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ABSTRACT. We survey recent algorithms for the propositional satisfiability problem, in particular
algorithms that have the best current worst-case upper bounds on their complexity. We also discuss
some related issues: the derandomization of the algorithm of Paturi, Pudldk, Saks and Zane, the
Valiant-Vazirani Lemma, and random walk algorithms with the “back button”.

1. INTRODUCTION

The propositional satisfiability problem (SAT) is one of the most natural NP-complete prob-
lems, and therefore its complexity is crucial for the computational complexity theory. Since SAT
is N'P-complete, it is unlikely that SAT can be solved in polynomial time. However, it is still im-
portant to understand how much time is required to solve SAT, even if this amount is exponential:
an algorithm solving SAT in time, say, 2"/19°° would be quite useful for many applications, e.g.,
for contemporary circuit design problems.

Research in SAT algorithms includes ezperimental study of their performance as well as theo-
retical study of their complexity. This survey is concerned with the theoretical aspect. We discuss
some recent algorithms for SAT having non-trivial worst-case upper bounds on their complexity.
We also discuss interesting related issues, for example, is it possible to find satisfying assignments
for uniquely satisfiable instances of SAT faster than to find satisfying assignments for arbitrary
satisfiable instances? The paper gives a more thourough view of the existing SAT algorithms that
have the best current worst-case upper bounds. We survey families of such algorithms and give
some clarifying illustrations and open problems.

The novelty of the paper consists of three parts: we simplify the derandomization of Satisfiability
Coding Lemma [PPZ97], give two new proofs of the Valiant-Vazirani Lemma [VV86], and prove
some results about random walk algorithms for SAT.
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Basic definitions. We consider algorithms for the problem of satisfiability of a Boolean formula
in conjunctive normal form (CNF'). A formula in CNF is the conjunction of clauses, a clause is the
disjunction of literals, and a literal is a Boolean variable or its negation. The satisfiability problem
(denoted by SAT) is classically formulated as a decision problem: given a Boolean formula F' in
CNF, output “Satisfiable” if there is a truth assignment to its variables satisfying every clause
of F', otherwise output “Unsatisfiable”. However, we will treat it as the problem of computing a
satifying assignment: output a satisfying assignment (if any), otherwise output “Unsatisfiable”.
Clearly, the two versions of SAT are equivalent up to a polynomial factor, i.e., if one of them is
solvable in time T'(F') then the other is solvable in time poly(|F|) - T'(F'), where |F| is the length
of F. Througout this paper the notation f(¢) = poly(¢) means that there exists a polynomial P
such that the inequality |f(¢)| < P(¢) holds for any ¢. The use of poly(-) is similar to that of O(-).

Throughout this paper, F' denotes the input formula, |F'| denotes its length, i.e., the total
number of occurrences of all variables, n denotes the number of variables. Each of our algorithms
takes F' as its input, and outputs either a satisfying assignment to its variables or the answer
“Unsatisfiable”.

In the framework of randomized algorithms, we consider algorithms with one-sided, admissible
probability of error, i.e., the outputted satisfying assignment is always correct, and the answer
“Unsatisfiable” is correct with probability at least ﬁ(lﬂ)' By repeating such an algorithm a
polynomial number of times, one can decrease the probability of error so that it becomes less than
any pre-determined constant.

We use F[z] to denote the formula obtained from F by setting the value of the variable z to
true, i.e., by deleting all clauses containing the unnegated = and deleting the literal —z from
the remaining clauses. The formula F[-z] is defined similarly (the value of z is set to false).
Assignments are represented as sets of literals. If a positive literal z belongs to an assignment A,
it means that A sets z’s value to true; if -z € A, then A sets z’s value to false. For an assignment
A ={l1,ls,...,l;}, the formula F[A] is defined as F[l1][l2]...[l:]. Note that an assignment may
be partial, i.e., some of the variables may remain unassigned.

A k-clause is a clause consisting of exactly k literals. A formula in k- CNF' is a formula containing
only i-clauses for 7 < k. The satisfiability problem for formulas in k-CNF is denoted by k-SAT.

Splitting algorithms. Many of SAT algorithms use splitting. By a splitting algorithm we mean
an algorithm that reduces the problem for the input formula F' to the problem for polynomially
many formulas Fi,... , F,. The reduction can be deterministic (make a recursive call for each of
the F;’s) or randomized (take one of the F;’s at random). It is natural to divide contemporary
splitting algorithms for SAT into two families: DPLL-like and PPSZ-like algorithms.

DPLL-like algorithms are based on the procedures described in the papers of Davis and Putnam
[DP60] and Davis, Logemann and Loveland [DLL62]. Roughly speaking, such an algorithm replaces
the input formula F' by two formulas F'[z] and F[-z] obtained by setting the value of some variable
z to true and false respectively. Then the algorithm simplifies each of the obtained formulas and
makes a recursive call for each of the simplified formulas. The main tool for the analysis of such
algorithms are recurrent equations for the recursion tree. Using this tool, Dantsin [[Taun81] and
Monien and Speckenmeyer [MS85] gave first non-trivial upper bounds for k-SAT. This technique
has a simple representation in terms of Kullmann and Luckhardt’s branching tuples [Kul99, KL97].
We describe the general scheme of a DPLL-like algorithm and the use of branching tuples in
Sect. 2. We also list some heuristics used in modern DPLL-like algorithms to simplify formulas
and to choose variables for assigning true and false.

Another family of splitting algorithms consists of PPSZ-like algorithms suggested by Paturi,
Pudldk, Saks, and Zane [PPSZ98, PPZ97]. Such algorithms differ from DPLL-like algorithms
basically in two points: first, in the choice of variables for assigning the values (random choice
in PPSZ-like algorithms) and, second, in methods of analysis. Unlike local analysis of DPLL-like
algorithms, the analysis of PPSZ-like algorithms is based on global arguments, for example, how
many variables are never used for recursive calls because they are eliminated during simplification
process. These algorithms essentially use randomness, however, some kind of derandomization is
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possible. We survey these algorithms in Sect. 3, and concentrate on derandomization issues.

A formula that has only one satisfying assignment is called a uniquely satisfiable formula.
Unique-SAT, i.e., the problem of finding a satisfying assignment for a uniquely satisfiable formula,
is somewhat easier for PPSZ-like algorithms (or, at least, for their analysis). The best current
bounds for Unique-SAT are better than in the general case. This contrasts with the famous
lemma of Valiant and Vazirani [VV86], which says that the randomized complexities of SAT and
Unique-SAT are polynomially related. In Sect. 4, we give two new simple proofs of this lemma
and discuss the problem of its application in our context.

