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Abstract

We propose a new paradigm for defining security of cryptographic protocols, called universally
composable security. A salient property of definitions that follow this paradigm is that they
guarantee security even when the analyzed protocol runs alongside an unbounded number of
unknown (even maliciously designed) protocols, or more generally when the protocol is used
as a component of an arbitrary distributed system. This property is essential for maintaining
security of cryptographic protocols in complex and unpredictable environments, such as the
global Internet. In addition, it allows for very modular design and analysis of protocols.

We formulate a general framework that allows writing universally composable definitions
of security for practically any cryptographic task. We then exemplify the expressive power
of this framework by capturing within it a number of standard communication models and
cryptographic primitives that were traditionally defined in a variety of different ways.
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1 Introduction

Rigorously demonstrating that a protocol “does its job securely” is an essential component of
cryptographic protocol design. This requires coming up with an appropriate mathematical model
for representing protocols, and then formulating, within that model, a definition of security that
captures the requirements of the task at hand. Once such a definition is in place, we can show that
a protocol “does its job securely” by demonstrating that its mathematical representation satisfies
the definition of security within the devised mathematical model.

However, coming up with a good mathematical model for representing protocols, and even more
so formulating appropriate definitions of security within the devised model, turns out to be a tricky
business. The model should be rich enough to represent all realistic adversarial behaviors, and the
definition should guarantee that the intuitive notion of security is captured with respect to any
adversarial behavior under consideration.

One main concern in assessing the security of cryptographic protocols is their robustness to
the execution environment. Indeed, the behavior of cryptographic protocols is intimately tied to
the specific execution environment, and in particular to the other protocols that are running in
the same system or network. Consequently, an important criterion for cryptographic definitions
of security is whether they guarantee robustness to the execution environment, or more generally
whether they guarantee security when the protocol is used as a component within a larger system.

In contrast, cryptographic primitives (or, tasks) were traditionally first defined as stand-alone
protocol problems without giving much attention to more complex execution environments. This
is indeed a good choice for first-cut definitions of security. In particular, it allows for relatively
concise and intuitive problem statement, as well as simple analysis of protocols. However, in
many cases it turned out that the initial definitions are insufficient in more complex contexts,
where protocols are deployed within more general protocol environments. Some examples include:
Encryption, where the basic notion of semantic security [GM84] was later augmented with several
flavors of security against chosen ciphertext attacks [NY90, DDN0OO, RS91, BDPRI8] and adaptive
security [BH92, CFGN96] in order to address general protocol settings; Commitment, where the
original notions were later augmented with some flavors of non-malleability [DDN00, DI098, FFOO]
and equivocation [BCC88, B96] in order to address the requirement of some applications; Zero-
Knowledge protocols, where the original notions [GMRa89, G094] were shown not to be closed under
parallel and concurrent composition and new notions and constructions were needed [GK89, F91,
DNS98, ccGMO00, BGGLO4]; Key Exchange, where the original notions did not suffice for providing
secure sessions [BR93, BCK98, sh99, ck01]; Oblivious Transfer [R81, EGL85, aM00].

One way to capture the security concerns that arise in a specific protocol environment or in
a given application is to directly represent the given environment or application within an ex-
tended definition of security. Such an approach is taken, for instance in the cases of key-exchange
[BR93, cK01], non-malleable commitments [DDN00], and concurrent zero-knowledge [DNS98], where
the definitions explicitly model several adversarially coordinated instances of the protocol in ques-
tion. This approach, however, results in definitions with ever-growing complexity, and is inherently
limited in scope since it addresses only specific environments and concerns.

An alternative approach, taken in this work, is to use definitions that treat the protocol as
stand-alone but guarantee secure composition. That is, here definitions of security inspect only
a single instance of the protocol “in vitro”. Security in complex settings, where a protocol in-
stance may run concurrently with many other protocol instances, on arbitrary inputs and in an
adversarially controlled way, is guaranteed by making sure that the security is preserved under a
general composition operation on protocols. This approach considerably simplifies the process of



formulating a definition of security and analyzing protocols. Furthremore, it guarantees security in
arbitrary protocol environments, even ones which have not been explicitly considered.

In order to make such an approach (and in particular, such a composition theorem) meaningful,
we first need to have a general framework for representing cryptographic protocols and the security
requirements of cryptographic tasks. Indeed, several general definitions of secure protocols were
developed over the years, e.g. [GL90, MRI1, B91, BCG93, Pw94, c00, HMOO, PSW00, DM0OO, PWOO].
These definitions are obvious candidates for such a general framework. However, many of these
works consider only restricted settings and classes of tasks; more importantly, the composition
operations considered in those works fall short of guaranteeing general secure composition of cryp-
tographic protocols, especially in settings where security holds only for computationally bounded
adversaries and many protocol instances may be running concurrently in an adversarially coordi-
nated way. We further elaborate on some of these works and their relation to the present one in
Section 1.4.

This work proposes a framework for representing and analyzing cryptographic protocols. Within
this framework, we formulate a general and uniform methodology for expressing the security re-
quirements of practically any cryptographic task in a clear, concise and intuitively satisfying way.
Furthremore, we define (extending prior work) a very general method for composing protocols,
and show that definitions of security generated within this framework preserve security under this
composition operation. We call this composition operation universal composition and say that defi-
nitions of security in this framework (and the protocols that satisfy them) are universally composable
(UC). Consequently, we dub this framework the UC security framework.! In a nutshell, universal
composition can be viewed as a generalization of the natural “subroutine substitution” composition
operation for sequential algorithms to a distributed setting with multiple concurrently running pro-
tocols. The fact that security in this framework is preserved under universal composition implies
that a secure protocol for some task remains secure even it is running in an arbitrary and unknown
multi-party, multi-execution environment. In particular, some standard security concerns such as
security under concurrent composition and non-malleability are satisfied in a strong sense, i.e. with
respect to arbitrarily many instances of either the same protocol or other protocols.

The rest of the Introduction is organized as follows. Section 1.1 provides a brief overview of the
proposed framework, the composition operation, and the security preservation theorem. Section
1.2 and 1.3 sketch how several popular models of communication and cryptographic tasks can be
captured within this framework. Finally, Section 1.4 reviews related work, including both prior
work and work that was done following the publication of the first version of this work.

1.1 The UC security framework

We briefly sketch the proposed framework and highlight some of its properties. A more compre-
hensive overview is postponed to Section 2. The overall definitional approach is the same as in
most other general definitional frameworks mentioned above, and goes back to the seminal work
of Goldreich, Micali and Wigderson [GMW87]: In order to determine whether a given protocol is
secure for some cryptographic task, first envision an ideal process for carrying out the task in a
secure way. In the ideal process all parties hand their inputs to a trusted party who locally computes
the outputs, and hands each party its prescribed outputs. This ideal process can be regarded as a
“formal specification” of the security requirements of the task. A protocol is said to securely realize
the task if running the protocol “emulates” the ideal process for the task, in the sense that any

!We use similar names for two very different objects: A notion of security and a composition operation. This
choice of names is discussed in Section 1.4.



damage that can be caused by an adversary interacting with the protocol can also be caused by an
adversary in the ideal process for the task.

Several formalizations of this general definitional approach exist, including the definitional works
mentioned above, providing a range of secure composability guarantees in a variety of computational
models. See more details in Section 1.4. To better understand the present framework, we first
briefly sketch the definitional framework of [c00], which provides a basic instantiation of the “ideal
process paradigm” for the traditional task of secure function evaluation, namely evaluating a known
function of the secret inputs of the parties in a synchronous, ideally authenticated network.

The model of protocol execution in [C00] consists of a set of interactive Turing machines (ITMs)
representing the parties running the protocol, plus an ITM representing the adversary. The adver-
sary controls a subset of the parties, which in general may be chosen adaptively throughout the
execution. In addition, the adversary has some control over the scheduling of message delivery,
subject to the synchrony guarantee. The parties and adversary interact on a given set of inputs
and each party eventually generates local output. The concatenation of the local outputs of all
parties and of the adversary is called the global output. In the ideal process for evaluating some
function f all parties ideally hand their inputs to an incorruptible trusted party, who computes the
function values and hands them to the parties as specified. Here the adversary is limited to inter-
acting with the trusted party in the name of the corrupted parties. Protocol 7 securely evaluates
a function f if for any adversary A (that interacts with the protocol) there exists an ideal-process
adversary S such that, for any set of inputs to the parties, the global output of running = with A
is indistinguishable from the global output of the ideal process for f with adversary S.

This definition suffices for capturing the security of protocols in a “stand-alone” setting where
only a single protocol instance runs in isolation. Indeed, if 7 securely evaluates f then the parties
running 7 are guaranteed to generate outputs that are indistinguishable from the values of f on
the same inputs. Furthermore, any information gathered by an adversary that interacts with =
is generatable by an adversary that only gets the inputs and outputs of the corrupted parties.
(We refer the reader to [c00] for more discussions on the implications of and motivation for this
definitional approach.) In addition, this definition is shown to guarantee security under non-
concurrent composition, namely as long as no two protocol instances run concurrently. However,
when protocol instances run concurrently, this definition no longer guarantees security: There are
natural protocols that meet the [c00] definition but are insecure when as few as two instances run
concurrently.

The UC framework preserves the overall structure of that approach. The difference lies in new
formulations of the model of computation and the notion of “emulation”. As a preliminary step
towards presenting these new formulation, we first present an alternative and equivalent formulation
of the [¢00] definition. In that formulation a new algorithmic entity, called the environment machine,
is added to the model of computation. (The environment machine can be regarded as representing
“whatever is external to the current protocol execution”. This includes other protocol executions
and their adversaries, human users, etc.) The environment interacts with the protocol execution
twice: First, it hands arbitrary inputs of its choosing to the parties and to the adversary. Next, it
collects the outputs from the parties and the adversary. Finally, the environment outputs a single
bit, which is interpreted as saying whether the environment thinks that it has interacted with the
protocol or with the ideal process for f. Now, say that protocol 7w securely evaluates a function f if
for any adversary A there exists an “ideal adversary” S such that no environment Z can tell with
non-negligible probability whether it is interacting with = and A or with § and the ideal process
for f. (In fact, a similar notion of environment is already used in [C00] to capture non-concurrent
composability for adaptive adversaries.)



The main difference between the UC framework and the basic framework of [c00] is in the way
the environment interacts with the adversary. Specifically, in the UC framework the environment
and the adversary are allowed to interact freely throughout the course of the computation. In par-
ticular, they can exchange information after each message or output generated by a party running
the protocol. If protocol m securely realizes function f with respect to this type of “interactive
environment” then we say that m UC-realizes f.

This seemingly small difference in the formulation of the computational models is in fact very
significant. From a conceptual point of view, it represents the fact that “information flow” between
the protocol instance under consideration and the rest of the network may happen at any time
during the run of the protocol, rather than only at input or output events. Furthermore, at each
point the information flow may be directed both “from the outside in” and “from the inside out”.
Modeling such information flow is essential for capturing the threats of a multi-instance execution
environment. From a technical point of view, the environment now serves as an “interactive distin-
guisher” between the protocol execution and the ideal process. This imposes a considerably more
severe restriction on the ideal adversary S, which must be constructed in the proof of security: In
order to make sure that the environment Z cannot tell between a real protocol execution and the
ideal process, S now has to interact with Z throughout the execution, just as A did. (In particular,
S cannot “rewind” Z.) Indeed, it is this pattern of free interaction between Z and A that allows
proving that security is preserved under universal composition.

An additional difference between the UC framework and the basic framework of [c00] is that
the UC framework allows capturing not only secure function evaluation but also reactive tasks
where new input and output values be generated throughout the computation, and may depend on
previously generated values. This is obtained by replacing the “trusted party” in the ideal process
for secure function evaluation with a general algorithmic entity called an ideal functionality. The
ideal functionality, which is modeled as another I'TM, repeatedly receives inputs from the parties
and provides them with appropriate output values, while maintaining local state in between. This
modeling guarantees that the outputs of the parties in the ideal process have the expected properties
with respect to the inputs, even when new inputs are chosen adaptively based on previous outputs.
We stress that this is an independent extension of the model that is unrelated to the previous one.
Some other differences from [c00] (e.g., capturing different communication models) are discussed
in later sections.

The resulting definition of security turns out to be quite robust, in the sense that several natural
definitional variants end up being equivalent. For instance, the above notion of security is equivalent
to the seemingly stronger variant where the ideal adversary § is restricted to black-box access to
the adversary A. It is also equivalent to the seemingly weaker variant where S may depend on the
environment Z. (We remark that in other frameworks these variants result in seemingly different
formal requirements.)

Another contribution of this work is in defining a basic model for a system of interacting
Turing machines (ITMs). This model extends the definitions of [GMRa89, G01], which concentrate
on pairs of ITMs. The new definitions are aimed at capturing open distributed systems where
multiple parties run multiple different protocols, and where multiple instances of each protocol co-
exist. Furthermore, neither the number or identities of the participants in each protocol instance,
nor the number of protocol instances running concurrently, are known in advance. We also put
forth a notion of probabilistic polynomial time for interacting Turing machines, which behaves well
within our model.



Universal Composition. Consider the following method for composing two protocols into a sin-
gle composite protocol. Let p be a protocol that UC-realizes some ideal functionality F, according
to the above definition. In addition, let = be some arbitrary protocol (we think of 7 as a “high level
design” protocol) where, in addition to interacting in the usual way, the parties make ideal calls
to multiple instances of F. That is, protocol m can be regarded as a “hybrid protocol” that uses
both standard communication and instances of the ideal process for F. Indeed, we say that « is
an F-hybrid protocol. It is stressed that the different instances of F are running at the same time
without any global coordination. They are distinguished via special session identifiers, generated
by =.

Now, construct the composed protocol 7 by starting with protocol 7, and replacing each call
to a new instance of F with an invocation of a fresh instance of p. Similarly, a message sent to an
existing instance of F is replaced with an input value given to the corresponding instance of p, and
any output of an instance of p is treated as a message received from the corresponding instance of
F. Tt is stressed that, since protocol m may use an unbounded number of instances of F at the
same time, we have that in protocol 7° there may be an unbounded number of instances of p which
are running concurrently on related inputs.

The universal composition theorem states that running protocol 7” with no access to F has
essentially the same effect as running the F-hybrid protocol m. More precisely, it guarantees that
for any adversary A there exists an adversary Ax such that no environment machine can tell with
non-negligible probability whether it is interacting with A and parties running #«”, or with Az and
parties running 7. In particular, if © securely realizes some ideal functionality G then 7 securely
realizes G.

Interpreting the composition theorem. Traditionally, secure composition theorems are treated
as tools for modular design and analysis of complex protocols. (For instance, this is the main mo-
tivation in [MR91, c00, bM0O, PW0O, PWO01].) That is, given a complex task, first partition the
task to several, simpler sub-tasks. Then, design protocols for securely realizing the sub-tasks, and
in addition design a protocol for realizing the given task assuming that evaluation of the sub-tasks
is possible. Finally, use the composition theorem to argue that the protocol composed from the
already-designed sub-protocols securely realizes the given task. An example of a context where this
interpretation is put to use is the proof of security in [CKOR00]. Note that in this interpretation the
protocol designer knows in advance which protocol instances are running together and can control
the way protocols are scheduled.

The above interpretation is indeed very useful. Here, however, we propose a different use of the
composition theorem: We use it as a tool for gaining confidence in the sufficiency of a definition
of security in a given protocol environment. Indeed, protocols that satisfy a UC definition are
guaranteed to maintain their security within any protocol environment — even environments that
are not known a-priori, and even environments where the participants in a protocol execution are
unaware of other instances of the protocol (or other protocols altogether) that may be running
concurrently in the system in an adversarially coordinated manner. This is a strong guarantee.

1.2 Capturing various communication models

There are many communication and adversary models for designing and analyzing cryptographic
protocols. In some cases the models represent abstractions that are later instantiated by other
protocols; in other cases the models represent real physical assumptions on the underlying commu-
nication network. Examples include several flavors of synchrony and reliability guarantees on the



communication, several flavors of authenticity and secrecy guarantees, and several levels of restrict-
ing the behavior of corrupted parties. While security definitions typically follow the same approach
in all models, precise and workable formulations are traditionally very much model-specific. Con-
sequently, we have multiple variants of a definitional framework, one for each specific model. This
is a tedious state of affairs, which is also somewhat limited in its applicability to special and new
settings.

We take a different approach toward defining various models of computation: We keep the
basic framework simple and unchanged. Different communication models are captured by letting
the parties to call (multiple instances of) an appropriate ideal functionality that captures the
guarantees provided by the relevant model. This way, the same ideal functionality can be viewed
either as representing a physical assumption, or as an abstraction that is later realized by other
protocols. (The validity of the latter interpretation is guaranteed by the UC theorem.) Another
advantage of this approach is that the basic model and the composition theorem need not be
re-stated and re-proven for each new communication model.

