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Abstract

The paper presents a simple construction of polynomial length universal traversal se-
quences for cycles. These universal traversal sequences are log-space (even NC 1) constructible
and are of length O(n4.03). Our result improves the previously known upper-bound O(n4.76)
for log-space constructible universal traversal sequences for cycles.

1 Introduction

One of the major problems in computer science is the graph s, t-connectivity problem. It is well
known that a directed version of this problem is complete for nondeterministic log-space (NL),
and its undirected version is complete for symmetric log-space (SL), which is defined to be the
class of problems log-space reducible to undirected s, t-connectivity. It has been conjectured that
symmetric log-space is equal to deterministic log-space (SL = L).

One approach to proving that conjecture is to use universal traversal sequences introduced by
Cook (see [AKL+].) A traversal sequence for a d-regular graph is a sequence of numbers from
{1, . . . , d}, which directs us in traversing the graph. For given d and n, a universal traversal
sequence for d-regular graphs of size n is a traversal sequence which completely traverses any d-
regular graph of size n starting at any vertex. [AKL+] gave a probabilistic argument for existence of
universal traversal sequences of polynomial length in d and n. In a sequence of papers [N], [NSW],

[ATWZ] it was shown using derandomization of that argument that SL ⊆ DSPACE(log4/3 n).
A more direct approach to proving SL = L is to construct an explicit log-space constructible

universal traversal sequence for d-regular graphs, where d ≥ 3. The steps in this direction are
explicit constructions of universal traversal sequences for specific classes of graphs. For 2-regular
graphs (cycles), [BBK+], and [B] constructed a universal traversal sequences of length nO(logn),
which were later superseded by log-space constructible1 universal traversal sequence for cycles of
length O(n4.76) by Istrail [I]. In this paper we present a simple log-space construction of universal

∗Supported in part by NSF grant CCR-9734918.
1Feigenbaum and Reingold [J. Feigenbaum, N. Reingold, Universal Traversal Sequences, American Mathematical

Monthly, 101 (1994), pp. 262-265] claim without any further argument that Istrail’s construction is not log-space
constructible. However, it seems to us to be possible to show the log-space constructibility of Istrail’s construction
by an argument similar to one in Section 4.3.
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traversal sequences for cycles of length O(n4.03) (which we believe can be improved up to O(n3.99)
by setting parameters of the construction optimally.) The currently known best lower bound
Ω(n1.43) and non-constructive upper bound O(n3) on the length of universal traversal sequences
for cycles are due to [BT] and [A], respectively (see [BT] for comprehensive overview.) The other
studied classes of graphs are a class of complete graphs for which [KPS] presented nO(logn) universal
traversal sequences, and a class of expanders for which [HW] presented nO(d logd) universal traversal
sequences. The best construction of universal traversal sequences for 3-regular graphs is based on
Nisan’s pseudo-random generator [N]; these sequences are of length nO(logn).

1.1 Overview of The Construction

Our construction has two parts:

1. The first part is a construction of an nO(logn) universal traversal sequence for cycles of length
n. This part uses essentially the same idea as a construction of Bridgland [B]. It is a recursive
construction in which at every iteration a universal traversal sequence for cycles of length cn,
c ≥ 2, is constructed from a universal traversal sequence for cycles of length n. Every iteration
consists of two dual stages. The depth of the recursion is O(logn) and the factor by which the
generated universal traversal sequence is expanded at each stage is O(n).

2. The second part of the construction involves again two dual stages that are aimed at reducing
the expansion factor to O(1), and they interleave the stages of the first part.

At both stages of the first part the traversed graph is reduced to a smaller one, whereas at
both stages of the second part the graph is expanded a little bit by inserting new vertices. After
applying all four stages the graph is smaller by at least a constant factor.

The main contribution of this paper lies in the construction of the second part where we show
that we can modify the traversed graph by inserting new vertices so that this modification is
transparent for traversal sequences. This idea could be possibly useful in construction of universal
traversal sequences for 3-regular graphs.

The previous construction by Istrail was also based on Bridgland’s construction. Istrail’s
construction also reduced the expansion factor to a constant as our does but using slightly different
(ad hoc) approach. Our construction seems more natural and better motivated hence, much
simpler to understand.

Our paper is organized as follows. Section 2 contains definitions and preliminaries. Section
3 contains the first part of the construction yielding an nO(logn) universal traversal sequence.
Section 4 contains the second part of the construction including the algorithm. Section 5 contains
the analysis of the length of the universal traversal sequence that is produced.

2 Preliminaries

Let G = (V,E) be an undirected cycle. Let V = {v1, . . . , vn} so that E = {(vi, vi+1); 1 ≤ i <
n} ∪ {(v1, vn)}. We may look at every edge (u, v) in G as on a pair of two directed edges (u, v)
and (v, u). For 1 ≤ i < n, the directed edges (vi, vi+1) and (vn, v1) are called the right edges, and
(vi+1, vi) and (v1, vn) are called the left edges. Similarly, vi+1 is called a right neighbor of vi, and
vi is called a left neighbor of vi+1 (vn is a left neighbor of v1, and vice versa.) At every vertex in
G, let one of the outgoing edges be labeled by 1 and the other one by 0. We label every vertex in
G according to the label of its right outgoing edge (Fig. 1.)

A 0-1 sequence b(v1), b(v2), . . . , b(vn) uniquely describes G, where b(vi) is the label of vertex
vi. We call such a sequence a binary representation of the graph or a graph sequence. Two graph
sequences are considered to be the same if one of them is a cyclic shift of the other one. Hence, we
actually consider any graph sequence to be wrapped around (cyclic). We consider all the graphs

2



with the same binary representation to be the same. We identify every graph sequence with its
corresponding graph (actually a class of the same graphs), and every graph with its sequence. We
will refer to the digits of a graph sequence as vertices. (We will use term vertex also for any digit
in a general 0-1 sequence.)

 . . .  
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0

01
v4

1

10
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1

10
v1

0

01 . . .  

Figure 1.

A traversal sequence is a 0-1 sequence. “To run a traversal sequence t on a graph G starting at
a vertex v” means to walk in G starting at v and following edges labeled consistently with t. For
example, if we run a sequence 10100 onG starting at v2 (Fig. 1), we visit vertices v2, v3, v4, v5, v4, v3

in this order. Note, if the label of a vertex in the traversal sequence is identical to the label of the
traversed vertex then we are going to the right, otherwise to the left. Because we identify a graph
with its graph sequence we may also talk about running a traversal sequence on a 0-1 sequence.
It should be always clear from the context which sequence is a traversal sequence and which one
is a graph sequence.

Note, in traversing a graph sequence by a traversal sequence there are two kinds of symmetry.
If we negate both, the traversal sequence and the graph sequence, we will run exactly as before.
If we reverse the graph sequence (the first vertex becomes the last, and so on) and then we negate
it, any traversal sequence will run exactly in opposite direction than before. (This corresponds to
changing left-right orientation of the underlying graph.)

Let s be a 0-1 sequence. A 0-run (1-run) in s is any maximal part of s consisting only of 0’s
(1’s). The type of the run, 0-run or 1-run, is called a color of that run. The leftmost and rightmost
vertices of the run are called border vertices. The border vertices of a run of length 1 coincide. A
0-1 sequence consisting only of runs of length i and j is (i, j)-sequence e.g., 000 111 000 111111 000
is a (3, 6)-sequence. A sequence consisting of a single run is called monochromatic.

A 0-1 sequence t completely traverses s starting at vertex v if during traversal of s by t starting
at v we visit all the vertices of s. The 0-1 sequence t strongly traverses s starting at v if it
completely traverses s starting at v and for every vertex there is a visit to that vertex which comes
from left and continues to the right, or it comes from right and continues to the left i.e., the vertex
is entered using one edge and left using the other one. (In the singular case of a one vertex cycle
s, t strongly traverses s if t contains at least two consecutive vertices of the same color.) A 0-1
sequence t is a (strong) universal traversal sequence (UTS) for cycles of length n if for any cycle
G of length n, t completely (strongly) traverses G starting at any vertex.

Proposition 1 Let n ≥ 2 be an integer.

1. Any (strong) universal traversal sequence for cycles of length n + 1 is a (strong) universal
traversal sequence for cycles of length n.

2. Any universal traversal sequence for cycles of length n + 2 is a strong universal traversal
sequence for cycles of length n.

Proof: We leave the proof of the first claim as an easy exercise and we prove the second one.
Assume that for some UTS t for cycles of length n + 2 there is a graph G on n vertices and a
vertex v in G such that G is not strongly traversed by t starting at v. By the first part of the
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proposition, G is traversed completely by t starting at v. Thus, there is a vertex u in G which is
not strongly traversed i.e., it is always visited in the way that it is left using the same edge by
which it was entered. Replace u in graph G by three interconnected vertices labeled identically
to u. If u 6= v then clearly the middle inserted vertex is never visited by t starting at v. If u = v
then the middle inserted vertex is never visited by t if t is started at either the rightmost or the
leftmost inserted vertex, depending whether the first digit of t has the same color as u. Both cases
give a contradiction.

�

3 An nO(logn) Universal Traversal Sequence

3.1 A Parity Contraction

Consider running a 1-run t of length l on a 1-run r1 of length n ≤ l starting at a left border vertex
of r1. Assume that r1 is followed by another 0-run r0 (111. . . 111000. . . 000). It is easy to see that
if the parity of l and n are the same then we end up at the left border vertex of r0, otherwise we
end up at the right border vertex of r1. The first n − 1 digits of t bring us to the right border
vertex of r1 and the remaining digits alternate us between the right border vertex of r1 and the
first vertex of r0. By symmetry, we get symmetric behavior for running a 0-run on a 0-run starting
at the left border vertex, and for running a 1-run on a 0-run and a 0-run on a 1-run starting at
the right border vertices. Hence, if the parity of the length of the traversed run corresponds to the
parity of the length of the traversal run we end up at the border vertex of the next run, otherwise
we end up at the opposite border vertex of the same run.

