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Abstract

We introduce two algebraic propositional proof systems F-NS and F-PC. The main dif-
ference of our systems from (customary) Nullstellensatz and Polynomial Calculus is that the
polynomials are represented as arbitrary formulas (rather than sums of monomials). Short
proofs of Tseitin’s tautologies in the constant-depth version of F-N'S provide an exponential
separation between this system and Polynomial Calculus.

We prove that F-A'S (and hence F-PC) polynomially simulates Frege systems, and that the
constant-depth version of F-PC over finite field polynomially simulates constant-depth Frege
systems with modular counting. We also present a short constant-depth F-PC (in fact, F-N'S)
proof of the propositional pigeon-hole principle. Finally, we introduce several extensions of our
systems and pose numerous open questions.

1 Introduction

A (Cook-Reckhow) proof system [CR79] for a language L is a polynomial-time computable function
mapping strings in some alphabet onto L. If there would be a proof system II for a co-NP-hard
language such that for every x € L, the shortest proof 7 of z (i.e., the shortest string 7 such that
II(7) = z) had size polynomial in the size of z, then we would have NP = co-NP.

A proof system II; polynomially simulates a proof system II, iff there is a polynomial-time
computable function f mapping every Ils proof 7 to a II; proof of the same element of L, i.e.,
I (£ (r)) = My (m).

A propositional proof system is a proof system for the co-NP-complete language TAUT of all
Boolean tautologies. Since this language is in co-NP, any proof system for a co-NP-hard language
L can be considered as a propositional proof system. However, note that one needs to fix a concrete
reduction of TAUT to L before proving, e.g., that such a system does (not) polynomially simulate
another propositional proof system.

Algebraic proof systems played a significant role in propositional proof complexity during the
past decade. The two most popular systems are Nullstellensatz (NS) [BIKT96] and Polynomial
Calculus (PC) [CEI9]. These are proof systems for the co-NP-hard problem of unsolvability
of a system of polynomial equations: We are given several polynomials over a field F and asked
whether these polynomials have no common roots in the algebraic closure of F. The polynomials
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are represented as sums of monomials czy. ..z, where z, v, ...,z are variables, and c is a constant
(represented in binary).
To see that this problem is co-NP-hard, note that a Boolean formula ® in CNF in n variables

z1,...,Ty can be easily translated into polynomials Fi,..., Fj such that the polynomials
Fl, ceay Fka .T%—:El, sy ZE?L—ZER
have no common roots iff @ is unsatisfiable. Namely, let x;,, ..., z;,, be the variables occuring in the

i-th clause C; of ®. Then F; =1;...l,;, where [; = zj, if z;, occurs positively in C; and [; = (1 —z},)
otherwise.

In PC, one starts with a system of polynomial equations (i.e., with a set of polynomials treated
as axioms) and derives new polynomials using two rules

7})1; L and —P
P+ P P.Q

Le., one can take a sum' of two already derived polynomials P; and P,, or multiply an already
derived polynomial P by an arbitrary polynomial ). The goal is to derive the polynomial 1, because
this would mean that @ is unsatisfiable.

In NS, a proof of {Fy,...,F,} is a set of polynomials {G1,...,Gp} such that ), F;G; = 1.
Any such proof can be translated into PC in a natural way. However, the translation in the opposite
direction is not possible: there is a sequence of tautologies having polynomial-size PC proofs but
no polynomial-size N'S proofs [CEI9]. In fact, N'S is equivalent to the tree-like version of PC
[BIK*97].

It is known that both PC and N'S are sound and complete, but they are not polynomially
bounded. Namely, one can prove a linear lower bound on the maximum degree of the intermediate
polynomials (this is done in [Raz98] for axiom polynomials of logarithmic degree, and in [BGIP99]
for axiom polynomials of constant degree; see also [AR00]). Then by [IPS99, Theorem 6.2] one
obtains an exponential lower bound on the total number of monomials in the proof.

Pitassi [Pit97] considered a variant of PC where polynomials are represented as formulas (i.e.,
terms) and not as sums of monomials. The resulting system is still sound and complete, however, it
is not a Cook—Reckhow proof system because no polynomial-time deterministic procedure is known
that could decide whether an inference rule is applied in a right way. (Note: if we take a sum of
two polynomials P and @ in this system, we get not just the term (P + @Q)—the system would be
incomplete in this way—but we can get an arbitrary term representing the same polynomial).

In this paper, we augment this system by primitive rules that help to demonstrate that two
terms represent the same polynomial: associativity, commutativity, distributivity, etc. (See Sub-
section 2.1). These rules basically mean that we work in a commutative ring; throughout this
paper we call them the primitive rules. We also require the next formula to be derived using either
the primitive rules or as a formal combination (P; + P) (resp., (P - Q)) of two already derived
polynomials P, and P, (resp., of an already derived polynomial P and an arbitrary polynomial Q).
Therefore, we replace every “hard” step like

(z+y) - (z—vy)
372_?/2

!Usually, an arbitrary linear combination is allowed, but clearly it can be replaced by two multiplications and one
addition.



by a sequence of “primitive” (polynomial-time verifiable) steps like

(z+y) - (z—y)
z-(z-y)+y-(z—y)
(z—y)-z+(z—y) -y

mQ—yz—i-my—yQ

mZ—xy—i-xy—yQ
22+ (=14 1)zy — y?
7 +0—y?
22 —y2

Although it may be still hard to derive a different term representing an already derived polynomial,
we can show that the power of the new calculus is sufficient to polynomially simulate Frege systems.
Namely, every proof in a Frege system can be translated into a proof in our new system (which we
call 7-PC) with at most polynomial increase in size (see Section 3).