More specifically, the communication model provided by the “bare” UC framework is very basic:
all messages generated by the parties are handed to the adversary, and the adversary delivers
arbitrary messages of its choosing to parties. This communication method provides no guarantees
whatsoever regarding the timeliness, authenticity or secrecy of message delivery. In fact, this model
is hardly workable at all. On top of this model, we define ideal functionalities that capture several
popular and more abstract communication models, including authenticated communication, secure
communication, and synchronous communication. (Essentially, an ideal functionality F captures a
communication model if writing a protocol in this model turns out to be equivalent to writing the
protocol as an F-hybrid protocol.) We also show how to capture, within the present framework,
security properties that are not necessarily preserved under composition. This allows analyzing
within a single framework protocols where some of the components can be composed concurrently
while other components require non-concurrent composition.

1.3 TUC definitions of some tasks

We formulate and study universally composable definitions of a number of standard cryptographic
tasks. In fact, much of the definitional work is already done by the general framework described
above. All that is left to do on the definitional side is to formulate ideal functionalities that capture
the security requirements of these tasks.

As seen below, some of these tasks are simply to realize some of the (ideal functionalities
that represent the) communication models mentioned in the previous section. In fact, the present
formalization removes any formal distinction between “realizing a model of computation” and
“realizing a cryptographic task”. Both goals are cast as “realizing an ideal functionality”.

Throughout, we define the tasks for a single instance, even when the expected use is for multiple
concurrently running instances. This allows for relatively simple formulations of ideal functional-
ities, as well as simpler constructions protocol analysis. Security in a multi-party, multi-instance
setting is guaranteed via the universal composition theorem.

The task of message authentication is considered first, by formulating an appropriate ideal
functionality, called F,yru. We remark that, following the above methodology, the ‘authenticated
communication variant of the UC framework’ is defined as the model where each transmission
of a message is replaced by the appropriate instance of F,yrg- In other words, protocols that use
authenticated communication are captured as F,yrg-hybrid protocols. Let us sketch the formulation
of Fauru- Favurn first expects to be invoked with a request by some party, 7', to transmit a message



m to another party, R. It then forwards (T, R, m) to the adversary, and waits for a response. Once
the adversary returns an “ok” message, Fayry forwards (7',m) to R and halts. (If T is corrupted
then Fuyru allows the adversary to modify the contents of m.) This formulation guarantees that
if R received a message m from an uncorrupted 7' then 7' indeed sent that message. It does not
guarantee secrecy (since the adversary sees the message), nor does it guarantee that the message
will be delivered. Note that Fayru is defined with respect to a authenticating a single message
between two parties. Authentication of multiple messages in a multi-party setting can be obtained
by using multiple instances of a protocol that realizes Fjyrx.

The task of providing secure (i.e., authenticated and secret) transmission of individual messages
is captured in a similar manner, with the exception that now the ideal functionality (called the
secure message transmission functionality, Fsyr) does not disclose the message m to the adversary,
unless either the sender or the receiver are corrupted. The ‘secure communication variant of the
UC framework’ is formalized as the model where each secret transmission of a message is replaced
by the appropriate instance of Fgyr. We show that standard semantically secure encryption (or
alternatively non-committing encryption for adaptive adversaries) is sufficient in order to realize
Fsur, assuming authenticated communication (i.e., when usingF,yru). We note that here each
message is encrypted using a different public/private key pair.

Next we formulate ideal functionalities that capture the tasks of secure sessions and key ex-
change. Secure sessions is an extension of Fgyr to the case where a sequence of messages between
a pair of parties are secured together. The main advantage of this functionality over the previous
ones is that it allows for more efficient realizations, via key-exchange combined with symmetric
cryptography using the generated keys. The key exchange functionality Fyy essentially provides
pairs of parties with ideally chosen random values. In particular, protocols that securely realize
Fxe are guaranteed to satisfy the security notion of [CK01]. Further relations between Fyy and the
[cKO01] notion are studied in [CK02].

Next the tasks of public-key encryption and digital signatures are addressed. Securely realizing
the signature ideal functionality turns out to be essentially equivalent to existential unforgeability
against chosen message attacks as in Goldwasser Micali and Rivest [GMRi88]. In the case of public-
key encryption (where many messages may be encrypted by different parties using the same public
key), securely realizing the proposed functionality turns out to be equivalent to security against
adaptive chosen ciphertext attacks [RS91, DDNOO, BDPRIS].

We then proceed to formulate ideal functionalities representing “classic” two-party primitives
such as coin-tossing, commitment, zero-knowledge, and oblivious-transfer. These primitives are
treated as two-party protocols in a multi-party setting. As usual, the composition theorem guar-
antees that security is maintained under concurrent composition, either with other instances of
the same protocol or with other protocols, and within any application protocol. In particular,
non-malleability with respect to an arbitrary set of protocols is guaranteed. See section 1.4 for
discussion on the realizability of these primitives, and on realizing other primitives within the UC
framework.

1.4 Related work

This section briefly surveys some works that are closely related to this one. Some of the reviewed
work was done concurrently to the first version of this work or subsequently to it. We apologize
for any omissions and mis-representations. If you notice any, please let us know.

For clarity, we organize the presentation by topics, rather than by chronological order. We
first discuss other general frameworks for defining cryptographic security of protocols. Next we



discuss work on connections with formal and symbolic analysis of protocols. Next work on the
realizability of UC definitions of security and the minimality of the security requirements of the UC
framework is reviewed, including potential relaxations and set-up assumptions. This is followed by
a quick review of some extensions of the UC framework. Work on defining and realizing specific
cryptographic primitives within the UC framework is discussed last.

Other simulation-based security frameworks. Two works that essentially “laid out the field”
of general security definitions for cryptographic protocols are the work of Yao [Y82], which expressed
for the first time the need for a general “unified” framework for expressing the security requirements
of cryptographic tasks and for analyzing cryptographic protocols; and the work of Goldreich, Micali
and Wigderson [GMW87], which put forth the approach of defining security via comparison with
an ideal process involving a trusted party (albeit in a very informal way).

The first rigorous definitional framework is due to Goldwasser and Levin [GL90], and was
followed shortly by the frameworks of Micali and Rogaway [MR91] and Beaver [B91]. In particular,
the notion of “reducibility” in [MR91] directly underlies the notion of protocol composition in many
subsequent works including the present one. Beaver’s framework was the first to directly formalize
the idea of comparing a run of a protocol to an ideal process. (However, [MR91, B91] only address
unconditional security and do not deal with computational issues.) [GL90, MR91, B91] are surveyed
in [c00] in more detail.

Canetti [c95] provides the first ideal-process based definition of computational security against
resource-bounded adversaries. [C00] strengthens the framework of [c95] to handle secure compo-
sition. In particular, [c00] defines a general composition operation, called modular composition,
which is a non-concurrent version of universal composition. That is, only a single protocol instance
can be active at each point in time. (See more details in Section 6.5.) In addition, security of pro-
tocols in that framework is shown to be preserved under modular composition. Early versions (e.g.
[c98]) also sketch how the framework can be extended to handle a concurrent version of modular
composition as well as reactive functionalities. The UC framework implements these sketches in a
direct manner.

The framework of Hirt and Maurer [HM00] is the first to rigorously address the case of reactive
functionalities. Dodis and Micali [DMO0O] build on the definition of Micali and Rogaway [MR91]
for unconditionally secure function evaluation, where ideally private communication channels are
assumed. In that setting, they prove that their notion of security is preserved under a general con-
current composition operation similar to universal composition. They also formulate an additional
and interesting composition operation (called synchronous composition) that provides stronger se-
curity guarantees, and show that their definition is closed under that composition operation in
cases where the scheduling of the various instances of the protocols can be controlled. However,
their definition applies only to settings where the communication is ideally private. It is not clear
how to extend this definitional approach to realistic settings where the adversary has access to the
communication between honest parties.

The framework of Pfitzmann, Steiner and Waidner [Psw00, pw00] is the first to rigorously
address concurrent composition in a computational setting. (This work is based on [PW94], which
contains a basic system model but no notions of security.) They provide a definition of security for
reactive functionalities and prove that security is preserved when a single instance of a subroutine
protocol is composed concurrently with the calling protocol.

All the work mentioned above assumes synchronous communication. Security for asynchronous
communication networks was first considered in [BcG93, ¢95]. An extension of the [PsSw00, Pw00]



framework to asynchronous networks appears in [PwO01].

At high level, the notion of security in [PSW00, PW00, PWO01] is similar to the one here. In
particular, the role of their “honest user” can be roughly mapped to the role of the environment as
defined here. However, there are several differences. First, they use a finite-state machine model of
computation that builds on the I/O automata model of [L96] with some additional definitional and
notational constructs. Next, they postulate a closed system where the number of participants is
constant and fixed in advance. Furthermore, the number of protocol instances run by the parties is
constant and fixed in advance, thus it is impossible to argue about the security of systems where the
number of protocol instances depends on the security parameter or is unknown in advance. (These
are typically the cases where protocol composition is most challenging and subtle.) They also
postulate fixed identities of parties and protocol instances (sessions). (The modeling here is quite
different in these respects. See more discussion in Sections 2.1 and 3.4.) Other technical differences
include the order of activations, the scheduling of messages, and the generation of outputs. See
[DKMRO5] for a comparison of these aspects of the respective frameworks.

Backes, Pfitzmann and Waidner [BPW04] extend the framework of [PwO01] to deal with the
case where the number of parties and protocol instances depends on the security parameter. In
that framework, they prove that their notion of security (called reactive simulatability) is preserved
under universal composition. The [BPw04a] formulation returns to the original approach where
the number of entities and protocol instances is fixed irrespective of the security parameter.

Nielsen [N03] and Hotfheinz and Miiller-Quade [HM04a] formulate synchronous variants of the
UC framework. A related line of ideal-process based definitional work [LMMS98, LMMS99, DKMRO5]
is discussed below in the context of formal protocol analysis.

Last but not least, we mention the pioneering work of Dolev, Dwork and Naor [DDN00O]. While
this work does not define a general security framework, it points out some important security
concerns that arise when running several cryptographic protocols within a larger system. Making
sure that the concerns pointed out in [DDN0OO] are addressed plays a central role in the present
framework.

Connections with formal and automated protocol analysis. There are several well-known
frameworks for formally analyzing certain characteristics of distributed systems and protocols,
such as the CSP model of Hoare [H85], the 7 calculus of Milner et. al. [MPW92] and the I/O
automata of Lynch [L96]. These frameworks and others are very attractive, first in that they
provide a uniform way of analyzing distributed protocols, and more importantly in that they
naturally lend to automation of the analysis. However, while these frameworks have mechanisms for
expressing adversarial behavior of some parts of the system such as adversarial message scheduling
and faulty processors, they do not have mechanisms to express computational bounds on processes
and adversaries, nor can they express randomized protocols. In contrast, cryptographic protocols
are typically secure only against computationally bounded adversaries, and use randomness in an
essential way. Lynch and Segala [SL95] propose an extension of I/O automata that can express
probabilistic protocols. Still, their model does not address computational issues.

One way to address these analytical limitations was proposed somewhat implicitly in Needham
and Schroeder [NS78] and more explicitly in Dolev and Yao [DY83]: Represent the cryptographic
primitives in use as “ideal boxes” that provide absolute secrecy and authenticity guarantees regard-
ing the transmitted data. Such a modeling resulted in “idealized protocols” that use no randomness
and whose security can be analyzed using existing tools within the model, without having to model
computationally bounded adversaries or computational assumptions. This line of modeling and



analysis (which is often called the “Dolev-Yao style abstraction”) was carried out in numerous
works, including [BAN90, M94a, KMM94, 1L96, AG97, AFGI8, RT00, S099, FHGI8, MP04]. Tt is
attractive in that it allows for relatively simple analysis. More importantly, it is readily amenable
to automation. Indeed, several automated tools that provide this style of analysis exist. In all,
Dolev-Yao style analysis was instrumental in finding flaws in many protocols, including widely used
and standardized ones.

However, the Dolev-Yao style abstraction ignores potential security weaknesses that come up
when the “ideal box” is replaced by a real cryptographic primitive whose security is guaranteed
only in a computational and probabilistic sense. Consequently, analytical works that use the Dolev-
Yao abstraction cannot on their own be used to assert security of protocols. In other words, these
analytical works do not by themselves provide cryptographic soundness.

Several efforts have been made towards bridging this analytical gap. One approach, taken
by Lincoln, Mitchell, Mitchell and Scedrov [LMMS98, LMMSs99], is to directly extend the for-
mal models to capture probabilistic protocols and computationally bounded adversaries (see also
[MMS98, 1K03]). Specifically, they introduce a variant of the m-calculus that incorporates random
choices and computationally limitations on adversaries. In that setting, their approach has a num-
ber of similarities to ours. They define a notion of observational equivalence, and say that a real-life
process is secure if it is observationally equivalent to an “ideal process” where the desired function-
ality is guaranteed. However, their ideal process must vary with the protocol to be analyzed, and
they do not seem to have an equivalent of the notion of an “ideal functionality” which is associated
only with the task and is independent of the analyzed protocol. This makes it harder to formalize
the security requirements of a given task. Furthermore, they do not state a composition theorem
in their model.

Datta, Kiisters, Mitchell, and Ranamanathan [DKMRO5] extend the [LMMS98, LMMS99] frame-
work to express simulatability as defined here, cast in a polytime probabilistic process calculus, and
demonstrate that the UC theorem holds in their framework. They also rigorously compare certain
aspects of UC security (as defined in [c01]) and reactive simulatability (as defined in [BPWO04a]),
such as the relations between standard simulatability and black-box simulatability.

Another approach towards bridging the analytical gap created by the Dolev-Yao abstraction is
to provide a Dolev-Yao style abstraction that is also cryptographically sound. Abadi and Rogaway
[ARO0] were the first to propose such a mechanism: They devised a formalism for arguing about ’for-
mal indistinguishability’ of expressions based on formal encryption in an abstract and unconditional
way. At the same time, it is guaranteed that if two formal expressions are ‘formally indistinguish-
able’ then the corresponding distribution ensembles, obtained by replacing the formal encryption by
a semantically secure symmetric encryption scheme, are computationally indistinguishable in the
standard sense. This methodology was extended in several ways, most notably in Micciancio and
Warinschi [MwW04] to the case of mutual authentication protocols based on public-key encryption
schemes.

An alternative approach for obtaining cryptographically sound Dolev-Yao style abstraction is to
represent the Dolev-Yao “ideal boxes” as ideal functionalities in a composable security framework.
When appropriately formulated, these ideal boxes would allow the protocols that use them to be
analyzable without having to address computational issues, and sometimes even deterministically.
Cryptographic soundness would then follow from an appropriate composition theorem (such as the
UC theorem). This approach was proposed in [PW00, c01]. In a sequence of works, including
[BpPw03, BPW03a, BP04], Backes, Pfitzmann and Waidner formulate such an ideal box (i.e., an
ideal functionality) within their reactive simulatability framework, and show how certain proper-
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ties of several known protocols can be asserted using their ideal functionality (which they call a
“composable cryptographic library”). Still, even the abstract analysis has to be done within their
cryptographic framework. More discussion of the [BPw03] formalization appears in [C04].

Canetti and Herzog [CHO4] propose a different way for formulating Dolev-Yao style ideal boxes
within a composable security framework. They show how to translate protocols in the UC frame-
work into formal protocols in a variant of an existing abstract process algebra for which automated
analysis tools exist (see e.g. [L96, RT00, $099]). It is guaranteed that the concrete protocol is
a UC mutual authentication (resp., UC key exchange) protocol if and only if the corresponding
abstract protocol satisfies an abstract property that is verifiable within the abstract algebra. This
further simplifies the analysis since the formal analysis is performed in a simplified model and
addresses only a single instance of the analyzed protocol. For concreteness, [CHO4] concentrate for
protocols for mutual authentication and key exchange, based on public-key encryption as the only
cryptographic primitive.

On the realizability and minimality of UC definitions of security. Definitions of security
in the proposed framework are more stringent than other definitions and are not always realizable.
It is thus natural to ask which cryptographic tasks are realizable in a way that guarantees com-
posability, and under which set-up and computational assumptions. An important and intimately
related question is whether it is possible to define security of protocols in a more relaxed way, that
would be realizable by simpler protocols and with milder set-up assumptions, and at the same time
would still guarantee reasonable security and universal composability.

