists a family of functions, each mapping {0,1}" to {0,1}™, satisfying the following:

e cach function is represented by a unique string of length O(k + log(1)).

e there exists a logspace algorithm that, on input a description of a function f and a
string x, returns f(z).

o for every random variable X € {0,1}" of min-entropy n — k, all but an e-fraction of
the functions f in the family satisfy

SD(f(X),Un) <€

In particular, taking k = %log2 n, m =n —log?n and € = n~'°6™ Theorem 12 implies
the existence of a family of functions F', mapping {0,1}" to {0,1}™, where each function
f € F can be represented by a string of length O(log” n). We are now ready to exhibit our
construction of a pseudorandom generator which uses the family F'.

Construction 2 We define the mapping G4 : {0,1}/31700* ) _, £0. 1} as follows:
Let x € {0,1}121 and let f € F. Then,

def

Grg(frz) = (£, £(9"))

Theorem 13 Gy, s a pseudorandom generator.

Proof: Obviously Gy, is efficiently computable (since every f € F can be evaluated in
polynomial time). Let F denote the random variable obtained by selecting uniformly a
function f in the family F' (although bearing the same name, it will be clear from the
context whether we mean the random variable F' or the function family F'). Observe that

Gng(Urntyogeg?ny) = (F, F(Halfn,g))
Un= (F,Un)

Consider now the hybrid (F, F(Fully ,)). The theorem is directly implied from the following
two claims:
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Claim 13.1 The ensembles
{(FyF(Halfng))}nen

and
{(F, F(Fullyg))tnen

are computationally indistinguishable.

Proof: The existence of an efficient distinguisher D between the above ensembles implies
the existence of an efficient distinguisher D’ between the ensembles Half, and Full,: On
input (N, g, y), the distinguisher D’ picks an extractor f uniformly from F' and outputs D’s
answer on input (f, f(y)). O

Claim 13.2 The ensembles
{(F, F(Fullng)) tnen

and
{(Fa Um)}neN

are statistically close.

Proof: The third property of Theorem 12, ensures that for all but an e-fraction of the
functions f in F, the statistical difference between the ensembles F(Fully,) and U,, is
bounded from above by e. Thus, the statistical difference between (F, F(Fully,)) and
(F,U,,) is no more than 2¢. Since ¢ was taken to be n~!°¢" we have that the ensembles
(F,F(Fully,)) and (F,U,,) are statistically close. O

4.1.3 Increasing the expansion factor of the generator

The pseudorandom generator described above almost doubles the length of its input. How-
ever, such a small expansion factor has limited value in practice. Still, it is well known
that even a pseudorandom generator G producing n + 1 bits from an n-bit seed can be
used in order to construct a pseudorandom generator G’ having any arbitrary polynomial
expansion factor (see e.g. [G, Sec. 3.3 Thm. 3.3.3]). Unfortunately, the cost of the latter
transformation is rather high: Producing each bit in G”’s output requires one evaluation of
G. Nevertheless, since our generator Gy 4 has an expansion factor of nearly 2 to start with,
we can do a little better than that: Gy, can be used to construct a generator Gy , having
an arbitrary polynomial expansion factor, such that for every n/2 —O(log” n) bits of output,
one evaluation of Gy, is required. We remark that the issue of increasing the expansion
factor of G 4 is relevant mostly due to the need to randomly pick the parameters N and g,
which requires O(n) additional random bits (as will be explained in the subsequent section).
Our suggestion is to pick randomly N and g, set them once and for all, and construct a
pseudorandom generator having a large expansion factor using this specific G 4. This way
the cost of picking N and g becomes negligible (compared to our “profit” from the new
generator).
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We describe now how in general one uses a generator G : {0,1}" — {0, 1}**'™) (for an
integer function 1) to construct a generator G’ : {0,1}" — {0, 1}!")?(™) for any arbitrary
polynomial p(-).

Construction 3 Letl: N — N be an integer function satisfying [(n) > 0 for everyn € N,
let p(+) be a polynomial and let G : {0,1}" — {0,1}"™) be a deterministic polynomial-
time algorithm. Define G'(s) = Ti...Tpm), where sg def s, the string s; is the n-bit long
suffix of G(s;_1) and 7; is the l(n)-bit long prefiz of G(s;_1), for every 1 < i < p(n) (i.e.,
TiS; = G(Sifl)).