Local search algorithms. There is a large family of algorithms that solve SAT using local
search (see, e.g., [GPFWO00] for survey). A typical local search algorithm starts from an initial
assignment and modifies it step by step, trying to come closer to a satisfying assignment. If no
satisfying assignment is found after a certain number of steps, the algorithm generates another
initial assignment and modifies it step by step again. The number of such attempts is limited; if
all of them fail to find a satisfying assignment, then the algorithm terminates with the answer
“Unsatisfiable”.

Methods of modifying assignments may vary. For example, greedy algorithms (e.g., [KP92,
SLM92]) choose a variable and flip its value in the current assignment so that some function of
the assignment (e.g., the number of clauses it satisfies) increases as much as possible. Another
method is used in random walk algorithms [Pap91]. Such an algorithm flips the value of a variable
chosen at random from an unsatisfied clause. The complexity of random walk algorithms can be
estimated using their connection with one-dimensional random walks. The main results on upper
bounds for these algorithms are due to Papadimitriou [Pap91] and Schoning [Sch99]. As shown in
[Pap91], 2-SAT can be solved by a random walk algorithm in polynomial time. The recent paper
[Sch99] shows that k-SAT can be solved by a random walk algorithm in time (2 — 2/k)™ up to
a polynomial factor. For & = 3 this bound is (4/3)", which is the best known upper bound for
3-SAT algorithms.

We discuss random walk algorithms in Sect. 5. In particular, it is shown in this section that
Papadimitriou’s algorithm can be used to solve SAT for renamable Horn formulas in polyno-
mial time. We also describe Schoning’s algorithm and its derandomization [DGH+00, DGHS00].
Then we modify the notion of random walk algorithms using the recent approach of Fagin et al.
[FKK+00] who introduced Markov chains with the “back button”. Namely, we define random walk
algorithms with the “back button” and compare their complexity with the complexity of ordinary
random walk algorithms. Random walk algorithms with the “back button” can be viewed as a
kind of combination of the random walk approach and the splitting approach.

Related problems. Research in worst-case upper bounds for hard problems is not lim-
ited to SAT. Other N'P-complete problems (e.g., MAX-SAT [NR00], MAX-2-SAT, MAX-CUT
[GHNRO00], 3-Coloring [BE95], Maximim Independent Set [Bei00, Rob86]) also received much
attention during the past years. However, the above mentioned papers use mostly DPLL-like
methods, and it is interesting whether PPSZ-like or local search methods can bring new upper
bounds for such problems.

It is known that some hard problems have limits of polynomial-time approximation unless
P = NP (see, e.g., [AL9T]). For example, for MAX-3-SAT there is no polynomial-time algorithm
(unless P = N'P) that finds an assignment satisfying > (% +€)M clauses, where M is the maximum
possible number of simultaneously satisfiable clauses, and ¢ > 0 is arbitrarily small. However, there
are algorithms (see, e.g., [DGHKO01, Hir00b]) that find such approximate solutions faster than the
best current algorithms find exact solutions, the latter paper uses a random walk algorithm similar
to [Pap91, Sch99].

Acknowledgements. The authors are grateful to Natalia Tsilevich for help in proving Theo-
rem 5.5, and to Dima Pasechnik for fruitful discussions concerning Sect. 5.
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2. DPLL-LIKE ALGORITHMS

General scheme. The algorithms described by Davis and Putnam [DP60] and Davis, Logemann
and Loveland [DLL62] are usually referred to as first algorithms for SAT. Most algorithms designed
in the next forty years are based on the algorithms of [DLL62, DP60]. The modern view of such
DPLL-like algorithms is as follows:

Procedure 2.1.

1. Simplify the input formula F', i.e., modify F' into another formula G by using certain
transformation rules.

2. If the satisfiability problem is trivial for G, return the answer.

3. Choose a variable v occurring in G using a certain heuristic. Construct the formulas G[v]
and G[-w] and make a recursive call for each of them. If at least one of the recursive calls
returns a satisfying assignment, update it by adding v or —v respectively and return the
result (the updating may also include changes caused by the use of transformation rules).
Otherwise, return the answer “Unsatisfiable”.

This procedure is thus parametrized by

1. The transformation rules for the simplification of formulas (the simplification is assumed
to run in polynomial time).
2. The heuristic for choosing a variable for splitting (also in polynomial time).

A huge amount of various transformation rules and heuristics is known. A simple (but sometimes
lengthy) method of analysis is given by the following observation.

Branching tuples. The execution of Procedure 2.1 can be represented by a splitting tree. Its
root is labelled by a formula obtained by simplifying the input formula F'. If a node of the tree is
labelled by a formula G, then its two sons are labelled by formulas obtained by simplifying G[v]
and G[-v]. The leaves are labelled by trivial formulas (containing no variables).

Given a splitting tree, for each its node we can write a recurrent inequality for an upper bound
T'(n) on the running time of Procedure 2.1. Trivially, one can write

T(n) < 2-T(n — 1) + poly(|F)

since splitting decreases the number of variables at least by one. Usually, it is possible to write a
“better” inequality. Its “quality” depends on

1. The transformation rules.

2. The choice of a variable for splitting.

3. Syntactic properties of the formula labelling the node (clearly, 1 and 2 also have effect on
these properties).

In general, we can replace a simple splitting
G — Gv], G|—]
by something more complex, e.g.,
G — Gv,w], G-w,w], Gv,w|, G[-v,~w].
If we can prove something special about a particular formula G, e.g., that unsatisfiability of
formulas G[v, ~w] and G[—w, w] implies unsatisfiability of formulas G[v, w] and G[-v, —w], we can

use splittings like
G — Gv,~w], G[-w,w],
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obtaining more and more complex recurrences.

A nice framework for dealing with such recurrences was developed by Kullmann and Luckhardt
[Kul99, KL97]. Instead of a recurrent inequality, each node of a splitting tree gets a branching
tuple. For example, if we are interested in the complexity with respect to the number of variables
in the formula, the branching tuple is formed in the following way. Consider splitting

G — Gq,...,Gy

of a formula with n variables to the formulas Gi,...,G4 with nj,...,ng variables respectively.
Then the branching tuple (¢1,...,t4) consists of arbitrary numbers t; < n —n;. The corresponding
branching number is the unique solution of

d

Zx_“ =1

on the interval (0, +00). Then the running time of Procedure 2.1 is upper-bounded by poly(|F|)-7",
where 7 is the largest of the branching numbers for all nodes of our tree. The 3-SAT bound
poly(|F|) - 1.505™ of [Kul99] obtained in this way was the best among deterministic algorithms for
six years?.