We first note that some known protocols for general secure function evaluation are, in fact,
universally composable. For instance, the [BGW88] protocol (both with or without the simplification
of [GRRI8]), together with encrypting each message using non-committing encryption [CFGN96], is
universally composable as long as less than a third of the parties are corrupted. Using [RB89], any
corrupted minority is tolerable. The asynchronous setting can be handled using the techniques of
[BcG93, BKRI4]. These facts were stated in [c01] with a sketch of proof. We leave full proof out of
scope for this work. [c01] also demonstrates how to use these protocols in a straightforward way to
realize practically any ideal functionality, even reactive ones and even “two-party functionalities”
(i.e., functionalities where only two parties have inputs and outputs). This is done by having the
parties use a set of “helper parties”, or “servers,” where it is assumed that only a minority of the
servers are corrupted.

However, things are different when no honest majority of the parties is guaranteed, and in
particular in the case where only two parties participate in the protocol, and either one of the
parties may be corrupted. In this case it was shown in [CF01] that a natural and basic formalization
of ideal commitment cannot be realized in the UC framework by plain protocols, even if ideally
authenticated communication is provided. (We alternately use the terms plain protocol and protocol
in the plain model to denote a protocol that do not use any ideal functionality, except for the
authenticated communication functionality, Fayra.) Similar impossibility results were proven in
[c01] for the ideal coin tossing functionality, the ideal Zero-Knowledge functionality, and the ideal
oblivious transfer functionality. These results are extended in Canetti, Kushilevitz and Lindell
[cKLO3] to demonstrate impossibility of realizing almost all “non-trivial” deterministic two-party
functions and many probabilistic two-party functions by plain protocols. This in particular implies
that none of the known two-party protocols for any of the above tasks is UC secure. This is mainly
due to the fact that one of the most common proof-techniques for cryptographic protocols, namely
black-box simulation with rewinding of the adversary, does not in general work in the present
framework. (Indeed, here the ideal adversary has to interact with the environment which cannot
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be “rewound”.)

Still, all is not lost: It was shown in [CFO1, DN0O2, DG03] how to realize the commitment and zero-
knowledge functionalities via protocols that use ideal access to the coin-tossing ideal functionality.
Interestingly, having ideal access to the coin-tossing functionality turns out to be essentially a
reformulation of the well-known common random string model of [BFM89]. To highlight this fact,
we call the coin-tossing functionality Fegs. In [CLOS02] these results are extended to realizing
practically any ideal functionality, including reactive functionalities and multi-party functionalities,
via Fcrs-hybrid protocols. These results hold even with respect to adaptive corruption of parties
and even when data cannot be effectively erased. We remark that the [cLOS02] protocol can be
slightly modified to run in the plain model and remain secure against adversaries that corrupt only
a minority of the parties. Security of the [CF01, CLOS02] constructions is based on standard general
hardness assumptions, whereas [DN00, DG03] use specific number theoretic assumptions.

Damgaard and Groth [DG03] also show how to construct, in a black-box way, a key exchange
protocol from a UC commitment protocol. Using the separation results of Impagliazzo and Rudich
[IR89], we conclude that it is unlikely that UC commitment can be constructed based only on
one-way functions in a black-box way.

Barak et. al. [BCNP04]| demonstrate that all the above protocols can be modified to work
under a number of alternative set-up assumptions other than having access to trusted common
randomness. Specifically, they show that it is enough to have “registration authorities” where
parties register “public keys” in a way that guarantees that the corresponding secret keys exist and
are “extractable”. In particular, no single authority or string has to be trusted by all parties.

In [BT04], Barak et. al. generalize the results of [cCLOS02] to a setting where the adversary
controls the network and no authenticated set-up is available. Somewhat surprisingly it is shown
that, even in this completely unauthenticated setting, if the parties have access to a CRS then they
can force the adversary to essentially “partition” the network to several disjoint “clusters”, where
each “cluster” realizes the original functionality in the usual authenticated and secure manner.

The above results naturally bring up the question of whether one can relax the UC framework
so that it will still guarantee security and universal composability, but will be realizable by plain
protocols (or will be easier to realize in general). Here, Lindell [L03a, L04] shows that essentially
any notion of security for a given task (namely, for a given ideal functionality) that implies the
basic security notion of [C00], and preserves security under universal composition, implies UC se-
curity. Roughly speaking, this means that one cannot meaningfully relax the security requirements
of the UC framework without ending up with a definition of security that is weaker than the basic
definition of stand-alone security. (We remark that Lindell uses the term “general concurrent com-
position” to denote universal composition.) Still, some meaningful relaxations of the UC framework
exist, as described below.?

We remark these negative results hold even for the case of self composition, where it is guaranteed
that all protocol executions in the network are instances of the same protocol. In contrast, in the
case of self composition with bounded concurrency, i.e. when there is an a-priori known bound on
the number of protocol instances running concurrently, securely realizing general tasks is possible
[L03, PRO3, PO4].

%It should be stressed that providing secure composability does not necessarily guarantee that the basic security
properties are satisfied. To exemplify this point, consider the “definition of security” that allows all protocols to be
“secure”. This definition is certainly preserved under universal composition, but it does not guarantee any security.
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Ezxtensions of the UC framework. Several extensions of the UC framework were proposed.
Prabhakaran and Sahai [Ps04] propose a family of variants of the UC framework; furthermore, they
demonstrate a specific relaxed variant where security is preserved under universal composition, and
where any functionality is realizable in the plain model. Indeed, the resulting notion is weaker
than the [c00] notion of security. Nonetheless, [PS04] provides evidence that this notion is strong
enough in a number of interesting cases. Specifically, it is shown that if a protocol realizes some
functionality according to a [PS04] variant of the UC framework, then this protocol realizes a
somewhat weakened version of this functionality in the unmodified UC framework, when given
ideal access to another (rather mild) ideal functionality.

Lindell, Prabhakaran and Tauman [LPT04] propose an extension of UC security to the “timing
model” of [DNS98, G02], where message delay and clock drifts are assumed to be bounded by known
values. In that model they show that any functionality can be realized by protocols whose security
is maintained under universal composition, given that all protocols in the network obey certain
timing bounds. No set-up assumptions, other than authenticated communication, are needed.

Garay, Mackenzie and Yang [GMY04] extend the UC framework to express fairness properties,
and construct a “fair” protocol for realizing general functionalities.

Halevi, Karger and Naor [HKN04] extend the UC framework to address information-flow and
confinement concerns within systems with multiple levels of data secrecy.

Extensions of the UC framework to the model of quantum computation was considered in a
number of works. In [cGs02] develops an extension of the closely related [c00] notion to quantum
computation. In [BM04] the general model of computation is extended and the UC theorem is
re-proven. In [BHLMOO05, RK05] the notion of UC quantum key-exchange is defined and shown to
be realizable by known protocols. The work of [BM04] also has applications to the ‘classical” UC
framework. In particular, it is proven that the UC theorem can be extended to handle polynomially
many applications of the UC operation, i.e. “polynomial depth” of nesting of subroutine calls.

A remark regarding terminology: The study of relaxed variants of the UC framework highlights
the fact that this work uses the same terminology (UC) for two very different objects: a definition
of security and a composition operation. Indeed, there may be multiple valid definitions of security
that are preserved under universal composition. For this reason, “UC security” is called “environ-
mental security” in some places, e.g. [G01, PS04]. We prefer the term “UC security” since it best
communicates the main motivation behind this restrictive notion of security. Also, as the results of
Lindell indicate, this is in a sense the “basic definition” when one needs security that is preserved
under universal composition.

Defining and realizing specific primitives within the UC framework. The UC framework
has been used to capture the security requirements of a number of cryptographic primitives and to
analyze a number of protocols. Here we briefly review this body of work.

A tool that is used throughout is the universal composition with joint state (JUC) theorem of
[cRO3]. This theorem asserts that, under certain conditions, the UC theorem can be applied even in
cases where the composed protocol instances have some joint state and randomness. This powerful
tool enables modular analysis in many cases where we would otherwise be forced to analyze an
entire complex system as a single atomic unit. (See more details in Section 5.3. some examples
appear below.)

Key exchange and secure communication. Canetti and Krawczyk [cK02] define UC key
exchange and secure sessions, and demonstrate connections with their earlier notion [cK01] which
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is not based on emulating an ideal process. They also prove security of some basic key exchange
protocols and some natural ways to obtain secure communication sessions given an ideal key ex-
change protocol. That work also introduces a general technique, called non-information oracles,
for relaxing the security requirements of ideal functionalities. In [CK02A], they prove that the
“cryptographic core” of the key exchange protocol of the IPSEC security standard [1PSEC] is a UC
key exchange protocol. Hotheinz et. al. point out some flaws in the [cK02] formulation of the
ideal key exchange functionality, and demonstrate how these flaws can be fixed so that the security
analyses of the protocols in [CK02] remain valid.

[cHKLMO04] define UC password-based key exchange protocols, and show that a variant of the
[GLO3] protocol is secure under their definition. Formulating an ideal functionality that adequately
captures the subtleties of password-based key exchange turns out to be a non-trivial task; in
particular their formulation is quite different than the first formulation that comes to mind.

Nagao, Manabe and Okamoto [NM005] show how to realize UC secure channels using a variant
of the “hybrid encryption” methodology for public-key encryption. This is an interesting alternative
to the traditional way of obtaining secure communication sessions via key-exchange.

Public key encryption and signatures. An ideal functionality for capturing the security prop-
erties of digital signatures, Fgq, was proposed in the first version of this work [c01], and was claimed
to be equivalent to existential unforgeability against chosen message attacks as in [GMRi88]. The
original formulation turned out to have several flaws, that were discovered in several iterations, in
[cK02, crO3, BHO4, c04]. The formulation from [c04] (included in this work for completeness)
keeps the approach of the original formulation and the equivalence with the [GMRi88] notion. [¢04]
also shows how to realize authenticated communication via protocols that use Fg plus ideal “reg-
istration services” where parties can register their public verification keys. We note that the [c04]
analysis is focused on authenticating a single message using a single instance of Fg. Validity in
the case where multiple messages are authenticated using the same instance of Fg (i.e., using a
single signature/verification key) per party is obtained via the JUC theorem.

[c01] formulates an ideal functionality, Fpxg, that is aimed at capturing the security properties
of public-key encryption. It was also claimed that realizing Fpyy is a strictly weaker property than
security against chosen ciphertext attacks (CCA security) as in [RS91, DDNOO]. [CKN03] show that
realizing Fpxy is in fact equivalent to CCA security, in the case where the party corruptions are
static, . (This fact was observed independently in [HMS03al].) They also formulate a relaxed variant
of Fpxe, called replayable encryption, and demonstrate that this variant is in fact sufficient for most
applications of CCA-secure encryption. [CHO4] point out a weakness in previous formulations of
Frxe and show how to fix this weakness while maintaining all the properties of Fpkp that were
claimed in the previous works.

Nielsen [N02] demonstrates that realizing Fpxe in the presence of adaptive party corruptions
is impossible. This holds even in the case where parties can effectively erase past data. [CHKO05]
proposes a relaxation of Fpxg, where even the legitimate receiver is able to decrypt ciphertexts
only in a given time window, and show how to realize this relaxed functionality under certain
number-theoretic assumptions.

Two-party protocols. UC commitment protocols in the common reference string (CRS) model
were constructed in [CFO1, DNOO, DG03]. The protocol of [CF01] is based on general assumptions
and is non-interactive, but is inefficient in that the size of the commitment string is roughly the
security parameter times the length of the committed string. The scheme of Damgaard and Nielsen
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[DNOO] is interactive, uses reference string that is linear in the number of parties, but the size of
the commitment is roughly the same as the size of the committed string. It is based on the Paillier
assumption. Damgaard and Groth show how to make do with a reference string that is independent
of the number of parties, while retaining the other efficiency parameters. Hofheinz et. al. construct
a surprisingly simple UC commitment protocols in the random oracle model [HEM04].

Garay, Mackenzie and Yang construct UC protocols for committed Oblivious Transfer [GMY04a].
Interactive Zero-Knowledge protocols for any language in NP were constructed in [cF01], and non-
interactive ones in [CLOS02], both under general assumptions and in the CRS model. Barak et. al.
[BeNP04] demonstrate how to obtain UC non-interactive Zero-Knowledge in their “key registration
model” discussed above. The interactive ZK protocols are secure even in the presence of adaptive
party corruptions without data erasures. In contrast, the non-interactive ZK protocols work only
in the presence of static party corruptions, or alternatively make essential use of data erasures.

Prabhakaran and Sahai [PS05] provide, using an approach related to the “non-information
oracles” of [cK02], relaxed formulations of some two-party functionalities (including commitment
and ZK). Their relaxed functionalities have the attractive property that they are realizable by more
efficient protocols.

Multi-party protocols. One-to-many variants of UC commitment and Zero-Knowledge are de-
fined and realized in [cLOS02]. Here a single committer (resp. prover) commits to a value (resp.,
proves a statement) to a set of recipients. The secrecy (resp., Zero-Knowledge) guarantee remains
the same, and the binding (resp., soundness) guarantee now applies to all the recipients. These
primitives are at the heart of the above-mentioned general feasibility result in [cL0S02] for multi-
party functionalities.

A UC definition of a mix-net for the purpose of anonymous voting protocols is formulated and
realized in Wikstrom [w04]. His protocol uses ideal calls to the Zero-Knowledge ideal functionality,
Fux, but is otherwise quite efficient.

UC definitions of threshold key generation for the purpose of threshold signature and encryption
schemes are formulated and realized in Abe and Fehr [AF04] and independently in Wikstrom [w04a).

Organization of the rest of this paper. Section 2 presents an overview of the framework, defi-
nition of security, and composition theorem. The basic model for representing multiparty protocols
is presented and motivated in Section 3. The general definition of security is presented in Section
4. The composition theorem and its proof are presented in Section 5. Capturing other models of
computation within the basic model is discussed in Section 6. Section 7 presents and discusses
a number of ideal functionalities that capture some known cryptographic primitives. Section 8
suggests some directions for future research. Throughout, we point out the differences from earlier
versions of this work as we go along. (An exception is Section 2, which for clarity postpones this
discussion to later sections.)

2 Overview of the framework

This section presents an overview of the framework, the definition of security, and the composition
theorem. The presentation builds on the intuition provided in the Introduction (Section 1.1). First,
in Section 2.1, we sketch the basic the computational model, which is geared towards representing
multiple interacting computer programs. Next, in Section 2.2, we sketch the definition of protocol
execution, the “ideal process” for realizing tasks, and the notion of security. Finally, in Section 2.3,
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we sketch the composition theorem and its proof. (These sections roughly correspond to the
material in Sections 3, 4 and 5, respectively.) Throughout, the goal is to present and discuss
the main definitional ideas, with minimal amount of formalism. Additional discussion, regarding
definitional details that are not mentioned in this section, appears in subsequent sections. To avoid
duplication and to preserve the readability of this overview, we postpone the discussion on the
differences from previous version of this work to subsequent sections, where the same material is
covered in full detail.

2.1 The underlying computational model

Following [GMRa89, G01], the programs run by parties in a communication network are represented
as interactive Turing machine (ITMs). The main reason for choosing ITMs as the underlying model
of distributed computation is that they provide a natural basis of considering resource bounded,
probabilistic computation, together with adversarial scheduling. See more discussion on this point
in Section 3.4.

Due to the complexity of modeling and arguing about protocols in multi-party, multi-protocol,
multi-instance settings, we chose to define the underlying “mechanics” of inter-ITM communication
separately from the security model and definition. For this purpose, we formalize the notion of a
system of ITMs, which represents a network of communicating computer programs. It is stressed
that the definition of a system of ITMs provides only the mechanics of communication, without
any notion of security. Still, Formulating this definition involves a number of choices. Indeed, this
notion may be of interest even regardless of the notions of security which are the focus of the rest
of this work.

Formally, a system (I,C) of ITMs consists of an initial ITM M and a control function C. An
execution of a system starts by running I on some external input. In addition to its local computa-
tion, I may invoke other instances of ITMs and write information on some of their tapes. Once an
ITM instance is invoked, it executes its code, and potentially invokes other I'TM instances or writes
to tapes of other instances. Overall, an execution of a system consists of a sequence of activations,
where in each activation a single ITM instance is active (i.e., running), and may write to the tapes
of only one other instance. Once this instance enters a special “waiting” state, the instance whose
tapes were written to becomes active. (We remark that this extremely simple order of activations is
in fact quite powerful, in that it allows us to express practically any security, liveness, and fairness
requirement.) The control function C' determines which tapes of which instances can be written
to by each instance. Figuratively, C' can be viewed as a central “routing ITM” which forwards
information from one ITM instance to another. An execution ends when the initial ITM halts. Tts
output is the output of the initial ITM.

Let us highlight some properties of the notion of a system of I'TMs. First, it provides a clear
separation between the traditional notion of an ITM, which corresponds to a “static object”, namely
an algorithm or a program, and the notion of an ITM instance, which corresponds to a “run-time
object”, namely an instance of a program running on some specific data. In particular, the same
ITM (program) may have multiple instances in an execution of a system.