This motivates the following definition. Let s be a non-monochromatic graph sequence. A
parity contraction s⊕ of s is a (1,2)-sequence obtained from s by replacing every run of even
length by a run of length 2 of the same color, and by replacing every run of odd length by a run
of length 1 of the same color. (Keep in mind that sequence s is cyclic.) For example, . . . 111 000
11 0000 1111 0 11 0. . . is parity contracted to . . . 1 0 11 00 11 0 11 0. . . .

More formally, let s be the same as r1r2 · · · rk, where every ri is a monochromatic run and for
every 1 ≤ i < n, ri has an opposite color than ri+1, and r1 and rn have different colors. For every
1 ≤ i ≤ n, let r′i be a run of the same color as ri, and let the length of r′i be one if ri is of an odd
length and two otherwise. Then the parity contraction of s is a sequence r ′1r

′
2 · · ·r′k.

There is a natural mapping of border vertices of original runs to border vertices of reduced
runs. In the case of odd length runs, both border vertices are mapped to the same vertex.

Observe that for traversing a parity contraction it suffices to consider (1,2)-sequences.

Proposition 2 Let s be a non-monochromatic graph sequence of length l, and let s⊕ be its parity
contraction. Let v be a border vertex in s and v⊕ the corresponding border vertex in s⊕. If
a traversal (1,2)-sequence t⊕ strongly traverses s⊕ starting at v⊕ then t, obtained from t⊕ by
inflating every run by l + (lmod 2) vertices, strongly traverses s starting at v.

Proof: First observe that t visits all runs in s in the same order as t⊕ in s⊕. This is because
after every run in t and t⊕, respectively, we are in s and s⊕, respectively, at the corresponding
border vertices. The runs in s⊕ were obtained by removing even number of vertices from runs in
s, and the runs in t⊕ could be obtained by removing even number of vertices from runs in t. The
number of vertices in every run of t guarantees that every run in s is traversed completely starting
at a border vertex and going in direction of the run. Because t⊕ strongly traverses s⊕, during
traversal of s by t we enter at least one border vertex of each run in s and continue to traverse
the whole run. During that traversal we strongly traverse all the vertices of that run.

�
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3.2 A Pair Contraction

Let s be a (1,2)-sequence. We call a 0-run (1-run) of length 2 in s a 00-pair (11-pair). A 0-run and
a 1-run of length 1 are singletons and any maximal part of s consisting of singletons is 01-run. (A
01-run does not necessary start by 0 and end by 1.) Let us consider a graph sequence s containing
a 01-run followed by a 11-pair and another 01-run: 01010 11 0101010101 . . . , and let us consider
a traversal sequence t = 01010101010 11 01010101. . . . Starting t at the first vertex of s, we reach
the left vertex vL of 11-pair after 5 digits of t. The next 1 in t brings us to the right vertex vR of
the 11-pair in s, the following 0 in t takes us back to the vertex vL, and so on. When 11-pair in t
comes we get to the vertex following the 11-pair in s and we continue to run to the right.

If we would use t containing a 00-pair instead of the 11-pair, t = 0101010101 00 101010101.. . ,
again we would first reach the 11-pair in s, but then we would bounce on that 11-pair using the
00-pair in t, and we would go back to the left. By symmetry, the two cases of running t from the
right have the similar behavior.

Thus, if s is a graph (1,2)-sequence and we traverse s by a (1,2)-sequence t then whenever we
reach a pair in s during that traversal we stay at that pair until a pair appears in t and if the
color of the pairs in t and s is the same then after that pair in t, the traversal goes to the right
neighbor of the pair in s otherwise to the left one. Even if several pairs are next to each other in s
not separated by any 01-run, this behavior of the traversal can be observed on each of these pairs.

This motivates the following construction. Let s be a (1,2)-sequence containing at least one
pair. A pair contraction sc of s is a 0-1 sequence obtained from s by first removing all singletons,
and then replacing every pair by one vertex of the same color e.g., 01010 11 010 11 01 00 10. . . is
contracted to 110. . . . Note, the length of sc is at most half of the length of s.

Proposition 3 Let sc be a pair contraction of a (1,2)-sequence s of length l. Let t be a traversal
sequence obtained from a strong traversal sequence tc of sc starting at vc by replacing every 1 by
011(01)dl/2e, and every 0 by 001(01)dl/2e. Then t is a strong traversal sequence for s starting at
the left vertex of a pair corresponding to vc, if vc is colored 0, and at the right vertex of that pair
otherwise.

Proof: Because any 01-run in s must be shorter than l, the 01-runs between consecutive pairs
in t always bring us from one pair in s to another. It is easy to see that t visits pairs in s in the
same order as tc visits corresponding vertices in sc. Thus, all pairs in s get visited by t started at
the vertex specified in the proposition. Because tc strongly traverses sc, every 01-run in s must
be entirely traversed either from left or from right (strong traversal implies traversal of all edges
in sc). Thus t is a complete traversal sequence of s starting at the appropriate vertex. Observe
that it is actually a strong traversal sequence.

�

3.3 Putting Them Together

Propositions 2 and 3 give us a way to construct a universal traversal sequence of length nO(logn).
Having constructed a strong universal traversal sequence tn for cycles of length n, we may construct
a strong UTS t2n for cycles of length 2n using a construction of Proposition 3 and then construction
of Proposition 2 as follows.

We first replace every 1 in tn by 011(01)n and every 0 in tn by 001(01)n as in Proposition 3
to get t−3

2n . Then we prepend (01)n in front of t−3
2n to get t−2

2n , which is a (1,2)-sequence. Now, we
expand every run in t−2

2n by 2n = 2n+ (2nmod 2) vertices as in Proposition 2 to get t−1
2n . Finally,

we prepend 12n in front of t−1
2n to get t2n. We call the prepended sequences (01)n and 12n loaders.

We claim that t2n is a strong UTS for cycles of length 2n. Let s be a graph sequence of
length 2n, let s⊕ be its parity contraction (assuming s is not monochromatic), and let sc be the
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pair contraction of s⊕ (assuming s⊕ contains at least one pair.) Clearly, |sc| ≤ n, so tn strongly
traverses sc starting at any vertex.

Observe that t−2
2n strongly traverses s⊕ starting at any vertex. That is because during traversal

of s⊕ by t−2
2n , loader (01)n brings us to the pair “closest” to the starting vertex in s⊕, and then by

Proposition 3 applied on s⊕, sc, t
−3
2n , and tn, sequence s⊕ is strongly traversed by t−3

2n . (If there is
no pair in s⊕ then the loader of t−2

2n strongly traverses s⊕ by itself.)
Similarly, t2n is a strong traversal sequence for s starting at any vertex. During a traversal of

s by t2n starting at any vertex loader 12n brings us to a border vertex “closest” to the starting
vertex in s (or strongly traverses s), and then by Proposition 2 applied on s, s⊕, t−1

2n and t−2
2n ,

sequence s is strongly traversed by t−1
2n . Hence, t2n is a strong UTS for cycles of length 2n.

We need a strong UTS for cycles of length (let’s say) 5 to start this recursive construction of
UTS’s. Such a sequence can be obtained from any UTS for cycles of length 7 by Proposition 1.

Essentially the same construction of nO(logn) UTS appears in [B].

4 An O(nc) Universal Traversal Sequence

A disadvantage of the previous construction is the super-polynomial length of the produced UTS.
The reason for this length is a pessimism of the construction in two directions. The construction is
pessimistic about the length of runs at each step, and about the number of rounds the construction
has to be repeated.

A possible way how to reduce the overall length of the resulting UTS is to protect us against
appearance of long runs. The way how we achieve this is by introducing two new stages in the
construction which break down long runs. One of these stages takes place before parity contraction
and the other one before pair contraction. The former stage reduces the length of 0-runs and 1-
runs to a constant length, the latter one reduces the length of 01-runs to a constant length. A
consequence of that run length reduction is an expansion of a traversal sequence in Propositions
2 and 3 just by a constant factor.

Both run breaking stages split long runs by inserting extra vertices in them. This actually
increases the length of the graph sequence but in the consecutive contraction stages these increases
are eliminated. The insertion is done in a way which ensures that any generated traversal sequence
behaves on the new graph sequence and on the old one in the same way, i.e., the insertion seems
to be transparent for the traversal sequence.

4.1 1-run and 0-run Breaking

Let us first explicitly define the property of sequences which we implicitly used in Propositions 2
and 3. Let T be a class of 0-1 sequences, and let v be a transitive and reflexive binary relation
on T . We say that v is a prefix relation if ∀x, y ∈ T , x v y implies x is a prefix of y. E.g., let
T3,6 denote the class of all (3,6)-sequences. We define a prefix relation v on T3,6 in the following
way: ∀x, y ∈ T3,6, x v y iff x is a prefix of y which can be obtained from y by removing several
(or possibly none) of the last runs in y. (Hence, 000 v 000 111111, but 000 111 6v 000 111111.)
For a prefix relation v we naturally define a relation � by (x � y ⇔ x v y & x 6= y).

Definition 4 Let s and s′ be graph sequences. Let sequences r and r′ be parts of s and s′,
respectively. Let v and v′ be vertices in r and r′, respectively. Let vl and vr (v′l and v′r) be vertices
in s (s′). (Vertices v and v′ are called input vertices and the other vertices are called output
vertices. Think about them as in Fig. 2.) Let T be a class of traversal sequences, and vT be a
prefix relation on T . Let, for every t ∈ T , vt (v′t) denote a vertex reached by running t on s (s′)
starting at v (v′). We say that t ∈ T behaves the same on r and r′ with respect to input and
output vertices if:
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1. ∀t′ vT t, vt′ is in r and v′t′ is in r′, or

2. ∃t0 vT t such that (vt0 = vl and v′t0 = v′l) or (vt0 = vr and v′t0 = v′r), and ∀t′ � T t0, vt′ is
in r and v′t′ is in r′.