Similarly, we can estimate the running time with respect to the number m of clauses in the
input formula, with respect to the total number [ of the occurrences of all variables, and with
respect to any other “reasonable” measure of complexity of the input formula. The best current
bounds with respect to m and with respect to I are 1.239™ and 1.074' up to a polynomial factor
[Hir00a]. These are valid for arbitrary formulas in CNF, not just in 3-CNF.

Transformation rules. We now list some transformation rules used in DPLL-like algorithms.
We refer the interested reader to [Kul98, Kul00, KL97] for further details.

(2.1) Unit clause elimination. If F' contains a clause consisting of the only literal [, set the
value of [ to true.

(2.2) Pure literal. If F' contains a pure literal, i.e., a literal [ such that its negation does not
occur in F', set the value of [ to true.

(2.3) Resolution. For a variable z of F, add to F' all resolvents on = and remove from F' all
clauses containing z or its negation (the resolvent of two clauses z V l11 V ... V 15 and
_|£L'V121 V... Vlzt on z is the clause l11 V... Vlls\/lzl \/...\/lzt lfllz 7é _|le for alli,j,
and true otherwise).

(2.4) Subsumption. If F' contains two clauses C C D, remove D.

(2.5) Autarkness. If there is a (partial) assignment A such that F[A] does not contain clauses
not occurring in F, replace F' by F[A].

(2.6) Black-and-white literals. Let P be some polynomial-time computable property of for-
mulas and literals. Assume also that P(F,z) (“z is a white literal, -z is a black literal”)
and P(F,—x) (“—z is a white literal, z is a black literal”) cannot hold simultaneously. If
each clause of F' that contains a literal [ satisfying P(F,[) also contains a literal I’ satisfying
P(F,~l"), replace F' by F[{l' | P(F,-l")}].

(2.7) Blocked clause. A clause C is blocked if it contains a literal [ such that every clause of
F containing —l also contains the negation of some other literal of C. Any blocked clause
can be removed from F.

Choosing a variable. The main heuristic for choosing a variable is “choose a variable corre-
sponding to the smallest branching number”. Although it is possible to figure this out in polynomial
time, the heuristic does not look very practical. In fact, in most cases this heuristic can be replaced
by something more constructive. The simplest examples are “choose a variable occurring in the

IThe first preprint appeared in 1994.
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shortest clause” and “choose a variable occurring in the largest number of clauses”. Typically, an
analysis of a splitting algorithm contains a long list of cases corresponding to different syntactic
properties of formulas, and the heuristic is to choose a variable certifying at least one of these
properties.

Open question. As mentioned above, a typical analysis of a splitting algorithm consists of a
long list of cases. The proof corresponding to each case uses a very simple combinatorial argument.
It would be interesting to devise a program that, given the desired branching number, generates
such a list (i.e., a proof) automatically.

3. PPSZ-LIKE ALGORITHMS AND DERANDOMIZATION OF SATISFIABILITY CODING LEMMA

Satisfiability Coding Lemma. On each step DPLL-like algorithms choose a variable for split-
ting using only “local” properties of the formula. Variables in different branches of the splitting
tree are chosen independently. An upper bound for the running time is deduced from recurrent
inequalities or from branching numbers for each node of the branching tree.

Paturi, Pudldk and Zane [PPZ97] suggested another (“global”) method of bounding the running
time of a splitting algorithm. Basically, their algorithm chooses a random permutation of the
variables of the input formula and makes splittings in the corresponding order. However, there may
be no need to make splitting for all variables because the values of some variables in a satisfying
assignment can be determined as a result of the use of transformation rules, for example, as a
result of unit clause elimination. The analysis of this algorithm is based on the estimate of the
number of such variables not requiring splittings. If this estimate is at least s then we can restrict
ourselves to splitting trees of depth at most n — s. If we find no satisfying assignment after the
construction of the tree of depth n — s, then the formula is unsatisfiable.

The algorithm of [PPZ97] has several variants, some of them have the best current upper bounds
[PPSZ98|. Its simplest version is as follows (for the sake of simplicity we assume k = 3):

Algorithm 3.1.

1. Pick a permutation 7 from S, at random, where S,, is the set of all permutations of
{1,...,n}.

2. Using Procedure 2.1 with the only transformation rule (2.1), construct a splitting tree
of depth? at most 2n/3. At each step of splitting, choose the variable z; such that z;
still occurs in the formula and 7 (%) is the smallest. If a satisfying assignment is found by
Procedure 2.1, output it and halt; otherwise output the answer “Unsatisfiable”.

Clearly, this algorithm runs in time poly(|F|)-22"/3. A proof that this algorithm has admissible
probability of error for formulas with at most one satisfying assignment follows from Satisfiability
Coding Lemma described below.

For the input formula F', we consider a splitting tree constructed in the same way as in Algo-
rithm 3.1 but without the restriction 2n/3 on the depth. If S is a satisfying assignment for F' then
the tree has a path leading to S. Each splitting along this path sets a value to a variable. Let S’
be the assignment corresponding to all such settings. We emphasize that the values of variables
determined by transformation rules are not included in S’. We call S’ the description of S. By
the length of the description we mean the number of literals in S’. If we know the description, we
can restore the assignment by using transformation rule (2.1).

2Clearly, Procedure 2.1 can be easily modified so that it returns false if the level of recursion is greater than
2n/3.
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Satisfiability Coding Lemma [PPZ97]. Let F' be a uniquely satisfiable formula in 3-CNF,
and S be its satisfying assignment. Consider the description with respect to a permutation chosen
uniformly at random from the symmetric group S,. Then the expected length of the description of
S is at most 2n/3.

Proof. For each variable = in F', we define an z-critical clause to be a clause C' such that only the
literal corresponding to z is true in C' under the satisfying assignment S and all others literals in
C are false. Note that for each z, the formula F' contains at least one z-critical clause (otherwise,
we would get another satisfying assignment by changing the value of z in S). Since we choose
the permutation 7 uniformly at random, the variable x is the last variable (with respect to 7) in
the z-critical clause C' with the probability at least 1/3. It is easy to see that the last variable of
C does not appear in the description of S. Hence, £ does not occur in the description with the
probability at least 1/3. The claim now follows from linearity of expectation. [

Let p¢ be the probability that the length of the description of the satisfying assignment is
exactly £. By Satisfiability Coding Lemma

n

2 - 2
?n > ;pefz <{§J +1) > pe

{=|2n/3]+1

Consequently,

£=|2n/3]+1

Therefore,
[2n/3]

1
E De Z )
et 2n+1

i.e., for a random permutation, the length of a description does not exceed 2n/3 with the proba-
bility at least 1/(2n + 1). Thus, Algorithm 3.1 has admissible probability of error.