Another feature is the ability to dynamically generate ITM instances “on the fly”, in a poten-
tially adversarial way, throughout the computation. This ability seems essential for adequate mod-
eling of modern computer networks and systems. However, it introduces a number of definitional
questions, such as how the programs and identities of newly generated instances are determined.
We choose to let the ‘invoking instance” determine these values at runtime. This is an “algorithmic
approach”, which provides great flexibility and power to the protocol designer. It also means that
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the program of the invoking instance should contain sufficient instructions for determining the code
of the invoked instance.

A related definitional question is how an ITM instance specifies which ITM instance it wishes
to address in an “external write” instruction. For this purpose we let each I'TM instance have an
identity that is determined at invocation time (by the invoking instance) and is unchangeable. In
addition, the mechanism of invoking ITM instances guarantees that identities are globally unique,
thus preventing addressing ambiguities. The fact that identities are determined dynamically during
the execution, and are readable by the ITM instances themselves, is an important feature: On the
one hand, it provides a powerful tool for protocol design and analysis. On the other hand, it allows
capturing within the model attacks that use adversarially chosen identities of parties.

The dynamic nature of the present definition of a system of ITMs raises another question: How
to delineate, or isolate, a single “protocol instance” within an execution of a system? Indeed, the
traditional notion that defines a protocol instance as a pre-determined set of ITMs, often with
pre-determined identities, does not apply here. The natural informal answer to this question would
probably be “a set of ITM instances in an execution of a system are a protocol instance if they,
or rather their invokers, decide so”. We formalize this answer by adding extra structure to the
identities of ITM instances. Specifically, we let each identity consist of two separate fields: the
session id (SID) and the party id (PID). A set of ITM instances at a certain moment in an execution
of a system of ITMs are a protocol instance if they have the same program and the same SID. The
PIDs are used to differentiate between I'TM instances within a protocol instance; they can also be
used to associate ITM instances with “clusters”, such as physical computers in a network. This
definition allows for protocol instances where the set of participants is not bounded or known a
priori, and furthermore changes dynamically. Such modeling seems essential for capturing many
protocols in modern computer networks.

Finally, to better capture the characteristics of multi-party, multi-instance systems, the present
model provides two methods for inter-ITM communication. Communication via the communication
tapes of parties represents “untrusted communication” where the identity and program of the
writing entity is not necessarily known to the recipient. Communication via the subroutine output
tapes represents more trusted communication, where the recipient trusts the identity and program
of the writing entity. Typically, the communication tapes would model communication over a
network, while subroutine input/output tapes would model local subroutine calls. This distinction
is conceptually important; it also facilitates the description of the model of protocol execution,
presented in the next section. A graphical depiction of an ITM appears in Figure 1.

input

identitity

incoming communication

sec. param.

subroutine output

Figure 1: An interactive Turing machine. The tapes writable by other ITMs are the input, incoming
communication, and subroutine output tapes. The identity and security parameter tapes are written to only
at invocation time.
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Defining polynomial-time computation. Another non-trivial choice is how to define polyno-
mial time (or, more generally, resource bounded) computation in this highly dynamic setting. A
definition should make sure that each component, as well as the overall system, is not allowed to
over-consume resources, and at the same time should not restrict components in “artificial ways”
that would affect the meaningfulness of notions of security. (Some pitfalls are described within, as
well as in [DKMR0O5, HMU05].)

In a nutshell, our definition proceeds as follows. We say that an ITM M is locally probabilistic
polynomial time (PPT) if, at any point during its execution, its overall running time so far is bounded
by a polynomial in the security parameter and the overall length of input (i.e., the number of bits
written on the input tape), and in addition the number of bits written on the input tapes of other
ITMs, plus the number of other ITMs that M writes to, is less than the the length of M’s input
so far. Note that incoming messages, which are written on the incoming communication tape, do
not increase the bound on the running time. This notion extends the notion of PPT in [G01, Vol I,
Ch. 4.2.1]. In particular, it guarantees that each execution of a system of PPT ITMs is completed
within a number of steps that is polynomial in the initial input to the system. This property seems
natural in cryptographic modeling. It is also essential for the composition theorem to hold.

This definition of PPT ITMs has some additional technical advantages. For instance, it allows
demonstrating that some natural variants of the definition of security are equivalent; it also avoids
other technical difficulties that encumber other notions. See more details and discussion in Sections
3 and 4. (We also remark that PPT adversaries are defined in a slightly more liberal way; details
within.)

2.2 Defining security of protocols

As sketched in Section 1.1, protocols that securely carry out a given task (or, realize a functionality)
are defined in three steps. First, the process of executing a protocol in the presence of an adversary
and in a given computational environment is formalized. Next, an “ideal process” for realizing the
functionality is formalized. A protocol is said to securely realize the functionality if the process of
running the protocol amounts to “emulating” the ideal process for that functionality. We sketch
these steps in more detail.

The model of protocol execution. We sketch the model for executing multi-party protocols
in the presence of and adversary and in a given execution environment (or, “context”). The model
provides only a “bare minimum” for inter-ITM communication; we thus often refer to it as the
bare model. Specifically, it postulates a completely asynchronous, unauthenticated, and unreliable
network, where the communication is adversarially observable and controlled. Furthermore, parties
have no a-priori information on other participants (such as their identities or public keys). As seen
below, more abstract and “idealized” communication models are defined on top of the bare model.
In addition to simplifying the presentation, this approach provides greater power to assertions, such
as the composition theorem, made on the bare model.

The model of protocol execution is parameterized by three ITMs: 7, representing the protocol
to be executed; A, an adversary; and Z, an environment. Intuitively, the adversary represents ad-
versarial activities that are directly aimed as the protocol execution under consideration, including
attacks on protocol messages and corruption of protocol participants. The environment represents
all the other protocols running in the system and the adversaries thereof, including the protocols
that provide inputs to, and obtain outputs from, the protocol execution under consideration. For-
mally, given (m, A, Z), the model of execution is defined as a system of ITMs with a specific control
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function, and where the initial ITM is Z. While the description below is quite informal, formal
specification of the control function can be readily extracted.

Recall that an execution consists of a sequence of activations, where in each activation a single
ITM instance is active and may write to the tapes of one other ITM instance, which becomes the
next instance to be activated. The environment Z is activated first. The first instance to be invoked
by Z is the adversary A. In all other activations, Z may pass information to A (this information
can be thought of as “instructions” or “questions”), or provide inputs to parties in an instance of .
That is, all ITM instances invoked by Z throughout the computation (except for A) are required
to have the program m; furthermore, all are required to have the same SID (which is determined
by Z).

Once the adversary is activated, it may either deliver a message to some party by writing this
message to the party’s incoming communication tape, or corrupt a party, or report some information
to Z. We do not make any restrictions on the delivered messages. In particular, they need not be
related to any of the messages generated by the parties. Upon corrupting a party, the environment
is notified, and the adversary gains access to and control over the internal actions of the corrupted
party, according to the specific corruption model. (Formally, the corruption operation is modeled
as special type of message delivered to the party; the party’s response to this message is determined
by a special part of the party’s program.)

Once a party of 7 is activated, either due to an input given by the environment or due to a
message delivered by the adversary, it follows its program and possibly writes outgoing messages on
the incoming communication tape of A, or writes outputs to the subroutine output tape of Z. In
addition, parties of 7 may invoke other ITM instances as subroutines, provide inputs to them, and
obtain outputs from them. Once a subroutine of a party of = (or a subroutine thereof) is activated,
it follows its program in the same way. It is stressed that the parties can only send messages to A;
they cannot send messages directly to other entities.

The output of the execution is the output of the environment. Without loss of generality we
assume that this output consists of only a single bit. A graphical depiction of the model of protocol
execution appears in Figure 2.

T sid,pidy T sid,pidn

Figure 2: The model of protocol execution. The environment Z writes the inputs and reads the outputs of
the parties running the protocol, while the adversary A controls the communication. In addition, Z and A
interact freely via A’s input tape and Z’s subroutine output tape, and the parties may invoke subroutines
(sub-parties). The Parties are identified via their SIDs and PIDs; all the SIDs in a protocol instance are
identical.
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Discussion. Several remarks are in order at this point. First notice that, throughout the process
of protocol execution, the environment Z has access only to the inputs and outputs of the parties.
It does not have direct access to the communication among the parties. In contrast, the adversary
A only has access to the communication among the parties and has no access to their inputs and
outputs. This is in keeping with the intuition that Z represents, among other things, the protocol
that provides inputs to and obtains outputs from the present instance of w, while A represents
an adversary that attacks the protocol without having access to the local (and potentially secret)
inputs and outputs.

Nonetheless, the order of events allows Z and A to exchange information freely between each
two activations of some party. It may appear at first glance that no generality is lost by assuming
that A and Z disclose their entire internal states to each other. A close look shows that, while no
generality is lost by assuming that A reveals its entire state to Z, the interesting cases occur when
Z holds some “secret” information back from A and tests whether the information received from
A is correlated with the “secret” information. In fact, keeping A and Z separate is crucial for the
notion of security to make sense.

Also, note that the only external input to the process of protocol execution is the input of
Z. This input represents an initial state of the system and in particular includes the inputs of
all parties. (From a complexity-theoretic point of view, providing the environment with arbitrary
input is equivalent to stating that the environment it a non-uniform ITM.)

Another point to be highlighted is that the model of execution allows the adversary to corrupt
individual ITM instances, which represent individual program instances (or, “processes”) within
computers. This allows for finer granularity and greater expressibility in defining security of pro-
tocols; in particular it allows considering security of a protocol instance even when other instances
running within the same computer are compromised.

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution in the real-life model to an ideal process for carrying out the task at hand. For
convenience of presentation, we formulate the ideal process for a task as a special protocol within
the above model of protocol execution. (This avoids formulating an ideal process from scratch.)
A key ingredient in this special protocol, called the ideal protocol, is the ideal functionality that
captures the desired functionality, or the specification, of the task by way of specifying a set of
instructions for a “trusted party”. The ideal functionality is modeled as a special ITM F that
serves as a “joint subroutine” of multiple ITM instances.

More specifically, the ideal protocol IDEAL+ for a given ideal functionality F proceeds as follows.
Upon receiving an input v, protocol IDEAL# instructs the party to forward v as input to the instance
of F whose SID is the same as the local STD. Any output coming from F is copied to the local
output. (As usual, the parties of an instance of IDEALx are distinguished using their PIDs. The
corresponding instance of F has a special null PID.) We often call the parties of IDEALx dummy
parties for F.

F constains instructions on how to generate outputs to parties based on their inputs. It is
stressed that F models reactive computation, in the sense that it maintains local state and new
inputs may be received after prior outputs have been generated. In addition, F may receive
messages directly from the adversary A, and may contain instructions to send messages to A. This
“back channel”’of direct communication between F and A serves several purposes. By letting F
specify appropriate message exchanges with A, it is possible to capture the “allowed influence” of
the adversary on the outputs of the parties. It is also possible to capture the “allowed leakage” of
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information on the inputs and outputs of the parties to the adversary, and the “allowed delay” in
output delivery. Furthermore, corruption of parties of the ideal protocol is captured as a request
from A to F, and the information that A is allowed to obtain upon corruption is captured in the
response message from F to A. A graphical depiction of the ideal protocol appears in Figure 3.

Figure 3: The ideal protocol ¢ for an ideal functionality F. The parties of ¢ are “dummy parties”: they
relay inputs to the instance of F with the same SID, and relay outputs of F to their output tapes. The
adversary 4 communicates only with F.

Protocol emulation. Before presenting the notion of realizing an ideal functionality, we present
the notion of protocol emulation in more general terms that apply to any two protocols. Informally,
protocol 7 emulates protocol ¢ if, from the point of view of any environment, protocol 7 is “just
as good” as ¢, in the sense that interacting with 7 and some adversary is indistinguishable from
interacting with ¢ and some other adversary. More precisely:

Definition (protocol emulation, informal statement): Protocol m UC-emulates protocol ¢
if for any adversary A there exists an adversary S such that, for any environment Z and on any
input, the probability that Z outputs 1 after interacting with A and parties running w differs by at
most a negligible amount from the probability that Z outputs 1 after interacting with S and ¢.

We often call the adversary S a simulator. This is due to the fact that in typical proofs of
security the constructed S operates by simulating A. Also, we call the emulated protocol ¢ as a
reminder that in the definition of realizing a functionality (see below), ¢ takes the role of the ideal
protocol for some ideal functionality F.

We note that, in the present framework, the specific order of quantifiers in the notion of emu-
lation is of no significance. That is, either letting the adversary S depend on Z, or alternatively
requiring that S be fixed for any A (with black-box access to A), result in equivalent definitions.
We choose the present order of quantifiers since it seems to be the most intuitive; it is also the
most relaxed order that allows proving the composition theorem.

The above notion of emulation, as well as the rest of this work, is geared towards capturing
computational security, namely the case where all involved parties, including all adversarial entities,
have polynomially bounded computational resources. This is captured by restricting Z, A, and
S to be PPT. Still, the present notion of emulation is easily extendable to capture unconditional
security. Specifically, statistical security is captured by allowing Z and A to be computationally
unbounded. Perfect security is captured by requiring in addition that the distinguishing probability
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of Z is zero. In both cases it is prudent to require that S be polynomial in the complexity of A
(see [€00] for discussion and rationale).

Securely realizing an ideal functionality. Once ideal protocols, and the general notion of
protocol emulation, are defined, the notion of realizing an ideal functionality is immediate:

Definition (realizing functionalities, informal statement): Protocol m UC-realizes an ideal
functionality F if m# emulates IDEALx, the ideal protocol for F.

Indeed, as in more basic ideal-model based definitions such as the one in [c00], it is guaranteed
that if 7 UC-realizes F then the parties running 7 will generate outputs that are indistinguishable
from the outputs provided by F on the same inputs. Furthermore, any information gathered by
an adversary that interacts with 7 is obtainable by an adversary that only interacts with F. (See
[c00] for more discussion.) In addition, the definition here guarantees that security is preserved
under a very general composition operation, described below.

Hybrid protocols. Before moving to present the universal composition operation and theorem,
we define a special type of protocols that play a central role in the presentation of the composition
theorem and in the rest of this work. In these protocols, in addition to communicating via the
adversary in the usual way, the parties also make calls to instances of ideal functionalities. We call
these protocols hybrid protocols, since they are hybrids between “real protocols” and ideal protocols.
(Figuratively speaking, these instances of ideal functionalities can be thought of as “ideal services”
that are available to parties in the network.)

More precisely, calling an ideal functionality is done by invoking the ideal protocol for that
functionality. That is, an F-hybrid protocol is a protocol that includes subroutine calls to IDEAL £,
the ideal protocol for F. Note that a hybrid protocol may invoke an unbounded number of instances
of the ideal protocol, where each instance of the ideal protocol uses its own instance of F. As usual,
these instances, which may run concurrently, are identified via their SIDs.

2.3 On the composition theorem

The composition operation. As in the case of protocol emulation, we present the composition
operation and theorem in terms of general protocols. The special case of ideal functionalities and
ideal protocols follows as a special case. Let m be a protocol that uses subroutine calls to some
protocol ¢, and let p be a protocol that UC-emulates ¢. The composed protocol, denoted 7Pl?, is
the protocol in which each invocation of ¢ is replaced by an invocation of p. That is, protocol 7
is modified so that each instruction to provide an input to some instance of ¢ is is replaced with
an instruction to give the same input to an instance of p with the same identity, and each output
received from an instance of p is treated as an output received from an instance of ¢ with the same
identity. It is stressed that an execution of 7 may involve an unbounded number of concurrent
copies of ¢. Similarly, an execution of 7#/® may involve an unbounded number of concurrent copies
of p. When the replaced protocol p is an ideal protocol for some functionality F we denote the
composed protocol by 77/7. A graphical depiction of the composition operation appears in Figure 4.

The composition theorem. In its general form, the composition theorem says that if protocol
p emulates protocol ¢ then, for any protocol 7, the composed protocol 7#/% emulates 7. This can
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Figure 4: The universal composition operation, for the case where the replaced protocol is an ideal protocol
for F. Each instance of F (left figure) is replaced by an instance of p (right figure). The solid lines represent
inputs and outputs. The dotted lines represent communication. The “dummy parties” for F are omitted
from the left figure for graphical clarity.

be interpreted as asserting that replacing calls to ¢ with calls to p does not affect the behavior of
7 in any distinguishable way.
A first, immediate corollary of the general theorem states that if protocol p UC-realizes an ideal
functionality F, and 7 is an F-hybrid protocol, then the composed protocol 77 /P UC-emulates 7.
Another corollary states that if m# UC-realizes an ideal functionality G, then so does 7/¢.

