Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 10 (2001)

Three Theorems regarding Testing Graph Properties

Oded Goldreich* Luca Trevisan
Department of Computer Science EECS — Computer Science Div.
Weizmann Institute of Science UC-Berkeley
Rehovot, ISRAEL. Berkeley, CA 94720, USA.
oded@wisdom.weizmann.ac.il luca@eecs .berkeley.edu

May 14, 2001

Abstract

Property testing is a relaxation of decision problems in which it is required to distinguish
YES-instances (i.e., objects having a predetermined property) from instances that are far from
any YEs-instance. We presents three theorems regarding testing graph properties in the adja-
cency matrix representation. More specifically, these theorems relate to the project of charac-
terizing graph properties according to the complexity of testing them (in the adjacency matrix
representation).

The first theorem is that there exist monotone graph properties in NP for which testing
is very hard (i.e., requires to examine a constant fraction of the entries in the matrix). Our
second theorem is that every graph property that can be tested making a number of queries
that is independent of the size of the graph, can be so tested by uniformly selecting a set of
vertices and accepting iff the induced subgraph has some fixed graph property (which is not
necessarily the same as the one being tested). Our third theorem refers to the framework of
graph partition problems, and is a characterization of the subclass of properties that can be
tested using a one-sided error tester making a number of queries that is independent of the size
of the graph.

Keywords: Property Testing, Graph Properties, Monotone Properties, NP,

*Supported by the MINERVA Foundation.

ISSN 1433-8092

Contents

1 Introduction 2
1.1 Ourmainresults L e e e e e e 2
1.2 Perspective o L e e 3

2 Formal Setting 4
2.1 Graph properties and distance to themo oL, 4
2.2 Testers for graph properties Lo L Lo e 4
2.3 Statement of the Main Results o oo 5

3 Monotone Graph Properties may be Very Hard to Test 6
3.1 Motivation L e e e e e e e 6
3.2 The actual construction oL e 6

4 Canonical Forms of Graph-Property Testers 9
4.1 Moving to testers that inspect a random induced subgraph 9
4.2 Moving to a decision determined by the induced subgraph 12

4.2.1 Moving to a sample-independent decision 12
4.2.2 Moving to a isomorphism-oblivious decision 13
4.2.3 Moving to a deterministic decision oL oL 14
4.2.4 Question: Does T equal TI', 15
4.3 Putting it together oL Lo 16

5 On General Graph Partition Problems that are Testable with One-Sided Error 16
5.1 Trivial graph properties L 17
5.2 Some graph partition properties that are trivialo 17
5.3 Non-trivial graph partition properties — the twocases 18

5.3.1 Graph partition properties that imply k-colorability 20
5.3.2 Graph partition properties that imply a cover by k cliques 21
5.4 The characterization theorem and a corollary 24

References 26

Appendices 27
Appendix A: The transformation of Alon et. al. [1] 27
A.1 Moving to non-adaptive testers Lo L 27
A.2 Moving to testers that inspect a random induced subgraph 27
Appendix B: The framework of Graph Partition Problems 28
Appendix C: Proof of Lemma 5.1 Lo 29
Appendix D: Proof of Lemma 5.5 oo 30

1 Introduction

Property testing (cf., [9, 6]) is a natural notion of approximation for decision problems: For a
predetermined property (or decision), the task is to distinguish whether a given instance has this
property (i.e., is a YES-instance) or is “far” from any instance having the property.

This work is concerned with testing graph properties in the adjacency matriz representation
(cf. [6]). A tester for a predetermined graph property II is a (randomized) algorithm that is given
a size parameter N and a distance parameter € as well as oracle access to the adjacency matrix of
an N-vertex graph G; that is, query (u,v) € [N] x [N] is answered by a bit indicating whether or
not the edge (u,v) is present in the graph. The algorithm is required to accept (with probability
at least 2/3) any graph having property II, and reject (with probability at least 2/3) any graph
that is e-far from having property II, where distance between (NN-vertex) graphs is defined as the
fraction of edges (over (];7)) on which the graphs differ.

Our focus is on the query complexity of testing some graph properties. We consider two extreme
cases. In one case, the query complexity of testing depends only on the distance parameter ¢ (and
is independent of the size of the graph N). In this case, we say that testing is very easy. In the
other extreme case, for some constant € > 0, any tester must make Q(N?) queries (and is thus not
significantly better than a trivial tester that inspect the entire graph). In this case, we say that
testing is very hard.

1.1 Owur main results

Our first main result (cf. Theorem 1) is that there exist monotone graph properties in NP for
which testing is very hard (i.e., requires Q(IN?) queries). This improves over an analogous result
of Goldreich, Goldwasser and Ron [6, Prop. 10.2.3.2] that established the same lower bound for
non-monotone graph properties (in A/P). In fact, our result is obtained by a simple extension of
their technique. This resolves a natural open problem (raised by several researchers, and most
recently by Y. Dodis).

Our second main result (cf. Theorem 2) refers to graph properties that can be tested very easily
(i.e., using a number of queries taht only depends on the distance parameter €). We show that such
graph properties can be so tested by uniformly selecting a set of vertices of size depending only on €
and accepting if and only if the induced subgraph has some graph property (which is not necessarily
the same as the one being tested). This improves over a previous result of Alon et. al. [1], who only
assert that a tester may just inspect a random induced subgraph but do not assert that the decision
may depend only on a property of that subgraph (rather than also on the tester’s coins). Our result
extend to any query complexity so that if the original tester had query complexity g then the new
tester has query complexity that is polynomial in gq. Furthermore, the transformation preserves
one-sided error. It follows that the query complexity of testing graph properties is polynomially
related to the query complexity of performing such testing via non-adaptive testers (and while
preserving one-sided error). This improves over the naive transformation of adaptive testers to
non-adaptive ones (which incurs an exponential blow-up in the query complexity).

Our third main result (cf. Theorem 3) refers to the framework of graph partition problems
introduced by Goldreich, Goldwasser and Ron [6]. They showed that every problem II in this
framework can be tested very easily (i.e., by making poly(1/¢) queries). Within this framework, we
characterize the subclass of properties that can be tested very easily using a one-sided error tester.
Details follow.

A graph partition testing problem is parameterized by a sequence of corresponding pairs of lower
and upper bounds. Specifically, for some (implicit) parameter k, the sequence contains k pairs

of vertex-sets densities and &k + ('2“) pairs of “edge-densities”. A graph has the specified (by the
sequence) property if there exists a k-partition of its vertices such that the number of vertices in
each component of the partition as well as the number of edges within each component and between
each pair of components falls between the corresponding lower and upper bounds (in the sequence
of parameters). Goldreich, Goldwasser and Ron [6] showed that every graph partition property
(i.e., problem in the above framework) can be tested by making poly(1/e) queries, but in general
their tester has two-sided error probability. They also gave one-sided error testers for k-colorability
(which operate by checking whether a random induced poly(1/e)-vertex subgraph is k-colorable).
We show that the class of graph partition properties that admit a one-sided error tester of query
complexity that is independent of IV consists of two subclasses:

1. The main subclass: Each property in the subclass corresponds to a k-vertex graph H. An
N-vertex graph has the property if its vertices can be k-partitioned such that there are no
edges among vertices residing in the same part and so that there are edges between vertices
of the i'" part and j*® part only if (i,5) is an edge of H. (For example, k-colorability is
expressed by letting H be the k-vertex clique.)

2. The non-interesting subclass consists of two graph properties: the cliqgue property and the
trivial property. The only N-vertex graph satisfying the clique property is the N-vertex
clique, whereas all (but finitely many) graphs satisfy the trivial property.

We note that each property in the above class can be tested with one-sided error by uniformly
selecting a set of poly(1/e€) vertices and accepting if and only if the induced subgraph satisfies the
very same graph property being tested.

1.2 Perspective

For a wider perspective on property testing see [5, 8]. Our results are related to the project of
characterizing graph properties according to the complexity of testing them. This is a natural
research project, alas a seemingly very difficult one (cf., [6, 1]). Our results carry good and bad
news for this project.

Theorem 1 refutes the conjecture that all monotone graph properties can be tested very easily,
a conjecture which could have been justified by the fact that hard problems such as k-colorability
and p-clique can be tested very easily (cf. [6, Sec. 6.2&7]). Theorem 3.3 can be viewed as bad news
for the “characterization project” (because it means that yet another natural class of properties
has both easily-testable and hard-to-test properties).

Theorem 2 provides a tool for the study of graph properties that can be tested very easily with
one-sided error. It asserts that when conducting such a study, one can consider only canonical
testers that operate in a relatively simple way. The usefulness of Theorem 2 is demonstrated in our
proof of Theorem 3, a proof that repeatedly refers to the fact that the canonical tester accepts if
and only if a random induced subgraph has a certain graph property.

Theorem 3 is of the type of results sought after by the “characterization project”, alas it refers
only to a special class of graph properties (see above). Combined with previous results of [6, Sec. 9]
and [1], this suggests that progress can be made with respect to subclasses of graph properties that
can be expressed in some uniform structural formalism (rather than merely placed in a uniform
complexity class such as N'P).

Organization

The abovementioned results are stated formally in Section 2, and their proofs appear in the subse-
quent sections (i.e., in Sections 3, 4 and 5, respectively).

2 Formal Setting

For any natural number n, we let [n] def {1,...,n}. Without loss of generality, all N-vertex graphs
have [N] as their vertex set, and their edges are unordered pairs over [N].

2.1 Graph properties and distance to them

A graph property Il is a predicate defined over graphs that is preserved under graph isomorphism
(i.e., if G has property IT and G’ is isomorphic to G then G’ has property II).

We say that a graph G = ([N],E) is eclose to having property II if there exists a graph
G' = ([N], E') having property II such that the symmetric difference between E and E’ is at most
€ (];]). We say that a graph G is e-far from having property II if it is NOT e-close to having property
I1. A useful observation follows:

Claim 2.1 If G is e-close to (resp., e-far from) having property Il then so is any graph that is
isomorphic to G.

Proof: Suppose that G = ([N], E) is e-close to T and G = 7(G) < (IN], {(x(w), 7(v)) : (u,v) € E})
for some permutation 7:[N]— [N]. Let H be a graph having property II such that the graphs G
and H differ on at most ¢ - (37) edges. Then, H' = n(H) also has property II and the graphs G’

and H' differ on at most € - (];[) edges. W

2.2 Testers for graph properties

Testers are oracle machines that are given as input a pair (N, €), where N is a size parameter and
e > 0 is a distance parameter, as well as oracle access to (the adjacency matrix) of an N-vertex
graph. An oracle machine 7 is called a tester for property II if for every G = ([N], E)) and every e,
the following two conditions hold:

1. If G has property II then Pr[T%(N,¢) = 1] > %

2. If G is e-far from having property II then Pr[T%(N,¢e) = 1] < 3.

In both items, the probability space is that of the internal coin tosses of machine T, and a typical
query (u,v) to oracle G is answered by 1 iff the edge (u,v) is in the graph G. The tester T (for II)
is said to have one-sided error if it always accepts graphs having the property II; that is, for every
G = ([N], E) having the property II and every e, it holds that Pr[T%(N,¢) = 1] = 1.

The query complexity a tester T is a function ¢:Nx[0,1] — N such that g(NN,¢) is an upper bound
on the number of queries made by 7" on input (NN, €) and oracle access to the adjacency predicate
of any N-vertex graph. The query complexity of a property II is the minimum query complexity of
testers for II.

2.3 Statement of the Main Results

Existence of hard-to-test monotone graph properties (in NP). A graph property II is
called monotone if adding any edge to any graph that has property II results in a graph that has
property II. By saying that a graph property II is in AP, we mean the natural thing; that is, that
the problem of deciding whether a given graph has property II is in NP (i.e., the set II is in N'P).

Theorem 1 There ezxists a monotone graph property I in NP such that the query complezity of
II, denoted q,, satisfies q;(N,0.1) = Q(N?).

Recall that g, (NN, ¢€) is a lower bound on the number of queries made by any tester for IT on input
(N, €) and oracle access to (the adjacency predicate of) any N-vertex graph. Theorem 1 is proven
in Section 3.