Theorem 14 If G is a pseudorandom generator then so is G'.

Theorem 14 is a generalization of Theorem 3.3.3 proven in [G] (regarding a generator pro-
ducing n + 1 bits from an n bit seed). Observe that for every I(n) output bits of G, one
evaluation of G is required. Using our generator Gy, as the building block, we obtain a
generator Gy , that expands input of size n/2 4+ O(log” n) to output of size n® using approx-
imately % modular multiplications.

4.2 An efficient choice of the parameters

In order to use in practice the generator Gy, we need to generate the parameters /N and
g from a primary seed in an “efficient” way, where by “efficient” we mean that both the
running time and the amount of randomness used should be as small as possible. The major
challenge is to generate efficiently two uniformly distributed primes P and @), in order to
obtain a random N = P - @ in N,. A random element g in Z% can be chosen using O(n)
random coins by picking a random number in {0, 1}*™°* " and reducing it modulo N (only
with negligible probability the element obtained will not be relatively prime to N). We
describe now a general method by which we can pick a random n-bit prime in polynomial
time, using only a linear number of random coins.

4.2.1 Picking a random n-bit prime using O(n) random bits

The trivial algorithm to choose a random n-bit prime is to repeat the following two stages
until a prime z is output.

1. Choose a random integer x in {0, 1}".
2. Test whether z is a prime. If it is, stop and output z.

Since the density of primes in {0,1}" is approximately %, the expected number of times that
the above loop is performed is approximately n. Even assuming that we have a deterministic
primality test, the above algorithm requires an expected O(n?) random bits. We now show
how to perform poly(n) dependent iterations of the loop using only O(n) random bits (rather
than doing O(n) independent iterations using O(n?) random bits). We will use, however, a
probabilistic primality tester of Bach [Bach], which is a randomness-efficient version of the
Miller-Rabin [M, R] primality tester.
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Theorem 15 (randomness efficient primality tester [Bach]): There erists a probabilistic
polynomial-time algorithm that on input P uses | P| random bits so that if P is a prime then
the algorithm always accepts, and otherwise (i.e. P is composite) the algorithm accepts with
probability at most ﬁ.

Corollary 16 There exists a probabilistic polynomial-time algorithm that uses 2n random
coins such that

1. with probability @(%) outputs an n-bit prime. Furthermore, the probability to output a
specific prime is 27"

1
n

2. with probability 1 — O(=) — exp(—n) outputs a special failure sign, denoted L.

n/2

3. with probability at most 27™'* outputs a composite.

4.2.2 A hitting problem

We refer to the algorithm guaranteed from Corollary 16 as a black-box. We associate every
string s € {0,1}?" with the output of the black-box given s as its random coins. Denote
by W the set of strings in {0,1}?" which are associated with an n-bit prime. Corollary 16
implies that the density of W within {0, 1}*" is % The problem of uniformly picking an
n-bit prime translates to a hitting problem, where we need to find a string s € W (which
is subsequently used as random input for the black-box in order to yield a prime). An
additional requirement is that the distribution of primes obtained in this way will be very
close to uniform. Our goal now is to find an algorithm that hits W, whose randomness
complexity is linear in n. The methods we use are described in the survey of Goldreich [G2]
on samplers and will be adapted to (and analyzed in) our specific setting.

A pairwise-independent hitter Our first attempt uses a pairwise independent sequence
of m uniformly distributed strings in {0,1}?>". Such a sequence can be generated in the
following way: We associate {0,1}*" with F' “GF (22"), and select independently and
uniformly s,7 € F. We let the 7’th element in the sequence be e¢; = s + i - r (with the
arithmetic of F).2 It can be easily seen that the generated sequence is indeed pairwise-
independent.

Theorem 17 (A pairwise-independent hitter): Let § be an error parameter satisfying that
1/6 = poly(n). There exists an efficient algorithm which uses 4n random coins for which
the following holds:

e The probability to output a prime is at least 1 — 6.

o The probability to output a composite is at most exp(—n).
(With probability 1 — 6 — exp(—n) a failure sign L is output.)

e The probability to output a specific prime is at least 27" and at most % - 27".