On the need to use the session IDs. Recall that in our setting the SID of each instance of F
(resp., of p) is available for code (program) of F (resp. p). It is interesting to note that this property
is essential. Indeed, if the SIDs are not available to the instances of p then the composition theorem
does not necessarily hold. This fact is exemplified in [LLR02] for the basic tasks of broadcast and
Byzantine agreement.

Standard concurrent “self composition” as a special case. The traditional notion of con-
current composition of protocols usually considers a system where many identical instances of a
given protocol p are running concurrently on adversarially controlled inputs and with an adver-
sarially controlled scheduling of message delivery. (Here there are no other protocols except for
the instances of p; following [L04], we call this type of composition self composition.) To see how
this notion of concurrent composition is captured by the above composition operation, assume that
protocol p securely realizes functionality F, and consider the following protocol 7 in the F-hybrid
model. Whenever a party receives a message saying “Please activate instance s of F with input
x,” the party generates input « to the instance of IDEAL# with SID s.

This way, the composed protocol, 77 /P, allows the adversary to create a scenario that is equiv-
alent to the traditional scenario of adversarially controlled concurrent self-composition. Conse-
quently, the fact that 77 /P emulates T means that protocol p preserves its security under concurrent
composition.

On the proof of the composition theorem. We briefly outline the main ideas in the proof
of the composition theorem. Let ¢ be a protocol, let w be a protocol that makes subroutine calls
to ¢, let p be a protocol that emulates ¢ and let 7P/? be the composed protocol. Let A be a
real-life adversary, geared towards interacting with parties running 7#/¢. We wish to construct an
adversary A, in the F-hybrid model such that no Z will be able to tell whether it is interacting
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with 7#/¢ and A or with = and A,. For this purpose, we are given an adversary (a simulator) Sy
that works for a single execution of protocol p. Essentially, A, will run a simulated instance of A
and will follow the instructions of A. The interaction of A with the various instances of p will be
simulated using multiple instances of S,. For this purpose, A, will play the environment for the
instances of S,. The ability of A, to obtain timely information from the multiple instances of S,
by playing the environment for them, is at the crux of the proof.

The validity of the simulation is demonstrated via reduction to the validity of S,. Dealing with
many instances of S, running concurrently is done using a hybrid argument, which defines many
hybrid executions, where in each hybrid execution a different number of instances of ¢ are replaced
with instances of p. This hybrid argument is made possible by the fact that S, must be defined
independently of the environment (this is guaranteed by the order of quantifiers), thus it remains
unchanged under the various “hybrid environments”.

The composition theorem can be extended to handle polynomially many applications, namely
polynomial “depth of nesting” in calls to subroutines. However, when dealing with computational
security (i.e., PPT environment and adversaries), the composition theorem does not hold in general
for protocols ¢ which are not PPT. In particular, the theorem does not necessarily hold when ¢ is
an ideal protocol for an ideal functionality which is not PPT. (See example within.)

3 First steps

This section defines some basic concepts that underlie our treatment. These include the underlying
model of computation, multi-party protocols, and polynomially bounded interactive computation.
While rather technical, these definitions provide the essential foundations for making the treatment
rigorous. Also, while some of these definitions are standard, others are new and may be of interest
independently of the rest of this work (see outline in Section 2.1).

We note that some seemingly small definitional choices taken here have non-trivial effects
throughout this work. In particular, some of the choices made here are quite different than in
previous versions of this work. We point these choices out as we go along.

3.1 Probability ensembles and indistinguishability

We review the definitions of probability ensembles and indistinguishability, restricted to the case of
binary ensembles. A distribution ensemble X = {X(k, a)},eN ac{0,1}+ is an infinite set of probability
distributions, where a distribution X (k,a) is associated with each £k € N and a € {0,1}*. The
ensembles considered in this work describe outputs of computations where the parameter a repre-
sents input, and the parameter k is taken to be the security parameter. Furthermore, the ensembles
in this work are binary, i.e. they only contain distributions over {0,1}.

Definition 1 Two binary distribution ensembles X and Y are indistinguishable (written X ~Y') if
for any c,d € N there exists kg € N such that for all k > ko and all a € UnSkd{O, 1}* we have:

|Pr(X(k,a) =1) — Pr(Y(k,a) =1)| < k™°.

We remark that Definition 1 is somewhat more relaxed than the corresponding definition in
[c00] and in previous versions of this work: Here we only consider the distributions X (k,a) and
Y (k,a) when the length of a is polynomial in k; in contrast, previous formulations considered all
lengths of a. This relaxation is necessary, since here we model polynomial-time Turing machines
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somewhat differently than previously. Specifically, here the running time is measured as a function
also of the input length, rather than as a function of the security parameter alone (as was done
before). More details on, and motivation for, this change in convention appear later in this section.

3.2 The basic model of computation

We define the underlying model of computation. See additional motivational discussion in Sec-
tion 3.4.

Interactive Turing machines (ITMs). We adhere to the standard formalization of algo-
rithms (or, rather, computer programs) in a communication network as interactive Turing machines
[GMRa89]. A detailed exposition of interactive Turing machines, geared towards formalizing pairs
of interacting machines, appears in [G01, Vol I, Ch. 4.2.1]. The definition here is based on the
definition there, adding some syntax that facilitates the modeling of multi-party, multi-execution
settings where multiple (and potentially unboundedly many) interacting machines run in the same
system. As usual, the definition contains details that are somewhat arbitrary, and do not add much
insight into the nature of the problem. Nonetheless, fixing these details is essential for clarity and
unambiguity of the treatment.

Definition 2 An interactive Turing machine (ITM) M is a Turing machine with the following ad-
ditional features. A tape of M is called externally writable (EW) if it cannot be written to by M.
(As seen below, it may be written to by other ITMs.) We assume that all externally writable tapes
are write-once, in the sense that the writing head can only move in a single direction. This prevents
ambiguities in the case where multiple ITMs write to the same tape. Then M has the following
tapes:

o An EW identity tape.
o An EW security parameter tape.
o An EW input tape and

e An EW incoming communication tape.

An EW subroutine output tape.

An output tape.

A random tape.
e A read and write one-bit activation tape.

o A read and write work tape.

The contents of the identity tape of an ITM M is called the identity of M. The identity of M is
interpreted, using some standard encoding, as two strings: the session identity (SID) of M and the
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party identity (PID) of M. The extended identity of M is defined to be the identity of M, together
with a description of the code (i.e., the transition function) of M.

The contents of the incoming communication tape models information coming from the network.
It is interpreted (using some standard encoding) to consist of a sequence of values called messages,
where each message has two fields: the sender field, which is interpreted as the identity of some
ITM, followed by an arbitrary contents field.

The contents of the subroutine output tape models the outputs of the subroutines of M. It
is interpreted, using some standard encoding, to consist of a sequence of values called subroutine
outputs, where each subroutine output has two fields: the subroutine id field, which is interpreted as
the extended ID of some ITM, followed by an arbitrary contents field.

The code of an ITM M may include instructions to write to a tape of another ITM. Such an
external-write instruction specifies the following parameters: the extended identities of the present
ITM and of a target ITM, the target tape to be written to, and the data to be written. The target
tape may be either the input tape, or the incoming communication tape, or the subroutine output
tape. The effect of an external-write instruction is defined below.

We say that M is active if its activation tape is set to 1. Otherwise it is inactive.

Systems of ITMs. We specify the basic mechanics of running multiple ITMs within a single
system, and coin the relevant terminology. These definitions will be instrumental for defining the
model of executing cryptographic protocols, in Section 4. They may also be of independent interest.

A system of ITMs S = (I, C) is defined via an initial ITM I and a control function C': {0,1}* —
{allow, disallow} that determines the effect of the external-write instructions of the ITMs in the
system.* An execution of a system S = (I,C), given security parameter k, input z, and random
input r to the initial ITM I, consists of a sequence of activations of instances (i.e., copies) of ITMs.
In each activation the relevant instance M becomes active, and proceeds according to its code until
it enters one of two states: either a waiting state, or a halt state. If M enters the waiting state then
we say that the activation is complete and that M is waiting for the next activation. If M enters
the halt state then we say that it has halted; in this case, it does nothing in all future activations.
In either case M becomes inactive, and another ITM is activated.

The first ITM to be activated is the initial ITM I, which starts with the input value = written
on its input tape, 1¥ written on its security parameter tape, and with SID=PID=0. (We say that
k is the security parameter.) The execution ends when I halts. The output of the execution is
the contents of the output tape of I. To complete the definition of an execution, it remains to
describe: (a) the effect of an external-write instruction, and (b) How to determine the next ITM
to be activated, once an activation is completed. These are described next.

Writing to a tape of another ITM and invoking ITMs. The effect of an external-write
instruction, by an ITM M with identity id and code ¢ to an ITM M’ with identity id’ and code ¢/,
is as follows.

3Jumping ahead, the SID will hold information that identifies the protocol instance that the present ITM is part
of. the PID will identify the specific ITM within the protocol instance. It will often be convenient to have multiple
ITMs that model programs running on the same physical computer to have related PIDs.

We use some standard encoding for representing the code of an ITM as string. Often the text does not distinguish
between codes and the strings representing them. In fact, we can envision that the code of an I'TM is written on its
identity tape, next to the SID and PID.

4As seen below, C can be viewed as a special-purpose ITM that implements the allowed operations defined in C.
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1. If the control function C, applied to the sequence of external-write requests so far, does not
allow M to write to the specified tape of M’ (i.e., it returns a disallow value) then the
instruction is ignored.

2. If C allows the operation, and an ITM with identity id (and any code) currently exists in
the system, then the instruction is carried out. That is, the specified data is written on
the specified tape of the target ITM, along with the identity of M. If the target tape is a
subroutine output tape, then the extended identity of M is written on that tape.®

3. If C allows the operation, and no ITM with identity id exists in the system, then a new ITM
with code ¢’ and identity id’ is invoked. That is, a new I'TM with the specified code is added to
the system, the string id’ is written on its identity tape, the contents of the security parameter
tape of M is copied to that of the new I'TM, and a infinitely long random string is written
on its random input tape. Once the new ITM is invoked, the external-write instruction is
carried out as above. In this case, we say that M invoked M’

Determining the order of activations. The order of activations is simple: In each activation,
We allow an I'TM to execute at most a single external-write instruction. The I'TM whose tape was
written to in an activation is activated next (i.e., its activation tape is set to 1). If no external-write
operation was performed then the initial ITM T is activated next.”

Additional terminology. When M writes a message m to the incoming communication tape
of M', we say that M sends m to M'. When M writes a value x onto the input tape of M', we
say that M passes input z to M’. When M’ writes z to the subroutine-output tape of M, we say
that M' passes output = to M. We say that M’ is a subroutine of M if M has passed input to M’.
(Note that M’ may be a subroutine of M even when M’ was invoked by a different ITM.) M’ is a
subsidiary of M if M' is a subroutine of M or of another subsidiary of M.

States and transcripts. A state of a system of ITMs represents a complete description of a
certain instant in an execution of the system. Specifically, it consists of the local states of all
ITMs in the system, plus the history of all the external-write requests (i.e., the inputs to C) in
the execution so far. A transcript of an execution of a system is the sequence of states along the
execution.

SThis last provision represents the fact that the model allows an ITM to know the code run by its “subroutine
machines”. In contrast, an ITM does not necessarily know the code of the ITM that generated an incoming message.
See more discussion in Section 3.4.

5Three remarks are in order here: First, the above invocation rules for ITMs, together with the fact that the
execution starts with a single ITM, guarantee that each ITM in the system has unique identity. Second, there are
no restrictions on the contents of the SID and PID. In particular, they can contain cryptographic keys or other
identification information. Third, the code of the invoked ITM should be specified in the external-write instruction
that caused the invocation. This means that the writing ITM determines this code, and this code exists as part of
the state of the writing ITM prior to the invocation.

"Other orders of activation are of course possible (e.g., one can postulate that the ITMs are activated in “round
robin” according to some pre-defined order). We fix the above ordering since it is simple and natural. In particular,
it allows breaking down a distributed computation to a sequence of local events where at each point in time there
is only a single ITM whose local state has changed since its last activation. While this simple ordering does not by
itself preserve fairness or liveness, it allows us to represent these properties, among others, by defining special types
of systems of ITMs (see subsequent sections).
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Extended systems. An extended system is a system where the control function can also modify
the external-write requests of ITMs. More precisely, recall that in a system S = (I, C) the control
function C' takes as input a sequence of external-write requests and outputs either ‘allowed’ or
‘disallowed’. In an extended system the output of C consists of an entire external-write instruction,
which may be different than the input request. The executed instruction is the output of C. In this
work we use this extra freedom only to modify the codes of ITMs. See more details in Section 4.

Outputs of executions. We use the following notation. Let ouT; ¢(k,z) denote the random
variable describing the output of the execution of the (possibly extended) system (I,C) of ITMs
when I'’s input is z, and I’s security parameter is k. (Recall that the output of the system is the
output of the initial ITM I) Here the probability is taken over the random choices of all the ITMs
in the system. Let OUT; ¢ denote the ensemble OUT; ¢ (K, T) } keN,zef0,1}* -

Multi-party protocols. A multi-party protocol is defined as a (single) ITM as in Definition 2,
representing the code to be run by each participant. Given a state of a system of ITMs, the instance
of a multi-party protocol m with SID sid is the set of ITMs in the system, whose code is 7, and
whose SID is sid. (Consequently, the PIDs of the ITMs in a protocol instance are necessarily
distinct.) We assume that 7 ignores all incoming messages where the sender SID is different than
the local SID. Each ITM in an instance is called a party. A sub-party is a subroutine either of a
party or of another sub-party. The extended instance of 7 includes all the parties and sub-parties
of this instance.

Two remarks are in order here. First, we differentiate between a protocol, which represents code
to be run by each party, and a protocol instance, which represents a specific execution of a protocol.
We also do not specify the number of parties in a protocol. Indeed, the model allows protocols
where the number of participants is variable, dynamically changing, and even a-priori unbounded.®

Second, the convention of associating an SID with each protocol instance, where the SID is
known to all parties, will prove very useful in our model where multiple protocol instances run
concurrently in the same system. In addition, it seems to faithfully capture the practice of imple-
menting protocols in actual computer systems (see further discussion in Section 3.4). We note that
there exist other naming mechanisms for protocol instances, that do not require all parties to have
exactly the same SID; still, the present convention is simple and natural, and the extra generality
does not seem essential for our treatment.

We use several alternative naming methods for parties in a protocol instance. We let m; denote
the ith party running protocol 7, according to some arbitrary order (say, the order of invocation
of the parties). The party need not know 7 (i.e., ¢ is not explicitly written on any of m;’s tapes).
We let ID(7;) (resp., PID(m;), SID(7;)) denote the identity (resp., PID, SID) of the ITM 7;. We also
use 7(jq) to denote the party running m whose extended identity is (id, c). That is, ID(m(;q)) = id.
When the protocol 7 is understood from the context or is not specified we sometimes use the generic
notation P; and P4 instead of m; and 7(;4), respectively. Furthermore, when there is no danger of
confusion we often write P; and mean 1D(F;).

8Typically, different parties in a protocol play different roles and run different programs. This can be captured
within the above single-ITM formalism by specifying in 7 the programs for all participants. The reason for using this
single-instance formalism is that it is natural in the case of protocols where the number of participants is unknown
and potentially unbounded.
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Comparison to prior versions of this work. The present definitions of ITMs, running a sys-
tem of ITMs, and multi-party protocols are considerably more detailed, and somewhat different,
than the corresponding definition in prior versions of this work. Let us highlight the main differ-
ences: (a) The partition of the ID to SID and PID did not explicitly exist before. The distinction
between the identity of a protocol and the identities of parties within a protocol instance is very
natural in the description and execution of protocols in a multi-party, multi-instance concurrent
setting, and making it explicit seems helpful. (b) Before there was no formal distinction between
a protocol and a protocol instance. In particular, the number of parties in an instance and their
identities were assumed to be fixed. In addition, there was no formal distinction between P; and
ID(F;), and between a party and a sub-party. (Protocols with a fixed number of parties and fixed
identities can be obtained as a special case of the present formalism.) (c) No general simple rule re-
garding the order of activation of ITMs in a system was previously given. Instead, the ordering was
more complex and model-specific. (d) Before, there was no clear distinction between transferring
information via sending messages in a network, versus transferring information via local subroutine
calls. In particular, the subroutine output tape, which models outputs from local subroutines, did
not exist. (e) Before, the invocation of one ITM by another was not treated as explicitly as here.
In particular, the need to specify the code of the invoked ITM was not explicitly addressed. (f) The
requirement that a protocol ignores all incoming messages with an SID that is different than the
local one was not explicitly made before (although it was used implicitly in a number of places).