Canonical forms of testers for graph properties. Let II be any graph property and T be
a tester for II. We say that T is canonical if, for some function s : N x[0,1] — N and graph
property IT', the tester operates as follows: on input (IV, €) and oracle access to any N-vertex graph
G, the tester T selects uniformly a set of s(IV,¢) vertices (in G), and accepts if and only if the
corresponding induced subgraph (of G) has property II'. Clearly, the query complexity of such a
tester is g(N,¢) = (5(];]’6)).

Theorem 2 Let II be any graph property having query complezity q,. Then II has a canonical
tester of query complexity q! (N, €) = O(gy(N, €)*). Furthermore, if II has a one-sided error tester
of query complexity q, then 11 has a canonical tester that has one-sided error and query complezity
2

(5)-

In particular, it follows that in the context of testing graph properties, the query complexity of

non-adaptive! algorithms is polynomially related to the query complexity of adaptive algorithms.
Theorem 2 is proven in Section 4.

A characterization of graph partition properties that are easily testable with one-sided
error. We refer to graph partition properties as described in the introduction and further discussed
in Appendix B. We confine ourselves to “non-trivial” graph properties. That is, a graph property
IT is non-trivial if for all infinitely many N’s there exist an N-vertex graph satisfying property II as
well as an N-vertex graph not satisfying property II. For a k-vertex graph H and a graph G, we
say that G is H-embeddable if the vertices of G can be k-partitioned such that there are no edges
(of G) among vertices residing in the same part and so that there are edges between vertices of the
ith part and j'® part only if (i,5) is an edge of H. (For example, saying that G is Cy-embeddable,
where Cj denotes the k-vertex clique, is equivalent to saying that G is k-colorable.)

Theorem 3 Let Il be an non-trivial graph partition property that is testable with one-sided error
and query-complezity independent of N. Then exactly one of the following two cases holds:
1. There exists a k-vertex graph H such that, for every sufficiently large graph G, the graph G
satisfies 11 if and only if G is H-embeddable.
2. For all sufficiently large N, an N-vertex graph has property Il if and only if it is an N -vertex
clique.

Theorem 3 is proven in Section 5.

! An oracle machine is called non-adaptive if it determines its queries based merely on its input and random-coins,
independently of the answers to prior queries.

3 Monotone Graph Properties may be Very Hard to Test

Throughout this section we consider the query complexity of testing, when setting the distance
parameter to equal a constant (e.g., ¢ = 0.1). In contrast, the size of the graph (denoted N) is
treated as a parameter. Thus, when we describe a set of N-vertex graphs, it is to be understood
that we consider the union of all these sets (i.e., over all possible N’s).

3.1 Motivation

Goldreich, Goldwasser and Ron showed that there exist graph properties in NP for which any tester
must inspect at least a constant fraction of the vertex-pairs [6, Prop. 10.2.3.2]. Their construction
proceeds in two stages:

1. First, it is shown that certain sample spaces yield a collection of Boolean functions (i.e., a
property of Boolean functions) that is hard to test (i.e., any tester must inspect at least a
constant fraction of the function’s values).

On one hand, the sample space is relatively sparse (and thus a random function is far from any
function in the resulting collection), but on the other hand it enjoys a strong pseudorandom
feature (and so its projection on any constant fraction of the coordinates looks random).
Thus, the functions in the class (which must be accepted with high probability) look random
to any tester that inspect only a small constant fraction of the function’s values, whereas
random functions are far from the class (and should be rejected with high probability). This
yields a contradiction to the existence of a tester that inspect only a small constant fraction
of the function’s values.

2. Next, the domain of the functions is associated with the set of unordered pairs of elements
in [V], and the collection of functions is “closed” under graph isomorphism (i.e., if a certain
function on (%) is in the collection then so is any function obtained from it by a relabeling
of the elements of [N]).

The closure operation makes this collection correspond to a graph property (since it is now
preserved under isomorphism). The parameters are such that the resulting collection (al-
though likely to be N! times bigger than the original one) is still sparse enough (and so a
random graph is far from it). On the other hand, the indistinguishability feature is main-
tained.

Unfortunately, the above construction does not yield a monotone property (since the second stage
inherits the possible non-monotonicity of the collection constructed in the first stage). We redeem
the situation by adding a third stage in which the collection is “closed” under edge-additions.
Clearly, this guarantees that the resulting (graph) property is monotone (and it also inherits the
feature of being in N'P). However, the resulting collection is no longer sparse, and so the fact that
a random graph is far from it should be argued differently.

3.2 The actual construction

The actual construction follows the three stages sketched in the motivation above. For every IV,
we start by considering a sample space of (];])-bit long strings taken from an 0.1-2 *-biased sample

space (cf., Naor and Naor [7] or [2]), where ¢ def 1055 V2. Efficiently constructible sample spaces of

size O((§)/0.1-27%)% = 22+9(") having the above feature can be found in [2]. We actually omit

from the sample space any sample that has less than one third of one-entries. (The importance of
this modification and its effect will be analyzed below.) For each sample s in the (residual) space, we
define a graph G = ([N], E,) by letting (i,) € E, if and only if the (4, 7)™ bit of s equals 1, where
we consider any fixed (efficiently computable) order of the elements in {(7,7) : 1 < i < j < N}.
We call these 22t°(Y) graphs, the basic graphs. Note that the set of basic graphs is not likely to be
closed under isomorphism, and thus this collection does not constitute a graph property. On the
other hand, the set of basic graphs is in NP, because elements in the sample space can be generated
in time polynomial in N (i.e., there exists a poly(/V)-time algorithm that given an (2t + o(t))-bit
long string produces an (})-bit long string in the sample space).?

Next, we consider the set of secondary graphs obtained by “closing” the set of basic graphs
under isomorphism. That is, for every s in the sample space (equiv., a basic graph G) and every
permutation 7 over [N], we consider the secondary graph G = ([N], Es) that is defined so that
(r(u),m(v)) € E,, iff (u,v) € E;. By construction, the set of secondary graphs is closed under
isomorphism, and so this collection does constitute a graph property. The latter set is also in NP
(by incorporating the isomorphism 7 in the NP-witness).

Finally, we “close” the set of secondary graphs under edge-addition, obtaining our final set of
graphs (which is, by construction, monotone): That is, for every secondary graph G' = ([N], E'),
and every E” D E’', we introduce the final graph G = ([N], E").

Comment. At the point, the reason for the modification in the sample space may be clear: If,
for example, the sample space had contained the all-zero string then the set of final graphs would
have contained all graphs, and testing membership in it would have been trivial.

Analysis. Our aim is to show that, although a random graph is far from the set of final graphs, no
algorithm that makes o(IN2) queries can distinguish a random graph from a graph selected among
the final graphs (with some distribution that is not necessarily uniform). Since a tester for the set
of final graphs must accept any final graph (with high probability) and reject a random graph (with
high probability), we conclude that such tester must make Q(NN?) queries. Specifically, throughout
the rest of the analysis, we refer to testers of IV-vertex graphs that should accept with probability
at least 2/3 every graph that has the property, and reject with probability at least 2/3 every graph
that is 0.1-far from having the property. Thus, we omit the distance parameter ¢, which always
equals 0.1, from all notations.

Claim 3.1 The probability that a random graph is 0.1-close to some final graph is at most 0.1.

Proof: The idea is to consider the “asymmetric distance” of a random graph from the set of
secondary graphs, where the asymmetric distance of G1 = ([N], E1) from Gy = ([N], Eq) is defined
as B9\ E (rather than the symmetric distance between the graphs, which equals (Ep\ E1)U(E1\E2)).
We first bound the “asymmetric distance” of a random graph from the set of secondary graphs,
and then observe that this asymmetric distance does not decrease when we replace the secondary
graphs by final graphs. That is, unlike the symmetric distance, the asymmetric distance of G from
G2 can only increase when adding edges to Ga.

Fixing any secondary graph, we first upper bound the probability that a random graph misses
less than 0.1 - (];7) of the edges of the (fixed) secondary graph. Using the fact that the secondary

?In fact, using known constructions, membership in the (original) sample space can be decided in polynomial-time.
Observing that the omitting condition is also decidable in polynomial-time, we conclude that the set of basic graphs
is actually in P.

graph contains at least % . (1;[) edges (see above), the expected number of edges missed by a random
graph is at least % . (];]) Since the “missing events” (for edges) are independent, we can employ
Chernoff’s bound and infer that the probability that less than 0.1 - (];]) edges are missed (by a
random graph) is upper bounded by

wl2: -0 ()

Recall that the number of secondary graphs is 22t°() . (N1). Using ¢ = 0.001N2, this number is
O(20:002N Fo(N 2)). Employing the union bound, we conclude that the probability that a random
graph misses less than 0.1 - (];]) of the edges of some secondary graph is at most

< 270.006N2 (1)

0(20.002N2+0(N2)) L9 0.006N> _ (1 (2)

Since each final graph contains some secondary graph as a subgraph, the probability that a random
graph misses less than 0.1 - (g) of the edges of some final graph is at most 0.1. The claim follows.

Claim 3.2 Let M be a probabilistic oracle machine that makes at most t queries. Let Ry denote
a random graph, and By denote a graph uniformly selected among the basic graphs. Then,

|Pr[MEN(N) =1] — Pr[MB¥(N) =1]| < 0.2

Proof: We identify (1;[)-bit long strings with N-vertex graphs (obtained as in the first stage of the
construction). Let Gy denote a graph uniformly selected among all graphs in the sample space;
that is, without discarding from the space those samples having less than one third of one-entries
(equiv., less than %(g]) edges). Thus, By is obtained from Gx by conditioning that Gy has at
least %(];]) edges. Using the fact that a small bias sample space (as above) is almost pairwise
independent, the probability that an element in it has less than one third of one-entries is very
small (e.g., tends to zero when N — o00). Thus, the probability that G has at least %(g) edges
is overwhelmingly high, and so the statistical difference between G and By is very small (e.g.,
smaller than 0.1). It follows that

|Pr[MEY(N) =1] — Pr[MP¥(N) =1]| < 0.1 (3)

On the other hand, since the sample space underlying the construction of G has bias at most
0.1-27%, it follows that, for any fixed sequence of coins for M, any fixed sequence of ¢ answers
occurs with probability 27¢ & 0.1 - 27 under G (rather than with probability 2~¢ under Ry).?
Thus, for any fixed sequence of coins for M, the observed deviation of the ¢ answers of Gy from
the ¢t answers of Ry is at most 0.1. It follows that

|Pr[ME~(N) =1] — Pr[ME~¥(N) =1]| < 0.1 (4)
Combining Eq. (3) and (4), the claim follows. [l

Combining Claims 3.1 and 3.2, we obtain:

3We use the fact that fixing the internal coins of M and the oracle answers to M determines the oracle queries
that M makes.

Theorem 3.3 (Theorem 1, restated): There exists a monotone graph property in NP for which
every tester requires QQ(N?) queries (even when invoked with constant distance parameter).

Proof: Consider the graph property, denoted II, corresponding to the set of final graphs defined
above. Recall that this set indeed corresponds to a monotone graph property in A/P. Now, suppose
that M is a tester for this property and that M makes less than N2/1000 queries (when invoked
with distance parameter 0.1). Then, by Claim 3.2,

|Pr[MEN(N) =1] — Pr[MB~¥(N) =1]| < 0.2 (5)

Now, since each graph in the support of By (i.e., each basic graph) has property II, the tester must
accept (i.e., output 1 on input) such graph with probability at least 2/3. It follows that

Pr[MB~¥(N) =1] > % > 0.6 (6)

On the other hand, the tester may accept with probability at most 1/3 each graph that is 0.1-far
from having property II. By Claim 3.1, the probability that Ry is 0.1-far from having property II
is at least 0.9. It follows that

1
PriMEN(N) =1] < 09-3+0.1-1 = 04 (7)

Combining Eq. (5)—(7), we reach a contradiction. The theorem follows.

4 Canonical Forms of Graph-Property Testers

We present two “canonization” transformations that can be applied to algorithms that test graph
properties. The two “canonization” transformations are:

1. Transformation to testers that inspect a random induced subgraph.

2. Transformation to testers that decide according to whether the induced subgraph has some
(possibly other) graph property.