Derandomization of Satisfiability Coding Lemma. How can we get rid of random bits in
Algorithm 3.17 One way is to find a “small” set of permutations B,,, for which Satisfiability Coding
Lemma still holds. In this case, we could find a required permutation by searching through B,,,
not through the set S, of all permutations. To construct such a set, [PPZ97] uses the space of
random 3-wise independent variables. This method gives and “almost” 3-wise independent set of
permutations. There are two disadvantages in this approach:

(1) the cardinality of the obtained set of permutations is O(n®);
(2) the running time of the algorithm increases even more because of “almost” independence
instead of “real” independence.

Although these disadvantages do not affect the theoretical bound poly(|F|) - 22*/3 on the running
time of the deterministic algorithm, they make it useless in practice since the huge polynomial
factor makes this bound worse than the trivial bound 2", at least for n < 200.

Below we present another (and even simpler) explicit construction of the set B,, of permutations
whose cardinality is only O(n?). Note that the following condition is sufficient for the lemma to
hold: for any three distinct positive integers z,y,z < n and for a random permutation 7 from
B,,, the probability of n(z) = max{n(z),n(y),n(z)} is at least 1/3. This is a special case of a
“max-3-wise independent family of permutations” [BCFM98]3.

The paper [BCFM98] gives no example of such a family of polynomial size; the polynomial-size
construction is given only for the case when the uniform distribution on the set of permutations is

3In [BCFM98] the symmetric case of min-3-wise permutations is considered.
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replaced by non-uniform one. However, this set (and the distribution on it) is obtained as a result
of solving a linear program of exponential size. There are approximate constructions in [BCFM98],
but they are rather complicated. In addition, due to their approximate nature, the polynomial
factor in the running time of the resulting algorithm becomes greater than the corresponding factor
for the simple construction presented below. In our construction, B,, will be a multiset; however,
it is clear that for the purposes of our algorithm it is sufficient to examine each permutation from
B,, only once.

Let p be the smallest prime number such that n < p + 1. Clearly, p < 2n. In what follows, Z,
denotes the finite field with p elements. We consider the projective line P over Z,, i.e., the classes
of elements of (Z, x Zj;) \ {(0,0)} with respect to the equivalence relation

(z,y) ~ (2',y") iff zy’ = 2'y.

Let us consider permutations of its points. The projective line consists of p + 1 points, so one can
identify such permutations with elements of the symmetric group S;,41. We will find a min-3-wise
independent subset Bj1 of Sp41. The desired multiset B,, of permutations on n symbols will be
obtained as a result of restricting® permutations from B,,; to the first n symbols. Clearly, the
property of being max-3-wise independent still holds for B,.

As a set By, 41 we take the group PGL(2, p) of projective automorphisms of P, i.e., transforma-
tions of P, induced by invertible linear transformations of Z, x Z,: f((z,y)) = (az + by, cz + dy)
with ad — be # 0. There are exactly (p + 1)p(p — 1) different projective automorphisms. It is well
known that for any two ordered triples of pairwise distinct points of the projective line, there
exists the unique projective automorphism that maps the first triple to the second one (see, e.g.,
[KM80, Chapter 3, §8, items 8, 9]). In particular, any triple of pairwise distinct points of P is
mapped equiprobably onto any other triple under the action of a random permutation from By ;.
Therefore, our construction is correct.

Remark. For any n > k > 2, there exists a multiset C,, ; of max-k-wise (or, equivalently, min-
k-wise) independent permutations of n symbols such that the cardinality of C' does not exceed
n(+1/logm)klem(1, ..., k); see [[TT00]. A more careful analysis of the action of the group PGL(2, p)
on quadruples of points shows that the multiset B, constructed above is even a max-4-wise
independent family of cardinality O(n?), see also [Vse00]. In particular, this construction improves
the upper bound for the size of the smallest max-4-wise independent family, given in [ITT00].

More complicated algorithms based on Satisfiability Coding Lemma. As shown above,
Algorithm 3.1 has admissible probability of error on formulas with at most one satisfying as-
signment. In fact, this is also true for arbitrary formulas in 3-CNF. Moreover, it is clear that
Satisfiability Coding Lemma holds for k-CNF with & > 3 (in this case the length of the de-
scription is (1 — 1/k)n), so an algorithm similar to Algorithm 3.1 can be used to solve k-SAT in
poly(|F|) - 21=1/F)" steps.

Derandomization of Algorithm 3.1 for formulas with (possibly) more than one satisfying as-
signments is however a bit more tricky. Here is the algorithm from [PPZ97]:

Algorithm 3.2.
1. Choose v such that

1—y/k =~ —ylogyy — (1 —7)logy(1 — 7).

2. For all assignments A such that A sets the values of all n variables and contains at most
~vn positive literals, check whether A satisfies F' and if so, output it and halt.

4By the restriction of a permutation 7 on the first n symbols we mean the unique permutation «’ € Sy, such that
for all z,y € [1..n] the inequality ='(z) < 7'(y) holds if and only if 7(z) < w(y). Namely, n’(k) is the cardinality of
the set {w(1),...,w(n)} N [1..7(k)].
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3. For all permutations 7 € B,,, construct a splitting tree of depth at most n(1—-v/k)+1 using
Procedure 2.1 with the only transformation rule (2.1). At each step of splitting, choose a
variable z; such that z; still occurs in the formula and 7 (%) is the smallest possible. If a
satisfying assignment is found by Procedure 2.1, output it and halt.

4. Answer “Unsatisfiable”.

Algorithm 3.2 has a worse running time bound than Algorithm 3.1; for formulas in k-CNF, its
running time is poly(|F|) - 2*(*=7/*) which becomes poly(| F'|) - 20-89" for 3-CNF.