The rough meaning of this definition is that t behaves the same on r and r′ if t keeps us in r
as long as it keeps us in r′ and then it leaves r and r′ at the same time on corresponding vertices.
As soon as t brings us outside of r and r′ we do not worry about it anymore. In that, we are not
looking at positions in s and s′ after every single digit of t but rather after a bigger units given
by v.

v  v
l

v
r

r

s

... ...

v’v’
l

v’
r

r’

s’

......

Figure 2.

The following proposition describes behavior of (3,6)-sequences on short runs. The proof of
that proposition is just an easy case by case analysis, and we leave it as an exercise.

Proposition 5 1. Any (3,6)-sequence started at left border vertices or right border vertices
behaves the same on runs 11, 1111 and 111111, where the output vertices are vertices of the
other color that are adjacent to these runs in graph sequences containing these runs. The
same holds for 00, 0000 and 000000.

2. Any (3,6)-sequence started at left border vertices or right border vertices behaves the same
on runs 1 and 111, where output vertices are as above. The same holds for 0 and 000.

We are going to use the following simple proposition for m equal 3 and 5.

Proposition 6 Let m ≥ 3 be an odd integer. Then for any l > m there is a k and even d such
that 2 ≤ d ≤ 2m and l = mk + d.

Let s be a graph sequence. We replace every run of length five and every run of length longer
than six in s by another sequence to obtain a graph s′ with all runs of short length. The replacement
is done in the following way. Let r be a 0-run or 1-run of length l = 3k + d ∈ {5, 7, 8, 9, . . .}
in s, where k and d are from the previous proposition. If r is a 0-run then we replace it by
r′ = (000 01)k0d otherwise r is a 1-run and we replace it by r′ = (111 10)k1d. We call this
operation 0-run and 1-run breaking (or simply 1-run breaking.) We refer to r as to an original
sequence and to r′ as to a stuffed sequence.

We want to show that that any (3,6)-sequence that (strongly) completely traverses s starting
at a border vertex of some run (strongly) completely traverses also s′ starting at the corresponding
border vertex. To show that we will show that any (3,6)-sequence traverses s and s′ in a similar
way. In particular, we will show that any (3,6)-sequence enters any run in s at the same time
as it enters the corresponding stuffed sequence in s′, and also it leaves them at the same time at
corresponding locations. We will use the following lemma to show that.

Lemma 7 Let s′ be obtained from a non-monochromatic graph sequence s by 1-run breaking. Let
r be a run in s and r′ its corresponding (stuffed) sequence in s′. Let v be the leftmost vertex of r,
and let v′ be the leftmost vertex of r′. Let vl (v′l) be the left neighboring vertex of v (v′), and let
vr (v′r) be the vertex to the right of the rightmost vertex of r (r′) (Fig. 3.) Then every t ∈ T3,6

behaves the same on r and r′ with respect to vertices v, vl, vr and v′, v′l, v
′
r.
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Notice that in the case of graph s containing only two runs vl may actually coincide with vr.
To establish this lemma we’ll show a correspondence between traversals of sequences r and r ′ by
t ∈ T3,6.

Proof: Let the sequences and vertices be as in the statement of the lemma and let l = |r|. If
l ≤ 4 or l = 6 then r = r′ and the lemma is trivial. So let us assume l = 5 or l ≥ 7 and assume
r is a 1-run (the case of a 0-run would be similar, just interchange 0’s and 1’s in the proof). We
are going to number vertices in r from left to right by {0, . . . , l − 1} and to refer to vertices in r ′

as in Figure 3 i.e., there are vertices labeled 0R, 1L, 1M , 1R, 2L, . . . , kM, kR, (k+ 1)L in r′. (Figure
3 explicitly shows the right end of r′ for d = 2, 4, 6.)

If the first run of t is a 0-run then after running this run on r and r ′ we either end up at vl
and v′l, respectively, or back at v and v′, respectively. In the former case the lemma is proven for
t. Thus, for the rest of the proof assume that t starts with 1-run (which actually will always be
the case in application of this lemma).

For any τ ∈ T3,6, define oτ0 , o
τ
1, e

τ
0, e

τ
1 to be the number of odd 0-runs, odd 1-runs, even 0-runs,

and even 1-runs in τ , respectively. Further, define p(τ ) = (oτ1 + 2eτ1)− (oτ0 + 2eτ0). (Note, 3p(τ ) is
a difference between the number of ones and zeroes in τ .) Further, let [τ ] denote the last run in
τ , let τ − 1 denote a sequence obtained from τ by removing [τ ], and let l(t) denote the number of
runs in τ .

Lemma 7 is a consequence of the following lemmas which capture a correspondence between
traversal of r and r′ by t. These lemmas essentially say that during the traversal of r and r′, we
are at vertex 3i in r iff we are at vertex iL, iR, or (i± 1)M in r′.

Lemma 8 Let t ∈ T3,6 be such that t = ε or t starts with a 1-run. If ∀t′ v t; 0 ≤ p(t′) ≤ k + 1
then the following hold:

1. ∀t′ v t, if p(t′) = 0 then [t′] is a 0-run, and if p(t′) = k + 1 then [t′] is a 1-run,

2. if d = 4, 6 then we are at a vertex numbered 3p(t) in r after running t on r starting at v,

3. if d = 2 we are at vertex 3p(t)−δ(t) in r after running t on r starting at v, where δ(t) ∈ {0, 2},
and δ(t) = 2 iff (∃t′ v t; p(t′) = k + 1 and ∀t′′ such that t′ v t′′ v t, p(t′′) > 0).

Proof: Let us prove the first part. Clearly, ∀ε 6= t′ v t, p(t′) 6= p(t′ − 1). By assumption,
∀t′ v t, 0 ≤ p(t′) ≤ k+ 1, so p(t′) = 0 implies p(t′− 1) > 0, hence [t′] has to be a 0-run. Similarly,
p(t′) = k + 1 implies p(t′ − 1) < k + 1, so [t′] has to be a 1-run.

For the second part, if d = 4, 6 then 3(k + 1) ≤ l − 1, and given that 0 ≤ p(t′) ≤ k + 1, for all
t′ v t, we clearly are at vertex numbered 3p(t) in r after running t starting at v (v is numbered
by 0.)

Let us consider the last part i.e., d = 2. We prove the claim by induction on the number c(t)
of t′ v t such that p(t′) = 0 or k + 1. For c(t) = 1 the claim is obvious because p(ε) = 0, so
∀ε 6= t′ v t, 0 < p(t′) < k + 1 and δ(t) = 0, thus 0 < 3p(t′) − δ(t′) < l − 1.

For m > 1, assume that the claim holds for any t ∈ T3,6 with c(t) < m, and let us consider
t ∈ T3,6 such that c(t) = m. There is a t′ v t such that c(t′ − 1) = m − 1 and c(t′) = m. Clearly,
p(t′) = 0 or k + 1. Denote t′ − 1 by t′′.

Consider the case where p(t′) = k + 1. Note, δ(t′) = 2. By the above argument p(t′′) < k + 1,
and also p(t′′) ≥ k− 1, hence p(t′′) is k− 1 or k, depending on whether [t′] are 6 ones or 3 ones. If
δ(t′′) = 2 then we are at vertex 3(k − 1)− 2 (if [t′] = 16) or 3k− 2 (if [t′] = 13) in r after running
t′′ starting at v, and we are at vertex 3(k + 1)− 2 = 3p(t′)− δ(t′) after running the following [t′].

If δ(t′′) = 0 then we are at vertex 3(k − 1) or 3k, resp., in r after running t′′ starting at v.
We are going to run [t′], i.e., 6 or 3 ones, resp., from that vertex. In the case of the last run of t′

being 6 ones, after the first five out of them we reach a vertex vr , and by the last one we return
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to vertex l − 1 of r. The similar thing happens for [t′] being 3 ones. Hence, after running t′ on r
starting at v we are at vertex numbered l − 1 = 3p(t′) − δ(t′) in r.

For every ti ∈ T such that t′ � ti v t, 0 < p(ti) < k + 1, hence 0 < 3p(ti) − δ(ti) < l − 1, and
we are at vertex 3p(ti)− δ(ti) after running ti starting at v. This is true in particular for ti = t.

Now consider p(t′) = 0. Note, δ(t′) = 0. By similar argument as the previous one, after
running t′′ starting at v we are at vertex 3 · 1− δ(t′′) (if [t′] = 03) or 3 · 2− δ(t′′) (if [t′] = 06.) If
δ(t′′) = 0 then after running [t′] from the vertex to which we get by t′′ we are at vertex numbered 0
in r. If δ(t′′) = 2 then after running t′′ we are at vertex 1 or 4, resp. By running [t′] and bouncing
on vertex vl, we get to vertex numbered 0 in r. Note, 3p(t′) − δ(t′) = 0. By the same argument
as before, any t′ � ti v t brings us to vertex numbered 3p(ti) − δ(ti) in r. In particular, t brings
us to vertex 3p(t)− δ(t) starting at v.

�

By the definition of to behave the same, to establish Lemma 7 we just need to consider t such
that, for all t′ � t, after running t′ on r and r′, respectively, we are at vertices inside of r and r′,
respectively.

Lemma 9 Let ε 6= t ∈ T3,6 start with a 1-run. The following are equivalent:

1. ∀t′ � t, we are at a vertex belonging to r after running t′ on r starting at v, and we are at
a vertex outside of r after running t on r,

2. ∀t′ � t; 0 ≤ p(t′) ≤ k + 1 and ((p(t− 1) = 1 and [t] is an even 0-run), or (p(t− 1) = k and
[t] is an even 1-run.))