Both transformations incur only a polynomial increase in the query complexity, and preserve one-
sided error.

The first transformation improves over a similar transformation that appears in the work of
Alon et. al. [1]: their transformation incurrs an exponential increase in the query complexity. We
provide a description of their transformation in Appendix A. This is done both for sake of self-
containment (and because the description in [1] is quite laconic) and as a warm-up towards the our
own transformation (presented in Section 4.1).

4.1 Moving to testers that inspect a random induced subgraph

The following transformation improves over the one presented in Appendix A. Rather than incur-
ring an exponential incease in the query complexity, it only incurs a polynomial increase. The
transformation proceeds in a reverse order to the one utilized in Appendix A: First we move to
testers that inspect an induced subgraph, and only next do we get rid of the potential adaptivity of
the tester. In the latter argument, we capitalized on the fact that (by definition) graph properties
are preserved under isomorphism (i.e., renaming of vertex names)

Lemma 4.1 Let II be any graph property, and T be an arbitrary tester for II. Suppose that T has
query complezity q(N,€). Then there ezists a tester for II that selects a random subset of 2q(N,€)
vertices, denoted R, makes the queries {(u,v) : u,v € R}, and decides based on the oracle answers
(and its internal coin tosses). Thus, the new tester is non-adaptive and its query complexity is less
than 2q(N,€)?. Furthermore, if T has one-sided error then so does the new tester.

Proof: First we transform T into an algorithm 7" that belongs to the class of vertez-uncovering
algorithms, defined as follows: A vertex-uncovering operates in iterations such that, in each iteration,
depending on its coins and the answers obtained in previous iterations, the algorithm selects a new
vertex, denoted v, and makes queries to all pairs (v,u), where u is a vertex selected in some prior
iteration. Clearly, T can be emulated by a vertex-uncovering algorithm, denoted 7T, that makes
at most 2g(N,e¢) iterations, and thus at most (2‘1(]2\]’6)) < 2q(N,€)? queries: each query of T is
emulated by two iterations of 7", while these iterations are not necessarily new ones. That is, T" is
a vertex-uncovering tester for II.

We next consider an algorithm 7" obtained from 7" as follows. When given oracle access to a
graph G = ([N], E), algorithm 7" first selects uniformly a permutation 7 over [N], and next invokes
T’ providing it with oracle access to the graph 7(G) def ([N],7(E)), where m(E) def {(m(u), 7(v)) :
(u,v) € E). That is, when T" makes query (u,v), algorithm 7" makes query (7(u),w(v)) and feeds
the answer to T". Clearly, algorithm T” also operates in a vertex-uncovering manner. Below, we
will show that the set of vertices selected by T is uniformly distributed, and thus that its choice of
vertices is actually oblivious of previous answers. But before doing so, we show that 7" maintains
the testing features of 7" (and thus of T'):

e Let G = ([N],E) be a graph having property II. Then, for any permutation =, it is the
case that the graph 7(G) def (IN],{(7(u), w(v)) : (u,v) € E) has property II. Thus, 7" must
accept the graph 7(G) with probability at least 2/3. This means that (for every permutation
7) conditioned on 7 being chosen in the onset (of T"), algorithm of T" accepts the graph G
with probability at least 2/3 (because, in this case, T” just emulates for 77 an oracle access to
the graph 7(G)). Since this holds for every m, it follows that 7" accepts G with probability
at least 2/3.

e Suppose that a graph G = ([N], E) is e-far from having property II. Then, for any permutation
7, the graph w(QG) is e-far from having property II. (See Claim 2.1.) The rest of the argument
follows analogously to the above (where here we refer to an upper bound on the accepting
probability). It follows that 7" accepts G with probability at most 1/3.

As stated above, the tester T” operates in a vertex-uncovering manner. We now show that the
next vertex selected in each of its operations is uniformly distributed (among all possible choices).
In fact, we prove that for any choice r of a random-tape for 7", for any possible sequence of queries
and answers corresponding to the first 7 iterations of 7", the next vertex selected by T"” is uniformly
distributed among all vertices not selected so far. (Recall that a generic random-tape of 7" is a pair
(r,m), where 7 is a possible random-tape of 7" and 7 is a permutation over [N].) Let T! denote the
deterministic oracle machine derived from T by fixing the random-tape of T to equal r. Similarly,
let us denote by 7’ the machine derived from 7" by fixing the first part of the random-tape of 7"
to equal r (i.e., given oracle access to G, the machine 7, uniformly selects a permutation 7, and
invokes T, providing it with oracle access to w(QG)).

Claim 1: For any integer ¢, random-tape r and any possible sequence of (;) answers corresponding to
the first 4 iterations of 7./, the next vertex selected by T) is uniformly distributed among all vertices

10

not selected so far. Furthermore, this holds even when given values vy, ...,v; and conditioning on
v; being the j' vertex uncovered by 7.

Proof: Recall that in these 4 iterations T only inspects the subgraph induces by the i vertices
it has uncovered. Let us fix a possible sequence of answers, denoted a. That is, « is a binary
sequence of (;) answers given to 7 (and passed to 7)) during these i iterations. (Indeed, «
encodes a binary symmetric relation over [i].) Recall that the (first ¢ + 1) vertices selected by 77,
denoted ", ..., u;"", u;\;, are determined by T} depending on the corresponding prefix of a. The
corresponding vertices that are actually uncovered by T are m(u}®), ..., w(u;"*), w(uy;), where 7
is a random permutation selected at the onset of T/. Thus, u:fl is determined by 7, depending
only on (r and) «, and at this point 7 is conditioned only by « being the subgraph induced by
m(uy®), ooy (™). Furthermore, if we condition on 7(u}®) = v; for j = 1,...,4, then the condition
on « becomes irrelevant (because it relates to the subgraph induced by the fixed vy, ...,v;). But
conditioning on m(uy®) = w; for j = 1,..,4, the value of n(u;};) is uniformly distributed in
[N]\ {vj};-zl, and the claim follows. O

Loosely speaking, Claim 1 asserts that the vertices selected by T" are selected with distribution
that is independent of previous answers obtained by T". It follows that we may select the sequence
of vertices beforehand, which means that T" is essentially non-adaptive. Formally, we consider an
algorithm 7" that, given oracle access to a graph G = ([N], E)), uniformly selects a random-tape
r for T! and invokes T answering its queries as follows. In the i + 1%¢ iteration, when T selects a
new vertex (denoted u;41), algorithm 7" uniformly selects vit1 € [N]\ {v; }3-:1, and answers the
queries of the i*" iteration accordingly (i.e., according to the edges between v;,; and the previous

v;’s).

Claim 2: For any graph G, when given oracle access G, the output distribution of 7" is indentical
to that of T".

Proof: Fixing G and r, we show that the distribution of answers seen by T is indentical to that
of T, where T!" is defined analogously to 7. We prove, by induction on i, that the i*® vertex
selected by each of these machines (i.e., T/ and T.") is uniformly distributed among all vertices
not selected so far, and the claim follows. The induction step is obvious in case of 7}". Using
Claim 1, the induction step holds with respect to T)': fixing any selection of vertices for the first 4
iterations of 7}, the induced subgraph seen by 7} is fixed too, and so the next vertex selected by
T! is uniformly distributed among all vertices not selected so far. O

Combining Claim 2 with the fact that 7" is a tester for II, we conclude that T is a tester for
II. Observing that T" operates as claimed in the lemma, and has one-sided error in case T has
one-sided error, we are done. [

Perspective: The main part of the proof of Lemma 4.1 is similar to an analogous statement
proven by Bar-Yossef et. al. [4] in the context of “sampling algorithms”. Consider, for example,
the problem of approximating the average value of a function f defined over a huge space, say
f:{0,1}" —[0,1], when given only oracle access to the function. We seek algorithms that make
relatively few oracle calls, and call them samplers. The proof of Lemma 4.1 can be easily modified
(and in fact simplified) to prove that the query complezity of non-adaptive samplers equals the query
complezity of adaptive ones. The key observation is that also here the relevant property (i.e., the
average value of a function) is invariant under renaming (of the function’s arguments). In fact, this
is exactly the way this statement (regarding query complexity of “sampling algorithms”) is proven
in Lemma 9 of [4].

11

4.2 Moving to a decision determined by the induced subgraph

The current transformation is even less generic than the previous one, since it applies only to non-
adaptive (graph property) testers. For simplicity, our starting point is actually testers as resulting
from Lemma 4.1 (i.e., that query the oracle on the edges of a random induced subgraph). The
current transformation consists of three steps:

1. Transformation to testers that decide based on the subgraph they see, possiblly by tossing new
coins, but independently of the coins used to select the sample set of vertices. In particular,
if the tester selects ¢ vertices, then it decides based only on the induced t-vertex subgraph in
which the vertices are labelled by the elements of [t] according to some canonical order.

2. Transformation to testers that decide as above, but do so in a way that is independent of
the labelling of the induced subgraph. That is, the decision depends only on an unlabelled
version of the induced subgraph.

3. Transformation to testers that decide according to whether or not the induced subgraph has
some fixed graph property. That is, this transformation gets rid of the coins that were possibly
used in the previous decision process.

That is, the first transformation gets rid of the possible dependence of the decision on the identity of
the sampled vertices; that is, the resulting decision depends only on the subgraph seen by the tester
(but possibly depends on the ordering of the vertices in this subgraph). The second transformation
makes this decision identical for all isomorphic subgraphs (i.e., independent of this ordering), and
the third transformation makes this decision deterministic.

4.2.1 Moving to a sample-independent decision

We first move to testers in which the sample of vertices only determines the queries, but plays no
direct role in the final decision (which depends only on the answers to these queries).

Claim 4.2 Let Il be any graph property, and T be a non-adaptive tester for II that selects a random
subset of t = t(N, €) vertices, makes queries to determine the induced subgraph, and decides based
on the oracle answers (and its internal coin tosses). Then, without loss of generality, the tester T
can be decomposed into two parts.
o The first part uniformly selects a set of vertices and queries the oracle for the induced subgraph,
which it passes to the second part.
o The second part makes a decision based on the subgraph obtained from the first part and
possibly depending on its own coins, but independent of the coins used by the first part.

Furthermore, if T has one-sided error then mo coins are tossed in the second part.

Proof: Without loss of generality, we may decompose the random-tape of T into the form (S,r),
where S is the vertex set selected by 7' (with probability p, = 1/(];])) and r is the residual
randomness. (This step is quite generic: the original random-tape of T induces uniform distribution
over the possible vertex-sets, and each possible vertex-set induces uniform distribution over all
random-tapes that cause T to select this set.)

For each set of vertices S and each sequence of possible answers o (which is a symmetric relation
over S), we denote by g5, the probability that T accepts when selecting the vertex set S and seeing
the answer sequence a. Indeed, ¢4, is merely the fraction of r’s that make T" accept. For any fixed

a, let g, def > sPsqs. be the expected value of g5, (for varying S). We now derive a tester that

12

selects S as T does, but decides only acccording to the answers it gets (i.e., independently of 5).
Specifically, we consider an algorithm 7" that selects S with probability p, and (for every «) upon
obtaining the answer sequence « accepts with probability ¢, .

Claim: For any graph G, when given oracle access G, the probability that T’ accepts G equals the
probability that T accepts a random isomorphic copy of G.

Proof: Let 7 be a uniformly distributed permutation over [IN], and consider the operation of T’
when given oracle access to 7(G). Note that T selects S uniformly, inspects the subgraph of 7(G)
induced by S (which equals the subgraph of G induced by 7 1(S)), and accepts with probability
qs.> Where a is the relation representing this subgraph. In terms of G, the situation is the same as
if T would have selected uniformly and independently two sets S and S’ (since S’ corresponds to
771(S) where 7 is a uniformly distributed permutation) and accepts with probability qs..> Where
« is the relation representing the subgraph of G induced by S’. Taking another step, it is as if
T would have selected uniformly a set S’ and upon obtaining the answer sequence « accepts with
probability ¢, = Es(gs,,) (becuase S is selected independently of S’ and is only used to determine
qs,.)- But this exactly what 7" actually does when given oracle access to G. O

As in the proof of Lemma 4.1, it follows that T” is a tester for II. The main part of the claim
follows.