In Section 4 we show that the tree-like version of F-PC is polynomially equivalent to F-N'S, an
analog of N'S in which G;’s may be represented as arbitrary formulas and the equality Y, F;G; = 1
must be proved using the primitive rules only (this system is defined in Subsection 2.2). It is
known that Frege systems do not lose their power even if restricted to tree-like proofs (see, e.g.,
[Kra95]). Since our polynomial simulation of Frege systems by F-PC converts tree-like proofs into
tree-like ones, it follows that F-N'S polynomially simulates Frege systems.

We then consider the constant-depth version of F-PC (i.e., the depth of every formula in the
proof is bounded by a constant, see Subsection 2.3 for definitions, cf. [GR00] where lower bounds
for depth-3 arithmetic formulas were established) and restrict our attention to finite fields. It turns
out (see Section 5) that this system polynomially simulates constant-depth Frege systems with
modular gates. We follow [Kra95] in the definition of the latter system. This system has already
been considered in [BIK*97] in connection to 'S with a constant number of levels of extension
axioms.

We introduce also two extensions of F-PC: one extension involving polynomial inequalities
(see Subsection 2.4) and another one allowing to deduce a polynomial when some its power
is deduced (see Subsection 2.5). We illustrate a possible application of this “radical rule” by
employing the trick of Rabinowitsch [vdW31, Part 2, Chapter 11] to transform a derivation of 1
from a set {1 — zF, F1,...,Fy} into a derivation of F' from the set {F1,...,Fy}.

In Section 6 we present a short F-PC proof (over Q) of the propositional pigeon-hole principle
(PHP) as well as for the subset sum problem. There is nothing surprising in the existence of
polynomial-size F-PC proofs of PHP, because PHP has polynomial-size Frege proofs [Bus87] and
F-PC polynomially simulates Frege systems. However, Buss’ proof [Bus87] involves a complicated
construction of addition circuits while our proof is very simple and intuitive (actually, we employ
the ability of F-PC to count). Our proof also has depth bounded by a constant, while constant-
depth Frege systems do not have polynomial-size proofs of PHP [KPW95, PBI93]. In fact, our
proof can be conducted in constant-depth F-N'S.

The results of Section 6, however, do not suffice to prove an exponential gap between the lengths
of proofs in PC and F-PC as propositional proof systems (see the discussion in the end of Section 6).
In Section 7 we demonstrate this gap for Tseitin’s tautologies. In fact, we demonstrate the gap
between PC and constant-depth F-N'S, the weakest system among the ones introduced in this

paper.



2 The systems F-PC and F-N'S and their extensions

In this section we introduce the two systems we study in this paper, and discuss several their
extensions.

2.1 F-PC

The objects of our system F-PC are algebraic formulas. Formally, algebraic formulas are the
members of the smallest set satisfying the following conditions:

1. Constants (denoted by 1, —1, 0, etc.) are formulas.

2. Variables are formulas.
3. If P and @ are formulas, then the terms (P + @) and (P - Q) are formulas.

Constants and variables range over Q or over any finite field Z,. Sometimes when speaking about
algebraic formulas we will refer to them as polynomials.
Similarly to PC, the two basic rules are

i L P
(P + P) (P-Q)

Note that (P + P;) and (P - @) here are terms (i.e., formal combinations): no actual addition or
multiplication is done. Since these rules are able to produce only larger formulas, to derive the
formula 1 (which is our goal) we need also some (invertible) simplification rules (called the primitive
rules throughout this paper) yielding associativity, commutativity, distributivity, etc. We allow to
apply the primitive rules (but not (2.1)!) to any subterms of the derived formulas, for example,
A+ ((P+Q)+R)
(A+(P+(Q+R))

(2.1)

Here is the list of these rules:

the first rule below can be applied as

(P+Q)+R) (P+(Q+R) (2.2)
P+Q+R) (P+Q+R) '
((p ) R) (P-(Q-R)
P QR (PQ R &9
(P+Q)-R) (P-R)+(Q-R)) (2.4)
(P-R)+(Q-R))’ (P+Q)-R) |
(P-1) p
e (2.5)
(P-0) 0
T (2.6)

We also allow to replace a subterm P containing only constants by its value cp (for example,

(—1+ 1) simplifies to 0) and vice versa:

°r. (2.7)



An F-PC proof? of a set {F1y,..., F;,} of algebraic formulas is the derivation of the formula 1 from
the axioms Fi,..., F, using the rules (2.1)—(2.7).

As we already mentioned, to consider F-PC as a propositional proof system, we have to fix a
reduction of TAUT to the language of all sets of algebraic formulas having no common roots. We
could make this reduction from the reduction of formulas in CNF to sets of polynomials described
in Section 1. However, the following (still standard) reduction is more natural.

There is still one variable for every Boolean variable (informally, true corresponds to 0, and
false corresponds to 1). Our set of algebraic formulas will contain the formula z? — z for each
variable z occurring in the input tautology © and one additional formula ¢(=0) (cf. several
polynomials in the reduction described in Section 1). We define ¢ inductively: ¢(—®) = (1—¢(®)),
and p(® D ¥) = (1 — ¢(®)) - p(¥) for Boolean formulas ® and ¥ (one can easily extend ¢ to
other logical connectives). We will refer to the algebraic formulas from the image of ¢ as Boolean
polynomials (we will later show that for any of them we can derive P2 — P). Sometimes we will
also call Boolean any other polynomial P for which we can derive P? — P.