Satisfiability Coding Lemma counts only the variables that are omitted from the description
of a satisfying assignment because of the application of rule (2.1) to a variable z in the following
case:

e there is an z-critical clause consisting of z, y and z,
o w(z) > m(y), and
o w(z) > m(2).
However, the condition m(z) > m(z) is not necessary for a variable z to disappear from z-critical

clause. For example, z itself can be eliminated because of the application of rule (2.1). A nice way
to use and count such dependencies is described in [PPSZ98]:

Algorithm 3.3.

1. Add to F' all clauses that can be derived from it by resolution bounded to the clauses of
size at most r(n).
2. Perform as in Algorithm 3.1, but for smaller depth d(n) of the tree.

The analysis of this algorithm and its derandomized version is rather complicated; the results
of [PPSZ98] are poly(|F|)-20-448" for 3-SAT and poly(|F|)-2%-387 for uniquely satisfiable formulas
in 3-CNF.

In general, the framework created by Algorithm 3.1 can be described in the following way:

Algorithm 3.4.

1. Construct a splitting tree of certain depth using Procedure 2.1 with certain transformation
rules. For each splitting, choose a variable uniformly at random from the variables still
occurring in the formula. If a satisfying assignment is found by Procedure 2.1, then output
it and halt; otherwise output the answer “Unsatisfiable”.

Open problems. This section and the paper [Vse00] construct the sets B, for k = 3 and for
k = 4 respectively. These constructions, which are of independent interest, are based on the
properties of the groups PGL(k,p®) for k = 3,4. Is it possible to generalize these constructions
for an arbitrary k7 It is conjectured in [Vse00] that the group PGL(k — 1,p®) acting on the points
of (k — 2)-dimensional projective space is min-k-wise (max-k-wise) independent for some linear
order on the points of the projective space.
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4. TWO MORE PROOFS OF THE VALIANT-VAZIRANI LEMMA

The Valiant-Vazirani Lemma [VV86] is one of the first non-trivial results on the relations
between complexity classes.

The Valiant-Vazirani Lemma. There exists a randomized (with one-sided error) polynomial-
time reduction of the satisfiability problem to its instances with at most one satisfying assignment.

In other words, given a formula F' in CNF, one can construct formulas F7y, ... , Fy, in CNF such
that

o if F' is satisfiable then, with probability greater than 1/2, at least one formula of F1,... , F,,
has exactly one satisfying assignment;
e if F' is unsatisfiable, then all formulas F4,... , F,, are unsatisfiable.

A generalization of the Valiant-Vazirani Lemma is used, for example, in the famous theorem of
Toda [Tod91], which claims that any language of the polynomial hierarchy is Turing reducible
(in deterministic polynomial time) to a language from the class PP. A similar statement would
be also useful in our context, since current upper bounds for formulas in 3-CNF with a unique
satisfying assignment [PPSZ98] (see section 3) are better than the bounds for arbitrary formulas
[Sch99] (see section 5).

There are many different proofs of the lemma [BF97, Cha94, CRS93, MVV87]. Also, there
are several proofs of a close result: the existence of a reduction to formulas with odd (or zero)
number of satisfying assignments [Gup93, NRS95]. In this section we give two new proofs. Both
our proofs are based on the idea used in [BF97]. In [BF97] this idea is combined with the use
of the Kolmogorov complexity. In our proofs, we get rid of the application of the Kolmogorov
complexity. This simplifies the proof in [BF97] and displays its number-theoretic essence.

Remark. As we mentioned above, a statement similar to the Valiant-Vazirani Lemma would be
useful in the context of our paper. However, for this purpose we need a reduction satisfying an
additional requirement: given a formula in 3-CNF, the reduction is to output formula(s) in 3-CNF
with the same (or almost the same) number of variables. The original reduction of Valiant and
Vazirani adds ©(n) equalities of the form [; ®ls @ --- B, = 0 to the initial formula, where I; = x;
or l; = —z; (decided randomly), and @ denotes the addition modulo 2. To represent all these
equalities in 3-CNF, one has to introduce Q(n?) new variables. Furthermore, none of other known
reductions (including ours) satisfies the above requirement.

The first reduction. Let F be a formula and A be an assignment to all its variables. We identify
A with an n-bit number a = apa; ... a,—1 such that a; = 1 if the corresponding variable in A has
the value true, and a; = 0, otherwise. We choose integers p; and r; as follows. First, we choose
i € [0..n] uniformly at random. Second, we choose p; € [1..b;] and r; € [0..b;] uniformly at random,
where b; = 4 - 2n2. Then we replace F' by the formula

F A (a mod p; = 13).
Here “(a mod p; = r;)” stands for a propositional formula in CNF in the variables ay, ..., a,_1
(possibly using also some auxiliary variables), which represents the corresponding arithmetic con-
gruence. For example, this formula can be obtained by encoding the standard column multiplica-
tion. Obviously, this reduction takes polynomial time and transforms an unsatisfiable formula into
an unsatisfiable formula. It remains to prove that if F' is satisfiable then, with high probability,
the new formula is uniquely satisfiable.

Let a(Y,...,a(?) be all satisfying assignments of the formula F. Note that i = [log, D] with
probability 1/(n+1). Suppose that this event happened. Note that for given j and h (j # h) there
are at most n prime divisors of the difference al¥) —a(®). On the other hand, for sufficiently large n,
there are at least 0.92129- b;/Inb; > b;/log, b; > 2¢T1n primes not greater than b; [9e655). Thus,
there are at least 2'*1n — 2n = 2'n numbers p not exceeding b; such that the remainder of the
satisfying assignment /) modulo p differs from the remainders of all other satisfying assignments



ALGORITHMS FOR SAT 11

modulo p. Therefore, at least 2'n such pairs 0 < p;,r; < b; “distinguish” the assignment /) from
all other satisfying assignments. Note that for different assignments the sets of distinguishing pairs

are disjoint. Hence, there are at least 2°n - D > 2%~1n required pairs (p;, ;). Thus, for sufficiently
large n the probability to choose such a pair is not less than % = ﬁ

Multiplying by the probability to choose the “correct” i, we have that the probability of error
of our reduction is at most 1 — Choosing triples (i, p;, ;) at random O(n*) times, we get

a constant error probability.

1
32n%+32°

The second reduction. Let Z,[t] denote the ring of polynomials in one variable over the finite
field with p elements. It is well known that the ring Z,[t] is the “right” analogue of the ring Z
from the arithmetical point of view. On the other hand, unlike asymptotic formulas for the number
of primes in an interval, there is an explicit exact formula (which has an elementary proof) for
the number of irreducible polynomials of a given degree. In addition, the propositional formula
(e mod p; = r;), where a, p;, r; are the polynomials over Z,, is simpler since there are no shifts
from one digit to another. This might be useful in view of Open Question 2 (see below). Also note
that an approach similar to what follows can be developed for an arbitrary finite field, not only
for Z,.