3.3 Probabilistic polynomial time I'TMs and systems

Throughout this work we concentrate on ITMs that operate in polynomial time. Rigorously defining
resource-bounded computation in an interactive setting requires some care. This is especially so in
our dynamic setting, where ITMs may be generated as the system evolves. To facilitate readability,
we present the definition with only minimal discussion. Additional discussion is postponed to
Section 3.4.3.

For concreteness and clarity, the definitions below are formulated specifically for probabilistic
polynomial time (PPT) ITMs. We note, however, that they can be generalized in a straightforward
way to handle any function family as a bound on the running time, instead of the family of
polynomials. (See however the discussion prior to Proposition 16 on page 57.)

Our goal is to formulate a definition of polynomial time that matches our intuition in the most
liberal way, and at the same time does not encumber the technical treatment with unnecessary
details. In particular, we wish to adhere as much as possible to the standard notion that “a local
computation is polynomial time if it takes a number of computational steps that is polynomial in
the length of its input”, and at the same time guarantee that the overall number of computational
steps in an execution of a system is “polynomial”.

Our starting point is the definition in [G01, Vol I, Ch. 4.2.1], which essentially says that an
ITM M is PPT if its total running time, in all its activations, is polynomial in the length of its
input (i.e., in the number of bits written on its input tape). We extend this notion in a number of
ways to fit our setting. First, we wish to bound not only the running time of M, but rather the
running time of M together with all its subsidiaries. To do that, we require that the number of bits
written by M onto the input tapes of other ITMs, plus the number of ITM instances whose tapes
are written to by M, is at most the number of bits written on M’s input tape. (In a sense, this
provision regards writing to the input tape of another ITM as giving some of the local “running
time allowance” to that ITM. Adding the number of ITM instances whose tapes are written to
bounds the overall number of new ITMs invoked by M. It also prevents unbounded sequences of
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subroutine calls that preserve the input length.) Second, to account for the fact that an ITM may
receive multiple inputs during its execution, we require that the above conditions hold at any point
during the execution of M. This provision essentially allows an I'TM to run indefinitely, as long as
new values are written on its input tape. Third, we explicitly let the running time depend on the
value of the security parameter, rather than assuming that the security parameter is part of the
input. Finally, we require that all the subsidiaries of M adhere to the same rules, and are bounded
by a polynomial that is no larger than the polynomial bounding M.

Definition 3 (locally PPT, PPT) Let c € N. An ITM M is locally PPT with exponent ¢ if the
following conditions hold for any prefiz of any Tun of M :

1. The overall number of computational steps taken by M so far is at most n®, where n is the
security parameter plus the overall number of bits written so far on M ’s input tape.

2. The number of bits written by M so far to input tapes of ITM instances, plus the number of
different ITM instances whose tapes are written to by M, is at most the overall number of
bits written so far on M’s input tape.

If M s locally PPT with exponent c, and in addition each subsidiary of M is locally PPT with
exponent ¢ < c, then we say that M is PPT with exponent c. M is PPT if there exists ¢ such that
M is PPT with exponent c.

A multiparty protocol is PPT if it is PPT as an ITM.

For the purpose of modeling adversaries we will need another, more liberal variant of polynomial
time, that allows an ITM to be polynomial in the overall number of bits written on all of its
externally writable tapes. That is:

Definition 4 (A-PPT) An ITM M is Adversary-PPT (A-PPT) if there exists an ezponent ¢ € N
such that the overall number of computational steps taken by M in any prefix of any run is at most
n®, where n is the overall number of bits written so far on all of M ’s externally writable tapes.

It can be readily seen that the overall number of computational steps taken in an execution of
a system where all ITMS are PPT is polynomial in the initial input of the system. Furthermore,
this holds even if the system contains a single ITM instance that is only A-PPT, as long as this
instance does not write to inputs tapes of other ITMs. In fact:

Proposition 5 If all the ITM instances in a system (I,C) are PPT, perhaps with the exception
of a single ITM instance that is A-PPT and does not write to input tapes of other instances, and
in addition the control function C is polytime computable, then an execution of the system can be
simulated on a single PPT (non-interactive) Turing machine, which takes for input the initial input
of the system.

3.4 Discussion

Some aspects of the definition of ITMs and systems of ITMs were discussed in Section 2.1. Here
we discuss some other aspect and motivate our definitional choices.
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3.4.1 Motivating the use of ITMs

Interactive Turing machines are only one of several standard mathematical models aimed at cap-
turing computers in a network (or, more abstractly, interacting computing agents). Other models
include the CSP model of Hoare [H85], the m-calculus of Milner, Parrow and Walker [MPW92], the
spi-calculus of Abadi and Gordon [AG97] (that is based on 7-calculus), the framework of Lincoln
et. al. [LMMS98] (that is based on the functional representation of probabilistic polynomial time in
[MMs98]), the I/O automata of Lynch [L96], the probabilistic I/O automata of Segala and Lynch
[sL95] and more. Several reasons motivate the decision to use ITMs as a basis for our framework.
First and foremost, ITMs seem to best represent the subtle interplay between communication, often
with adversarial scheduling, and the complexity of local computations, which in addition may be
randomized. This interplay is at the heart of cryptographic protocols. In particular, ITMs allow the
asymptotic treatment of security as a function of the security parameter. Furthermore, I'TMs seem
to best mesh with standard models used in complexity theory (such as standard Turing machines,
oracle machines, and circuit families). Also, ITMs seem to faithfully represent the way in which
existing computers operate in a network. Examples include the separation between communication
and local inputs/outputs, the identities of parties, and the use of a small number of physical com-
munication channels to interact with a large (and potentially unbounded) number of other parties
(see also next remark). Finally, ITMs allow us to represent in a natural way a specific code to be
executed, as opposed to merely functional specification of the result.

This last property may be regarded also as a disadvantage. Indeed, ITMs provide only a
relatively low-level abstraction of computer programs and protocols. In contrast, practically all
existing protocols are described in a much more high-level (and thus inherently informal) language.
One way to bridge this gap is to develop a library of subroutines that will allow for more convenient
representation of protocols as ITMs. An alternative way is to demonstrate “security preserving
correspondences” between programs written in more abstract models of computation and limited
forms of the ITMs model, such as the correspondences in [AR00, MW04, CHO4].

That said, we note that the I'TM model is in no way the only valid instantiation of the definitional
approach presented here. Any other “reasonable” model that allows representing resource-bounded
computation together with adversarially controlled communication would do. (See e.g. [DKMRO5]
as an example for such an alternative model). Still, care should be taken not to use overly abstract
or restricted models that do not allow expressing realistic concerns.

ITMs as circuit families and concrete security treatment. ITMs can be equivalently
represented via circuit families. Here an evaluation of the circuit corresponds to a single activation
of the corresponding ITM. That is, the input lines to the circuit representing an ITM M consist
(in some predefined way) of the internal state of M at the beginning of an activation, plus the
contents of the incoming communication tape and the subroutine output tape. The output lines of
the circuit represent the internal state of M at the end of the activation, plus the contents of the
output tape, the outgoing communication tape, and the information written on the input tapes of
the ITMs invoked by M. We usually think of ITMs as uniform-complexity ones, thus restricting
attention to uniformly generated circuit families. However, non-uniform circuit families are possible
as well (and are used to model adversarial entities).

We also note that, although the present treatment of complexity is asymptotic for sake of
simplicity, a concrete-security treatment with precise parameterization can be derived from the
present treatment in a straightforward way.
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Adversaries and Ideal Functionalities as ITMs. Although the main goal in defining ITMs
is to represent programs run by the actual computers in a network, it will be convenient to use ITMs
also to model more abstract entities such as adversaries, environments, and ideal functionalities.
However, as will be seen, the model essentially allows the environment and adversary to be non-
uniform PPT (by allowing the environment to have arbitrary input. See more details in Section 4.

3.4.2 On modeling systems of ITMs

Let us highlight the following points, in addition to the discussion in Section 2.1.

Implicit invocation of new ITMs. Recall that the invocation of a new ITM instance is implicit,
and occurs only when an existing ITM writes to a tape of a non-existing ITM instance. We
adopt this convention since it simplifies the model, the definition of security, and subsequently
the presentation and analysis of protocols. Still, it is not essential: Once could, without significant
effect on the expressibility of the model, add an explicit “instance invocation” operation and require
that an ITM instance is invoked before it is first activated.

On the global uniqueness of ITM identities. Recall that identities of ITMs are guaranteed
to be globally unigue. This is guaranteed via a simple mechanism: a new I'TM instance with a given
identity is invoked only if there is no other instance in the system with that identity.

Other methods of determining the identities of ITM instances are of course possible. For
instance, an identity can be forced to be a pair (invoker ID, new ID). Here global uniqueness is
guaranteed by the hierarchical encoding, so there is no need in the conditional generation method
of new ITM instances. In addition, multiple ITM instances can have the same “local ID”, while
being distinguished via the IDs of their “ancestors” in the “ID tree”. Still, we prefer the above
non-hierarchical method since it is more general; in particular, the hierarchical method can be
regarded as a special case of the method used here. (In particular, programs may not be aware of,
or depend on, their “full ID”, and may use only their “local IDs”.)

On the need to agree on the SIDs. Recall that the SIDs of ITMs in the same protocol instance
must be identical. Since these SIDs are determined by the invoking I'TM, it follows that there must
be some coordination between the ITMs that invoke the various parties in a protocol instance,
before the instance is invoked. This coordination may be provided by some prior agreement on
these SIDs, or alternatively it may be obtained via some simple distributed protocol that provides
agreement on the joint SID. (See [BLR04] for a protocol and more discussion.) In this case, one
convenient way to determine the SID of a protocol instance is to let it be the concatenation of the
PIDs of some or all of the parties in this instance, plus some information that is locally unique to
each participant.

Alternative conventions may only require that the SIDs of the parties in a protocol instance
are related in some other way, rather than being equal. Such conventions may be able to avoid
the need in a-priori coordination between the calling ITMs. Also, SIDs may be allowed to change
during the course of the execution. We chose the present convention since it considerably simplifies
the treatment throughout this work. Furthermore, the need in coordination among parties prior to
engaging in a protocol execution is real, and appears (often implicitly) in realistic settings.
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Deleting ITM instances. The definition of a system of ITMs does not provide any means to
“delete” an ITM instance from the system. That is, once an I'TM instance is invoked, it remains
present in the system for the rest of the execution, even after it has halted. In particular, its identity
remains valid and “reserved” throughout. If a halted ITM is activated, it performs no operation
and the initial ITM is activated next. The main reason for this convention is to avoid ambiguities
in addressing of messages to ITM instances.

On the distinction between input, communication, and subroutine tapes. In the case
of ITMs defined for the purpose of interactive proof-systems [GMRa89, G01], an ITM has an input
tape, output tape, an incoming communication tape and an outgoing communication tape. This
distinction is very useful, since it allows separating the input/output functionality of a program
from its communication with other parties; indeed, the communication with other parties is re-
garded as part of the workings of the protocol, rather than part of its functionality. In addition,
since the communication tapes keep being overwritten throughout the computation, the distinction
between input/output tapes and communication tapes facilitates modeling interactive algorithms
that maintain state across messages.

We extend this approach by specifying two different methods of inter-ITM communication:
communication using the usual communication tapes, and communication using the subroutine
output tapes. Technically, the difference between the two is that, when an ITM instance writes
into the subroutine output tape of another ITM instance, the code of the writing instance is ideally
attached to the written value. The incoming communication tape provides no such guarantee.
In addition, the model of computation, described in the next section, will allow the adversary
to see and delay messages sent on the communication tapes, whereas the communication via the
subroutine output tapes will remain secret and without delay.

This convention facilitates modeling multi-instance, multi-party computing environments. For
instance, while the basic unit in a system of ITMs is a single ITM instance (which models a single
execution of some program on some computing device), this convention allows delineating the trust
boundaries around “physical computers” or other “trusted environments” that contain multiple
ITM instances. That is, communication via the subroutine output tapes represents “trusted”
communication that takes place, e.g., between a program and a subroutine of the program that
runs on the same device. There is no question regarding how the received value was computed.
Communication via the communication tapes represents information that “comes from the network”
and is not trusted. In addition, this convention will facilitate the modeling of ideal protocols and
ideal functionalities in the next section. Indeed, ideal functionalities will provide outputs to the
parties via the subroutine output tapes of the latters.

Said differently, this convention allows abstracting out “details” such as the workings of the
operating system or the communication stack running on a computer; at the same time, with a
different set-up (e.g., a different control function), it allows explicit modeling of those “details.”

Another, more technical difference between the modeling here and the one in [GMRa89, G01] is
that here the parties don’t have outgoing communication tapes. Instead, they write (if permitted
by the control function) directly to the incoming communication tape of the recipient. Similarly,
the parties make no use of their output tapes, and write outputs directly to the subroutine output
tape of the recipient. (The one exception is the initial ITM, whose output is written on its own
output tape.) This convention seems easier to work with in a multi-instance setting where the
recipient identity is not fixed in advance.
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“Pseudo Concurrency” vs. “True Concurrency”. The definition of systems of ITMs pos-
tulates a sequential execution of a system, in the sense that only a single ITM is active at any
point during the execution. This stands in contrast to the physical nature of distributed systems
where computations take place in multiple, physically separate places at the “same time”. Further-
more, there exist mathematical models of distributed computation that directly model such “true
concurrency” (see e.g. [L96, LMMS98]), via non-deterministic scheduling.

The main advantage of the present model is that it is relatively easy to argue about. In
particular, it involves no non-determinism and can be simulated efficiently on a standard Turing
machine. It is also readily amenable to inductive arguments, and allows modeling computationally
bounded adversarial scheduling. Furthermore, we claim that, in spite of its inherent sequentiality,
this “pseudo concurrent” execution model can provide arbitrarily close approximation to “true
concurrency”. Indeed, while no two ITMs can be active at the same time, the size of an “atomic
sequential unit” can be made arbitrarily small. For instance, in the extreme case ITMs may enter
the waiting state and pass control after each single invocation of the transition function.

On the control function. The control function (i.e., the part of the system that sets the “rules
of communication”) is a powerful abstraction. As seen in the next section, it plays a central role
in the security model and definition. That is, we specify the model by specifying an appropriate
control function.

The fact that the control function is a separate entity than any other ITM instance provides
a considerable amount of flexibility in capturing different security models. For instance, different
control functions can be used to capture communication models providing different levels of liveness
and fairness. They can also be used to capture models where the order of activations is different
than here, such as [BPW04, DKMRO5].

We remark that an alternative and equivalent description of a system of ITMs defines the control
function via a special-purpose ITM C' that controls the flow of information between ITMs. Here the
external input to the system is written to the input tape of C, and the security parameter is written
to the security parameter tape of C. Once activated for the first time, C' writes its input to the
input tape of I. From now on, all ITMs are allowed to write only to the incoming communication
tape of C, and C writes to externally writable tapes of all other ITMs. In simple (non-extended)
systems, C' always writes the requested value to the requested tape of the requested recipient, as
long as the operation is allowed. In extended systems, C' may change the recipient identity or code,
according to the instruction in C’s code.

3.4.3 On defining PPT ITMs and systems

Letting the runtime depend on the input length. Other notions of PPT ITMs, including
those in [c00, c01, Pw00, BPW04, BPW04a)], restrict both the number of steps in each activation
of a PPT ITM, and the overall number of activations, to be polynomial in the security parameter
only, regardless of the length of the input. The present formalization is more permissive, thus it
allows considering a larger class of protocols and adversaries. It is also compatible with standard
modeling of cryptographic primitives such as encryption, signatures, or pseudorandom functions,
where either the size or the number of inputs is determined by the adversary and is not bounded
by any specific polynomial in the security parameter.

Another advantage of letting the runtime depend on the input length is that it allows proving
the equivalence of some basic formulations of the main definition of security of protocols (see
Section 4.4). In contrast, this equivalence does not hold with respect to the notions in [c00] and
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in other works (see e.g. [HU05]).

Jumping ahead, we note that allowing the adversary to be A-PPT avoids some technical diffi-
culties that occur when the adversary’s input is short relative to the messages sent by the parties
(see e.g. [DKMRO5]).

Using the control function to bound the running time. Another alternative approach to
defining PPT systems of ITMs is to avoid making local restrictions on the running time of individual
ITMs, and instead impose an overall bound on the runtime of the system. For instance, one can
potentially use the control function to bound the runtime of a system. (Indeed, previous versions
of this work used such a mechanism.) This approach is attractive since it is more general and
considerably simpler. In particular, it is not sensitive to encodings of ITMs. We note however that
this approach has the drawback that it causes an execution of a system to halt at a point which is
determined by the overall number of steps taken by the system, rather than by the local behavior
of the last ITM to be activated. This provides an “artificial” way for the last ITM to be activated
(e.g., the initial ITM) to obtain global information on the execution. In particular, this notion of
PPT systems can cause the notions of security defined in the rest of this work to be artificially
restrictive.