In what follows, we use —P instead of —1 - P, use other common mathematical notation, and
omit straightforward calculations, for example,

~-P+P
—P+1-P
(-14+1)-P
0-P
0

Note that in F-PC we can (and will in this paper):

1. Derive something from zero polynomial, because zero polynomial is trivially derivable from
any other polynomial.

2. Omit some of the brackets and ignore the order of operands, because associativity and com-
mutativity make it easy to derive similar formulas from each other.

3. Treat a polynomial F' — G as an equality F' = G and substitute G for an occurrence of F in
any formula R containing F'. This can be performed by extracting the multiplier M = M (R)
of this occurrence (define M ((Py + P1)) = M(P;) and M((Py - P1)) = P,_; - M(P;), where P,
is the part of the formula (Py + P;) or (P - P1) containing this occurrence of F; M (P) =0 if
P does not contain this occurrence; M (F') = 1 where F refers to the occurrence we mean),
adding (G — F) - M to R and repeated carrying G — F in brackets. In particular, we can
substitute z for 2 for any variable .

4. Multiply equalities F1 = G and Fo = Go: Multiply F1 — G1 by F» and Fy» — G2 by Gy; the
sum of the obtained polynomials is F1 Fy — G1Ga, i.e., the equality Fy Fy = G1Go.

5. Verify in the following simple way that F' is derivable from G: open (some of the) brackets in
both F and GG, make appropriate substitutions using already derived equalities, group similar
summands and compare the results. Clearly, one should care about the size of the proof
obtained by opening the brackets.

*We could write “an F-PC refutation”, but write “proof” to emphasize that F-PC is a Cook-Reckhow proof
system. To reach a compromise between English and mathematics, the best way is to say that what we consider is a
proof of the fact that {F1,..., Fm} have no common roots.



2.2 F-NS
An F-NS proof of a set {F1,...,Fy} of algebraic formulas consists of two parts:

1. A set {Gy,...,Gy} of algebraic formulas.

2. An F-PC derivation of 1 from the polynomial

m

ZFiGi

1=0

without the use of the two main rules (2.1) (i.e., we use only the primitive rules).

2.3 Constant-depth F-PC and F-N'S

When we refer to constant-depth version of either F-PC or F-N'S, we mean that the (initial and
intermediate) polynomials are represented as formulas (terms) of depth bounded by a constant
while the multiplication and the addition have arbitrary arity (i.e., we omit unnecessary brackets).
The primitive rules must be modified accordingly.

The slight discrepancy with a trivial definition is motivated by the analogy between constant-
depth F-PC and constant-depth Frege systems. Depth-k F-PC and F-N'S are Cook—Reckhow
proof systems for the language of all insolvable systems of depth-(k — 1) algebraic formulas (we
consider k > 3 to capture, at least, sums of monomials and their formal products). We need to
decrease here the depth by one to make the system complete (the primitive rules can turn every
depth-(k — 1) formula into a sum of monomials using intermediate formulas of depth at most k).

Since constant-depth Boolean formulas are usually considered in the basis of — and unbounded-
arity V (and sometimes A which is a shorthand: A, z; = =/, ~z;), we slightly modify the transla-
tion ¢ of Boolean formulas into algebraic formulas:

@ (\/ ‘E’) = H ACHE

i=1

To get a propositional proof system, we must combine this reduction with a transformation of
unbounded-depth Boolean formulas into constant-depth ones. Since we consider this system only
in connection to constant-depth Frege systems (with modular counting), we do not need to fix this
transformation.

Note that, formally, our reduction to systems of depth-(k — 1) algebraic formulas works well
only for k£ > 7, because otherwise we are unable to translate even a formula in 3-CNF (in fact,
we still get a complete proof system for a co-NP-hard problem, but the reduction must be further
modified).

2.4 F-PC> and F-NS>

In this subsection we discuss extensions of F-PC and F-N'S over Q by means of inequalities.

In the new systems F-PC> and F-N 8> we work with equalities P = 0 instead of polynomials
P. Therefore, Boolean formulas are translated into such equalities.

In F-PC>, we allow to replace an equality P = 0 by the two inequalities P > 0 and —P > 0, and
to replace such pair of inequalities by the corresponding equality. We can still sum the equalities
and multiply them by an arbitrary algebraic formula (as in (2.1)). The primitive rules (2.2)—(2.7)



can be applied to any subterm of an equality or of an inequality. The rules for working with

inequalities are
P >0; P >0 P >0; P>0
an
(PL+P) >0 (P-P)>0

There is also an axiom scheme Q2 > 0 allowing to introduce the square of any algebraic formula
Q. The goal is to derive the equality 1 = 0.

Note that imposing a requirement that each intermediate polynomial has degree at most two
gives the Lovasz-Schrijver calculus [LS91] (see also [Pud99]).

A proof of a set {Fi,..., F,,} of algebraic formulas in F-N'8> consists of:

1. A set {V;};_, of subsets V, of [1..n].
2. Sets {G;};2; and { Py }ie[1..q],j¢[1..k] Of algebraic formulas.

3. An F-PC derivation of 1 from the formula

m s k
DRG] (2B
=1 =1 j=1

vEV]
using only the primitive rules, where the empty product means 1.

In fact, one derives in F-PC> and F-NS> elements of the cone generated by Fi, ..., Fp,,
—Fy, ..., —F, [BCR98]. Moreover, one could start with an input system of arbitrary inequalities
F, >0,...,F,, > 0 (not necessarily including inequalities —F; > 0), then the completeness of the
corresponding proof systems follows from Positivstellensatz [BCR98] (note that to make a new
propositional proof system one also has to update ¢).