In the first reduction, we identified the assignment A with an n-bit number a = ag,...,ap_1-
Now we identify A with the coefficients of the polynomial a(t) = ag + a1t + --- + a,_1t" " over
the field Zs, where a; are the same as in the first reduction. Again, we choose i € [0..n] at random
and replace the input formula F' by the formula

F A (a mod p; = 1),

where p;, r; are now randomly chosen polynomials such that degp; = d; (i.e., p; = z; di +Zt 0 ct:v
where ¢; are chosen at random), degr; < d; and d; =i + [log, n] + 4.
Suppose that i = [log, D|. Take d = d;. Denote by N; the number of irreducible polynomials

over Zs of degree d. There is an explicit formula for Ny (see, e.g., [[R82, Chapter 7, §2, Corollary
2]). Namely,
Zsld /"‘(%)28
No= ="

where p denotes the Mobius function:

o u(l)=1;
e u(h) =0, if h is not squarefree
e u(h)=(-1)*,ifh=¢qy...qy, and ¢, ... ,q, are pairwise distinct primes.

Since p(h) > —1 holds for all A > 1 and u(1) = 1, we have

20 _ D<) 2’ . 9d _ 9d/2+1  9d—1

Ng > >
4= d = 4~ d
On the other hand, each of the D —1 differences /) —a(®) (with j # k) has at most n/d irreducible
factors of degree d. Thus, at least Ny — 22 > 2d(;1 - 2(:4 > 2d; pairs (p;,7;) with degp; = d,

degr; < d “distinguish” the assignment o) from all other satisfying assignments.

Similarly to the first reduction, there are at least 2-— - D required pairs. The probability to
choose such a pair is not less than

24-2p S 1 S 1
d22d-1 = G4nd — 128n2

for n > 8. Multiplying by the probability to choose the correct ¢, we have that the probability of
error of our reduction is at most 1 — m, i.e., by repeating the random choices O(n®) times
we can get a constant error probability.
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Open questions.

1. The question of the derandomization of the Valiant-Vazirani Lemma, is open. For exam-
ple, is it possible to replace a randomized polynomial-time reduction by a deterministic
reduction running in time poly(|F|) - ¢ for some constant ¢ < 2? The similar question for
a possibly weaker reduction of satisfiability to its instances with zero or odd number of
satisfying assignments is also open.

2. All known proofs of the Valiant-Vazirani Lemma reduce satisfiability to formulas in CNF
with arbitrary long clauses, even if the input formula is in 3-CNF. A further reduction to
3-CNF can increase the number of variables in the formula significantly. Is there a natural
reduction to formulas in 3-CNF such that the increase in the number of variables is not
too large, for example, only o(n) new variables appear?

5. LOCAL SEARCH ALGORITHMS

Local search algorithms for SAT include greedy search [KP92, SLM92], “cautious” search
[GW93], random walk [Pap91, Sch99], other strategies and their combinations (see [GPFWO00] for
survey). Although many of these algorithms are well studied experimentally, good upper bounds
are proven only for random walk algorithms, the simplest of them. In this section we discuss ran-
dom walk algorithms for SAT, their derandomization, and the possibility to combine the random
walk approach and the splitting approach (viewed as backtracking) in one algorithm.

Random walk algorithms. Random walk algorithms for SAT are very simple randomized algo-
rithms that start from an initial assignment chosen at random and move to a satisfying assignment
step by step: at each step, the algorithm flips the value of a variable chosen at random from an
unsatisfied clause. Such algorithms solve 2-SAT in polynomial time [Pap91] and solve k-SAT in
time (2—2/k)™ up to a polynomial factor, where n is the number of variables in the input formula
[Sch99]. In particular, for ¥ = 3 this bound is (4/3)", currently the best known upper bound for
3-SAT algorithms.

The following algorithm (parameterized by two functions « and 7) represents a family of random
walk algorithms for SAT. Given an input formula F' with n variables, the algorithm performs at
most «(n) walks starting from random initial assignments; each walk consists of at most 7(n)
steps.

Algorithm 5.1.

1. Repeat a(n) times:

la. Choose an assignment A uniformly at random.

1b. If A satisfies F', return A and halt. Otherwise repeat the following instructions 7(n) times:
Take any unsatisfied clause C in F'.

Choose a variable z uniformly at random from the variables occurring in C.
Modify A by flipping the value of z in A.

If the updated assignment A satisfies F', return A and halt.

2. Return “Unsatisfiable” and halt.

Algorithm 5.1 with a(n) = 1 and 7(n) = 2n? is Papadimitriou’s polynomial-time algorithm for
2-SAT [Pap91]. Algorithm 5.1 with a(n) = (2—2/k)™ and 7(n) = 3n is Schoning’s (2 —2/k)"-time
algorithm for k-SAT [Sch99].

To analyse Algorithm 5.1, we use its connection with one-dimensional random walks (see, e.g.,
[Fel68]). Consider the performance of this algorithm on a formula in k-CNF. Suppose that the
input formula has a satisfying assignment S that differs from an initial assignment A in the values
of exactly 7 variables. Note that at each step, the algorithm moves closer to S with probability
at least 1/k because an unsatisfied clause always contains at least one variable whose values in S
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and in the current assignment are different. Thus, the modification process that starts from A is
related to the following one-dimensional random walk.

Consider a particle walking on the interval [0..n]. The particle starts from the position i at time
t = 0 and walks for 7(n) steps. At each step, if the particle’s position is 5 where 0 < j < n, it
moves to j — 1 with probability 1/k and moves to j + 1 with probability 1 — 1/k. If j = 0, the
particle remains at the same position with probability 1. If ; = n, the particle moves to j — 1
with probability 1. We denote by p; ; the probability that the particle starting from ¢ reaches 0
in ¢ steps. The following lemma expresses the connection between p; ; and the error probability of
Algorithm 5.1.

Lemma 5.1. The error probability of Algorithm 5.1 is not greater than

exp (_ 042(:) g (’;})pi,r(n)) .