Recognizing PPT ITMs. One concern regarding notions of PPT Turing machines in general
is that it may be impossible to decide whether a given ITM is PPT. The standard way of getting
around this problem is to specify a set of rules on encodings of ITMs such that: (a) it is easy to
verify whether the rules are obeyed by a given string (representing an encoding of an ITM), (b)
all strings obeying these rules encode PPT ITMs, and (c) for essentially any PPT ITM there is a
string that encodes it and obeys the rules. If there exists such a set of rules for a given notion of
PPT, then we say that the notion is efficiently recognizable.

It can be readily seen that the notion of PPT in Definition 3 is efficiently recognizable. Specif-
ically, an encoding o of a locally PPT ITM will first specify an exponent c. It is then understood
that the ITM encoded in ¢ halts as soon as the overall number of steps taken by the ITM encoded
in o, or the number of bits written to input tapes of other ITMs, exceed their allowed values. An
encoding of a PPT ITM will guarantee in addition that each subsidiary of the ITM encoded in o
abides by the same encoding rules, with exponent ¢’ < c. Note that these are syntactic conditions
that are straightforward to verify.

Thanks. We would like to thank Oded Goldreich, Dennis Hofheinz, Ralf Kiisters, Yehuda Lindell,
Jorn Mueller-Quade, Rainer Steinwandt and Dominic Unruh for very useful discussions on modeling
PPT ITMs and systems, and for pointing out to us shortcomings of the definition of PPT ITMs in
earlier versions of this work and of some other definitional attempts. Discussions with Dennis were
particularly instructive.

4 Defining security of protocols

This section presents a definition of protocols that securely realize a given ideal functionality, as
outlined in Section 2. First we present (in Section 4.1) the basic computational model for execut-
ing distributed protocols. The model is defined in terms of a system of ITMs (see Section 3.2). It
essentially captures a completely asynchronous network with unauthenticated and unreliable com-
munication. Ideal functionalities and the ideal protocol for carrying out a given functionality are
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presented in Section 4.2, followed by the general notion of protocol emulation and the definition
of securely realizing an ideal functionality, in Section 4.3. Section 4.4 presents several alterna-
tive formalizations of the definition and demonstrates their equivalence to the main one. Finally,
Section 4.5 defines hybrid protocols.

Execution of protocol 7 with environment Z and adversary A

Given protocol 7, adversary A, and environment Z, run an extended system of ITMs as specified in
Section 3.2, with initial ITM Z, and a control function as described below. Z starts with security
parameter k and input z. Next:

1. The first ITM invoked by Z is set to be the adversary, A. All other ITMs invoked by Z are
set to be ITMs that run m; furthermore, they are all required to have the same SID.

2. Once the adversary A is activated, it can pass output to Z, and in addition it can perform
one of the following activities:

(a) A can deliver a message m to a party or sub-party with identity id. There are no restric-
tions on the contents and sender identities of delivered messages (except for corruption
messages, see next item).

(b) A can corrupt an ITM M with identity ¢d. This operation is modeled as a special
(corrupt) message delivered to M. This operation is allowed only once A receives an
input (corrupt id) from Z. The message may include additional parameters set by A.

3. Once a party running m, or a sub-party thereof, is activated (either due to a new incoming
message which was delivered by 4, or due to a new input from Z, or due to a value written
by a sub-party on the subroutine output tape), it can send messages to A, it can pass outputs
to the ITM that invoked it, and it can pass inputs to any subroutine ITM.

The response to a (corrupt) message may vary according to the specific corruption model and
the parameter values. In the Byzantine corruption model, the party reports its current state
to the adversary. Furthermore, in all future activations by parties other than A, the party
sends to A its current local state. In all future activations the party follows the instructions
of A regarding delivering values to other parties.

Figure 5: A summary of protocol execution

4.1 The model of protocol execution

The model for protocol execution is parameterized by three ITMs: the protocol 7 to be executed,
the environment Z and the adversary A. That is, given 7, Z, A, the real-life model for executing
7 is the PPT extended system of ITMs (Z, Cg)’(ﬁc) (as defined in Section 3.2), where the initial
ITM in the system is the environment Z, and the control function Cg,’{éc is defined in the following
paragraphs.

Recall that Z initially receives some input. This input represents some initial state of the
environment in which the protocol execution takes place. In particular, it represent all the external
inputs to the system, including the local inputs of all parties. The first ITM to be invoked by Z
is set by the control function to be A. In addition, as the computation proceeds, Z may invoke
as subroutines an unlimited number of ITMs, pass inputs to them, and obtain outputs from them,
subject to the restriction that all the invoked ITMs have the same SID (which is chosen by Z).
The code of these ITMs is set by the control function to be the code of m. Consequently, all the
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ITMs invoked by Z, except for A, are parties in a single instance of .

The control function allows the parties and sub-parties of 7 to invoke subroutines, to pass
inputs to those subroutines, and to pass outputs to their invoking ITMs. In addition, they can
send messages to the adversary A4, i.e. write messages on A’s incoming communication tape. These
messages may specify an identity of a party or sub-party of 7 as the final destination of the message.

In addition, the control function allows the adversary A to send messages to any ITM in the
system. In this case, we say that A delivers this message. (We use a different term for the delivery
operation to stress the fact that sending by the adversary models actual delivery of the message
to a party or sub-party of w.) There need not be any correspondence between the messages sent
by the parties and the messages delivered by the adversary. A may not invoke any subroutines.
Furthermore, all ITMs invoked by A (say, by delivering messages to them) must be PPT.

The adversary A may also corrupt parties or sub-parties of m. Formally, corruption of a party or
a sub-party with identity id is modeled via a special (corrupt) message (potentially with additional
parameters) delivered by A to that ITM. The control function allows delivery of that message only
if A previously received a special (corrupt id) from the environment Z. (This last stipulation
makes sure that the environment knows which parties are corrupted. This is important for the
notion of security to make sense.) The response of the party or sub-party to a (corrupt) message
is not defined in the general model; rather it is left to the protocol. This allows capturing a variety
of corruption methods within a single computational model. See more discussion and elaboration
in Section 6.6.

Still, for concreteness let us specify here one possible corruption model, namely that of Byzantine
party corruption. Here, once a party or a sub-party receives a (corrupt) message, it sends to A
its entire current local state. Also, In all future activations, M follows A’s instructions regarding
external-writes to tapes of other ITMs.

We remark that the model allows A to invoke new ITMs by delivering messages to them. These
ITMs may be either a party of the instance of m with SID sid, or not. Allowing A to invoke parties
of m with SID sid is important since it allows modeling protocol instances that are invoked be a
message coming from the network. One could potentially restrict A to invoking only parties of the
current instance of m; but this would be cumbersome and not change the notion of security.

We restrict attention to environments that output a single bit. As discussed in Section 4.3,
no generality is lost by this restriction. A summary of an execution of a multi-party protocol is
described in Figure 5. See Figure 2 on page 19 for a graphical depiction®

We use the following notation. Let EXECr 4,z (k, z) denote the random variable OUT ; =4 (k, 2).
»~EXEC

Let EXECy 4,z denote the ensemble {EXEC; 4,z(k, 2) }reN 2e{0,1)*-

9There are four main differences between the model of computation here and in previous versions of this work: (1)
Here the environment invokes parties and chooses their identities, whereas previously the set of participants and their
identities were fixed in advance. (2) Here, once a party generates an outgoing message, A is the next to be activated.
Previously, Z was activated next. This change does not affect the strength of the security definition, since A and Z
can communicate freely throughout the computation. Its purpose is to clarify and simplify the presentation of the
model. (3) Here, upon corruption, A learns only the current state of the corrupted ITM. In prior versions, A learned
the entire sequence of prior states of the corrupted ITM. The reason for that stipulation in the prior versions was to
reflect the concern that data erasures are not always effective. Still, the present formulation is more general, since it
allows modeling both protocols where the security depends on effective data erasures, and also protocols that do not
erase data at all. (4) Here the granularity of corruption is finer: A can corrupt also individual ITMs (i.e., parties or
sub-parties). This finer granularity is natural in the present model; it also makes the model more expressive in terms
of security requirements, and strengthens the universal composition theorem. (Of course, the traditional operation
of corrupting a party and all its subsidiaries in “one shot” can be captured in the present formalization as a sequence
of corruptions of the individual ITMs.)
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4.2 Ideal functionalities and ideal protocols

Ideal functionalities. An ideal functionality represents the expected functionality of a certain
task, or a protocol problem. This includes both “correctness”, namely the expected input-output
relations of uncorrupted parties, and “secrecy”, or the acceptable leakage of information to the
adversary. Technically, an ideal functionality F is an ITM as in Definition 2, with the following
additional conventions. First, its input tape can be written to by a number of ITMs, and it
can write to the subroutine output tapes multiple ITMs. This represents the fact that an ideal
functionality behaves like a subroutine machine for a number of different ITMs (which are thought
of as parties in a multi-party protocol). Next, the PID of an ideal functionality is set to L. (This
fact is used to distinguish ideal functionalities from other ITMs.) In addition, an ideal functionality
F expects all inputs to be written by ITMs whose SID is identical to the local SID of F. Other
inputs are ignored. The communication tape of F is used to communicate with the adversary.
Typically, useful ideal functionalities will have some additional structure, such as the response
to party corruption requests by the adversary. However, to avoid cluttering the basic definition
with unnecessary details, further restrictions and conventions regarding ideal functionalities are
postponed to subsequent sections (see Section 6.1).

Ideal protocols. Let F be an ideal functionality. The ideal protocol for F, denoted IDEALf, is
defined as follows. Whenever a party with identity (sid, pid) is activated with input v, it writes v
onto the input tape of Fq, 1), i.e. the instance of F whose SID is sid. (Recall that, according to
the definition of a system of ITMs, F{yq, 1) is created at the first call to it.) Whenever the party
receives a value v on its subroutine output tape, it writes this value on the subroutine output tape
of Z. Messages delivered by A, including corruption messages, are ignored.'® We sometime use
the term dummy party for F to denote a party of an an ideal protocol for F. See Figure 3 on page
21 for a graphic depiction of the ideal protocol.!!

We use the following notation.  Let IDEALf 4 z(k,z,7) denote the random variable

0Tn the ideal protocol we assume that corruption messages are sent by the adversary directly to the ideal func-
tionality. We then let the ideal functionality determine the effect of corrupting a party. One typical response would
be to let the adversary know some or all of the inputs and outputs the party has received so far. Other, more global
responses may include a reduction in the overall security guarantees when more than a certain number of parties
have been corrupted, etc. See more discussion in Section 6.1.

UThere are three main differences between the ideal protocol here and the “ideal process” in previous versions of
this work. (I). Here the “ideal process” is presented as a specific protocol within the “real-life” model of computation,
whereas previously it was presented as a separate process altogether. This difference is presentational only; indeed,
while it does not change the definition of security, it simplifies the presentation considerably. (II). Here, F writes
outputs directly on tapes of the recipient dummy party, and the recipient party is activated immediately, whereas
previously it was up to the adversary to deliver messages from F to the dummy parties. This (quite radical) change has
several advantages: (a) It better reflects the intuition that ideal functionalities are an idealization of local subroutine
calls and should thus provide outputs directly to the parties via the subroutine output tapes, without intervention or
knowledge of the adversary. (b) It simplifies the order of events in the ideal process and allows it to be captured as a
special case of the main model of computation. (c) Most importantly, it allows capturing a number of different forms
of communication (including asynchronous, synchronous, with or without guaranteed delivery, and local subroutine
computation) within a single simple model. See more details in Section 6. Finally, we note that no generality is lost by
this change, since an ideal functionality can always allow the adversary to delay messages, if it asks for the adversary’s
approval before actual delivery. (III). Previously, F was not notified upon corrupting parties or sub-parties, and the
information learned by S was specified to be all the inputs and outputs obtained by the corrupted party so far. Here
F is explicitly notified upon party or sub-party corruption, and the information obtained by the adversary upon
party corruption is determined by the functionality. The present formulation allows more generality. For instance, it
allows specifying requirements that depend on the identities of corrupted parties, as well as “forward security” style
requirements where the adversary should not learn some internal data of a party even upon corrupting the party.
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EXECprars,A,2 (K, 2,7). Let IDEALF s z denote the ensemble {IDEAL]:,S,Z(k,Z)}keN,ze{0,1}*-

4.3 Definition of security

We first formalize the general notion of emulating one protocol via another protocol. Next, we
use this general notion to define protocols that realize an ideal functionality. See discussion in
Section 2.2. Essentially, protocol m emulates protocol ¢ if for any adversary A there exists an
adversary S such that no environment can tell whether it is interacting with 7 and A or with ¢
and S:

Definition 6 Let m and ¢ be PPT multi-party protocols. We say that w UC-emulates ¢ if for any
PPT adversary A there exists a PPT adversary S such that for any PPT environment Z we have:

EXECy,5,z = EXECy 4 2. (1)

Protocols that realize an ideal functionality are defined as protocols that emulate the ideal
protocol for this ideal functionality:'2

Definition 7 Let F be an ideal functionality and let w be an multi-party protocol. We say that
UC realizes F if m emulates the ideal protocol for F.

On statistical and perfect emulation. Definitions 6 and 7 can be extended to the standard
notions of statistical and perfect emulation (as in, say, [c00]). That is, when A and Z are allowed
unbounded complexity, and the simulator S is allowed to be polynomial in the complexity of
A, we say that 7 statistically UC-emulates ¢. If in addition the two sides of (1) are required
to be identical then we say that 7 perfectly UC-emulates ¢. Another variant allows S unlimited
computational power, regardless of the complexity of A. (However, this variant provides a weaker
security guarantee, see discussion in [c00].)

On security with respect to uniform-complexity inputs. Definitions 6 and 7 consider en-
vironments that take arbitrary input (of some polynomial length). This essentially makes the
environment non-uniform from a complexity-theoretic point of view, since it is getting “advice”

12The present formulation of Definitions 6 and 7 is different from the formulation in prior versions of this work in a
number of respects. First, as discussed earlier, the changes made to the model of computation and to the ideal protocol
(or process) provide additional power to F and thus greater expressiveness in formulating ideal functionalities. It
should be stressed however that these changes do not modify the basic notion of security, in the sense that the same
security measures can still be captured (albeit with slightly different formulations of F).

Second, here we separately and explicitly define protocol emulation, whereas previously this notion was implicit in
the definition of security. This is a presentational change with no technical implications.

Third, the changes in the notions of indistinguishable ensembles and PPT ITMs (Definitions 1 and 3) make the
present formulation somewhat more relaxed than before. That is, if a protocol securely realizes a functionality
according to the previous formulation of the definition then it securely realizes the functionality also according to
the current formulation of the definition. The other direction seems unlikely to hold. While the difference seems
inconsequential in terms of “real world security” of protocols, it is nice to have a seemingly more relaxed formalization
that still allows proving the composition theorem.

A fourth difference is that prior formulations restricted the real-life adversary to be part of a certain “class” of
adversaries, where a class was interpreted as a limitation on the sets of parties that can be corrupted. Here we do
not make this restriction; Indeed, since in the ideal process F learns the identities of the corrupted parties, the fact
that security is guaranteed only with respect a certain corruption structure can be expressed within the specification
of F rather than as a variation to the model.
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that is not necessarily generated in polynomial-time. Alternatively, one may choose to consider
only inputs that are in themselves the result of some uniform, polynomial time process. This
weaker notion of security, which is often dubbed as “uniform-complexity security”, can be captures
by considering only environments that take no external input, and choose the inputs of the parties
based on some internal stochastic process. (More formally, the external input to such environment
contains no information other than its length, e.g. it is 1" for some n.)

On the transitivity of emulation. It is easy to see that if for some constant n € N we have
protocols 1, ..., m, such that m; UC-emulates protocol ;41 for all 1 <4 < n, then m; UC-emulates
7p. In addition, it can be seen that transitivity extends to any polynomially long sequence of
protocols, provided that there is a polynomial bound on the complexity of simulators for these
protocols. (This is best seen using the equivalent notion of security via black-box simulation, see
Section 4.4.) We remark though that the case of a non-constant number of different protocols seems
to be of limited practical interest. Finally, we stress that the question of transitivity of emulation
should not be confused with the question of multiple nesting of protocols, which is discussed in
Section 5.3.

4.4 Alternative formulations of the main definitions

We discuss some alternative formalizations of the definition of protocol emulation (Definition 6)
and show that they are all equivalent to the main formalization.