Alternatively, one might consider weaker systems in which one does not convert equalities into
pairs of inequalities, but rather derives from {F;}", an element F' from the ideal generated by
{F;}*, (in F-PC or F-NS, respectively). We say that there is a proof in the corresponding
weaker system, if there are algebraic formulas H; such that Ej HJ2 + F = —1. Note that lower
bounds on the degree of proofs for this kind of systems were established in [Gri99, Gri00, GV01].
The completeness of these weaker systems also follows from Positivstellensatz.

2.5 F-PCV

The (radical) system F-PCy/ is the system F-PC extended by the rule
P2
-5

One can also define the system PC+/ similarly, and the system F-AN'Sv by including the
radical rule in the list of primitive rules. Note that this rule is in accordance with Nullstellensatz
[vdW31] since P vanishes on the variety given by the equalities F; = ... = F,, = 0 if and only if a
certain power P¢ belongs to the ideal generated by F1, ..., F,,. Although this rule looks redundant
because every Boolean (i.e., comprising polynomials 22 — z; for 1 < i < n) ideal is radical, this rule
apparently could accelerate proofs in some cases.

Consider, for example, the following issue. We have defined an F-PC (resp., F-NS, PC, etc.)
proof of ® as a derivation of 1 from the set S = {p(=®),2? — z1,...,22 — z,}. Frequently,
such a derivation is called “refutation” instead of “proof”. There is another possibility to prove



that @ is a tautology: let us call a “proper proof” a derivation of ¢(®) from {z? — z1,...,22 —
Ty }. Formally, “refutations” and “proper proofs” give different propositional proof systems. (Note
that in customary PC and N'S using “proper proofs” instead of “refutations” needs updating the
translation of formulas into polynomials since we defined it only for CNFs; for many Boolean
formulas @, this results in exponentially large polynomials).

Trivially, any proof in a “proper proof” system can be transformed (with a negligible increase
in size) into a proof in a “refutation” system. Can we do it in the reverse direction? For Boolean
polynomial F' = ¢(®), one can multiply every line of a “refutation” of (1 — F') by F, obtaining
a “proper proof” of F. Note that the axiom (1 — F') transforms into F(1 — F); we will later see
(Lemma 1) that for any F' from the image of ¢ the formula F(1 — F) is easily derivable in F-PC;
it is also easily derivable in PC, because it is an element of the ideal generated by z? — x;, i.e.,

However, for non-Boolean F' this may not work. Although it is impossible to transform a
“refutation” of (1 — F') into a “proper proof” of F, we now show how to transform a “refutation”
of (1 — zF) (where z is a new variable) into a “proper proof” of F, using the radical rule. For this,
we apply “the trick of Rabinowitsch” [vdW31, Part 2, Chapter 11].

A “proper proof” of F in NSV is a “proper proof” of F in N'S followed by several applications
of the radical rule to 3", F;G;. Consider an N'Sv" “refutation” (this is the same as N'S “refutation”)
(1-2F)G+ ), FiG; = 1. Substituting z = 1/F in this equality and cleaning the denominator, we
get F? =Y. F;G%, moreover, d < max; deg(G;), deg(G) < deg(F?) + max; deg(G;) < (deg(F) +
1) - max; deg(G;). Now applying several times the radical rule this provides an N’'Sy/ derivation of
F from {F,...,Fy,} of degree growing at most polynomially in the degree of a N'S+v/ derivation
of 1 from {1 —zF, Fy,...,F,}

To get a “proper proof” of F in PC+/ from a “refutation” of (1—zF) in PCv/, we verify by induc-
tion along the proof that for each its line Y F;G;, one can derive a polynomial F%+1 " F,G;|,—, /F
by few applications of the rules of PCv/, where d, is the maximum degree of z in the intermediate

[

polynomials of the rule).

‘refutation” (including the polynomials @ used in the 2

Suppose that > F;G; is obtained as the sum of two already derived polynomials > F;G1; and
> F;Gai. By induction one can derive F“*! Y F;Gi|,—1/p + F%*' Y FiGo;|,—1/p. Clearly, this
gives F&HY FGyl,—q /r- If YJ FiG; is obtained as the product of an already derived poly-
nomial Y F;G;; and a polynomial @, by induction we can derive F?%+13" F;G; (we multiply
by F%Q|,_, /r instead of Q). Multiplying by F ) F;G; and using the radical rule, one gets
F&H1SFG;. Finally, we get “a proper PCyv/ proof” of F%*!  Then the multiplication by
F¢ (where ¢+ d, + 1 is the nearest power of two) and the repeated application of the radical rule
allows one to derive F itself.

The same arguments can be conducted for F-N. Sv'. We leave the corresponding question
for F-PCv/ open. (Note that in the cases of F-N'S and F-PC degree bounds do not suffice for
obtaining bounds on the size of derivation.)

3 F-PC simulates Frege systems

In this section it does not matter whether we consider F-PC over Q or over Z,: we use only the
existence of the constants 0, 1 and —1.

Theorem 1. The system F-PC polynomially simulates Frege systems.

Proof. We consider Hilbert’s system: The axioms are



(A1)
(A2)
(A3)

CD>(ADT),
(FAD-T)D((mADT) D A),
(CD>(ADA)D({(I'D>A)D(I'DA)).

The only rule of the inference is modus ponens: I" and I' D A imply A.
The main part of the proof is the following lemma.

Lemma 1. For any Boolean formula ®, the shortest F-PC proof of the polynomial
(0(®))% — (@) has size polynomial in size of ®.