2Note that the amount of pairwise independents strings one can generate in this way is limited to 22™ —1.
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Proof: We generate m s % pairwise-independent samples ey, ..., e, each uniformly dis-
tributed in {0,1}*", and run the black-box using each of the e;’s as random bits. Clearly,
this procedure is efficient, since m is polynomial in n. Let

“def | 1 if the black-box (using e; as random bits) outputs a prime
| 0 otherwise

Corollary 16 implies that the expectation of (; is % Using Chebishev’s Inequality we have

(Eemd) <

i—1 nooG4
S nm 2 mn
(=)
< 6§

Regarding the probability to output a composite, using a union bound we get

Pr [a composite is output] = Pr[3i s.t. e; yields a composite]

< ) -Prle; yields a composite]
i=1
n
< 5 exp(—n) = exp(-n)
where the last inequality follows from the third item of Corollary 16 and from the fact that
for every i the point e; is uniformly distributed over {0, 1}*".
As for the probability that a specific prime p is output, the first item of Corollary 16
implies that for every 7, the probability that p is output using e; as random coins is exactly
27" (since e; is uniformly distributed). Thus,

Pr[p is output] > Pr[e; yields p| =27"

On the other hand, using a union bound,

Prp is output] < > -Prle; yields p| = % 27"
=1

If we were willing to settle with a polynomially small error § the above algorithm would be
sufficient for us. However, in order to achieve an overwhelming probability of success (i.e.,
6 = 27™) we must take a somewhat more complex approach, which involves random walks on
expander graphs (for definition and construction of expanders as well as the major theorem
concerning random walks on expanders see Appendix B).
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A combined hitter From the pairwise independent hitter emerges another hitting prob-
lem: Let W’ be the set of strings in {0,1}*", that when supplied to the pairwise-independent
hitter (with a constant error parameter ¢) as a random seed, makes it hit W (i.e. yield a
prime). From the first item of Theorem 17 we get that the density of W’ within {0, 1}*" is
greater than 1 — §. Our new goal is to hit W’ with an overwhelming probability of success.

In order to do that, we generate a random walk on an expander with vertex set {0, 1}%",
and use each of the vertices along the path as a seed for the pairwise-independent hitter.
Taking advantage of the hitting property of expanders (see appendix B), we will have that
a random walk of linear length (in n) will be sufficient in order to hit W’. Details follow.

Theorem 18 There exists an efficient algorithm which uses O(n) random coins such that
the following holds:

o The probability that no prime is output is exp(—n).

e The probability that a composite is output is exp(—n).

n

o The probability that a specific prime is output is at least 2~ ™ and at most poly(n)-27".

Proof: We use an explicit construction of expander graphs with vertex set {0,1}*", degree d
and second eigenvalue A such that \/d < 0.1. We generate a random walk of (edge) length n
on this expander using O(n) random coin flips (4n bits are used to generate the initial vertex
and log d bits are used to obtain each additional vertex on the path). We use each of the

vertices si, ..., s, along the path as random coins for the pairwise-independent hitter which
makes m = 3n trials (i.e., for every 1 < i < n we generate a pairwise-independent sequence
et ..., et from s; and run the black-box using each one of the eé-’s as random bits). Recall

that W’ was defined to be the set of coin tosses which make the pairwise-independent hitter
output a prime. From Item 1 of Theorem 17 we have that [W’|/2*" > Z. Using Theorem ...
the probability that all vertices of a random path reside in W' is bounded from above by
(0.34 +0.1)* < 27". Thus,

Pr[no prime is output] < 27"

Let us now compute the probability to output a composite.
Pr [a composite is output] = Pr[3i s.t. s; yields a composite]

> -Pr[s; yields a composite]
i=1
< n-exp(—n)

IN

where the last inequality follows from the second item of Theorem 17 and from the fact that,
for every i, the seed s; is uniformly distributed.