Proof. 1t suffices to consider the case of a satisfiable input formula. Let S be any satisfying
assignment. Consider one of the a(n) walks performed by the algorithm. For any ¢, an initial
assignment A differs from S in the values of exactly ¢ variables with probability (’;) /2". It is easy
to see that such a walk finds S (or another satisfying assignment if some preceding assignment
along the walk happens to be satisfiable) with probability at least p; r(,). Summing up for all

possible i’s, we get the bound
~ ()
p=) S Pir(n)
i=0

on the probability that a walk finds a satisfying assignment in 7(n) steps. The error probability
of Algorithm 5.1 is therefore not greater than

(1= p)*™ =exp (a(n) In(1 - p)) <

< exp(—a(n) ' p) = €xp <—a(n) Z QPi,T(n)) . O

2n
1=0

Papadimitriou’s algorithm. Papadimitriou [Pap91] proves that Algorithm 5.1 with a(n) = 1
and 7(n) = 2n? (i.e., running in polynomial time) solves 2-SAT with admissible probability of
error. The proof is based on the following observation: when we flip the value of a variable chosen
at random from an unsatisfied 2-clause, we move closer to a satisfying assignment with probability
at least 1/2. The probability p; 2,2 for the corresponding one-dimensional random walk is at least
1/2 [Pap91, Pap94]; hence the error probability of this algorithm is admissible.

We show that the performance of Papadimitriou’s algorithm on renamable Horn formulas with-
out unit clauses can be described by the same one-dimensional random walk. Thus, this algorithm
(extended by unit clause elimination) can be used for computing a satisfying assignment for a
renamable Horn formula in polynomial time with admissible probability of error.

Recall that a formula F' is called a Horn formula if each clause in F' contains at most one
positive literal. Let [ be a literal occurring in a formula F. By reversing | in F' we mean the
replacement of all occurrences of [ and —I by —I and [ respectively. A renamable Horn formula is
defined to be a formula that can be transformed into a Horn formula by reversing some literals
[Lew78]. There is a number of polynomial-time algorithms that solve SAT for renamable Horn
formulas, for example SLUR (Single Lookahead Unit Resolution) [FV98, SAFS95].

Note that if a renamable Horn formula F' contains no unit clauses then F' is satisfiable. This
observation leads to the following algorithm. First, we eliminate all unit clauses (if any) from
the input formula using transformation rule (2.1). It is easy to see that unit clause elimination
transforms a renamable Horn formula into a renamable Horn one. Then we apply Papadimitriou’s
algorithm to find a satisfying assignment.
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Theorem 5.2. Let F be a renamable Horn formula without unit clauses. Algorithm 5.1 with
a(n) =1 and 7(n) = 2n? finds a satisfying assignment for F in polynomial time with admissible
probability of error.

Proof. 1f suffices to prove that the performance of Algorithm 5.1 on F' has the same feature as its
performance on formulas in 2-CNF: when we flip the value of a variable chosen at random from
an unsatisfied clause, we move closer to a satisfying assignment with probability at least 1/2.

Clearly, if F' is a Horn formula without unit clauses, then F' is satisfied by the assignment Sy
in which all variables have the value false. Furthemore, for each clause C in F' the following
holds: all literals of C' except at most one are true under Sy. It is easy to see that the case of
renamable Horn formulas is similar to the case of Horn ones. Namely, if F' is a renamable Horn
formula without unit clauses, then F' has a satisfying assignment S such that, for each clause C,
all literals of C' except at most one are true under S.

Consider the choice of a variable for flipping from an unsatisfied clause C. Let k be the number
of literals in C. All these literals are false under the current assignment. At the same time, all of
them except at most one must be true under S. Therefore, when we flip the value of one of these
k literals, we move closer to S with probability at least kgl. Since F' contains no unit clause, this
probability is not less than 1/2. O

Schéning’s algorithm. Schoning [Sch99] proves that k-SAT can be solved by Algorithm 5.1 with
a(n) = (2 —2/k)" and 7(n) = 3n with admissible probability of error. The proof is based on the
following estimation of the probability p; 3, it is shown that p; 3, > (k— 1)~ up to a polynomial
factor for any k£ > 3 and any 7. Then Lemma 5.1 gives the upper bound

(2= 2/k)" <~ (n\ (k=1)7*\ _
o (_ TP (Z) poly(n) ) B

1=0

o (S5 (o 1)) o ) -+

for the probability of error for Schéning’s algorithm. The last equality® follows from exp(—z) <
1 — z/e which holds for any z < 1.

Derandomization of Schoning’s algorithm. A deterministic version of Schoning’s algorithm is
described in [DGH+00, DGHS00]. The idea behind the derandomization is simple and intuitive.
First, we cover the whole search space (all 2" possible assignments) by Hamming balls of some
fixed radius R. This covering should be minimal, i.e., we try to use as few balls as possible. Then
we take every ball and search for a satisfying assignment inside it. It is clear that there is trade-
off between the number of balls and the time of searching inside a ball: the more balls we use,
the faster search inside a ball is. Thus, the number of balls (or, equivalently, the radius R) has
the “optimal” value which minimizes the upper bound on the overall running time. As shown in
[DGH+00, DGHS00], when the input formula is in k-CNF, the “optimal” value of R is ;7. The

overall running time of the resulting algorithm is (2 — k_-2}-1 + €)" up to a polynomial factor, which
is the best known upper bound for deterministic k-SAT algorithms.

To find a satisfying assignment inside a ball, the algorithm [DGH+00, DGHS00] uses a very
simple procedure based on local search with backtracking. Namely, take an unsatisfied clause
[1 V...Vl and consider all the ¢ possibilities: the value of I; is wrong, ... , the value of [; is wrong.
The depth of the tree constructed in this way can be limited to R, and the number of nodes is thus
O(k®). Using a more efficient (but more complicated) version of this procedure, one can improve
the bound on the size of this tree and therefore on the overall running time of the algorithm. For
3-SAT, the improved algorithm runs in time poly(|F|) - 1.481" [DGH+00, DGHSO00].

It is also possible to get rid of the “+€” summand in the running time of this algorithm at the
cost of using exponential space [DGH+00].

5See Sect. 1 for our convention about using the poly notation.
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Random walk algorithms with the “back button”. Is it possible to incorporate backtracking
into random walk algorithms for SAT? We can do it using the recent approach of Fagin et al.
[FKK+00] who introduced Markov chains with the “back button” (the study of such processes is
motivated by connection with browsing on the world-wide web). Namely, we allow each step to be,
with some probability, a backward step. Such a step, like a click on the “back button”, undoes the
last flip in the current assignment. Thus backward steps can be viewed as a kind of backtracking
for random walk algorithms.