Proof. We prove it by induction on the construction of ®. Let G = ¢(T"), D = ¢(A),
and suppose that G?—G and D?— D have derivations of sizes 7 < ¢|T|? and § < ¢|A[?
respectively (the constant ¢ will be clear from what follows). Note that using the
primitive rules we can easily derive R = (1 — G)? — (1 — G) from G? — G. Hence,
in the case ® = —I" the polynomial (¢(®))? — (®) has a derivation of size at most
c|®|? (if ¢ is large enough). We now consider the case ® = (I' D A). By multiplying
D? — D by (1-G)?, we obtain P = (1—G)%2D?— (1 - G)?D. On the other hand, we
can derive Q = (1—-G)?D—(1—G)D by multiplying R by D. Summing P and Q, we
derive ((1 - G)D)? — (1 — G)D which is (¢(®))2 — ¢(®). The size of this proof (from
G? — G and D? — D) is upper bounded by d|®| for some constant d, i.e., the size of
the proof from axioms is at most d|®|+c|T'|2+c|A> = ¢(|T|+|A|)2 +d|®| — 2¢|T||A].
Now, choose ¢ > 2d; then the size of our proof is at most c|®|?. [l

We now show that ¢ translates axioms into polynomials having F-PC derivations of size poly-
nomial in |T'|, |A| and |A].

(A1)

(A2)

(A3)

Let G = ¢(T"), D = ¢(A). Since we can derive G? — G, by commutativity and distributivity
we have (1 — G)G. Then we multiply it by (1 — D) and by commutativity and associativity
we obtain (1 — G)((1 —D)G) = ¢(I' D (A DT)).

Here, we need to derive (1 — D(1 — G)) - ((1 — DG)D) up to simplifications. Opening the
brackets gives (D — D?) + (GD? — D?QG) + (D3G — G%D?); it now remains to derive this
formula. The first two summands can be easily derived from D? — D and from the axioms,
respectively. The third summand is G?> — G multiplied by —D3.

Here, we need to derive (1— (1—G)((1-D)L))-((1-(1-G)D)((1—G)L)), where L = p(A).
This formula is equal to

(G3L? —3G*L* + 3GL* - L*)(D* - D)+ (G*D - 2GD + G+ D —1)(L? - L) — L*(G* - G)

(it can be verified by opening all brackets), which is a sum of G* — G, D? — D and L? — L
multiplied by appropriate polynomials.

It is clear that modus ponens can be proved using size linear in the sizes of the formulas I' and
' D A: having ¢(I') = G and ¢(I' D A) = (1 — G)D, we can multiply G by D, add the result
to (1 — G)D, and after simplifications we have D, i.e., ¢(A). Therefore, we can indeed transform
the proof of a Boolean formula © in Hilbert’s system into a derivation of ¢(©) in F-PC from
the polynomials :Ef — x; with only a polynomial increase in size (moreover, the only point where
non-linear increase can occur is the translation of the axioms of Hilbert’s system). Summing ¢(©)
with the axiom ¢(—0), we get 1. O



4 F-NS is just tree-like F-PC

How much of the power of F-PC is taken away by replacing it with F-N'S? Although we do not
know whether F-N'S can polynomially simulate F-PC, in this section we show that F-NS still
can polynomially simulate Frege systems. Namely, we show that F-N'S can polynomially simulate
tree-like F-PC (“tree-like” means that every derived polynomial is used only once; if we need it
again, we must derive it once more), cf. [BIK*97] which proves that 'S polynomially simulates
tree-like PC over Z,. The claim now follows since tree-like Frege systems have the same power as
usual (DAG-like) ones (see, e.g., [Kra95]), and the proof of Theorem 1 translates tree-like Frege
proofs into tree-like F-PC proofs.

Clearly, tree-like F-PC simulates F-N'S, cf. the fact that tree-like PC simulates N'S [BIK*97].
Therefore, the following theorem establishes the equivalence between tree-like F-PC and F-NS.

Theorem 2. F-N'S polynomially simulates tree-like F-PC.

Proof. We first show that a tree-like F-PC proof can be transformed (with at most polynomial
increase in size) into two derivations:

1. A derivation 7 of some formula T from the axioms using no primitive rules.
2. A derivation 771 of 1 from T using only primitive rules.

We transform it inductively; at each intermediate step of our induction we will have two derivations:
a “normal” derivation 7y of some formula U from the axioms, and a derivation 71 of 1 from U
using only the primitive rules.

We move the applications of the primitive rules from the first derivation to the second derivation
one by one. Consider the last application of a primitive rule in 7. Let S be a subformula to which
this rule is applied. Note that if we omit this application, S will remain as a whole till the end of
the proof, and this will be the only difference between the old final formula U of the proof and the
new final formula U’. Let us apply the same rule to U’; we then obtain U and therefore have a
derivation 7y ; deriving 1 from U’. Observe that every step of this induction increases the proof
size at most by the square of the size of the original proof.

Note that 77 is just the syntactic tree of the term 7. We define the coefficients G; of our F-N'S
proof > F;G; (see Subsection 2.2 above) inductively. The argument of M;(-) is a subtree of
7r. For the axioms Fj, the formula M;(F;) is defined to be one if ¢ = j, and zero otherwise. If
the root R of a subtree 7p is derived as the sum of two formulas P and @, we define M;(ng) =
(M;(mp) + M;(mg)), where mp and 7 are the subtrees corresponding to the proofs of P and Q
respectively. If the root of wg is derived as (P - @), where P is an already derived formula, then
M;(mgr) = (Mi(mp) - Q). Finally, we let the coefficient G; be M;(nr).