Finaly we observe that if T has one-sided error then, without loss of generality, all the ¢ ’s
may be in {0,1} (and so no coins are needed for the final decision). The reason is that if any g
is strictly smaller than 1 then the answer sequence « cannot occur when accessing a graph that
has property II (or else this graph is rejected with non-zero probability), and so setting this g,
to zero does not effect the performance on graphs having property II and may only improve the
performance on all other graphs. W

4.2.2 Moving to a isomorphism-oblivious decision

Claim 4.2 asserts that, without loss of generality, the final decision of a tester is obtained by a
randomized computation that depends only on the oracle answers (which are obtained by querying
all pairs in a random set). We now show that, without loss of generality, this decision is closed
under isomorphism. In the special case of one-sided testers, this means that the final decision is by
whether or not the induced subgraph satisfies some fixed graph property.

Claim 4.3 Let II and T be as in Claim 4.2. Then, without loss of generality, T 1is composed of
two parts as in Claim 4.2, and in the second part the decision applied to the answer is closed under
graph isomorphism. That is, when seeing an induced subgraph that equals H, the second part decides
ezactly as in case it sees a subgraph that it isomorphic to H. Furthermore, if T has one-sided error
then, without loss of generality, there exists a graph property II' such that the final decision of T
amounts to checking whether or not the subgraph induced by its vertex sample has property II'.

Proof sketch: The proof is very similar to the proof of Claim 4.2. Denoting by ¢ the probability
that T accepts on answer sequence «, we consider an algorithm 7" that accepts with probability
that depends only on the class of graphs isomorphic to a. Specifically, let g(a) be the set of graphs
that are isomorphic to the graph having an adjecancy matrix that corresponds to «, and let q; be
the expectation taken uniformly over all « such that g(a) = H. Then, T" selects uniformly a set of
vertices S, and accepts with probability q;, where H is the subgraph induced by S.

As in the proof of Claim 4.2, we show that, for any graph G, the probability that T" accepts G
equals the probability that T" accepts a random isomorphic copy of G. (Here we use the fact that

13

when T accesses a random isomorphic copy of G and obtains the answer sequence «, it decides as if
it has accessed G and obtained an answer that corresponds to a random element in g(«).) Finally,
we use again the fact that if 7" is one-sided then without loss of generality each g is either 0 or 1.
The claim follows. W

4.2.3 Moving to a deterministic decision

Here, our aim is to make the second part of the tester guaranteed by Claim 4.3 be deterministic
(i.e., be determined by whether or not the induced subgraph has some fixed graph property). By
the furthermore parts of Claims 4.2 and 4.3, it suffices to consider two-sided error testers (becuase
for one-sided error testers the final decision was already shown to be deterministic). Thus, our focus
in this section is on two-sided error testers. In fact, we can directly handle testers as in Claim 4.2
(i.e., with a decision that is not closed under isomorphism of the induced subgraph), but for sake
of simplicity we prefer to use Claim 4.3 as our starting point.

Lemma 4.4 LetIl and T be as in Claim 4.3, and let t denote the number of vertices selected by T'.
Then, there exists a tester T' and a graph property I so that T' selects a random set of t' = O(t?)
vertices and accepts if and only if the subgraph induced by it has property IT'.

Proof: Let us denote by p,, the probability that 7" accepts a graph when seeing H as the induced
(t-vertex) subgraph. Consider a new algorithm 7" that when given oracle access to a graph G,
selects at random a set of ¢’ = 108¢? vertices, denoted S’, inspects the subgraph induced by S’ and
decides as follows:

1. For every t-subset S of S’, the new test determines the subgraph of G induced by S, and add
Pgg to an accumulated sum, where G5 denotes the subgraph of G induced by S. That is, T’

computes the sum
> P (8)
Scs's.t.|S|=t

2. Accept the graph G if and only if the final sum (i.e., Eq. (8)) is greater that ; - (’Z)

Observe that T' makes a final decision of the required form (i.e., the decision is isomorphism-
oblivious and deterministic, and so it can be casted as a graph property). All that is left is to
analyze the performance of 7". Intuitively, the expected value associated with each t-subset (of a
random t'-subset) reflects the expected decision of T (i.e., its accepting probability), and since the
various random values are “sufficiently independent” with high probability their sum reflects the
expected decision of T. Thus, the sum is very likely to exceed 3 - (tt') (resp., be below 3 - (tt’)) if
and only if the accepting probability of 7" is above 2/3 (resp., below 1/3). In the actual analysis
we will use Chebyshev’s inequality and the fact that two random t-subsets of a t'-set are disjoint
with sufficiently large probability. Details follows.

In order to simplify the analysis, we slightly modify the presentation. The modified T' (resp.,
T") operates by selecting uniformly and independently a sequence of ¢ (resp., ') vertices, possibly
with repetitions. Assuming that ¢(IV,e) < N/, this modification has negligible impact, because
repetitions are unlikely to occur. We stress that this modification is not essential to the rest of the
analysis; it just simplifies things a little (and, in general, we may assume that ¢(N,¢e) < /N log N,
since otherwise algorithm 7" sees the entire graph and may just decide accordingly).

Let us denote by 5 = (s1, ..., s) the sequence of vertices selected by T’. We view T" as scanning
all possible ¢-subsets I C [t'], and inspecting (for each such subset I) the subgraph induced by the

14

vertex set {s; : 1 € I'}. For each t-subset I C [t'], consider a random variable (; = (;(3) representing
the contribution of the set I to the accumulated sum (computed by 7”), where the underlying
proability space is of all possible #-long vertex sequences 5. Clearly, E({;) = Eg(equals

Es(

..... st
and J, the random variables (; and (; are independent. Let S denote the set of all ¢-subsets of [t'],
and recall that 7" accepts G if and only if > ;.5 (7 > % - |S|. Tt follows that T" is correct provided

that
S - D E)

IeS I1eS

pG{si:iEI})

Pa,,, }), which in turn equals the probability that T accepts G. Also, for every disjoint I

< <18 (9)

1
6
Applying Chebyshev’s inequality we will show that Eq. (9) holds with probability at least 2/3.

Specifically, let ¢, def ¢r — E((s). Then

1 Var(ZIeSCI)
P - Y E > — .S SToIeS 5
rl%& %)| > 6 | |] < ST /36
2
36 _
= —_.E C)
Kk ((IEZS’)
36 _
= W Z E(CICJ)
1,JeS
5 |SP _ 1
< 1S 108 T 3

where the last inequality uses the following facts:
e For any disjoint I and J, it holds that E(¢;(;) = E({;) - E((;) = 0.
e For any (non-disjoint) I and J, it holds that E(¢;C;) < 1 (because |[(x| < 1 (VK)).
e The fraction of disjoint pairs of t-subsets of [t'] among all pairs of ¢-subsets of [t'] is bounded

2,1 L
above by % 7 = 155-

It follows that 7" decides correctly with probability at least 2/3, and the lemma follows. [l

4.2.4 Question: Does II equal II

In general, the question does not make sense since Il is a property of N-vertex graphs, whereas
II' is a property of t-vertex graphs.* But the question does make sense if these properties can be
expressed in a uniform way that is independent of the size of the graph. Two specific frameworks
for such properties were presented in [6] and [1], respectively:

1. The framework of graph partition problems [6, Sec. 9] is briefly reviewed in the introduction
(see also Appendix B), and is further studied in Section 5. Goldreich, Goldwasser and Ron [6]
showed that every problem II in this framework can be tested by checking whether a random
induced subgraph of poly(1/e€) vertices satisfies a related graph property II'. In general, I’
is not equal to II, and the tester has two-sided error probability. (In fact, this is unavoidable
for some properties II; for example, the property of the graph consisting of two equal size
parts one being a clique and the other being an independent set.) Confining ourselves to

“Formally, both IT and II' are properties of all graphs, but when we fix an N for the above discussion, we actually
care of the properties IT and TI' when restricted to N-vertex and t-vertex graphs, respectively.

15

properties II that admit a one-sided error tester of query complexity independent of IV, we
show that without loss of generality IT' equals II (see Corollary 5.9). This follows from
the characterization of properties II that admit a one-sided error tester of query complexity
independent of N (see Theorem 5.8).

2. Alon et. al. [1] considered the class of graph properties that can be expressed by quantified
boolean formula over the edge relation E. For example, the property of being triangle-free is
represented by the formula

Vo,y,2 (2, 9) EEV (y,2) £ EV (2,2) ¢ E]

For graph properties II expressible by formulae of the form 3V, Alon et. al. [1] presented a
tester of query complexity that only depends on e (but grows very rapidly with 1/¢).> Their
tester checks whether a random induced subgraph of suitable size satisfies a related graph
property II'. Actually, they showed that for every such property II can be approximated®
by a “graph coloring” property II' that can be tested by checking whether or not a random
induced subgraph of suitable size satisfies IT" itself. Thus, the class of general “graph coloring”
properties can be tested by checking whether a random induced subgraph of suitable size
satisfies the very same property.

4.3 Putting it together

Combining Lemma 4.1, Claim 4.2, Claim 4.3 and Lemma 4.4, we obtain:

Theorem 4.5 (Theorem 2, restated): Let II be any graph property. If there exists a tester with
query complexity q(N,€) for II then there exists a tester for II that uniformly selects a set of
O(q(N, €)?) vertices and accepts iff the induced subgraph has property II', where II' is some fized
graph property. Furthermore, if the original tester has one-sided error then so does the new tester,
and furthermore a sample of 2q(N, €) vertices suffices

5 On General Graph Partition Problems that are Testable with
One-Sided Error

We refer to the framework of graph partition problems [6, Sec. 9]. Recall that in this framework a
testing problem is parameterized by a sequence of corresponding pairs of lower and upper bounds:
For some (implicit) parameter k, the sequence contains k pairs of vertex-sets densities and k + (g)
pairs of edge-densities, and the problem is to determine whether there exists a k-partition of the
vertices so that the number of vertices in each component of the partition as well as the number of
edges within each component and between each pair of components falls between the corresponding
lower and upper bounds. If such a partition exists, we call it a witness partition. For example, k-
colorability falls into this framework by requiring that the density of edges within each of the &
parts equals zero (and making no other requirements).” For further details see Appendix B.

For properties expressible by formulae having only universal quantifiers, the query complexity is a tower of
poly(1/¢)-many exponents. For properties expressible by formulae of the form 3V, the query complexity is even worse
(but still depends only on 1/¢).

SLoosely speaking, every graph having one of these properties is close to a graph having the other property.

"Formally, the k lower-bound and upper-bound pairs on vertex-set sizes are all trivial (i-e., all equal (0, 1)), and so
are the (’2“) pairs of bounds on of edge-densities between pairs of components. The only non-trivial pairs of bounds

are those referring to edge-densities within each of the k components (i.e., all these pairs equal (0, 0)).

16

Goldreich, Goldwasser and Ron [6] showed that every graph partition property (i.e., problem
in the above framework) can be tested by making poly(1/€) queries, but in general the tester has
two-sided error probability. They also gave one-sided error testers for k-colorability (which operate
by checking whether a random induced poly(1/e)-vertex subgraph is k-colorable).® Our main goal
in this section is to characterize the set of graph partition properties that admit a one-sided error
tester of query complexity that is independent of N.

A few technicalities: Throughout the discussion, we consider only admissible sequences of
parameters (cf. [6, Def. 9.3.1]): These are sequences for which the set of graphs that have the
property is infinite (i.e., contains at least one N-vertex graph, for infinitely many N’s). We avoid
integrality problems by allowing upto k£ — 1 vertices to be split between the k parts of the partition
(see [6, Rem. 9.1]). Also, following [6], we consider vertex-densities as fractions of N, and edge-
densities as fractions of N? (rather than of (})). Finally, for greater expressibility, we allow self-
loops and count them as half edges: For example, using these conventions, a p/N-vertex clique in an
N-vertex graph has edge density %, which is independent of N. (Note that the latter convention
is not consistent with the exposition in the previous sections.) For further discussion of the latter
two conventions, see Appendix B. We comment that the analysis can be carried out also under the
alternative conventions mentioned above (and in Appendix B), but the exposition would be more
cumbersome and the final result would be slightly different: the second case in Theorem 5.8 would
not be possible.