The purpose of this section is to understand whether the “back button” can change the prob-
ability to find a satisfying assignment. To answer this question, we compare two types of random
walks on the line, with and without backward steps. Using results from [FKK+00], we give com-
parative bounds on the success probabilities of polynomially long walks. Namely, we show that
backward steps cannot increase the success probability by more than a polynomial factor, i.e., the
“back button” does not give a substantial gain. We also show that if the probability of backward
steps is not greater than 0.5 then the “back button” does not lead to a substantial loss.

We modify Algorithm 5.1 (denoted by RW — Random Walks) into Algorithm 5.2 (denoted by
RWB — Random Walks with Back button). The new algorithm RWB keeps a history stack H whose
elements are assignments. The top element of the stack corresponds to the current assignment.
Like RW, the algorithm RWB performs at most a(n) walks; each walk consists of at most 7(n)
steps but each step is either a forward step or a backward step. In a forward step, RWB modifies
the current assignment in the same way as RW; if the updated assignment A satisfies F' then RWB
returns A and halts; otherwise RWB pushes the updated A onto H. A backward step is that RWB
pops the top element from H (the new top element thereby becomes the current assignment).
Starting with the empty history stack, RWB performs as follows:

Algorithm 5.2.

1. Repeat a(n) times:
(1) la. Choose an assignment A uniformly at random.
(2) 1b. If A satisfies F, return A and halt. Otherwise push A onto H and repeat the following
instruction 7(n) times:
e If H contains only one element, make a forward step. Otherwise make a backward
step with probability b and a forward step with probability 1 — b.

2. Return “Unsatisfiable” and halt.

The probability b is called the backoff probability.

To represent the performance of RWB using one-dimensional random walks we modify the one-
dimensional random walk model for RW (described after Algorithm 5.1 above) as follows. The
walk for RWB keeps a history stack H whose elements are the particle’s positions. Each step of the
walk is either a forward step or a backward step. In a forward step, the particle moves according
to the rules for RW and its new position is pushed onto H. In a backward step, the top element
is popped from H and the particle moves to the position that is the top element of the updated
stack. At time ¢ = 0 the history H contains only the initial position ¢. Then the particle takes
steps similar to RWB: if H contains only one element, the particle takes a forward step; otherwise
takes a backward step with probability b and a forward step with probability 1 — b. We denote by

pz(f)t) the probability for the particle to reach 0 in at most ¢ steps.

Lemma 5.3. The error probability of Algorithm 5.2 is not greater than

a(n) x= (1 @
eXp<_2—nZ(Z‘>pi,r(n) :
i=0

Proof. Similar to the proof of Lemma 5.1. O
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Lemma 5.1 and Lemma 5.3 show that lower bounds on p; ; and pz(f’t) imply upper bounds on the

error probabilities of RW and RWB respectively. Thus, comparative bounds on p; ; and pz(f’t) allow
us to compare the upper bounds for RW and RWB (obtained using Lemmas 5.1 and 5.3).

We now prove two theorems. The first theorem shows that the “back button” cannot increase
the probability of reaching 0 by more than a polynomial factor. The second one shows that the
“back button” (with b < 0.5) cannot lower this probability by more than a polynomial factor if
we admit a quadratic increase in the walk length. Both theorems are proven using results from
[FKK+00].

Let X;; and X i(f;) denote the particle’s position at time ¢ in the random walks starting from
1 for RW and RWB respectively. Let H; denote the history stack of the random walk for RWB
at time ¢; following [FKK+00], the length I[(H;) of the history stack is defined as the number of
particle positions stored in it minus 1 (i.e., we do not count the initial position).

Theorem 5.4. For any backoff probability b,

p) < (12 g

Proof. Note that pz(f’t) is upper-bounded by the sum of ¢ + 1 probabilities Pr{XZ-(f;), = 0} for
t'=0,1,...,t. Let t' € [0..t] be the value maximizing Pr{Xi(z), = 0}. Since 0 < I(H,) < s for any
s, we have
P <+ 1)Pr{X) =0} =
t/
= (t+1) > Pr{X") =0 i(Hy) = A} - Pr{l(Hy) = A} <
A=0

t tl . (b) — ) =
By Theorem 31 fI‘OIn [FKK+00],

Prix®) =0 | I(Hy) = A} = psa.

2,

Since p; » < pis for 0 < XA < ¢’ < ¢, the claim follows. O
Theorem 5.5. For any backoff probability b < 0.5,

P > i/ poly(t).

Proof. Again, using Theorem 3.1 from [FKK+00], we have
pk > Pr{X{), =0} =

- iPT{Xi(b) =0|I(Hp) = A} Pr{l(Hp) = A} =
A=0

2

= pix Prii(Hp) = A}

A=0

To estimate Pr{l(H) = A} for b < 0.5, we first estimate Pr{l(H;2) = t} for b = 0.5. Consider
the following random walk on the line: a particle starts from 0 and moves left and right with
probabilities equal to 0.5. It is easy to see that Pr{l(H;) = p} for b = 0.5 is exactly the probability
that the particle’s position at time s is either p or —p. In particular, Pr{l(H;:) = t} = 2r;, where
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r; denotes the probability that the particle’s position at time 2 is ¢. The probability r; is exactly
2
((tz it)/z) . 2=%" which is within a polynomial of

t2t2

2t% . (t2T—t)(t2—t)/2 . (tz%)(t%t)/z

(by Stirling’s formula). Straightforward calculation shows that for sufficiently large ¢ the last
expression is greater than a constant. Thus, the claim for b = 0.5 follows.

If b < 0.5, the probability Pr{l(H;2) > t} is even greater than it is for b = 0.5 (and obviously
greater than the probability Pr{l{(H;:) = t} estimated above). In particular, this probability is
greater than 1/poly(t). Recall that Pr{l(H) = A} = 0 for A\ > 2. Hence, there is a X such that
t <X <t?and Pr{l(Hg) = A} > Pr{l(Hsz) > t}/t> > 1/poly(t). Since p; » > pi; when \ > ¢,
the claim follows. [

Open Problems.

1. Note that while the existence of critical clauses improves the performance of PPSZ-like
algorithms, it is the real bottleneck in random walk algorithms: if the unsatisfied clause
we choose is not critical, then the probability of going in the “right” direction is at least
2/k and not 1/k. It would be interesting to make use of this trade-off by combining the
two approaches in one algorithm.

2. We have shown that RWB is similar to RW when walks are polynomially long. The question
of whether the similarity holds for exponentially long walks is open.
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