Clearly, the size of every G, is less or equal to the size of T'. We must now present the proof of
1 from ) ", F;G,; using only the primitive rules.

If suffices to show that there is a derivation (of size polynomial in the size of T') of T' from this
sum using only the primitive rules. The proof is by induction on the construction of M;’s. Suppose
that we have derived the term 7' in which some subterms R; are replaced by

(Z FiMz'(WRj)> : (4.1)
im1

Then we rearrange one of such sums ), F; M;(ng). If M;(wg)’s were obtained as (M;(7p) - Q), we
transform sum (4.1) into ((3°; FiM;(np)) - Q). If M;(wg)’s were obtained as (M;(7p) + M;(nq)),
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then we transform (4.1) into ((32; FiMi(wp)) + (32, FjM;(mg))). If the argument of M;’s is an
axiom F}j, then we simplify (4.1) to F;. O

Corollary 1. F-NS polynomially simulates Frege systems.

Proof. Note that tree-like Frege systems polynomially simulate Frege systems [Kra95], and the
proof of Theorem 1 translates tree-like Frege proofs into tree-like F-PC proofs. O

5 Constant-depth F-PC over Z, simulates constant-depth Frege
systems with MOD,, gates

In this section we show that constant-depth F-PC over Z, polynomially simulates constant-depth
Frege systems with MOD,, gates. (The depth of algebraic formulas may be bounded by a different
constant than the depth of Boolean formulas).

Since constant-depth Boolean formulas are usually considered in the basis of = and unbounded-
arity V (and sometimes A which is a shorthand: A; z; = =/, —;), we switch to this basis for this
section. Note that the axioms of Hilbert’s system translate into the same polynomials in ¢(T'),
©(A), p(A) as before, and so does modus ponens. It is easy to see that despite we modified ¢ for
the constant-depth version of F-PC, still it translates Boolean formulas into Boolean polynomials,
i.e., the analog of Lemma 1 still holds. We summarize that the proof of Theorem 1 still works for
constant-depth Boolean formulas, and transforms constant-depth Frege proofs into constant-depth
F-PC proofs.

A Frege system with MOD,, gates (see, e.g., [Kra95]) includes propositional connectives MOD,, ;
of unbounded arity (0 <7 < p — 1). Informally, MOD,, ;(z1,...,z;) means that the number of z;’s
having the value true equals ¢ modulo p. We add the axiom schemes

MOD,, o(0)
and
—“MOD,,(0)
for each 7 = 1,...,p — 1. For each nonnegative integer k, we add also the axiom schemes

MODp,i(Qla sy Qka (ka—l) =
= ((MODp,i(®1, .., ®k) A 7Pp41) V (MODy, (1) modp (P15 - - - k) A Ppy1)-

(Here = and A are just shorthands). To translate formulas with MOD,, connectives into algebraic
formulas over Z, we extend ¢ to MOD, gates by

O(MODy (1, .., By)) = (k—i — @(B1) — ... — (By))P~".

To see that the obtained formula is Boolean, it is sufficient to prove AP — A where A denotes
kE—i—p(®1)—...—p(®) (then A%P~2 — AP~ follows easily). Note that we can represent A as the
sum of Boolean polynomials F1, . . ., Fi ((p—i) modp), Where Fj =1 —(®;) for 1 < j <k and Fj =1
otherwise. When we open brackets in (}; F})P and group similar “monomials”, all summands
except F}’J cancel because p divides their coefficients. Since F; are Boolean, the claim follows, i.e.,
the analog of Lemma, 1 holds even for constant-depth Boolean formulas with MOD,, gates. Namely,
for such formula ®, the algebraic formula (p(®))? — ¢(®) has polynomial-size constant-depth F-PC
proof over Z,,.
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Theorem 3. Constant-depth F-PC over Z, polynomially simulates constant-depth Frege systems
with MOD, gates.

Proof. By the above discussion concerning the proofs of Lemma 1 and Theorem 1, it suffices to
show that the axiom schemes for MOD, ; connectives have short proofs in F-PC over Z,,.

The schemes for () translate into trivial formulas involving no variables. The only non-trivial
case is that of

1-1-(1-B)S)-1-(1-2S5)B), (5.1)
where
B=(A+Fy,
S=1-(1-A"H1-F)(1-01-A+1)"HF),
A:k—i—¢(@1)—...—(p(¢k),

and F =1— @(Pgyq).

Note that (5.1) can be transformed into (B — S)? (to verify, open all brackets and use B2 — B and
S? — 8). Therefore, it suffices to prove B — S.
The formula B can be transformed as follows:

p—2
(A+FPl=ar14F) <p ; 1) Al =AP P L F((A+1)P L — AP,
=0

On the other hand, opening the external brackets in S and using F2 — F gives

1-(1-A" YA -F)— (1= (A+1)P HYF = AP 1 4+ F((A+1)P 1 — AP ).