The starting point: Using Theorem 4.5, we may confine ourselves to canonical testers (of one-
sided error) that operate by inspecting the subgraph induced by a uniformly selected set of vertices,
where the size of the vertex set is independent of N. Recall that the inspection (of the subgraph)
consists of determining whether or not it has some graph property IT' (not necessarily equal to the
property II being tested).

5.1 Trivial graph properties

A graph property is called trivial if for every ¢ > 0 and for all sufficiently large IV, every N-vertex
graph is e-close to having the property. We may discard trivial graph properties from our discussion,
since they have a “trivial” tester, which (provided N is big enough) accepts all N-vertex graphs.
Furthermore, within the framework of graph partition problems, trivial properties are satisfied by
all but finitely many graphs.

Lemma 5.1 LetII be any trivial graph partition property. Then, for all sufficiently large N, every
N-vertex graph has property I1.

The proof can be found in Appendix C.

5.2 Some graph partition properties that are trivial

We first identify (and discard from the rest of the discussion) a class of graph partition properties
that contains only trivial properties.

8An improved bound on the size of the sample was later presented by Alon and Krivelevich 3] : They showed that
a sample of size O(1/¢) (rather than O(1/€?)) suffices for k = 2, and size O(1/€®) (rather than O(1/€®)) suffices for
any constant k > 2.

17

Claim 5.2 Let Il be a graph partition property that is testable by a canonical tester with one-sided
error and query-complezity independent of N. Suppose that the graph G = ([N, E) has property II,
and let (V1,..., Vi) be a witness partition of G. If for some i the subgraph induced by V; is neither
a clique nor an independent set, then 11 is trivial.

Proof: Let G = ([N],E), (V1,...,Vk) and ¢ be as in the hypothesis. Then the number of edges

12
with both endpoints in V; is greater than zero and smaller than % Suppose for a moment that

for some integer t the said number were at least % and at most J%E - % Then, for every t-vertex
graph H, there would exist a graph Gz having property II such that Gy would contain H as an
induced subgraph. (The graph Gy is derived from G by modifying the subgraph induced by V; so
that the number of edges is maintained and the subgraph induced by the first ¢ vertices of V; equals
H. This is certainly possible, because both the number of edges and non-edges in H is at most %)

Now, suppose that (for some e > 0) the canonical tester selects a sample of ¢t = ¢(e) vertices.
Then for every t-vertex graph H there exists an N-vertex graph Gp satisfying II (as above) so
that when given oracle access to G, with positive probability, the tester sees H as the induced
subgraph. Since Gy satisfies II and the tester has one-sided error, it must accept upon seeing H
as the induced subgraph. But this holds for every t-vertex graph H, and so the tester must always
accept (no matter which induced subgraph it sees). It follows that, for every N’ > ¢, the tester
accepts (with probability 1 > %) any N’-vertex graph, and thus every N’-vertex graph is e-close to
having property II. If we can repeat the above argument for every ¢ > 0 then it will follow that
II is trivial. To do so we must show that for every ¢, which will be set to equal the size of the
vertex-sample selected by the tester on distance parameter ¢, there exist a graph and a k-partition
as in the claim’s hypothesis so that the number of edges with both endpoints in V; is at least %
and at most @ — % (rather than just greater than zero and smaller than @)

Fixing ¢, we first consider a graph G = ([N], E) with (V1,...,V%) and ¢ be as in the claim’s

2
hypothesis. Let e denote the number of edges with both endpoints in V; (i.e., 0 < e < %) If % <
2

e < JK;I— — % then we are done. Otherwise, for f = %, we consider the graph G’ = ([f] x [N], E'),
where

E' = {((i,u), (j,v)) : (u,v) € E A i,j € [f]} (10)
Clearly, the graph G’ has property II, as is witnessed by the partition (V{,...,V}/), where V/ def
{(t,v) v € V; Ai € [f]} (which preserves the relative densities of vertices and edges with respect

to the witness partition (V1,..., Vi)). Furthermore, the number of edges in E' with both endpoints
V2

in V/ is at least f = % and at most —5- — % The claim follows. W
5.3 Non-trivial graph partition properties — the two cases

Below, we refer to the lower and upper bound parameters that appear in the specification of
property II. Recall that there are bounds that refer to the fraction of vertices in each part, and
bounds referring to the fraction of edges inside parts or between parts.

Claim 5.3 LetII, G = ([N], E) and (V1,..., Vi) be as in Claim 5.2.

1. If for some i the subgraph induced by V; is an independent set then no edge lower-bound
parameter is positive.

2. Suppose that no edge lower-bound parameter is positive. Then, if for some i the subgraph
induced by V; is a cliqgue then II s trivial.

18

Proof: We start with Part (1). As in the proof of Claim 5.2, we may assume that the size of V; is
greater than the size of the vertex-sample chosen by the tester. It follows that when given oracle
G, with positive probability, the tester will see an induced subgraph that is an independent set.
Because the tester has one-sided error, it must accept in this case, and thus it always accepts an
oracle N-vertex graph that is an independent set. Repeating the argument for any € > 0, it follows
that, for sufficiently large IV, the N-vertex independent set graph is e-close to having property II.
This contradicts the possibility that some edge lower-bound parameter is positive (i.e., ¢ > 0),
because it would have meant that (for some constant ¢ > 0) the independent set is too far (i.e.,
c-far) from having property II
Turning to Part (2), we first observe that if for some ¢ the subgraph induced by V; is a clique
then (for every e > 0 and all sufficiently large N) the N-vertex clique graph is e-close to having
property II. (The proof is similar to the main part of the above argument.) Now, consider a
witness partition, denoted (V7{,...,V/), of a graph G’ satisfying II that is e-close to the N-vertex
clique graph, and let j be such that |V;’ | > N/k. Then, the number of edges with both endpoints in
112
V] must be at least @ —eN% > ﬂzﬁﬁ — eN? > 1 (where the last inequality holds for € < 1/2k?
and sufficiently large N). Using the hypothesis that no edge lower-bound parameter is positive,
it follows that omitting edges from G’ results in a graph that also has property II. In particular,
by possibly omitting a single edge residing in Vj' , we can obtain a graph G" satisfying II so that
(Vi, ..., V§) is also a witness partition of G” and so that the subgraph of G" induced by V] is neither
a clique nor an independent set. Using Claim 5.2, Part (2) follows. W

Corollary 5.4 Let Il be a graph partition property that is testable by a canonical tester with one-
sided error and query-complexity independent of N, and suppose that 11 is not trivial. Then ezactly
one of the following two cases holds:

1. Every graph having property II is k-colorable, and all edge lower-bound parameters in the
specification of 11 are zero. Furthermore, all upper-bounds referring to edges inside parts
must be zero.

2. Ewery graph having property I1 can be k-partitioned so that each part is a clique.

Proof: Using Claim 5.2, the parts in a witness partition of any graph G having property II must
be either cliques or independent sets. Suppose first that for some G having property II, some
part of the witness partition of G is an independent set. Then, by Part 1 of Claim 5.3, all edge
lower-bounds in the specification of II are zero. Using Part 2 of Claim 5.3, in this case no part
in the witness partition of any graph G’ having property II (regardless if G’ = G or not) can be
a clique, and so (using Claim 5.2 again) all parts in the witness partition of every graph having
property II are independent sets (and so the graph is k-colorable). The only other case allowed
for (non-trivial) IT is the one described in Item 2 of the corollary. The main part of the corollary
follows.

To finish the proof we show that in the first case (i.e., IT implying k-colorability) all the upper-
bounds on the number of edges inside parts must be zero. Suppose on the contrary that the 5*P
upper-bound referring to edges inside parts equals ¢ > 0, and consider a witness partition (V3, ..., Vi)
of a sufficiently large graph G = ([N], E) having property II. Specifically, we need M <c-N?
and |V;| > k+1, where the latter can be obtained by amplifying the graph and the witness partition
(as in Eq. (10)). Indeed, each of the V}’s is an independent set, but we can easily modify G to
a graph G’ that satisfies IT and yet contains a (k + 1)-clique (in contradiction to the hypothesis

19

that all graphs satisfying II are k-colorable). This is done by putting a (k + 1)-clique inside V;,
which does not violate the edge density upper-bound of the i part (and thus guarantees that the
modified graph satisfies IT). The furthermore-part of the corollary follows. [l

Below, we consider the two cases of Corollary 5.4. We refer to the second case of Corollary 5.4 (i.e.,
a graph is k-partitioned so that each part is a clique) as to a graph is covered by k cliques.

5.3.1 Graph partition properties that imply k-colorability

We call an lower-bound (resp., upper-bound) parameter trivial if it equals 0 (resp., 1). That is, a
trivial bound parameter is satisfied by any k-partition of any graph.

The notion of a relaxation. We say that property I’ is a relaxation of IT if every graph satisfying
property II also satisfies property II'. For € > 0, we say that property II' is an e-relaxation of II if IT’
is a relaxation of IT and every sufficiently large graph satisfying property II' is e-close to satisfying
I1. We say that IT' is a O-relaxation of II if, for every ¢ > 0, property II' is an e-relaxation of II.

The notion of 0O-relaxation is related to the notion of indistinguishability defined by Alon
et. al. [1]. Note that if II' is a O-relaxation of II then every tester for I’ is almost a tester for
II in the following sense: For every value of ¢ > 0 the IT'-tester may behave improperly with respect
to II on finitely many graphs. Thus, as far as property testing is concerned, we may consider
0-relaxations of a property instead the property itself.

We conjecture that, within the framework of graph partition problems, all but finitely many
graphs that satisfy a O-relaxations of a property also satisfy property itself. This conjecture was
already proven for the special case of trivial properties (see Lemma 5.1),% and is established next
for a more general special case that suffices for our needs.

Lemma 5.5 LetII and IT' be graph partition properties. Suppose that all edge lower-bound param-
eters in the specification of both II and II' are zero, and that each edge upper-bound parameter in
the specification of II' is either zero or one. Further suppose that I' is a O-relazation of II. Then,
for every sufficiently large graph, the graph has property 11 if and only if it has property II'.

The proof can be found in Appendix D.

Towards a characterization. The main step towards characterizing graph partition properties
that imply k-colorability is the following characterization of their 0-relaxations.

Lemma 5.6 Let II be as in Corollary 5.4. Suppose that every graph having property 11 is k-
colorable, and all edge lower-bound parameters in the specification of IL are zero. Then, there exists
a graph partition property 11" that is a O-relazation of II so that the only non-trivial bounds in the
specification of II" are upper-bounds that equal zero.'® Furthermore, these zero upper-bounds must
include the upper-bounds referring to edges inside each part.

9The set of all graph (i.e., the property satisfied by all graphs) is a 0-relaxation of any trivial graph property.
Lemma 5.1 can be restated as saying that, for any trivial graph partition property II and all sufficiently large N, any
N-vertex graph (i.e., that is a graph and thus satisfies the 0-relaxation) satisfies property II.

10Tn case all vertex upper-bounds in I are positive (see Footnote 11), the only non-trivial bounds in the specification
of I are edge upper-bounds (which equal zero).

20

Proof: As a first step, consider a specification of a property II' derived from the specification of IT
as follows: All edge upper-bounds that equal zero in the specification of I are set to zero also in the
specification of II'; and all other edge bounds in II" are trivial. (Recall that all edge lower-bounds
in IT are trivial, and so this holds also for II'.) The vertex bounds of II are maintained in II'. (We
will deal with them at the second stage.)

Recall that in IT all the upper-bounds referring to edges inside parts must be zero. Thus, all
edge bounds of property II' are as required. Clearly, I’ is a relaxation of IT and so to establish
that I’ is a O-relaxation of IT we need to show that, for every ¢ > 0, every sufficiently large graph
having property I is e-close to have property II.

Fixing any € > 0, we consider a sufficiently large N so that the vertex-sample chosen by the
tester on distance parameter € is smaller than the numbers implied by all positive non-trivial edge
upper-bounds of II. That is, if ¢ > 0 be the smallest positive edge upper-bound of II, then we set
N > t(€)/+/c, where t(¢€) is the size of the sample chosen by the tester.