In order to bound the probability that a specific prime p is output, observe that for every
1 and 7, the point e;- (i.e., the j’th point in the sequence of pairwise-independent strings
generated from s;) is uniformly distributed in {0, 1}". Thus,

Pr[p is output] > Prle} yields p] = 2"
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On the other hand, applying a union bound we get
Prlp is output] < > Y Prle! yields pj =n-m-2"" =3n*- 27"
i=1j=1
|

4.2.3 Using almost uniformly distributed primes

Although the algorithm guaranteed from Theorem 18 does not yield uniformly distributed
n-bit primes, the distribution of the primes it outputs is close to being uniform, in a sense
that is quite sufficient for our needs: Denote by D,, the distribution of composites N = P-Q
in N,, obtained by picking the primes P and () using the algorithm of Theorem 18, and
consider a slightly different factoring assumption, in which N is distributed according to
D,,. Observe that the revised factoring assumption holds if and only if the original factoring
assumption (with N uniformly distributed in N, ) holds: Let A be a probabilistic polynomial-
time algorithm. Then, according to the third item of Theorem 18,

> nen, Pr[A factors N] Y nven, Pr[A factors N]

< Pr|A factors N|N ~ D,| < 4.1
o < Pr[A factors N| ] < > Fpoly (n) (4.1)
where N ~ D,, means that N is drawn according to the distribution D,,.
Note that the size of N, is approximately 2;. Therefore,
2
Pr[A factors N|N €g N,| = n_n >~ Pr[A factors N| (4.2)
From 4.1 and 4.2 we have that
Pr|A factors N|N N, Pr|A factors N|N N,
rlA factors NIN €r Nul _ pyiy pactors NN ~ D,] < DA Tactos NIN €x M), )

n n? /poly(n)

Thus, A does not violate the original factoring assumption if and only if it does not violate
the revised factoring assumption.

Another important observation is that in all our theorems (and in particular, in Theorem
1), the values N and g are fixed throughout the whole proof. Thus, these theorems still
hold when considering any distribution whatsoever of N (and g), provided that factoring is
intractable for such a distribution.

Therefore, we have that under the standard factoring assumption (with N uniformly
distributed in N, ), all our theorems hold even when the distribution of N is taken to be D,,
and the distribution of g is uniform over Zj.
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Appendix A: Exact Analysis of Theorem 1

We show that the probability of error by the trimming rule is exponentially small. Suppose
we want to trim the list L; and that v;,;, is the correct value Sra111 ;) (the analysis in the
case where vJ  is the correct value is analogous). The shifted S’ is then a value smaller

maxr

than 2°-[*1°8"1  Let us denote this value by §. Recall that by is the answer of the oracle on
the query g*hif*?5"+=k (see Step (3) of the trimming rule). We bound the expectation of by:

E(b,) = Pr [D(gshifted5'+zk) — 1] — Pr [D(ga:k+6) _ 1]
= Pr[D(g*) =1(0<z <2 —1-6] - Pr0<z;, <2 -1-6] +
Pr[D(g"+) =1)2 =1 -6 <2 <2 — 1] - Pr[2 =1 - 6 <2, < 20 — 1]
Let yx = x + 6. Then,

Pr[D(g"+) =10 <z, <20 —1-6] = Pr[D(g%) =1/ <y < 20— 1]
B

< o5 Pr[D(gr) =1] =

and therefore

E(be) < 5% - 550+ 150

I
)
_|_

2o

A standard application of Chernoff bound yields:
Pr [discard vfmn] = Pr [2221 be > (B+52) - t]
< Pr|Sh - BE(Sb)l > (B+33%) ¢ — B( b))
= Pr{[ b — E(Cb)| > A E(Cby)]

for \ = PHEN-B(Tb)

E() br)
Since ) 2
REYb) _ [+5E B )] o (6125284 5
6 - 653 br) = 6-(8+ 2t
G i RN € )

6(AtE) 6(A+7)

for &« = ¢+ 1 and for t > n2t4.

Therefore, the probability of discarding v/, from the list L; is smaller than 2", As
mentioned above, a similar argument holds for the second case, where the correct candidate
is vJ Since for every jo < j < m/2+ 1 we use repeatedly the trimming rule for no more

mazx-*

than n® times, the overall probability of error is exponentially small.