6 PHP

In this section we present a short proof of the propositional pigeon-hole principle in constant-depth
F-PC over Q, moreover, this proof can be conducted in constant-depth F-N'S.
PHP,, is usually formulated as

n+l n n
(/\ \/pik> >V VA,
i=1 k=1 k=1 1<i<j<n+1
and its negation written in the basis {—, V} is
n+1 n n
- (\/ =\ pik) vV oV —Gpir Vo)
i=1 k=1 k=1 1<i<j<n+1

We now give a short F-PC proof of the F-PC version of -PHP,;:

n+1 n
1 - H(l — pitPi2- - -Pin) * H H(l — (1= pik)(1 — pjx)) (6.1)
i=1 1<i<j<n+1 k=0
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or, equivalently,

Vi,  DitPio- - -Pin (6.2)
Vi < §,Vk, (1 —pi)(1 —pj)-

We start by (informally) switching to another set of variables

g = (1—pi) [ pa-

1<i<k

In the real derivation, these variables are replaced by the corresponding formulas. We can easily
prove

Vi, 1—qi—q2—---—Gin (6.4)

Vi,Vj < ’i,Vk, qik4jk (6.5)
Vi, Yk, VI < k, Qik il (6.6)
Vi,k,  qy — ik (6.7)

Indeed, all summands in (6.4) after opening brackets cancel except (6.2). Then, (6.5) is just (6.3)
multiplied by []; <, (Papji). The formula (6.6) is a product containing p;(1 — py). Finally, (6.7)
follows from B

Gik = ¥ | "Pik V \/ Dit

1<i<k
(see Lemma 1).
We sum (6.4) for all 7’s and rearrange it as
n
(n+1) =Dz, (6.8)
k=1

where x = qix + ... + gpy1%- Note that zj is Boolean: open the brackets in

(qig + ...+ qn+1,lc)2 —(quk + -+ Gny1k)

and use (6.5) and (6.7).
To derive 1 from (6.8) (which is an instance of the subset sum problem [IPS99]), we inductively
derive the polynomial
Sn(Sp —1)...(Sp, — n), (6.9)
where S; =1+ z9+ ... + ;-
We start from S;(S; — 1) which is simply x? — z1. The induction step is to prove

Si(S; — 1)...(S; — ) (6.10)

from

Si—1(Siz1 —1)...(Si—1 — (i — 1)). (6.11)

This derivation itself will be done inductively too. To stress the difference between the two induction
arguments, we denote S;_1 by S and z; by . Multiply (6.11) by S+ (i + 1)z —i. Opening brackets
in the last two terms (S — (i —1))(S + (i + 1)z — i) of the product, adding —i(z? — z) and bracketing
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again, we get (S+iz—(i—1))(S+x —1) (to verify, open the brackets and notice that the difference
is i(z? — z)). We now turn our attention to the previous expression (S — (i — 2)) in brackets, open
the brackets in (S — (1 — 2))(S + (: — 1)z — (i — 2)) etc. Finally, we arrive at (6.10).

To derive 1 from (6.9), substitute in it n + 1 for S,, (use (6.8)) and multiply the result by
1/(n+ 1)L

Observe that this proof can be made tree-like and hence may be conducted in F-N'S. On the
other hand, observe that all the involved formulas in the proof are of depth bounded by a constant.

Remark. Note that the above version of PHP is given by polynomials of large degree (see (6.1)).
On the other hand, in [Raz98] (see also [IPS99]) the injective PHP given by polynomials of degree
at most two was studied. These are essentially the polynomials (6.4)—(6.7), where g;; are treated
as variables and not as shorthands for formulas. The paper [Raz98] establishes the lower bound
Q(n) on the degree of PC proofs of this set of polynomials. This implies an exponential lower
bound [TPS99, Theorem 6.7] on the size of the shortest PC proof of this set of polynomials. Our
short derivation of 1 from (6.4)-(6.7) demonstrates an exponential separation between PC and
constant-depth F-PC (and also F-NS) as proof systems for the language of all insolvable systems
of polynomial equations. However, it does not give a separation of these systems as propositional
proof systems, because the formulation of PHP studied in [Raz98] may be not in the image of
PC’s translation of Boolean formulas. The separation between propositional proof systems PC and
constant-depth F-PC (and F-N'8) is given in Section 7 by means of Tseitin’s tautologies.

By the same token, the subset sum problem provides the same separation result as the formu-
lation of PHP from [Raz98] does, because [IPS99] gives an exponential lower bound on the size
of the shortest PC proof of any instance of the subset sum problem, and we obtained a short
constant-depth F-PC (and even F-N'S) proof of its instance (6.8) (in the Boolean variables z;).

7 Tseitin’s tautologies

In this section we show an exponential gap between lengths of proofs in PC and F-PC viewed
as propositional proof systems. First, we show that Tseitin’s tautologies have short F-PC proofs
while they have no PC proofs over any field of characteristic different from two. Afterwards, using
the generalization of Tseitin’s tautologies given in [BGIP99], we show how to handle the remaining
case; in fact, the generalization works for any field containing a p-th root of unity for some prime
p. Our F-PC proof can be conducted even in constant-depth F-N'S. This exhibits an exponential
separation between the propositional proof systems PC and constant-depth F-N'S over any field.

7.1 Fields of characteristic different from two

Let G = (V, E) by any undirected graph with an odd number of vertices and with expansion &, i.e.,
for any subset S C V of cardinality at most |V|/2, the graph G has at least (1 + €)|S| neighbors
of S. For any number of vertices, there are such G’s of degree bounded by a constant c (see, e.g.,
[Alo86]).

Tseitin’s tautology for G is given by the Boolean formula

o /\ @ Te (71)

veEV ecE,
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(where E, is the set of edges incident to v) and its negation is the following formula in CNF:

/\ /\ \/ xe(vaik) Vv \/ _Lxe('uail) ? (72)
veV il,...,ideg(v)E{O,l}, k: =0 l: ;=1
i1®---®ideg(v):0

where e(v,7) denotes the i-th edge in E,. There is one variable z. for every edge e of G.
The PC translation of (7.2) is given by the polynomials

-'Ez — Te, (73)
H Le(vyiy) © H (1- xe(v,zj)) (7.4)
k:i=0 l:y=1
where in (7.3) e ranges over F, in (7.4) v ranges over V and (i1, .. .,%deg(y)) TaNgeES OVer {0, 1}deg(v)

and i1 @ ... @ igeg(v) = 0. (There are ) 2deg(v)~1 polynomials in (7.4), each of degree at most

c).