Let G' = ([N],E') be an arbitrary N-vertex graph satisfying II'. Consider a vertex sample,
denoted S, taken by the tester (for IT) on distance parameter € and access to the oracle G'. We first
show that the (small) subgraph of G’ induced by S can be embedded in a graph G that satisfies
I, where G is derived from G’ by omitting almost all edges. Specifically, we consider the graph
G = ([N], E) obtained by letting E = {(u,v) € E' N (S x S)}. The only bounds of II that can be
violated by a graph having property II' are positive (non-trivial) edge upper-bounds, because all
other bounds of II equals those of II'. But these bounds cannot be violated by G, because G has
very few edges (i.e., G has less than |S|? edges, and N was chosen so that |S|> < c¢- N?2). Tt follows
that any induced subgraph that can be seen by the test (for IT) when given access to the oracle
G', is also seen by the test with positive probability when given access to some oracle representing
a graph that has property II. Using the one-sided error feature of the test (for IT), it follows that
the test accepts G’ with probability 1, and hence G’ must be e-close to having property II. This
concludes the proof that I’ is a 0-relaxation of II.

We now turn to the next step: Starting from IT'; we obtain II” by possibly modifying the vertex
bounds, and leaving all edge bounds intact. Specifically, we set all non-zero vertex-bounds to be
trivial (i.e., 0 for lower-bounds and 1 for upper-bounds), and maintain zero vertex upper-bounds
and lower-bounds (in case they are present in IT and II').}! Using an argument as in the first stage,
it follows that II” is a O-relaxation of IT'. Specifically, II” is a relaxation of II’, and for every € > 0
and sufficiently large graph satisfying IT”, it is the case that the very same graph is e-close to IT'.
(Intuitively, looking at the witness partition w.r.t II”, observe that the only bounds of I that can
be violated by that partition are non-zero (vertex) bounds of II’; but this cannot be detected with
one-sided error from an o(N)-size vertex-sample.) The lemma follows. [l

5.3.2 Graph partition properties that imply a cover by k cliques

Lemma 5.7 Let II be as in Corollary 5.4. Suppose that every graph having property II can be
k-partitioned so that each part is a clique. Then, for sufficiently large N, an N-vertex graph has
property I if and only if it is an N-vertex clique.

(Recall that we consider only properties that are satisfied by some graphs.)

"Recall that zero lower-bounds are trivial, whereas zero upper-bounds on vertex-density are non-trivial but quite
idiotic (because they merely mean that we specify a k'-partition problem, for some k' < k, rather than a k-partition
problem).

21

Proof: Let G = ([N],E) be an arbitrary graph having property II. As shown in the proof of
Claim 5.2 (see also below), the graph G can be assumed to be large enough so that some part in
its witness partition is larger than the vertex-sample taken by the tester (on distance parameter
€). Let us denote the size of that sample by ¢ = ¢(¢). Since the tester has one-sided error (and G
contains a t-vertex clique), the tester must accept when the subgraph induced by the vertex-sample
is a t-vertex clique. It follows that the N-vertex clique is e-close to II. Below we shall show that no
other N-vertex graph can be accepted by the tester. One consequence of this is that the N-vertex
clique must have property II (because, otherwise no N-vertex graph has property II).

Suppose, towards the contradiction, that G = ([N], E) has property II but is not the N-vertex
cliqgue. 'We consider an amplified version of G, denoted G’ = ([t] x [N], E'), where E’ is as in
Eq. (10). Then, on one hand G’ has property IT (with witness partition induced by that of G).!?
On the other hand, G’ contains as an induced subgraph a 2t¢-vertex graph consisting of a pair of
t-cliques (corresponding to any missing edge in G)). However, for every i = 1,...,t — 1, with positive
probability the tester given oracle access to G’ sees an induced subgraph consisting of two cliques,
one of size 7 and the other of size ¢ — 7 (and no additional edges). Since the tester has one-sided
error (and G’ has property II), the tester must accept in each of these cases. It follows that when
given oracle access to any N-vertex graph consisting of two cliques (and no additional edges), the
tester will always accept. Thus, subject to the contradiction hypothesis,'® we have:

Claim 1: For all sufficiently large N and every 1 < M < N, every graph that consists of an M-vertex
clique and an (N — M)-vertex clique (and no additional edges) is e-close to having property II.

Next, we consider the edge lower-bounds in the specification of II; that is, let 1;; (resp., 1; ;) denote
the lower-bound referring to edge density within the i*h part (resp., between the i*® and the j*®
parts). Specifically, these lower-bounds require that the number of edges within the i*® part is at
least 1;; - N2 (resp., between the i'! and the j' parts is at least 1; ; - N'2).

Motivation: For simplicity we consider the case k¥ = 2 (observing that the lemma is trivial in case
k = 1). Furthermore, for simplicity, we first assume that ¢ = 0. Using Claim 1, it follows that
the graph consisting of two (N/2)-vertex cliques (and no additional edges) has property II. The
only witness partition possible for this graph is the one in which each clique is in a different part,
and thus each part is allowed to have at least one half of the number of vertices. Furthermore,
both 1;; < 1/8 and 139 < 1/8 (since each part contains a (/N/2)-vertex clique, and so has only

% = NT2 edges). Next, we consider the graph consisting of one (IN/3)-vertex clique and one
(2N/3)-vertex clique, which (by Claim 1) also has property II. Again, the witness partition of this
graph has each clique is in a different part, and it follows that either 1;; < 1/18 or 159 < 1/18

(since the part containing the (NN/3)-vertex clique has only % =]Y—; edges). Suppose, without
loss of generality, that 1y < 1/18. But now it follows that also the graph consisting of of one
(N/2)-vertex clique, one (N/3)-vertex clique, and N/6 isolated vertices satisfies II (e.g., consider
the witness partition in which the (N/2)-vertex clique is in one side and the rest of the graph is
in the other). This contradicts the lemma’s hypothesis by which every graph having property II
can be covered by k cliques, and so cannot have a large independent set. Thus, the contradiction
hypothesis (by which there exists a graph G = ([N], E) that has property IT but is not the N-vertex
clique) must be false. The analysis is easily extended to small ¢ > 0, but extending it to arbitrary

k > 2 is more involved.

120bserve that the parts of the induced partition are cliques, and that the fraction of edges between the parts is
exactly as in the witness partition of G.
!3That is, assuming that G = ([N], E) has property II but is not the N-vertex clique.

22

The heart of the actual analysis (for arbitrary & > 2 and € > 0) is stated and proven next:

Claim 2: Subject to the contradiction hypothesis (see Footnote 13), there must be a set C C [k]
such that
> 1 < 3k%e (11)
i<jeC
Furthermore, for all sufficiently large N, there exists an N-vertex graph H' satisfying IT and a
witness partition (V{,...,V}) of H' such that

>V > kveN (12)

1eC

Proof: For N as in Claim 1, consider an N-vertex graph H that consists of a pair of cliques (and
no additional edges), where the smaller clique is of size 2k+/e - N. Since (By Claim 1) H is e-close
to having property II, we may consider a witness partition (V/,...,V}) of a graph H' that satisfies
IT and is e-close to H. Since each V; is a clique in H', the subgraph of H induced by V/ misses at
most eN? (because H is e-close to H'). Thus, each V/ is “dominated by one of the cliques of H”
in the sense that either it contains at most y/eN vertices of the small clique (of H) or it contains
at most /e vertices of the large clique (since otherwise the subgraph of H induced by V' misses
more than (1/eN)? edges). Tt follows that there exist C' C [t] such that the parts with index in C
contain at most ky/eN vertices of the large clique and all but at most k/eN vertices of the small

clique (e.g., C contain the indices of all parts that each have at most \/eN vertices of the large

clique, and so C & [t] \ C (which contains only parts with more than /eN vertices of the large

clique) contains parts that each have at most /e N vertices of the small clique). In particular, the
number of vertices residing in parts with an index in C is at least 2k/e- N — ky/e- N = k\/e- N,
and Eq. (12) follows.

Turning to Eq. (11), we observe that the number of edges (in H) having both endpoints residing
in parts having an index in C is at most 3 - ((2kv/e- N)? + (ky/e- N)?) = %26 - N2. Tt follows that
the corresponding number in H' is at most %26 ‘N2 +eN? < 3k%eN?, where % > 1lisdueto k > 2.
Since H' satisfies II (and in particular its edge lower-bounds), Eq. (11) follows. O

We stress that the above two claims holds for any value of € > 0, subject to the contradiction
hypothesis (see Footnote 13). Thus, for every sequence €y, €3, ..., €y 1 of positive numbers, there
exists a set C' C [k] such that for some p < ¢ and all sufficiently large N, there exist an N-vertex
graph H' satisfying IT and a witness partition (V{,...,V}) such that

Y L < 3k’ (13)
i<jec
Y Vil > kN (14)
1eC

It follows that there exists i € C such that [V/| > /N and 1;; < 3k%¢,. Selecting the sequence
of €;'s so that e; = (7k?) ™7, we have ¢; < €p+1 = €,/(7k?), and so

‘Vil|2 (\/ GPN)Q 6pN2 7k2€q 2 2 s (k+1)?
> — > N 3k2e, N2 4 12
2 = 2 2 = 3 > ORI+ T
V|2 E+1)2
= % > 1;;- N? + % (15)

23

Eqg. (15) allows us to modify H' so that the resulting graph also satisfies IT but has an independent
set of size £+ 1, which contradicts the (contradiction) hypothesis that every graph having property
IT can be k-partitioned into cliques. Specifically, recall that H' has property II and that (V{,..., V)
is a witness partition. In particular, the subgraph induced by V; is a clique, but we can omit %
from it without violating any of the bounds of IT (i.e., the only relevant bound is the lower bound

on the number of edges inside V;/, but Eq. (15) asserts that this bound will continue to hold even if

we omit w edges with both endpoints in V). This allows to omit all edges among a set of k+1
vertices belonging to V/, resulting in a graph H" that still satisfies IT (and has an independent set
of size k + 1). Thus, the graph H” violates the lemma’s hypothesis (that graphs satisfying IT can
be k-partitioned into cliques). It follows that the contradiction hypothesis (by which there exists a
graph G = ([N], E) that has property II but is not the N-vertex clique) must be false. The lemma
follows. W

5.4 The characterization theorem and a corollary

Combining Corollary 5.4, and Lemmas 5.5-5.7, we obtain:

Theorem 5.8 (Theorem 3, restated): Let I be a graph partition property that is testable with
one-sided error and query-complexity independent of N, and suppose that II is not trivial. Then
ezxactly one of the following two cases holds:

1. There exists a k-vertex graph H so that for all sufficiently large graphs G, the graph G satisfies
IT if and only if its vertices can be k-partitioned such that there are no edges among vertices
residing in the same part and so that there are edges between vertices of the i*® part and j**
part only if (i,7) is an edge of H.

2. For sufficiently large N, an N-vertex graph has property 11 if and only if it is an N-vertex
clique.

Proof: By Theorem 4.5, we may assume that the tester is canonical, and apply Corollary 5.4.
Assuming that II is as in Case 1 of Corollary 5.4, we apply Lemma 5.6 and conclude that II has a
O-relaxation II' such that the only non-trivial bounds in the specification of II' are upper-bounds
that equal zero, and that all graphs satisfying II' are k-colorable. Thus, we are allowed to apply
Lemma 5.5 to this pair (I, II') and conclude that every sufficiently large graph having property II
is k-colorable, and (without loss of generality) the only non-trivial bounds in the specification of II
are upper-bounds that equal zero. Defining H so that (i,7) € [k] x [k] is an edge if and only if the
upper-bound referring to edges between the " and ;'™ part is trivial, we obtain the condition of
Case 1 of the current theorem.

The only other possibility is that II is as in Case 2 of Corollary 5.4. Applying Lemma 5.7, we
obtain the condition of Case 2 of the current theorem. [}

The property checked by the canonical tester: We are now ready to answer the question
posed at Section 4.2.4. That is, we show that within the framework of graph partition problems, if
a property is testable by a one-sided error tester of complexity that only depends on € then it can
be tested by a canonical tester that accepts iff the induced subgraph has the very same property
(rather than some other graph property). That is:

24

Corollary 5.9 Let II be a graph partition property that is testable by a canonical tester with one-
sided error and query-complezity independent of N. Then II can be tested with one-sided error by
checking whether or not a random poly(1/e)-vertex induced subgraph has the property IL.