Proof: By the previous lemma, (2)⇒ (1). Let us prove (1)⇒ (2). If t brings us outside of r
then, by the previous lemma, ∃tm v t such that p(tm) < 0 or p(tm) > k + 1. Take such shortest
tm i.e., tm such that ∀t′ � tm; 0 ≤ p(t′) ≤ k + 1. The previous lemma applies for tm − 1.

If p(tm) < 0 then p(tm − 1) ≤ 1 and [tm] has to be a 0-run, hence [tm − 1] is a 1-run. Thus
p(tm−1) 6= 0 (by the previous lemma), so p(tm−1) = 1 and [tm] is an even 0-run. By the previous
lemma, tm brings us to vertex 3 or 3− δ(tm). In both cases tm brings us to vertex vl.

If p(tm) > k + 1 then [tm] is a 1-run, [tm − 1] is an 0-run, thus p(tm − 1) = k, so [tm] is an
even 1-run, and tm brings us to vertex vr . Hence by the opposite direction of this lemma applied
on tm, tm = t, and the lemma is proven.

�
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Figure 3.

Let us now prove similar two lemmas for traversing r′.

Lemma 10 Let ε 6= t ∈ T3,6 start with a 1-run. If ∀t′ v t; 0 ≤ p(t′) ≤ k+ 1 then by running t on
r′ starting at v:

• we get to vertex (p(t))L iff [t] is an odd 1-run,
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• we get to vertex (p(t))R iff [t] is an odd 0-run,

• we get to vertex (i)M iff (i = p(t)− 1 and [t] is an even 1-run) or (i = p(t) + 1 and [t] is an
even 0-run). Furthermore, 0 < i < k + 1.

Proof: The proof is by induction on l(t). We can easily verify that claim is true for any t such
that l(t) = 1. For m > 1, let us assume that claim is true for any t, such that l(t) < m, and let us
prove it for t such that l(t) = m. Let t′ = t− 1. By induction hypothesis the lemma is true for t′.

If after running t′ on r′ starting at v′ we are at (p(t′))L then [t] has to be a 0-run. If [t] is an
odd 0-run then we get to (p(t′) − 1)R by running t starting at v′, if [t] is an even 0-run we get
to (p(t′) − 1)M by running t starting at v. In the former case p(t) = p(t′) − 1, in the latter one
p(t) = p(t′) − 2 and (i)M = (p(t′)− 1)M = (p(t) + 1)M , hence 0 < i < k + 1.

If after running t′ we are at (p(t′))R then [t] has to be a 1-run, and if it is an odd run then
we get to (p(t))L by running t on r′, otherwise we get to (p(t) − 1)M = (p(t′) + 1)M = (i)M and
0 < i < k + 1.

If after t′ we are at (i)M then either i = p(t′) − 1 and [t] is a 0-run, or i = p(t′) + 1 and [t]
is a 1-run. If [t] is an even 0-run then p(t) = p(t′) − 2 and we are at (i)M = (p(t) + 1)M after t
(0 < i < k + 1,) if [t] is an odd 0-run then p(t) = p(t′) − 1 and we are at (i)R = (p(t))R. If [t] is
an even 1-run we are at (p(t) − 1)M = (i)M after running t and 0 < i < k + 1, otherwise we are
at (p(t))L.

Notice that there are no other possibilities. That establishes the lemma.
�

Lemma 11 Let ε 6= t ∈ T3,6 start with a 1-run. The following are equivalent:

1. ∀t′ � t, we are at a vertex belonging to r′ after running t′ on r′ starting at v′, and we are at
a vertex outside of r′ after running t on r′,

2. ∀t′ � t; 0 ≤ p(t′) ≤ k + 1 and ((p(t− 1) = 1 and [t] is an even 0-run), or (p(t− 1) = k and
[t] is an even 1-run.))

Proof: Again, (2)⇒ (1) follows from the previous lemma. (Note, if p(t− 1) = 1 and [t] is an
0-run then [t − 1] can be neither an even 1-run nor a 0-run. The former case would imply that
p((t − 1) − 1) < 0, the latter one that [t] is a 1-run. Hence, after running t − 1 we are at 1L.
Similarly, if p(t− 1) = k and [t] is an even 1-run then we are at kR.)

(1) ⇒ (2) follows by a similar argument as lemma 9. Let tm v t be such that p(tm) < 0 or
p(tm) > k + 1, and ∀t′ � tm; 0 ≤ p(t′) ≤ k + 1. (Such tm must exists by the previous lemma.)

If p(tm) < 0 then p(tm−1) ≤ 1, [tm] is a 0-run, [tm−1] is a 1-run, hence p(tm−1) = 1, [tm−1]
must be an odd 1-run and [tm] must be an even 0-run. Thus, tm brings us to vertex v′l.

Similarly, if p(tm) > k + 1 then [tm] is a 1-run, p(tm − 1) = k, [tm − 1] is an odd 0-run and
tm is an even 1-run. Thus, tm brings us to vertex v′r. Therefore by the opposite direction of this
lemma applied on tm, tm = t, and the lemma is proven.

�

To conclude Lemma 7 notice, that p(t) depends only on t, but neither on r nor on r ′. Hence,
Lemma 7 follows from Lemmas 9 and 11.

�

Further, we can establish an equivalent of Lemma 7 for traversal from right, i.e., claim that
any (3,6)-sequence t behaves the same on original sequence r and stuffed sequence r ′ starting at
their rightmost vertices (instead of the leftmost ones), where output vertices are as in Lemma 7.

The proof of such a claim would be entirely symmetric to the proof of Lemma 7 except for the
fact that the rightmost run of the stuffed sequence has length 2, 4, or 6 depending on d. (Propo-
sition 5 tells us that this really does not make any difference for traversal by (3,6)-sequences.)

Vertices in r would be numbered by {0, . . . , l − 1} from the right, and labels of vertices in r ′

would be interchanged in the following way: (k+1)L ↔ 0R, (i)L ↔ (k+1−i)R, (i)R ↔ (k+1−i)L,
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(i)M ↔ (k + 1 − i)M , for 1 ≤ i ≤ k (Fig. 4.) Then, Lemmas 8, 9, and 11 would be exactly the
same. The only difference would be in Lemma 10 for the case of d = 6. Because vertex v′ is not
labeled by 0R, we would need to assume w.l.o.g. that the first run of t is an even run to get to a
labeled vertex. (The case of t beginning with an odd run can be reduced to the case of t beginning
with an even run.)

   r’   . . . 000 111 10 111 10 111 10  . . .  0 111 1 11 000  . . .

01k
LR M

v’ v’v’
lr

k+1
L LR M R M L RM

k-1 k-2

Figure 4.

We may conclude that any (3,6)-sequence behaves the same on the original and stuffed se-
quences if started at the first or last vertices and with respect to output vertices being the neigh-
boring ones.

Let us state a lemma which relates traversal of s and s′ obtained from s by 1-run breaking.

Lemma 12 Let s′ be obtained from a non-monochromatic graph sequence s by 1-run breaking. Let
v be a border vertex of some run in s and let v′ be its corresponding vertex in s′. Let (3,6)-sequence
t strongly traverse s′ starting at v′. Then t, starting at v, completely traverses s, and all vertices
in s except possibly v are strongly traversed.

Proof: Because t behaves the same on original runs in s as on the corresponding stuffed runs
in s′, t traverses all runs in s in the same order as it traverses the corresponding stuffed sequences
in s′. Thus, we only need to argue that for any run r in s and its corresponding stuffed sequence
r′ in s′, if all vertices in r′ are strongly traversed during traversal of s′ by t, then all vertices in r
but v are strongly traversed during traversal of s by t, too.

If r = r′ then there is nothing to prove. (Note, bouncing at a vertex during traversal of
a neighboring stuffed sequence does not constitute a complete traversal of that vertex, so there
must be some run in t which starts its running in r and r′, respectively.) Let us assume r 6= r′

and let |r| = l = 3k+ d, for d ∈ {2, 4, 6}.
If there is a (3,6)-subsequence2 t′ of t which during traversal of s′ by t starts to run on r′ at

the leftmost vertex of r′ and which leaves r′ at the right neighboring vertex of r′, or which runs on
r′ starting at the rightmost vertex and which leaves r′ at the left neighboring vertex of r′, then,
by Lemmas 8 and 10, during traversal of s by t, subsequence t′ traverses r in exactly the same
manner i.e., it starts in r at one side and leaves r on the other side. Clearly, all the vertices of r
are strongly traversed during traversal by t′. (The possible exception is if t′ is a prefix of t and t′

starts running at v then v may not be strongly traversed by t′.)
If such a (3,6)-subsequence t′ does not exist, let tl be a (3,6)-subsequence of t which during

traversal of s′ by t starts its traversal of r′ at the leftmost vertex of r′ and traverses r′ furthest to
the right among all such subsequences. Similarly, let tr be a (3,6)-subsequence which traverses r′

from right furthest to the left. It is not obvious that tr and tl exist. We will show that tl always
exists, and that tr exists if d 6= 2.

Suppose that tl does not exist. Vertex 0R in r′ has to be strongly traversed, hence it has to be
strongly traversed from the right. That means, in tr there must be a run of length 6 running from
1L. But that run ends outside of r′, thus, tr has a property of sequence t′ which is a contradiction.
Therefore tl always exists. For d ∈ {4, 6}, tr has to exist by similar argument. (If d = 2, the

2t′ is obtained from t by removing complete runs from the beginning of t and from the end of t.
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argument for existence of tr fails because the rightmost vertex of r′ might be strongly traversed
from the left by tl using a run of length 3.)