Appendix B: Expanders and Random Walks

We now define expander graphs and families of expander graphs and describe an explicit
construction of expanders due to Gabber and Galil [GG]. We also state the major theorem
concerning random walks on expanders. Our exposition follows that of Goldreich in [G2].
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B.1.1 Expanders

An (N, d, \)-expander is a d-regular graph with N vertices so that the absolute value of all
eigenvalues (except the biggest one) of its adjacency matrix is bounded by A. A (d, A)-family is
an infinite sequence of graphs so that the n'™ graph is a (2", d, \)-expander. We are interested
in explicit constructions of such families of graphs, which are efficiently constructible, by
which we mean that there exists a polynomial-time algorithm that on input n (in binary), a
vertex v and an index i € {1,...,d}, returns the 7’th neighbor of v.

Gaber and Galil presented such a construction of a (d, A)-family of expanders, for d = 8
and for some A < 8 [GG]. Their expanders, however, are defined only for graph sizes which
are perfect squares (i.e., only for even n’s).

Construction 4 [Gaber-Galil] Let n = 2m. The graph G, is defined as follows: The vertex
set includes all pairs in Zp, X Z,y,, and each node (x,y) is connected to the four nodes (z+y,y),
(x+y+1,y), (z,x+y) and (z,x +y+1).

In our applications we use (parameterized) expanders satisfying % < aand d = poly(1/a),
where « is an application-specific parameter. Such (parameterized) expanders are also effi-
ciently constructible. For example, we may obtain them by taking paths of length O(log1/«)
on an expander as in construction 4. Specifically, given a parameter o > 0, we obtain an
efficiently constructible (D, A)-family satisfying % < a and D = poly(1/a) as follows. We

start with a constructible (8, \)-family, set & % log, n(1/a) = O(log1/a) and consider the

paths of length & in each graph. This yields a constructible (8%, A*)-family, and both g—: <a
and 8% = poly(1/«) indeed hold.

B.1.2 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemerédi [AKS] is that random walks on
expander graphs provide a good approximation to repeated independent attempts to hit any
arbitrary fixed subset of sufficient density (within the vertex set). The importance of this
discovery stems from the fact that a random walk on an expander can be generated using
much fewer random coins than required for generating independent samples in the vertex set.
Precise formulations of the above discovery were given in [AKS, CoWi, GILVZ]| culminating
in Kahale’s optimal analysis [Kah, Sec. 6].

Theorem 19 (Expander Random Walk Theorem [Kah, Cor. 6.1]): Let G = (V, E) be an
expander graph of degree d and X\ be an upper bound on the absolute value of all eigenvalues,
save the biggest one, of the adjacency matriz of the graph. Let W be a subset of V and

p ¥ \W|/|V|. Then the fraction of random walks (in G) of (edge) length ¢ which stay within

W s at most
A\
P (p+(1—p)-3>
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Appendix C: Tiny Families of Functions

We now bring the explicit construction of Goldreich and Wigderson of tiny families of func-
tions designed for random variables with high min-entropy. Our exposition is taken from
[GW].

C.1.3 The GW construction

We describe the GW construction of a family of functions, each mapping {0,1}" to {0,1}™,
such that all but an e-fraction of them, map random-variables having min-entropy n — & to
a distribution whose distance from the uniform distribution is bounded by e.

The construction uses an efficiently constructible expander graph, G, of degree d (power
of two), second eigenvalue ), and vertex set {0,1}™, so that § < 4_5—;2 (and d = poly(2*/e)).
For every i € [d] % {1,2...,d} and v € {0,1}™, denote by g;(v) the vertex reached by moving
along the i** edge of the vertex v. The construction uses as well a universal hashing family,

denoted H, that contains hash functions each mapping (n — m)-bit long strings to [d].

Construction 5 The family of functions, denoted F', is as follows: For each hashing func-
tion h € H, we introduce a function f € F defined by

f(z) £ Gh(1sb(a)) (msb(z))

where 1sb(z) returns the n — m least significant bits of x € {0,1}", and msb(z) returns the
m most significant bits of x.

Namely, f(x) is the vertex reached from the verter v def msb(z) by following the i*" edge of
v, where i is the image of the n — m least significant bits of x under the function h.

As proven in [GW], Construction 5 above satisfies the requirements of Theorem 12 (stated
in Chapter 4).
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