Proof: The conclusion holds vacuously for trivial properties. Thus, using Theorem 5.8, we need to
consider only two cases (corresponding to the two items). We observe that in the second case (i.e.,
the clique property) one may simply accept if and only if the subgraph induced by a random sample
of t = O(1/e) vertices is a clique. Clearly, if the N-vertex graph is a clique then so is any induced
subgraph. On the other hand, if G = ([V], E) is e-far from being an N-vertex clique, then at least
eN? edges must be missing from G. Considering some fixed matching of ¢/2 pairs of vertices in the
sample, we conclude that the probability that the corresponding ¢/2 edges are present in G is at
most (1—¢) < % (since the matched sample-pairs are independently distributed among all possible
vertex-pairs).

We now turn to the more interesting case in which II is as in Case 1 of Theorem 5.8. It follows
that for any G having property II, every subgraph of G also has property II. More interestingly,
following the technique of [6, Cor. 7.2], we show that if G is e-far from having II then a random
poly(1/¢)-vertex induced subgraph is unlikely to have property II'. Following is a brief sketch of
the argument.

Our starting point is the general graph partition property test of [6, Sec. 9], which uses a
sample of ¢ = poly(1/e) vertices, and has two-sided error that can be bounded by 1/5. Consider
what happens when we first select a random poly(t)-vertex induced subgraph, and then invoke the
abovementioned tester on the induced subgraph. In this case, if the induced subgraph has property
I, then the tester must accept with probability at least 4/5. On the other hand, in case the tester
is invoked on G itself (which is e-far from satisfying II) the tester accepts with probability at most
1/5. The punch-line is that the sample viewed by the tester is distributed almost identically in the
two cases.!* It follows that, with probability greater than 2/3, the random induced subgraph does
not have property II. The corollary follows. [

Acknowledgments

We are grateful to Yevgeniy Dodis for raising the question addressed in Section 3, to Michael
Krivelevich for making a comment that initiated the work presented in Section 4, to Noga Alon for
insisting that a better transformation of adaptive testers to non-adaptive ones should be possible
in this context, and to Dana Ron for offering a simplification to the proof of Lemma 4.1. We thank
Michael Krivelevich and Dana Ron for helpful discussions.

MFor sufficiently large ¢, the distribution obtained by first selecting a sample of size t* from a huge set, and then
selecting a sample of size ¢ in the first sample is very close to the distribution obtained by selecting the small sample
directly from the huge space. (In fact, using additional ideas, one may use a first sample of size O(t) rather than %

cf. [6, Cor. 7.2].)

25

References

1]

[2]

3]

[4]

[5]

[6]

[7]

N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large Graphs.
In Proc. of the 40th FOCS, 1999.

N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Journal of Random structures and Algorithms, Vol. 3 (3),
pages 289-304, 1992.

N. Alon, and M. Krivelevich. Testing k-Colorability. Preprint, 1999.

Z. Bar-Yossef, R. Kumar and D. Sivakumar. Sampling Algorithms: Lower Bounds and
Applications. To appear in 33rd STOC, 2001.

O. Goldreich. Combinatorial Property Testing — A Survey. In DIMACS Series in Disc.
Math. and Theoretical Computer Science, Vol. 43 (Randomization Methods in Algorithm
Design), pages 45-59, 1998.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, pages 653-750, July 1998.

J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions and Appli-
cations. SIAM J. on Computing, Vol 22, 1993, pages 838-856.

D. Ron. Property Testing (A Tutorial). To appear in Handbook on Randomization.
Available from http://www.eng.tau.ac.il/~danar/papers.html.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

26

Appendix A: The transformation of Alon et. al. [1]

The following transformation consists of two steps. First we transform any tester into one that
operates in a non-adaptive manner (i.e., determines its queries independently of the answers it
has obtained to previous queries). This step is totally generic and merely uses the fact that the
oracle answers are binary. Next, we transform any non-adaptive tester into one that inspects all
vertex-pairs in some random set of vertices. This step is less generic and uses the fact that we are
dealing with testers of graph properties.

The entire transformation presented in this section has appeared before in the work of Alon
et. al. [1], and is inferior to the transformation presented in Section 4.1. We include the current
description both for sake of self-containment (and because the description in [1] is quite laconic)
and as a warm-up towards the second transformation (presented in Section 4.1).

A.1 Moving to non-adaptive testers

A non-adaptive oracle machine is one that determines its queries based merely on its input and
random-coins, independently of the answers to prior queries. A straightforward (and generic)
way of eliminating adaptivity in (deterministic) oracle machines is to consider all possible queries
that can be made as determined by all possible answers to prior queries. This extends easily to
probabilistic oracle machines. Thus, for each fixed contents of the random-tape, the i*" adaptive
query can be replaced by 2:~! non-adaptive queries that correspond to the queries made per each
possible outcome of the previous ¢ — 1 queries. We stress that the non-adaptive machine makes
these 271 queries, but its next move depends only on the single answer given to the relevant query
(being the actual i*" query that the adaptive machine would have asked). Thus, we obtain:

Claim A.1 Let IT be any graph property. If there exists a tester with query complexity qg(N,¢€) for
II, then there exists a non-adaptive tester with query complexity Zgg]’e) 211 <« 99(N:€) for 11,

A.2 Moving to testers that inspect a random induced subgraph

The next transformation is far less generic than the previous one. It capitalized on the fact that,
by definition, graph properties are preserved under isomorphism (i.e., renaming of vertex names).
Thus, when testing graph properties, the names of vertices are not important, and so we may
assume (w.l.0.g) that the tester selects random vertices.

Claim A.2 LetII be any graph property. If there exists a non-adaptive tester with query complezity
q(N,€) for I, then there exists such a tester that selects a random subset of 2q(IN, €) vertices, denoted
R, makes the queries {(u,v) : u,v € R}, and decides based on the oracle answers (and its internal
coin tosses). Thus, the query complexity of the new tester is less than 2q(N, €)2.

Proof: Let T be a non-adaptive tester for II, and suppose that T" has query complexity g(N, e).

Then, depending on its internal coin tosses 7, the tester makes queries (ul,v}), ..., (u%,v%), where

t<gq def q(N,e). Let V, = {ul,vl : i € [t]} be the set of vertices appearing in queries of T on

coins 7. Augment V, by some fixed vertices (e.g., out of the set [2¢]) so that the resulting set V;
has cardinality 2q. Then, we can transform T into a related test 7" that, on internal coin tosses
r, makes the queries {(u,v) : u,v € V,.}, and ignores the answers obtained for pairs not queried by
T. Clearly, T' is also a tester for II. Consider now an oracle machine, denoted T, that behaves as
follows.

27

1. First, 7" uniformly selects a permutation 7 over the vertex set (i.e., [IV])-

2. Next, T" invokes 1" and emulates the oracle of 7' by queries to its own oracle so that when 7"
makes the query (u,v), machine 7" makes the query (7w (u), 7(v)) and answers T" accordingly.

We first observe that 7" makes queries to all pairs in a random set of 2¢ vertices. This follows
because, for every fixed (7”-internal coin sequence) r and random permutation m, the set {m(v) :
v € V,.} is a random set of 2¢ vertices. Next we show that 7" maintains the testing features of 7"
(and thus of T'):

e Let G = ([N],E) be a graph having property II. Then, for any permutation =, it is the

case that the graph 7(G) df (IN],{(7(u), 7(v)) : (u,v) € E) has property II. Thus, 7' must

accept the graph 7(G) with probability at least 2/3. This means that conditioned on 7 being
chosen in Step 1 (of T"), algorithm of 7" accepts the graph G with probability at least 2/3
(because, in this case, T" just emulates for 77 an oracle access to the graph m(G)). Since this
holds for every m, it follows that 7" accepts G with probability at least 2/3.

e Suppose that a graph G = ([N], E) is e-far from having property II. Then, for any permutation
7, the graph 7w(QG) is e-far from having property II. (See Claim 2.1.) The rest of the argument
follows analogously to the above (where here we refer to an upper bound on the accepting
probability). It follows that 7" accepts G with probability at most 1/3.

The claim follows. |

Appendix B: The framework of Graph Partition Problems

A graph partition property is defined by a sequence of pairs of non-negative numbers. For some
integer k, we have k + k + (g) pairs providing upper and lower bounds on the fraction of vertices
in each part of the k-partition as well as on the fraction of edges within parts and between parts.
Specifically, consider the sequence of pairs

(Li,u1), ooy (Lo ug), (L 1511,0)5 ey Lk Wke), (14,5, W4 5))1<icj<ke (16)

This sequence corresponds to a graph property that is satisfied by all graphs G = ([N], E) having
a k-partition (V1,...., Vi) such that the following two conditions hold:

1,'N < |Vj| < w-N Vi
Lij-N? < [EnN(VixVy)| < wj-N? Vi<j

That is, 1; (resp., w;) is a lower bound (resp., upper bound) on the fraction of vertices in the i
part, 1;; (resp., u;;) is a lower bound (resp., upper bound) on the fraction of edges having both
endpoints in the i*! part, and 1; ; (resp., u; ;) is a lower bound (resp., upper bound) on the fraction
of edges crossing between the i*" part and the 5 part, for i < j.

Certainly, some sequences of parameters give rise to graph partition properties that are not
satisfied by any graph. We discard these cases from our discussion (calling them non-admissible;
see [6, Def. 9.3.1]). In particular, we will consider only sequences as in Eq. (16) satisfying 0 < 1; <
u; <1and 0< L, < u;,j <1, for all 4, .

28

A technicality: integrality problems. Following [6, Rem. 9.1], we avoid integrality problems
by allowing upto k — 1 vertices to be split between the k parts of the partition (and count these
fractional vertices and edges in the natural way). Had we not followed this convention, the set of
N-vertex graphs satisfying a graph partition property could be empty for some values of NV and
non-empty for others.

A technicality: counting edges and self-loops. Note that the edge bounds impose bounds
in terms of multiples of N2 (rather than of (1;’), which may be more natural). This convention is

adopted for greater expressibility. For example, using this convention, a full bipartite graph with
w/2)?
NZ T

%, which is independent of N. (In contrast, if we
(v/2)

consider multiples of (1;’), then such a graph will have edge density R which is not independent

N/2 vertices on each side has edge density

of N, and consequently the the corresponding condition could not ha2ve been expressed as a graph
partition problem.) For similar reasons, we allow self-loops and count them as half edges.!> This
N N
way, a pN-vertex clique in an N-vertex graph has edge density 072])\,742_% = %2, which is independent
of N. Consequently, the property of having such a clique can be expressed as a graph partition
problem.
Indeed, using multiples of NTZ rather than N? would be more natural, but both more cumbersome

and less in agreement with the presentation in [6, Sec. 9]. Clearly, the last choice is immaterial.

Appendix C: Proof of Lemma 5.1

Recall that by the lemma’s hypothesis II is a trivial graph partition property. Our aim is to show
that, for all sufficiently large IV, every N-vertex graph has property II. This follows by combining
the following three claims.

Claim C.1 The specification of II does not contain any positive lower-bound regarding edges.
Proof: Suppose on the contrary that II contains a positive lower-bound regarding edges. Then,
for some ¢ > 0, each N-vertex graph satisfying II must have at least c¢- N2 edges, which contradicts

the hypothesis that II is trivial (because, in this case, it cannot hold that for every € > 0 and all
sufficiently large N, the N-vertex independent set is e-close to having property II). [l

Claim C.2 For all sufficiently large N, the N-vertex cliqgue has property II.
The proof of Claim C.2 is postponed to the end of this section.

Claim C.3 Let = be a graph partition property with a specification that does not contain any
positive lower-bound regarding edges. If the N-vertex clique has property =, then all N-vertex
graphs have property =.