Let ul be the furthest labeled vertex to the right strongly traversed by tl in r′. If ul is 0R or
1L then tr has to exist to strongly traverse 1M . By Lemmas 8 and 10, tl traverses vertices 0, . . . , 3
in r, so it strongly traverses vertices 0, . . . , 2 in r. By Lemmas 8 and 10 modified for traversal
from right, tr has to visit vertices 0, . . . , 3(i+ 1) numbered from right in r, where i = (k+ 1)− 1,
in order to traverse vertex 1M (which is s vertex (i)M labeled from right). (Lemmas 8 and 10 are
applicable because tl and tr have to start with a run of appropriate color.) Hence, tr strongly
traverses 3(k + 1) vertices from right in r, and tl along with tr strongly traverse all vertices.

If ul is neither 0R nor 1L, let il be the largest i such that tl strongly traverses (i)M during its
traversal in r′. Thus, tl has to strongly traverse vertices 0, . . . , 3(il + 1) − 1 in r. If il = k and
d = 2 then all vertices in r are traversed strongly by tl. If il = k and d = 4, 6, then tr has to
exist and must strongly traverse at least three rightmost vertices of r. Hence, tl and tr strongly
traverse altogether 3(k + 2) ≥ l vertices in r (for d = 4 some of them twice), therefore all vertices
in r are strongly traversed.

If il < k then tr must exist, and let ir be the largest i such that (i)M is reached by tr
in r′ (labeled right-to-left.) Clearly, (k + 1) − ir ≤ il + 1. By Lemmas 8 and 10, tl strongly
traverses vertices 0, . . . , 3(il + 1)− 1 in r (labeled left-to-right) and tr strongly traverses vertices
0, . . . , 3(ir + 1) − 1 in r (labeled right-to-left). Thus, they strongly traverse at least 3(il + 1) +
3((k + 1)− (il + 1) + 1) ≥ l vertices in r.

Note, in all these cases the first and last vertices of r are traversed strongly because t has to
run “around” s to get from one end of r to the other one in between tl and tr .

Hence, in all cases, all vertices in s except possibly v are strongly traversed.
�

Let s and s′ be as in the statement of Lemma 12. Let t be a traversal (3,6)-sequence which
strongly traverses s′ starting at any vertex. Let sequence t′ be obtained from t by prepending a
run w (called a “loader”) of length |s| of opposite color than the first run of t. Then, t′ strongly
traverses s starting at any vertex.

Clearly, if we run t′ on s starting at any vertex then w brings us to a border vertex v in s
and t starts to run from that border vertex. By the previous lemma, all vertices in s are strongly
traversed by t but vertex v. However, v is also traversed strongly because of w followed by t.

We conclude that stuffing long runs of 0’s and 1’s is transparent for (3,6)-traversal sequences.
We presented the analysis explicitly for (3,6)-sequences but essentially identical analysis can be
carried out for any (2i + 1, 4i + 2)-sequence, for i ≥ 1, where we stuff long runs every (2i + 1)
vertices. The reason for choosing (3,6)-sequence in this step is the optimality of resulting sequence
with respect to other possible choices.

Let s′ be a (1,2)-sequence and t′ be a strong traversal sequence of s′ starting at a vertex v′.
We say that t′ extra strongly traverses s′ if every pair in s′ is traversed by t′ in such a way that it
is entered from outside at one border vertex, walked back and forth on it and then left through
the other border vertex.

Lemma 13 Let s be a non-monochromatic graph sequence with every run of length from {1, 2, 3, 4, 6}.
Let s⊕ be the parity contraction of s. Let v be a border vertex in s, and v⊕ its corresponding vertex
in s⊕. Let t⊕ be an extra strong traversal (1,2)-sequence of s⊕ starting at v⊕. Then t, obtained
from t⊕ by replacing every run of length 1 by run of length 3, and every run of length 2 by run of
length 6, completely traverses s starting at v.

Proof: First observe that t started on s at v traverses all runs of s in the same order as t⊕
started on s⊕ at v⊕. This is because any (3,6)-sequence has the same behavior on runs of length
2,4 and 6, and on runs of length 1 and 3, and these are the only lengths that may appear in s.
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Now notice that t traverses s completely. It is easy to see that because of the strong traversal
of s⊕ by t⊕, all vertices in s of runs no longer than 4 are traversed completely (and strongly) (use
the same argument as in Proposition 2.)

Let us consider a run r in s of length 6. Its parity contraction is a pair r⊕ in s⊕, vertices of
which are extra strongly traversed. Hence, there is a run of length 6 in t which runs starting at
one border vertex of r, traverses all vertices of r and leaves on the other end of r. Clearly, all
vertices in r are strongly traversed.

�

Note, if s′ is obtained from a non-monochromatic graph sequence s by 1-run breaking, and s⊕
is obtained from s′ by parity contraction, then the length of s⊕ is at most the length of s. (During
1-run breaking we insert 10 and 01 after every three 1’s and 0’s, respectively. Two of these vertices
are always removed by parity contraction.)

Let t⊕ be a (1,2)-sequence which extra strongly traverses any graph (1,2)-sequence of length
|s| starting at any vertex. W.l.o.g. the first vertex in t⊕ has color 0. Let t′ be obtained from
t⊕ by the construction from Lemma 13, and let t be obtained from t′ by prepending a loader
1|s|. Then t strongly traverses s starting at any vertex. Moreover, t is a strong UTS for cycles
of length |s|. (If t is started at any vertex in s then it first reaches a border vertex in s by the
loader (or s is strongly traversed if s is monochromatic.) Call that vertex v. There is a vertex v ′

in s′ corresponding to v, and a vertex v⊕ in s⊕ corresponding to v′. By Lemma 13, s′ is strongly
traversed by t′ starting at v′, therefore, s is strongly traversed by t starting at any vertex, using
Lemma 12 and a remark following it.)

4.2 01-run Breaking

This stage is aimed at breaking down long 01-runs. The method used here for breaking long
01-runs shares the same spirit with the previous method of breaking 0-runs and 1-runs. Because
of that the substance of the proof of correctness of this stage is identical to the proof of correctness
of the previous stage but the objects are different. Hence, instead of presenting here the full proof,
which would be merely a rephrasing of previous one, we point out the common elements among
these two stages and state the appropriate lemmas. Let us first describe this stage.

A (5,10)-01-sequence is a (1,2)-sequence in which every two consecutive pairs are separated by
a 01-run and every 01-run is of length five or ten. Note, a 01-run between consecutive pairs of the
same color always has odd length, and a 01-run between pairs of different colors always has even
length. Therefore, in any (5,10)-01-sequence pairs of the same color are separated by 01-runs of
length five and pairs of different colors are separated by 01-runs of length ten.

Let s be a graph (1,2)-sequence containing at least one pair. We replace every 01-run in s
of length l ∈ {7, 9, 11, 12,13,14, . . .} by a stuffed sequence r′ according to the following table.
Let l = 5k + d as in Proposition 6. Let r0 = 01010, r1 = 10101, r′0 = 01010 100100, and
r′1 = 10101 011011.

k even k odd
(r0r1)k/2(01)d/2 → (r′0r

′
1)k/2(01)d/2 (r0r1)(k−1)/2r0(10)d/2 → (r′0r

′
1)(k−1)/2r′0(10)d/2

(r1r0)k/2(10)d/2 → (r′1r
′
0)k/2(10)d/2 (r1r0)(k−1)/2r1(01)d/2 → (r′1r

′
0)(k−1)/2r′1(01)d/2

Hence, we insert 011011 and 100100, alternatively, every five vertices in r. Observe that the
first stuffing that is inserted in r is 011011 iff the pair ending r on the left is a 00-pair, and the
last stuffing that is inserted in r is 011011 iff the pair ending r on right is a 00-pair. Thus, all
01-runs in stuffed sequence r′ are of even length less or equal to ten.

Similarly to the previous 1-run breaking stage we want to argue that a (5,10)-01-sequence t
behaves the same on the original and on the stuffed sequence with respect to particular input and
output vertices.
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Let T5,10 be the class of (5,10)-01-sequences starting with a 01-run and ending with a pair. Let
ε ∈ T5,10. Let a prefix relation v on T5,10 be defined by x v y iff x is a prefix of y.

Lemma 14 (≈7) Let s′ be obtained from a graph (1,2)-sequence s, that contains at least one
pair, by 01-run breaking. Let r be a 01-run in s and r′ its corresponding (stuffed) sequence in s′.
Let v be the leftmost vertex of r, and let v′ be the leftmost vertex of r′. Let vl (v′l) be the vertex
immediately to the left of the pair that is neighboring r (r′) on the left, and let vr (v′r) be the vertex
just to the right of the pair that is neighboring r (r′) on the right (Fig. 5.) Then every t ∈ T5,10

behaves the same on r and r′ with respect to vertices v, vl, vr and v′, v′l, v
′
r.

A proof of this lemma goes along the same lines as the proof of Lemma 7. Therefore, we will
not present the full proof but rather we will present statements of the necessary lemmas which
correspond to lemmas in the proof of Lemma 7. Lemma 14 follows from them in a similar way.

Proof of Lemma 14 (sketch): For the proof, we assume that r 6= r′, otherwise the lemma
is trivial, we set l = |r|, and l = 5k + d as in Proposition 6. We number vertices in r from left
to right by {0, 1, . . . , l − 1}, and we refer to vertices in r′ as in Figure 5 i.e., there are vertices
labeled 0R, 1L, 1M , 1R, 2L, . . . , kM , kR, (k + 1)L in r′. (The vertex labeled (k + 1)L is the sixth
vertex from the left of the last 01-run, for d ∈ {6, 8, 10}, and it is the rightmost vertex of that
01-run otherwise.) For the rest of the proof we may assume that t and r start with the vertex of
color 1. (This corresponds to assumption that r is a 1-run and t starts with a 1-run in the proof
of Lemma 7.)