In [BGIP99] a linear degree lower bound for another formulation of this problem is shown:

X2 1, (7.5)
1+ [ X, (7.6)
eckE,

where in (7.5) e ranges over E, and in (7.6) v ranges over V (note that there are no X? — X,
polynomials). The following argument shows that this lower bound holds also for (7.3)—(7.4).
First, replace all occurrences of X,’s in (7.5)—(7.6) by (22, — 1). We get

4(1‘3 - 3:6)3

1+ [ (2ze - 1).
eckE,
Note that any low degree PC proof of (7.3)—(7.4) can be easily extended to a low degree proof of
(7.7)—(7.8): the polynomials (7.3) and (7.7) can be obtained from each other by multiplying by
four, and (7.4) and (7.8) (fix some v now) are two constant-degree polynomials that have the same
values on {0, 1}/¥+| and therefore differ by

Z (Goe (3%2: - Ze)),
eck,
where G, . are some constant-degree polynomials.

Now consider any such low degree proof of (7.7)—(7.8) and replace in it all occurrences of z.’s
by (X.+1)/2. We obtain a low degree proof of (7.5)—(7.6). But such proofs do not exist [BGIP99].
Thus, our assumption that there is a low degree PC proof of (7.3)—(7.4) is false. Therefore, by
[IPS99, Theorem 6.2] there are no polynomial-size proofs of Tseitin’s tautologies (7.2) in PC.

However, there are such proofs in F-PC. Consider the F-PC translation of (7.2). The system
(7.3)—(7.4) can be obtained from it very easily. We already mentioned that we can derive (7.7)—(7.8)
from it. Now change in these algebraic formulas all occurrences of z.’s by (X, + 1)/2, where X,
denotes the expression (3 - (z. + 1)). We arrive at (7.5)-(7.6).

Consider the polynomials (7.6) as equalities [[,.p Xe = —1 and multiply them one by one,
substituting 1 for X?2’s using (7.5) (cf. Subsection 2.1). Finally, we arrive at the equality 1 =
(—=1)IVI ie., to the polynomial 2. It remains to divide it by two. One can verify that our F-PC
proof can be conducted in constant-depth F-N'S.
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7.2 Fields of arbitrary characteristic

One could generalize this construction (see [BGIP99]) starting with a prime p and an expander
G = (V,E) such that |V| = 1 (modp). Considering G as a directed (in arbitrary way) graph we
assign to each its edge e a variable X, which satisfy the following conditions. If € is the edge with
the orientation opposite to e, then we include the polynomial X, Xz — 1 in the input system of
polynomials. We also include the polynomials X? —1 (which replace (7.5)). Finally, for each vertex
v we include the polynomial [[ X, — w, where w is a p-th root of unity (we assume that the ground
field contain w) and the product ranges over all the edges e emanating from v (this polynomial
replaces (7.6)). The obtained system can be represented by a Boolean formula (cf. (7.1)) which we
denote by V.

Similarly to above, one could produce a constant-depth proof of ¥, in F-N'S. On the other
hand, a linear lower bound on the degree of the shortest PC proof of ¥, over any field of charac-
teristic distinct from p is established in [BGIP99].

8 Further research

Since F-N'S polynomially simulates Frege systems, proving lower bounds for it (and hence for
F-PC) seems a hard problem. There is however a lot of apparently easier problems related to
the constant-depth versions of F-PC and F-N'S. For example, all we know about constant-depth
F-PC over Q (resp., over Z,) is that

e it polynomially simulates constant-depth Frege systems (resp., with MOD,, gates);
e it polynomially simulates PC over Q (resp., over Zp);
e it has polynomial-size proofs of PHP (over Q) and Tseitin’s tautologies.

What kind of Frege systems (without extension rules) could simulate constant-depth F-PC? We
know even less about constant-depth F-N'S. Does it simulate tree-like constant-depth F-PC?
Finally, we do not know any lower bounds even for constant-depth F-N'S over any field.

We have also introduced several extensions of F-PC. It would be interesting to clarify whether
these extensions actually amplify F-PC. Observe that there is a degree two PC> (even N'S>)
proof of the subset sum problem with positive weights > a;z; = m, where integers a; > 0, m < 0
[Gri00]. Note that these integers are written in binary form. We ask whether there is a short proof
of this problem in F-PC. Note that a linear lower bound (n) on degrees of its PC proofs is shown
in [IPS99]. This exhibits a gap between PC> and PC over Q (due to [IPS99, Theorem 6.2]).

Another extension of F-PC (considered in [Pit97]) emerges when one allows to replace an alge-
braic formula with arbitary algebraic formula representing the same polynomial without verification
of their equivalence. Such verification of course could be done in BPP. As an example for which
it is not clear how to verify quickly a formula in a deterministic way (say, using the primitive rules
above, see Subsection 2.1, or some similar system of formula transformations) we can propose the
Newton formula

k
(~1oymiy =0
=0

J

where 7, = Y77, xﬁ and o; are elementary symmetric functions for which there are depth three
formulas (over zero characteric fields) obtained from the Lagrange interpolation polynomial due to
M. Ben-Or (see, e.g., [Shp00]).
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Finally, we ask whether using other kinds of formulas can make F-PC or F-N'S stronger, e.g.,
one may try using the exponentiation which would allow to use F¢ for exponentially large d in a
polynomial-size proof.
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