'5Unfortunately, the text of [6, Sec. 9] is unclear regarding this aspect, which is essential for the claim that the
p-clique problem can be expressed as a graph partition problem. Furthermore, for simplicity, in [6, Sec. 5] self-loops
are disallowed. We stress that all the results of [6] are preserved if one allows self-loops (which can be ignored by all
algorithms). Finally, we note that counting self-loops as half edges is consistent with [6], where each (non-self-loop)
edge is counted twice, in correspondence to its two occurrences in the adjacency matrix of the graph. (Using this
correspondence justifies counting self-loops once, which is half the count relative to edges that are not self-loops.) In
this paper we chose to get rid of the annoying convention of counting each (non-self-loop) edge twice, and the result
is the annoying convention by which a self-loop is counted half a time.

29

Proof: Consider a witness partition of the IN-vertex clique, denoted Cn. Then this partition is also
a witness partition of any /N-vertex subgraph of Cy, because all edge lower-bounds are non-positive
(i.e., zero). The claim follows. W

Proof of Claim C.2: We consider the sequence of bounds in the specification of property II, and
refer to the notation in Eq. (16). For these bounds (i.e., 1;,u;,1;,1;;’s), consider the following
system of equations in variables z1, ..., zx:

k
=1 (17)
=1
L, <2 <w o Vi (18)
1
§-x§ <w,; Vi (19)
Ti-x; < Uy Vi < j (20)

We first claim that the above system has a solution. Otherwise, there exists a constant ¢ > 0 so
that any solution satisfying Eqgs. (17)&(18) violates one of the other equations by at least e (i.e.,
either % . x% > w;+eorz-x; > u;+ e for some i,5). We will show that this contradicts
the hypothesis that, for sufficiently large N, the N-vertex clique is (€/2)-close to having property
IT: Let (Vi,..., V) be a witness partition of a graph G having property II and being (e/2)-close to
the N-vertex clique, and set z; = |V;|/N for ¢ = 1,..., k. Then this setting satisfies Eqs. (17)&(18).
Also, for every ¢, we must have @ -3 N2 < ;e N? (because, on one hand, the witness partition
of G respects all bounds of II, and on the other hand G may miss at most 5 - IV 2 edges (because it
is (e/2)-close to the N-vertex clique)). Thus, we have “2'2 <e N’+u;;-N? and §-2? <u;;+e
follows. Similarly, |Vi| - |V;| — § - N? <, ;- N? and z; - z; < u;j + € follows for every ¢ < j. This
contradicts the above hypothesis that any solution satisfying Eqgs. (17)&(18) violates one of the
other equations by at least €, and we conclude that the system of Egs. (17)—(20) has a solution.

Let (x1,...,zx) be a solution to Egs. (17)-(20). Then avoiding integrality problems (see [6,
Rem. 9.1]), we consider for each N a partition (V1,...,Vx) of the N-vertex clique so that |V;| =
x;IN. Clearly, this partition satisfies all vertex bounds (because these correspond to Eq. (18)). By
Claim C.1, the only remaining non-trivial bounds are the edge upper-bounds (because all 1; ;’s are
zero). But these are shown to be satisfied as follows: For every 4, the number of edges with both
endpoints in V; is |V§‘2, and we have ‘V2i|2 = %2 - N? < u;; - N%, where the last inequality is due to
Eq. (19). Similarly, for every i < j, the number of edges crossing between V; and V; is |V;| - |V},
and we have |V;| - |V;| = z;z; - N> < u;; - N2, where the inequality is due to Eq. (20). The claim
follows. W

Appendix D: Proof of Lemma 5.5

Recall the hypotheses of the lemma:

1. I is a graph partition property such that all edge lower-bound parameters in the specification
of II are zero.

2. II' is a graph partition property such that all edge lower-bound parameters in the specification
of IT" are zero, and each edge upper-bound parameter in the specification of IT' is either zero
or one.

30

3. I’ is a O-relaxation of II.

Our aim is to show that, for every sufficiently large graph, the graph has property II if and only if
it has property II'. (In fact, we only need to show the “if”-direction.) Our proof generalizes the
proof of Lemma 5.1 (given in Appendix C). In particular, we do not need to establish an analogue
of Claim C.1, because this is already guaranteed in our first hypothesis. The role of the N-vertex
clique will be played by each member of a family of certain extremal (dense) graphs (and the type
of the upper-bounds in II' seem important to allow us to focus on this family (and thus perform
this extension)). We thus prove analogies of the two other claims of Appendix C: Analogously to
Claim C.2, we first show that each member of the extremal family that has property IT' also has
property II. Then, analogously to Claim C.3, we show that this extends to each subgraph of the
extremal graphs, and that the latter subgraphs are all the graphs that may have property IT'. The
lemma will follows.

Pivotal to the above plan, is the definition of extremal graphs for II'. Since the edge lower-
bounds of IT" are trivial and each edge upper-bound in II' is either zero or one, the extremal graphs
are determined by the density of the vertex sets allowed by the vertex bounds (and the type of the
edge upper-bounds). That is, using notations as in Eq. (16), let 1}, u}, 1! . u’ - be the bounds in the

2 1) T1,50 U4,]
specification of II'. (Recall that all 1; ; equal zero and each uj; equals either zero or one.) Then

a sequence of vertex-set densities, denoted 7 = (py, ..., p), is permitted by I if 3% , p; = 1 and
1, < p; <ul foralli =1,...,k For each such permitted sequence p and every N, we consider the
extremal graph G(VP) = ([N], E(N:P)) defined by

~ i—1 i
v {v €IN]: D pN <vs ZmN} (1)

=1 =1

F@ € () 1<i<j<k Aul;=1} (22)

BN (v}N@ x vj<N7F>) (23)
(6,)EF®

That is, Eq. (21) specifies a (canonical) k-partition that satisfies the vertex bounds of IT' (i.e., is
according to the permitted sequence p), Eq. (22) indicates the part-pairs among which edges are
allowed, and Eq. (23) mandates all possible edges among each allowed pair of parts. Since all
edge lower-bounds in I’ are zero (and thus trivial), they are satisfied by the above k-partition of
GW:P). Since each edge upper-bound in IT' is either zero or one, it is also satisfied that partition

(because there are edges between the " and j*® part iff u/; = 1). Thus, GW:P) gatisfies IT',

and (VI(N’ﬁ), very V,C(N’ﬁ)) is a witness partition. (Note that we do not rule out the possibility that
F(®) contains pairs of the form (i,1), although the text and notation may suggest otherwise. We
comment that in our application of Lemma 5.5, u;; = 0 and so (i,4) & F® for all i.)

Recall that each extremal graph G(V:?) satisfies IT' and that (Vl(N’ﬁ),...,Vk(N’p)) is a witness
partition. Next, in Claim D.1, we show that such extremal graph also satisfies II. Later (see
Claim D.2) we show that each N-vertex graph satisfying IT' is a subgraph of an N-vertex (graph
that is isomorphic to an) extremal graph, and that this subgraph also satisfies II. The latter claim
(i.e., Claim D.2) is much easier.

Claim D.1 FEwvery extremal graph satisfies property II.

Proof: Let G(N'?) be an extremal graph (for II'), where 7 = (py, ..., px). We consider the sequence
of bounds in the specification of property II, and denote these bounds by 1;,u;,1; j,u; ;’s. Recall

31

that by our first hypothesis, all 1; ;’s equal zero. (Typically, the 1;,u;,1; ;,u; ;’s are (possibly) more
J 3o Wi

stringent than the corresponding 17, uj, 1; ;, u; ;’s. We stress that the following proof does not refer

R R St W/ B

at all to the bounds 1;,u}, 1} . u})

17 500 T4, T4yt
Consider the following system of equations in the variables 11, ..., Ty x:

k
in’j = p; Vi (24)
j=1
k
L <) owig <u Vi (25)
=1
1 .
RS Tiy+ > TijTirj < Wi VJ (26)
(i,5)eF®@) (1,3 e FP\{(i,5)5€[k]}
Y. @iy < wy i<y (27)
(i,i")EF®

We first claim that the above system has a solution. Otherwise, there exists a constant ¢ > 0 so
that any solution satisfying Eqs. (24)&(25) violates one of the other equations by at least e. We
will show that this contradicts the hypothesis that, for sufficiently large N, the graph G(N:?) (which
satisfies property II') is (¢/2)-close to having property II: Let (V1,...,V,,) be a witness partition of
a graph G having property IT and being (¢/2)-close to the graph GN#), and let V; ; = Vz-(N’p) nvy;
for i,j € [k]. Now, set z;; = |V;;|/N for i,j € [k]. This setting satisfies Eq. (24), because
Uj(V;(N’p) nv;) = Vi(N’p) and |Vz~(N’p)| = p;N. It also satisfies Eq. (25), because Ui(V;(N’p) nv;) =V;
and 1;N < |V;] <u;N. We next consider the number of edges in the subgraph of G induced by V.
Since G’ may miss at most - N 2 edges of the extremal graph, the number of edges in that induced
subgraph is at least

- 12
Y —|V’;| + > Vil - [Vir 5] = %'Nz
(i,i)eF(® (3,8"Ye FPI\{(i,3):i€[k]}

But this number must be at most u; ;N 2 (because the witness partition of G respects all bounds
of IT). Thus, for every j,
1 2 €
50 2wt > TijTig S Wjj+ g < Wijte
(i5)eF @) (1,3 e FPI\{(3,3):5€[k]}

Similarly, for j < j/, the number of edges (in G) having one endpoint in V; and the other endpoint
in Vj is at least
€

> Wl Vel =5 - N?

(i,i")eF®)
and it follows that }°; inepe) i,j%i,j0 < wj5r+ 5. This contradicts the above hypothesis that any
solution satisfying Egs. 824)&(25) violates one of the other equations by at least €, and we conclude
that the system of Egs. (24)-(27) has a solution.

Let (z1,1,...,%k%) be a solution to Eqgs. (24)-(27). Then avoiding integrality problems, we
consider for each IV a partition (V1, ..., Vi) of the extremal graph GWP) 5o that Vi j is a partition of
VNP satisfying |V; | = z:,N, and Vj = U;V; ;. Clearly, this partition satisfies all vertex bounds
(because these correspond to Eq. (25)). By the first hypothesis, the only remaining non-trivial

32

bounds are the edge upper-bounds (because all 1; ;’s are zero). But these are shown to be satisfied
as follows: For every j, the number of edges with both endpoints in V; equals

V; 12
D SN | N\
(i,i)eF @) (i,i") € FP\{(i,i)-i€[k]}

1
=5 Y @;-N'+ > iy N? < wjy-N?

(3,0)eF®) (i,i") € FP\{(i,i)-i€[k]}

where the last inequality is due to Eq. (26). Similarly, for every j < j', the number of edges crossing
from Vj to Vj equals

> Wigl- eyl = Y @iz N?

(i,")eF @) (i,")eF @)
< wjg N?

where the inequality is due to Eq. (27). The claim follows. W

We call a graph iso-extremal for IT’ if it is isomorphic to an extremal graph for IT'. In the following
claim we rely on the hypothesis that II does not contain positive lower-bound regarding edges.

Claim D.2 (On subgraphs of graphs that are iso-extremal for II')

1. Every N-vertex graph that satisfies I’ is a subgraph of an N -vertex graph that is iso-extremal
for T1'.

2. Every N-vertex graph that is a subgraph of an N-vertex graph that is iso-extremal for IT,
satisfies I1.

Combining the two parts of the above claim, Lemma 5.5 follows.

Proof: Let G = ([N], E) be a graph satisfying IT', and let (V1,...,V},) be a witness partition. Then
the sequence (p1, ..., px), where p; = |V;|/N is permitted by II'. Furthermore, there are edges in
the subgraph induced by V; only if u;; > 0 (which holds iff u;; = 1). Similarly, there are edges
between V; and Vj only if ugjj = 1. Part 1 follows by using any isomorphism that maps V; to
{E;_:ll |‘/J| + 17 ey Z;’:l |VJ|}

Turning to Part 2, we first observe that every graph that is iso-extremal for II' satisfies II
(because, by Claim D.1, every graph that is extremal for IT' satisfies II, and (being a graph property)
IT is preserved under isomorphism). Since all edge lower-bounds in II are zero, omitting edges does
not violate II. The claim follows. [

ECCC ISSN 1433-8092
33 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