For any τ ∈ T5,10 let us call any 01-run in τ , which is preceded by an odd number of pairs, an
even positioned 01-run (e.p. 01-run) and let us call a 01-run, which is preceded by an even number
of pairs, an odd positioned 01-run (o.p. 01-run.) (Even positioned 01-runs correspond to 0-runs,
and odd positioned 01-runs correspond to 1-runs in t in the proof of Lemma 7.) Let [τ ] denote
the last 01-run in τ , let τ − 1 denote a sequence which is obtained from τ by removing [τ ] and the
last pair in τ , and let l(t) denote the number of 01-runs in τ .

Define oτ0 , o
τ
1, e

τ
0 , e

τ
1 to be the number of odd e.p. 01-runs, odd o.p. 01-runs, even e.p. 01-runs,

and even o.p. 01-runs in τ , respectively. (Notice, l(τ ) = oτ0 + oτ1 + eτ0 + eτ1 .) Further, define
p(τ ) = (oτ1 + 2eτ1)− (oτ0 + 2eτ0).

Now we state the lemmas which describe a traversal of r by t.

Lemma 15 (≈8) Let t ∈ T5,10 be such that t = ε or t starts with a vertex of color 1. Let
∀t′ v t; 0 ≤ p(t′) ≤ k + 1. Then the following hold:

1. ∀t′ v t, if p(t′) = 0 then [t′] is an e.p. 01-run, and if p(t′) = k+ 1 then [t′] is an o.p. 01-run,

2. if d = 6, 8, 10 then we are at a vertex numbered 5p(t) in r after running t on r starting at v,
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3. if d = 2, 4 then we are at vertex 5p(t) − δd(t) in r after running t starting at v, where
δd(t) ∈ {0, 6 − d}, and δd(t) 6= 0 iff (∃t′ v t; p(t′) = k + 1 and ∀t′′ such that t′ v t′′ v t,
p(t′′) > 0).

The first two parts of this lemma are easy to verify. You can show the third part of the lemma
by an induction on the number of t′ v t such that p(t′) = 0 or k + 1, similarly to the proof of
Lemma 8.

Lemma 16 (≈9) Let ε 6= t ∈ T5,10 start with a vertex of color 1. The following are equivalent:

1. ∀t′ � t, we are at a vertex belonging to r after running t′ on r starting at v, and we are at
a vertex outside of r after running t on r,

2. ∀t′ � t; 0 ≤ p(t′) ≤ k+ 1 and ((p(t− 1) = 1 and [t] is an even e.p. 01-run), or (p(t− 1) = k
and [t] is an even o.p. 01-run.))

The proof of this lemma is based on the previous lemma and is essentially identical to the
proof of Lemma 9.

The following two lemmas describe a traversal of r′ by t.

Lemma 17 (≈10) Let ε 6= t ∈ T5,10 start with a vertex of color 1. If ∀t′ v t; 0 ≤ p(t′) ≤ k + 1
then by running t on r′ starting at v:

• we get to vertex (p(t))L iff [t] is an odd o.p. 01-run,

• we get to vertex (p(t))R iff [t] is an odd e.p. 01-run,

• we get to vertex (i)M iff (i = p(t)− 1 and [t] is an even o.p. 01-run) or (i = p(t) + 1 and [t]
is an even e.p. 01-run). Furthermore, 0 < i < k + 1.

This lemma can be proven by an induction on l(t), similarly to the proof of Lemma 10.

Lemma 18 (≈11) Let ε 6= t ∈ T5,10 start with a vertex of color 1. The following are equivalent:

1. ∀t′ � t, we are at a vertex belonging to r′ after running t′ on r′ starting at v′, and we are at
a vertex outside of r′ after running t on r′,

2. ∀t′ � t; 0 ≤ p(t′) ≤ k+ 1 and ((p(t− 1) = 1 and [t] is an even e.p. 01-run), or (p(t− 1) = k
and [t] is an even o.p. 01-run.))

The proof of this lemma is based on the previous lemma and is essentially identical to the
proof of Lemma 11. The conclusion of the proof of Lemma 14 is now the same as of the proof of
Lemma 7.

�

We state the following proposition a proof of which is trivial hence, omitted.

Proposition 19 (≈5) 1. Any sequence in T5,10 started at the leftmost vertices or rightmost
vertices behaves the same on sequences 10, 10 10, 10 10 10, 10 10 10 10, and 10 10 10 10 10,
where the output vertices are vertices that are neighbors of the surrounding pairs in graph
sequences containing these sequences (similarly to Lemma 7.) The same holds for negated
sequences.

2. Similarly, any sequence in T5,10 behaves the same on sequences 1, 101 and 10101, where
input and output vertices are as above. The same holds for negated sequences.
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Similarly to the case of Lemma 7 we could now state a lemma that would deal with traversal
of r and r′ by t starting at the rightmost vertices of r and r′, respectively. All Lemmas 15 – 18 can
be shown to be valid for such a traversal if r and r′ are numbered from the right instead of from
the left. The only minor difference would be in Lemma 17. For the case of d = 8 or 10, it would
be necessary to assume (w.l.o.g.) that t begins with a 01-run of length ten. (This requirement is
similar to the requirement that t begin with an even 1-run in the modification of Lemma 10 for
traversals starting at the rightmost vertices of r and r′, respectively, which is necessary because
the traversal does not start at a labeled vertex.)

Based on the previous lemmas it is possible to establish the following statement.

Lemma 20 (≈12) Let s′ be obtained from a graph (1,2)-sequence s containing at least one pair
by 01-run breaking. Let t be a traversal (5,10)-01-sequence ending with a 01-run of length ten. Let
v be the left vertex of some pair in s if that pair has the same color as the first vertex of t, or let
v be the right vertex of that pair otherwise. Let v′ be the vertex corresponding to v in s′. If t extra
strongly traverses s′ starting at v′ then t extra strongly traverses s starting at v.

Proof: First observe that t traverses s in similar way as s′, in particular, a pair in s is extra
strongly traversed during traversal by t whenever its corresponding pair in s′ is extra strongly
traversed. The first pair in t brings us in s and s′, respectively, outside of the pair containing v
and v′, respectively. In both sequences we get either to the left neighbor of that pair or to the right
neighbor, and that vertex is either a vertex of a pair or a vertex of a 01-run in both sequences.
(A 01-run breaking never inserts a pair next to another pair, so such a pair must exist in both
sequences.) In the former case we can apply an induction on the length of t to conclude that t
traverses s and s′ in similar way. In the latter case we can use the fact that a (5,10)-01-sequence
starting with a 01-run and ending with a pair i.e., a sequence from T5,10, behaves the same on a
01-run and its corresponding stuffed sequence, and then again use the induction on the length of
t.

Hence, all pairs in s are extra strongly traversed by t starting at v. Using an argument similar
to the one in the proof of Lemma 12, because all vertices in s′ are strongly traversed by t, all
vertices in 01-runs in s are strongly traversed, too. (t starts the traversal on a vertex belonging to
a pair which is strongly traversed by t, so the exception of the starting vertex not to be strongly
traversed does not occur here.)

�

We conclude this section with the following lemma.

Lemma 21 Let s be a (1,2)-sequence containing at least one pair with every 01-run having length
in {1, 2, 3, 4,5,6,8, 10}, and let sc be the pair contraction of s. Let tc be a strong traversal sequence
of sc starting at the vertex vc corresponding to some pair in s. Let v be the left vertex of that pair
if the color of that pair is the same as the color of the first vertex in tc, or let v be the right vertex
of that pair otherwise. Let t be obtained from tc using the following rules:

vertex replace by
0 followed by 0 00 10101
0 followed by 1 (or nothing) 00 1010101010
1 followed by 1 11 01010
1 followed by 0 (or nothing) 11 0101010101

Then t extra strongly traverses s starting at v.

Proof: We want to argue that t traverses pairs in s in a similar order as tc traverses vertices
in sc, in particular, if va0 , va2 , . . . , val is a sequence of vertices in sc as traversed by tc, l = |tc|,
then a sequence of pairs in s as traversed by t can be written as pai0 , pai2 , . . . , pail′

, where pair pi
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corresponds to vertex vi in sc, i0 = 0, for all 1 ≤ j ≤ l′, ij = ij−1 + 1 or ij−1 + 2, and il′ = l or
l − 1.

Let us consider the following cases occurring during the traversal of s and sc by t and tc,
respectively. In all four considered cases let us assume that we reached a vertex uc colored 1 in sc
and its corresponding pair in s during these traversals. Let us further assume that the next digit
in tc is 1 and the digit following it has color c. Hence we assume, in t there is going to be 11(01)5

or 11 01010 (depending on c.) Let uRc denote the right neighbor of uc in sc.
If uRc has color 1 then pairs corresponding to uc and uRc in s are separated by a 01-run of odd

length, i.e., of length at most five. Thus the digit 1 in tc brings us to uRc , and the 11-pair followed
by a 01-run in t brings us to a pair corresponding to uRc in s.

If uRc has color 0 then pairs corresponding to uc and uRc in s are separated by a 01-run of even
length at most ten (or they are separated by an empty string.) If c is 0 then there is 11(01)5

followed by a 00-pair in t. In that case, the digit 1 in tc brings us to vertex uRc in sc, and
11(01)5 in t brings us to the pair corresponding to uRc in s. If c is 1 then there is 11 01010 11(01)5

or 11 01010 11 01010 in t. Digit 1 followed by the other digit 1 in tc brings us first to uRc and
then back to uc in s. Similarly, 11 01010 11(01)5 and 11 01010 11 01010 in t bring us to the pair
corresponding to uc in s, where the pair in s corresponding to uRc may (but need not) be visited
during that.

If uc and tc are of different colors than that we have considered the behavior is symmetric.
Hence we may conclude that pairs in s are traversed in the same order as the corresponding

vertices in sc, but some pairs in s may occasionally not be visited by t during the traversal.
However, if a vertex in sc is traversed strongly then the corresponding pair in s is (extra strongly)
traversed at the same time. Because all vertices in sc are strongly traversed, all pairs in s are
extra strongly traversed.

The extra strong traversal of pairs in s means that we have to reach every pair from the left
or right, respectively, and then leave it to the right or left, respectively. In particular, if a pair
in s has neighboring 01-runs, at least five of the neighboring vertices (or fewer if the 01-runs are
shorter than five) in each of these runs are traversed during the extra strong traversal of that pair.
Actually, these vertices are all traversed strongly because the 01-runs in t, which traverse them,
are preceded and followed by pairs. Because every 01-run in s has length at most ten and has
neighboring pairs on both sides, all vertices in 01-runs are traversed strongly. Hence, s is extra
strongly traversed.

�

Note, if s′ is obtained from a graph (1,2)-sequence s containing at least one pair by a 01-run
breaking, and sc is obtained from s′ by a pair contraction, then |s| ≥ 2|sc|. (During the 01-run
breaking we insert 2 pairs at most every five singletons, where all singletons are removed by the
pair contraction, and every pair is reduced by half.)

Let tc be a UTS for cycles of length d|s|/2e. W.l.o.g. the first vertex in tc has color 1. Let t′ be
obtained from tc by the construction from Lemma 21, and let t be obtained from t′ by prepending
a loader 0(10)b|s|/2c. Then t extra strongly traverses s starting at any vertex. Moreover, t extra
strongly traverses any graph (1,2)-sequence of length |s|. (If t is started at any vertex in s then it
first reaches some pair in s by the loader. Let v be a vertex of that pair to which we get by the
loader. There is a vertex v′ in s′ corresponding to v, and a vertex vc in sc corresponding to the
pair containing v. By Lemma 21, s′ is extra strongly traversed by t′ starting at v′, therefore, by
Lemma 20, s is extra strongly traversed by t′ starting at v, hence is extra strongly traversed by
t.)

We choose here to stuff 01-runs every 5 singletons. Similarly to the 1-run breaking stage, we
could choose to stuff 01-runs every 2i+1 singletons, for i ≥ 1, and use for traversal a (2i+1, 4i+2)-
01-sequence.
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4.3 The Construction

Lemmas 21, 20, 13, and 12 combine to give a construction that converts a strong UTS for cycles
of length m into a strong UTS for cycles of length 2m. This is presented explicitly in step 3 of the
algorithm below.

Here is the algorithm constructing a UTS for cycles of length n. Let k = dlog2 ne.
The Algorithm:

1. Let t0 be a strong UTS for cycles of length 6, that starts with a vertex of color 1.

2. Apply the construction of Proposition 3 to t0 to obtain a sequence t′1, and attach in front of
t′1 sequence 0(10)6 to get t1.

3. For i = 1, . . . , k − 1, construct a sequence t′i+1 from ti by applying the following rules:

replace by
a 00-pair [00 10101]5 00(10)5

singleton 0 [00 10101]2 00(10)5

a 11-pair [11 01010]5 11(01)5

singleton 1 [11 01010]2 11(01)5

Prepend loader 0(10)6·2i[11 01010]6·2
i

11(01)5 in front of t′i+1 to get a sequence ti+1. (This
step is a composition of the constructions from Lemmas 13 and 21.)

4. Apply the construction of Lemma 13 to tk to obtain a sequence t′, and attach sequence 1n

in front of t′ to get a sequence t.

Sequence t produced by this algorithm is a universal traversal sequence for cycles of length n.
There is a uniform NC1 circuit that, given 1n, will construct the UTS for cycles of length n.

Let us analyze this algorithm. Note that t1, . . . , tk are (1,2)-sequences. Also note that the
sequences by which we replace individual pairs and singletons start and end by vertices of the
same color as the replaced pairs and singletons. That means that there never appears a new pair
consisting of one vertex from one replacement sequence and the other one from the next sequence.
Thus, the replacement process is essentially “context free”. We can describe the replacement
process by context free grammar in which there is a single variable for a whole pair of each color
and a single variable for a singleton of each color. Hence, we can associate with the output sequence
a derivation tree implicitly created by the algorithm.

That derivation tree has essentially degree bounded by 41, except for the nodes that correspond
to loaders and the root corresponding to t1. Note that loaders may appear only on the left
side of the tree and the parse tree leading to the loaders can have degree 2. Hence, we may
represent a path from root to any leaf by a vector < a1, a2, . . . , ak+1,m >, where 0 ≤ a1 ≤ lt1 ,
a2, . . . , ak ∈ {0, 1, . . ., 41}, ak+1 ∈ {0, . . . , 6}, and 1 ≤ m ≤ 48 · 2k + 12, where lt1 denotes the
length of t1. The a1, . . . , ak+1 denote the index number of the descendant node among its siblings,
where ai = 0 has a special meaning. If a1, . . . , aj are all zeros, for some j, and all the other ai’s
are non-zero then that vector corresponds to a path going through m-th descendant of a loader
at (j + 1)-th level.

Observe that there are many vectors which actually do not correspond to any path. Any
vector where ai 6= 0 and ai+1 = 0, for some i, is illegal. Also not every node necessarily has 41
descendants, singletons have only 23 descendants. In any case we can test the legality of a given
vector in NC1 with respect to n (the length of the vector is logarithmic in n, hence a deterministic
traversal of the vector is even DLOGTIME(n).)
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Thus, there is an NC1 algorithm which computes the path vector for any leaf of the derivation
tree given index i of the leaf. (For every vector we can compute by brute force the number of
invalid vectors lexicographically preceding it. By comparing this number with i we may decide
which vector is the one which we are looking for. The lexicographical order has to appropriately
take m into account.) From the path vector we may easily compute the value of i-th bit by
DLOGTIME(n) algorithm.

5 The Analysis

Let f(i) denote the number of nodes at the i-th level in the derivation tree associated with a
traversal sequence produced by the algorithm. (Every internal node in that tree corresponds
either to a pair or to a singleton, leaves correspond to single vertices.) A rough analysis of the
algorithm gives us a recurrence f(i+ 1) ≤ 41f(i) + 48 ·2i + 12. By solving this recurrence, at level
k = dlog2 ne of the tree there are O(nlog2 41) = O(n5.358) nodes. At step 4 of the algorithm every
node of the tree is expanded to 3 or 6 vertices. Thus the total length of the universal traversal
sequence generated by the algorithm is O(n5.358).

By slight modification of the algorithm and more careful analysis we may show that only
k′ = 2dlog5 ne ≤ 2 + log√5 n iterations of step 3 are necessary, and that the number f ′(i) of nodes
at the i-th level of the derivation tree associated with the produced sequence satisfies recurrence
f ′(i + 1) ≤ 25.635f ′(i) + 48 · 4i + 12. By solving the recurrence we get that the length of the
produced sequence is O(nlog√5 25.635) = O(n4.031).

5.1 The Modified Algorithm

We have to slightly modify the algorithm to get the better bound. The modification is to replace 2i

by 4i in the loader of ti+1 in step 3 of the algorithm, so to use the loader 0(10)6·4i[11 01010]6·4
i

11(01)5

instead. This modification is necessary because we want to argue that a graph sequence shrinks to
1/
√

5 of its length by contractions (to 1/5 every two iterations) and not only to 1/2. The loader
has to be long enough to traverse the whole graph sequence, thus its length has to correspond to
the length of the traversed sequences at the given iteration of the algorithm ((

√
5)i ≤ 4i).3

Proposition 22 For i = 1, . . . , k, let pi and si denote the number of pairs and singletons, respec-
tively, in ti. Then pi

pi+si
< 6

41 .

Proof: By construction, t′1 contains one pair per 7 singletons. The loader attached to t′1 to
get t1 can only lower the ratio of pairs. Thus, p1

p1+s1
≤ 1

8 <
6
41 .

For i = 1, . . . , k − 1, t′i+1 is obtained from ti by replacing singletons and pairs according to
rules specified in step 3 of the algorithm. The ratio of pairs is 6

41 in the replacement for pairs, and
3
23 in the replacement for singletons. The ratio of pairs is at most 1

8 in the loader attached to t′i+1

to get ti+1. Hence, pi+1

pi+1+si+1
< 6

41
.

�

By the proposition, ti contains fraction of at most 6
41 of pairs, i = 1, . . . , k. That means

that at the i-th level in the derivation tree there is a fraction of at most 6
41

of nodes having 41
descendants, whereas the remaining nodes have only 23 descendants. Thus on average, there are
at most 41 · 6/41 + 23 · 35/41

.
= 25.635 of descendants per node. Thus we obtain the recurrence

f ′(i + 1) ≤ 25.635f ′(i) + 48 · 4i + 12 for the number of nodes at the i-th level.

3We could use 3i instead of 4i as well, but for the sake of uniformity it is better to use 4i.
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5.1.1 The Shrinking Factor

We want to show that a graph sequence s2
c obtained from an arbitrary graph sequence s by

repeating the sequence of operations (1-run breaking, parity contraction, 01-run breaking, pair
contraction) twice has length at most one-fifth of the length of s. We are going to use the following
lemmas.

Lemma 23 Let s be a graph sequence and let a (1,2)-sequence s⊕ be obtained from s by a 1-run
breaking and a parity contraction. Then there is a 1-1 mapping of vertices in s⊕ into vertices of
s, which preserves order of vertices and which maps every pair in s⊕ to two neighboring vertices
of the same color in s.

By preserving the order of vertices we mean that images of any three vertices are in the same
left-to-right order as their pre-images. A proof of this lemma follows from Figure 6-a),b),c). Notice,
any vertex colored 1 in s⊕, which comes from 01 stuffing of some 0-run, is always surrounded by
00-pairs in s⊕, hence it cannot form a pair with neighboring vertices. Similarly, any vertex colored
0 coming from 10 stuffing of some 1-run cannot form a pair with its neighbors. The cases a) and
b) in Figure 6 occur only for runs having length in {1, 2, 3, 4, 6}.

1 00 1

1 001 . . . 01 00 1

1 000 01 00

000 00

11 01010 100100 10 . . . 11

1 01010 1

[[ [
[

[

[

[

[

1-run breaking

01-run breaking

1 00  . . . 00 1 [

[

1 00 1 00
[ [

[ [

1 0 1
[

1 0 . . . 001

[

a) b) c)

parity contraction

00

[ [

[

[
1 00 10

[

00[

d) e) f)

pair contraction

Figure 6.

Lemma 24 Let s⊕ be a (1,2)-graph sequence and let a sequence sc be obtained from s⊕ by a
01-run breaking and a pair contraction. Let some vertices in sc be grouped into non-overlapping
pairs with adjacent vertices of the same color, and let the other vertices in sc be left single.

Then there is a map which maps every pair in sc to five vertices in s⊕, and every single vertex
in sc to two vertices in s⊕, such that no vertex in s⊕ is in an image of two distinct objects from
sc. Moreover, every single vertex in sc which does not come from a contraction of a pair inserted
by the 01-run breaking is mapped to a pair in s⊕.

Proof: Let us consider a pair of vertices v1, v2 in sc. Each of these two vertices comes from the
contraction of some pair. Vertices v1 and v2 have the same color so the pairs they come from are
of the same color, too. Each of these pairs may either be present in s⊕ or be inserted by 01-run
breaking.

Let us consider the case when both pairs come from s⊕. Because these pairs are of the same
color they must be separated by at least one vertex of different color in s⊕. Clearly, between these
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pairs there cannot be any other pair, so they are separated by 01-run of length at least one (but
no more than five otherwise 01-run breaking would insert other pairs between them.) We may
associate pair v1, v2 with vertices as in Figure 6-e).

Let us consider the case that one of v1 and v2 comes from contraction of a pair inserted by
01-run breaking. Then we claim that the other one also comes from a pair inserted by 01-run
breaking, moreover they both come from the same 011011 or 100100. W.l.o.g let us assume that
v1 and v2 have color 0, so the one which comes from 01-run breaking comes from the contraction
of a pair from an inserted 100100. We know that we alternate between 011011 and 100100 during
01-run breaking, and that the pair ending the broken 01-run on the left side has a different
color than pairs in the first inserted 011011 or 100100, respectively, and also the pair ending the
broken 01-run on the right side has a different color than the pairs in the last inserted 011011 or
100100, respectively. Hence, two vertices that come from the contraction of pairs from 100100 are
surrounded by vertices of the opposite color, hence the two vertices obtained by the contraction
of 100100 are v1 and v2. We may associate inserted 011011 and 100100, respectively, with five
preceding vertices coming from the broken 01-run in s⊕ (Fig. 6-f).) Hence, we have associated
every pair in sc with a five vertices in s⊕.

Let us consider single vertices in sc. Any single vertex v in sc comes from a contraction of some
pair. If that pair comes from s⊕, we associate v with that pair (Fig. 6-d).) Otherwise the pair
comes from 011011 or 100100 inserted by 01-run breaking. We may associate v with the left two
or right two vertices of the five vertices preceding the inserted 011011 and 100100, respectively,
depending on whether v comes from the left or the right pair of the inserted 011011 and 100100,
respectively.

�

We are going to use the previous lemmas to prove the following one.

Lemma 25 Let s be a graph sequence, and let s2
c be obtained from s by repeating the sequence of

operations (1-run breaking, parity contraction, 01-run breaking, pair contraction) two times. Then
the length of s2

c is at most on- fifth of length of s.

Proof: We are going to show that we may assign to every vertex from s2
c five vertices from s

so that no vertex in s is assigned to more than one vertex in s2
c . Let us denote by s1

⊕ a sequence
obtained from s by 1-run breaking and parity contraction, let s1

c denote a sequence obtained from
s1
⊕ by 01-run breaking and pair contraction, and let s2

⊕ denote a sequence obtained from s1
c by

1-run breaking and parity contraction.
Some vertices in s2

c may come from contraction of pairs which were inserted during the last
01-run breaking. Group these vertices into pairs with their neighboring vertices of the same color
(which originated from the same insertion), and leave the other vertices single. By Lemma 24 we
may assign to every pair from s2

c five vertices in s2
⊕, and to every single vertex from s2

c a pair of
vertices of the same color s2

⊕. By Lemma 23 any five vertices from s2
⊕ may be mapped to five

vertices in s1
c , and any pair from s2

⊕ to a pair of the same color from s1
c . Let us keep together these

pairs from s1
c , and leave single the remaining vertices from s1

c . By Lemma 24 every pair from s1
c

may be mapped to five vertices from s1
⊕, and every single vertex from s1

c to two vertices from s1
⊕.

Thus, we may associate with every vertex from s2
c five vertices from s1

⊕, and to every pair from
s2
c ten vertices from s1

⊕. By one more application of Lemma 23 we get a map which maps single
vertices from s2

c to five vertices from s, and pairs from s2
c to ten vertices from s. Hence, we may

assign to every vertex from s2
c five vertices from s so that no vertex from s is assigned to more

than one vertex from s2
c . Thus, s has at least five times more vertices than s2

c .
�

5.1.2 Correctness of the Modified Algorithm

The correctness of the modified algorithm follows from the following lemma.
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Lemma 26 Let t be a strong UTS for cycles of length n ≥ 1. Let t2 be obtained from t by
repeating the sequence of operations (construction of Lemma 21, attaching a loader 0(10)6·4j−1

,

construction of Lemma 13, attaching a loader 16·4j) two times, where j = 2dlog5 ne+ 1 during the
first repetition, and j = 2dlog5 ne + 2 during the second one. Then t2 is a strong UTS for cycles
of length 5n.

Proof: Let s be a graph sequence of length 5n, let s1
c be obtained by application of 1-run

breaking, parity contraction, 01-run breaking and pair contraction on s, and let s2
c be obtained

by application of that sequence of operations on s1
c . Let t1 denote a traversal sequence obtained

from t after the first repetition of operations in the statement of the lemma.
By Lemma 25 sequence s2

c has the length of at most n, so that it is strongly traversed by t
starting at any vertex. By Lemmas 21 and 13, sequence s1

c is strongly traversed by t1 starting at
any vertex, given that attached loaders are longer than s1

c . The length of s1
c is at most 5n/2, the

length of the first loader is 12 · 42dlog5 ne + 1 ≥ 12 · 16log5 n ≥ 5n/2, and the length of the second
loader is 6 · 42dlog5 ne+1 ≥ 6 · 16log5 n ≥ 5n/2. Because t1 is a strong traversal sequence for s1

c

starting at any vertex, t2 is a strong traversal sequence for s2
c starting at any vertex by similar

argument. Thus, t2 is a strong traversal sequence for cycles of length 5n.
�

5.2 Further Improvements

The previous analysis of the shrinking factor is tight. It is easy to see that a long 01-run shrinks
to almost exactly one-fifth of its size every two rounds. 01-runs are really a bottleneck of the
shrinking. If we would choose to stuff 01-runs every 7 singletons instead of five during 01-run
breaking, and we would use (7,14)-01-sequences for traversal, then 01-run breaking would not be
a bottleneck, anymore. The 01-runs would shrink at rate 7 per two rounds i.e.,

√
7
.
= 2.645 per

round on average.
In that setting it could be possible to show by iterating the previous analysis over several

rounds using modifications of Lemma 23 and 24 that the shrinking factor converges to 1 +
√

2
per round. In particular, for any ε > 0, there is a k ≥ 1 such that any graph sequence shrinks to
(1 +

√
2− ε)−k of its original length during k rounds of contractions.

The recurrence describing the algorithm using (7,14)-01-sequences would be f(i+1) ≤ 33.618f(i)+
48 ·4i+12, where 55 ·6/55+31 ·49/55

.
= 33.618. For ε small enough, the solution of the recurrence

is O(n3.989).
The details of the analysis are sufficiently tedious that we do not claim this as a theorem, but

merely give an indication of how this further improvement can be obtained.

6 Acknowledgments

I would like to thank to Eric Allender, Mike Saks, Navin Goyal and Dieter van Melkebeek for
helpful discussions and for comments on preliminary versions of this paper. I am grateful to Eric
Allender, again, for substantial improvement of the language this paper is written in.

References

[A] R. Aleliunas, “A simple graph traversing problem,” Master’s Thesis, University of Toronto,
1978 (Technical Report 20).

[AKL+] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, FOCS 20, pp. 218-223,
1979.

22



[AAR] N. Alon, Y. Azar, and Y. Ravid, Universal sequences for complete graphs, Discrete Appl.
Math, 27, pp. 25-28, 1990.

[ATWZ] R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou, SL ⊆ L4/3, STOC 29, pp. 230-239,
1997.

[BBK+] A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman, Bounds on universal
sequences, SIAM J. Comput. 18(2), pp. 268-277, 1989.

[B] M. F. Bridgland, Universal traversal sequences for paths and cycles, J. of Alg., 8(3), pp.
395-404, 1987.

[BT] J. Buss, and M. Tompa, Lower bounds on universal traversal sequences based on chains of
length five, Inf. and Comp., 120(2), pp. 326-329, 1995.

[HW] S. Hoory, and A. Wigderson, Universal traversal sequences for expander graphs, Inf. Proc.
Letters, 46(2), pp. 67-69, 1993.

[I] S. Istrail, Polynomial universal traversing sequences for cycles are constructible (extended
abstract), STOC 20, pp. 491-503, 1988.

[KPS] H. J. Karloff, R. Paturi, and J, Simon, Universal traversal sequences of length nO(logn) for
cliques. Inf. Proc. Letters, 28(5), pp. 241-243, 1988.

[N] N. Nisan, Pseudorandom Generators for Space-bounded Computation, Combinatorica, 12(4),
pp. 449-461, 1992.
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