On environments with non-binary outputs. Definition 6 quantifies only over environments
that generate binary outputs. One may consider an extension to the models where the environment
has arbitrary output; here the definition of security would require that the two output ensembles
EXEC; 4,z and EXECy s z (that would no longer be binary) be computationally indistinguishable,
as defined by Yao [Y82] (see also [G01]). It is easy to see, however, that this extra generality results
in a definition that is equivalent to Definition 6. We leave the proof as an exercise.

On deterministic environments. Since we allow the environment to receive an arbitrary ex-
ternal input, it suffices to consider only deterministic environments. That is, the definition that
quantifies only over deterministic environments is equivalent to Definition 6. Again, we leave the
proof as an exercise. Note however that this equivalence does not hold for the case of uniform-
complexity security, i.e. when the environment only receives inputs of the form 1”.

Doing without the real-life adversary. Definition 6 can be simplified as follows. Consider the
following “dummy adversary”, A. When activated with an incoming message m on its incoming
communication tape, adversary A passes m as output to Z. When activated with an input (m, id, c)
from Z, where m is a message, id is an identity, and c is a code for a party, A delivers the message
m to the party whose identity is id. (Recall that the code c is used in case that no party with
identity id exists; in this case a new party with code ¢ and identity id is invoked as a result of this
message delivery.) This in particular means that A corrupts parties when instructed by Z, and
passes all gathered information to Z.

We show that, instead of quantifying over all possible adversaries A, it suffices to require that
the ideal-protocol adversary S be able to handle the dummy adversary A (and any environment
machine Z).
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Before stating and proving this claim, we make an additional simplifying step in the definition of
security against dummy adversaries. In this step we get rid of the dummy adversary altogether, and
instead let Z interact directly with the parties. That is, in this simplified model parties and ideal
functionalities send messages directly to Z rather than to A. (Say, these messages are written to the
incoming communication tape of Z.) Similarly, Z writes directly to the incoming communication
tapes of the parties and ideal functionalities. We use the shorthand EXEC, z to denote EXEC, j z-
We say that protocol m UC-emulates protocol ¢ with respect to dummy adversaries if there exists an
adversary S such that for any environment Z we have IDEALy s z =~ EXEC, z. We show:

Claim 8 Let w,¢ be multiparty protocols. Then m UC-emulates ¢ according to Definition 6 if and
only if it UC-emulates ¢ with respect to dummy adversaries.

Proof: Clearly if # UC-emulates ¢ according to Definition 6 then it UC-emulates ¢ with respect
to dummy adversaries. The idea of the derivation in the other direction is that, given direct
access to the communication sent and received by the parties, the environment can simulate any
adversary by itself. Thus quantifying over all environments essentially implies quantification also
over all real-life adversaries. More precisely, let 7, ¢ be protocols and let S be the adversary
guaranteed by the definition of emulations with respect to dummy adversaries (that is, S satisfies
IDEAL, § > & EXECr,z for all Z.) We show that = UC-emulates ¢ according to Definition 6. For
this purpose, given an adversary A we construct the adversary S as follows. S runs simulated
instances of A and S. In addition:

1. § forwards any input from the environment to the simulated A, and copies any output of A
to its own output tape (where it will be read by the environment).

2. Whenever the simulated S generates an output value v, S activates the simulated A with v
as incoming message. (Here v is either a message sent by some party, or the internal state of
a party upon corruption.) When the simulated A delivers a message m to F(;q), i.e. to the
party with identity id, then S activates S with input (m,id). (If A specifies the code ¢ of the
recipient party, then so does S.)

3. S forwards any message coming from parties running ¢ to the simulated S, and forwards to
these parties any message that S delivers.

Finally, to guarantee that S is A-PPT, we set a polynomial bound for the running time of S.
Let p,() be the polynomial bounding the overall number of communication bits sent by the instance
of p as a function of the overall length of inputs to parties of p. Then the polynomial p() bounding
the running time of S is p,() times the product of the polynomials bounding the running times of
S and A. (This bound is not tight; it is set for simplicity.) That is, S completes an activation as
soon as the overall number of steps taken exceeds p(n), where n is the number of bits written so
far on all of S’s externally writable tapes.'® A graphical depiction of the operation of S appears in
Figure 6.

Analysis of §. Say that an activation of § ended prematurely if it ended due to the fact that
S exceeded its resources, before the simulation of the activation of either S or A completed. We

'3We note that explicitly bounding the running time of S is necessary, since it simulates two interacting ITMs that
are only A-PPT, rather than fully PPT. Thus, a-priori the interaction of the two ITMs may take a super-polynomial
number of steps.
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T sid,pidy T sid,pidy,

Figure 6: The operation of simulator S in the proof of Claim 8: Both A and S are simulated internally
by S. The same structure represents also the operation of the shell adversary in the definition of black-box
simulation.

first analyze S assuming that no activation is ended prematurely. Next, we show that an activation
ends prematurely with negligible probability.

Assume for contradiction that there is an adversary A and environment Z such that EXECy s z
# EXECr 4,z. We construct an environment Z such that EXEC, 5 5 % EXEC, 3. Environment

Z runs an interaction between simulated instances of Z and A. Whenever Z is activated with
a subroutine output value v from its actual adversary, it passes v to the simulated .A. Similarly,
whenever the simulated A delivers a message m to party FPq), Z delivers this message to FPq). In
addition, Z relays all the communication from Z to A from A to Z. It also relays all inputs from Z
to the parties running 7, and all the outputs from these parties to Z. Finally, Z outputs whatever
the simulated Z outputs. It can be readily verified that the ensembles EXEC 68,5 and EXEC 65,8
are identical. Similarly, ensembles EXEC, 3 and EXEC; 4 z are identical.

It remains to bound the probability that an activation of S ends prematurely. First we note
that, as long as the overall number of bits sent from the simulated S to the simulated A within S
are less than p,(n), where n is the overall number of bits that Z sends to the parties of ¢ in the
execution so far, then no activation of S ends prematurely. To see this, recall that each activation
of S consists of either a single activation of S followed by a single activation of A on data generated
by S, or vice versa. In either case, the activation takes less than the running time allotted to S.
Next, we argue that the overall number of bits sent from the simulated S to the simulated A within
S exceeds p,(n) only with negligible probability. To see that, recall that the communication from
the simulated S to A is distributed identically to the communication from S to Z in the interaction
of Z with S and ¢. Consequently, this communication is indistinguishable from the communication
generated by the parties running p when interacting with Z in the dummy adversary model. Since
the latter communication never exceeds p,(n) bits, it follows that that the communication from
the simulated S to A exceeds pp(n) bits only with negligible probability. Also, the values of n in
the two executions are the same except for negligible probability. O

We remark that security with respect to dummy adversaries seems somewhat less intuitively
appealing than Definition 7. In other words, we find it harder to get convinced that this definition
captures the security requirements of a given task. In particular, its formulation is farther away
from the formulation of the basic notion of security in, say, [C00]. Also, it is less obvious that this
notion has essential properties such as transitivity. Therefore we did not present this definition as
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the main one. Nonetheless, being considerably less complicated (it uses one less adversarial entity
and one less quantifier), it is very useful. Indeed, we use it in most of the proofs in this work,
including the proof of the UC theorem.

On black box simulation.* Another alternative formulation of Definition 6 imposes the fol-

lowing technical restriction on the simulator S: Instead of allowing a different simulator for any
adversary A, we let the simulator have “black-box access” to A, and require that the code of the
simulator remains the same for all A. Restricting the simulator in this manner does not seem
to capture any specific security concern. Still, in other contexts, e.g. in the classic notion of
Zero-Knowledge, this requirement results in a strictly more restrictive notion of security than the
definition that lets S depend on the description of A, see e.g. [Gk88, BO1]. We show that in the
UC framework security via black-box simulation is equivalent to the standard notion of security.

The present formulation of black box emulation keeps the overall model of computation un-
changed, and instead imposes restrictions on the operation of the simulator. Specifically, an ad-
versary S is called a shell simulator if it operates as follows, given an A-PPT ITM S (called a
black-box simulator) and a A-PPT adversary A. S first internally invokes an instance of A and an
instance of S. Next:

e Inputs from the environment are passed through A, then S, then to ¢. That is, upon receiving
an input from the environment, S forwards this input to .A. Any outgoing message generated
by A is given as input to S. Instructions of S regarding delivering messages to the parties of
¢ are carried out.

e Incoming messages from ¢ are passed through S, then A, then to the environment. That is,
upon receiving an incoming message from a party of ¢, S forwards this incoming message to
S. Outputs of S are forwarded as incoming messages to A, and outputs of A are outputted
by S to Z.

In addition we require that S is A-PPT. That is, we require that there exists a polynomial p()
such that S ends an activation as soon as the overall number of steps taken by S exceeds p(n),
where n is the number of bits written on S’s externally writable tapes so far. (Note that S is not a
priori guaranteed to be A-PPT since it is internally running two ITMs that are only A-PPT.) See
graphical depiction of the operation of a black-box simulator in Figure 6.

Let EXEC 6,854 2 denote the output of Z from an interaction with protocol ¢ and a shell

adversary S that runs a black-box simulator S and an adversary A. Say that a protocol «# UC-
emulates protocol ¢ with black-box simulation if there exists an A-PPT shell simulator S and an
A-PPT black-box simulator S such that for any A-PPT adversary A, and any environment Z, we

have EXEC, gs.4 z = EXECq 4,z We show:

Claim 9 Let w,¢ be PPT multiparty protocols. Then w UC-emulates ¢ according to Definition 6
iff it UC-emulates ¢ with black-box simulation.

Proof: The ‘only if’ direction follows from the definition. For the ‘if’ direction, notice that the
simulator S in the proof of Claim 8 can be cast as a shell adversary with black-box simulator S
and adversary A. Furthermore, S does not depend on A. O

We remark that the present formulation of security via black-box simulation is somewhat differ-
ent than that of standard cryptographic modeling, where S may query A in arbitrary ways. Here

MThanks to Ralf Kiisters for useful discussions on the formulation of black-box simulation within the UC framework.
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the communication between S and A is much more restricted. In particular, S cannot “reset” or
“rewind” A. This difference makes the present formulation considerably stronger than the standard
cryptographic formulation. Still, it is equivalent to the standard (non black-box) notion of security.

Two other, more technical differences are the introduction of the shell adversary S, and the
fact that A communicates directly with the environment, without the intervention of . The first
difference allows us to stay within the model of protocol execution of Section 4.1, which postulates
only a single adversary. The second difference allows us to have a single black-box simulator S
that can handle all A-PPT adversaries. (In contrast, other notions of black-box simulation allow a
different black-box simulator for each polynomial that bounds the running time of the adversary.)

The present formulation of black-box simulation is similar to the notions of strong black-box
simulation in [DKMRO5] and in [PWO00] (except for the introduction of the shell adversary). However,
there this notion is not equivalent to the standard one, due to different formalizations of probabilistic
polynomial time.

Letting the simulator depend on the environment. Consider a variant of Definition 6,
where the simulator S can depend on the code of the environment Z. That is, for any A and Z
there should exist a simulator S that satisfies (1). Following [L03a], we call this variant security
with respect to specialized simulators. We demonstrate that this variant is equivalent to the main
definition (Definition 6).

Claim 10 A protocol m UC-emulates protocol ¢ according to Definition 6 if and only if it UC-
emulates ¢ with respect to specialized simulators.

Proof: Clearly, if 7 UC-emulates ¢ as in Definition 6 then UC-emulates ¢ with respect to specialized
simulators. To show the other direction, assume that m C emulates ¢ with respect to specialized
simulators. That is, for any PPT adversary A and PPT environment Z there exists a PPT simulator
S such that (1) holds. Consider the “universal environment” Z, which expects its input to consist
of ((Z),z,1%), where (Z) is an encoding of an ITM Z, z is an input to Z, and ¢ is a bound on the
running time of Z. Then, Z, runs Z on input z for up to ¢ steps, outputs whatever Z outputs,
and halts. Clearly, machine 2, is PPT. (in fact, it runs in linear time in its input length). We
are thus guaranteed that there exists a simulator S for Z, such that (1) holds. We claim that
S satisfies (1) with respect to any PPT environment Z. To see this, fix a PPT machine Z as in
Definition 3, and let ¢ be the constant exponent that bounds Z’s running time. For each k£ € N
and z € {0,1}*, the distribution EXECy s z(k, 2) is identical to the distribution EXECy s z, (k, 2u),
where 2, = ((£), z,1¢/?). Similarly, the distribution EXEC, 4 z(k, 2) is identical to the distribution
EXECr 4,2, (k,z,). Consequently, for any d € N we have:

{EXEC¢,S,Z(7€,z)}keN,ze{o,l}Skd = {EXEC¢sSaZu(k’zu)}keN,Zu=(<Z),z€{0,1}Skd,10'|z|)
= {EXECW,A,Zu(kazu)}kEN’zu:(<Z),ze{0,1}5kd,1C'|Z|)
= {EXECW,A,Z(k',z)}keN,ze{O’l}Skd.
In particular, as long as |z| is polynomial in k, we have that |z,| is also polynomial in & (albeit
with a different polynomial). Consequently, EXECy s z &~ EXECy 4,z. (Notice that if |z,| were not
polynomial in k then the last derivation would not hold.) O

Remark: Claim 10 is an extension of the equivalence argument for the case of computationally
unbounded environment and adversaries, discussed in [C00]. A crucial element in the proof of this

44



claim is the fact that we can have a PPT environment Z, that is universal with respect to all PPT
environments. This feature becomes possible only when using a definition of PPT ITMs where the
running time may depend not only on the security parameter, but also on the length of the input.
Indeed, in [c00] and in previous versions of this work, which restricted I'TMs to run in time that is
bound by a fixed polynomial in the security parameter, standard security and security with respect
to specialized simulators could not be shown to be equivalent (see, e.g., [L03a]).

Finally we note that Claim 10 does not hold for the notion of uniform-complexity security, i.e.
in the case where the environment takes inputs only of the form 1" for some n.

4.5 Hybrid protocols

We define a special type of protocols, called hybrid protocols, where, in addition to communicating
via the adversary in the usual way, the parties also make calls to instances of ideal functionalities.
This is done in a straightforward way, by calling the corresponding instances of the ideal protocol for
these functionalities. More precisely, an F-hybrid protocol 7 is a protocol that includes subroutine
calls to IDEALx, the ideal protocol for F.

Recall that running IDEALx means invoking “dummy parties” for F, which in turn invoke an
instance of F. This somewhat “indirect” access to F has the advantage that the calling instance of
7 has the freedom to specify the SIDs and PIDs for the different instances of IDEALx as it wishes.
This way, different parties running 7 can generate instances of IDEALx that have the same SID, and
will thus interact with the same instance of F. Furthermore, the generated SID and PID can be
related in any way to the SID and PID of the calling instance. Recall also that by convention each
instance of F interacts only with I'TM instances that carry the same SID as its own. In particular,
it does not interact with other instances of F.

The behavior upon corruption is determined by the protocol, as usual. That is, when either
an I'TM running 7 or the ideal functionality receives a (corrupt) message (typically with some
additional parameters), it proceeds as specified in its code. Dummy parties ignore corruption
messages.

Hybrid protocols are extended in the natural way to the case where the protocol makes use
of multiple different ideal functionalities. A hybrid protocol with access to ideal functionalities
Fi, .oy Fp is called an F, ..., Fp-hybrid protocol.!®

!5 We highlight the main differences from the definition of the hybrid model in prior versions of this work. (a) Prior
versions defined a separate “hybrid model of computation”, whereas here we use the same basic model of computation
and only define “hybrid protocols” within that model. This is a presentational change with no technical ramifications.
(b) Prior versions include some additional syntactic conventions on the use of SIDs with ideal functionalities. Here
these conventions are made already at the level of systems of ITMs and multi-party protocols (Section 3). (c)
Previously the parties running 7 called the instances of F directly, without the mediation of the dummy parties.
Here the dummy parties are included in the hybrid model. (d) Previously an instance of F could send a message to
the adversary, and request that the adversary sends a response message to that instance of F immediately (i.e., in
the following activation). Here no such provision exists. This change has two simplifying effects on the model. First,
it simplifies the algorithm for determining the order of activations, and makes it uniform over all models and types of
protocols. Second, it allows extending Claim 8 to the case of hybrid protocols (see Section 4.4). Indeed, in previous
versions of this work, Claim 8 did not extend to hybrid protocols. Furthermore, we note that no generality is lost
by this change. Let us elaborate: The goal of allowing F to require immediate response by A was to allow F to
obtain some information from the adversary, while still providing an output to some party in an immediate way (i.e.,
without allowing the adversary to activate the environment in the process.) In the present formulation, the same
effect can be obtained by modifying F as follows. Consider a functionality F that sends messages to A, and expects
to obtain immediate response. Given F, construct the functionality F~ that is identical to F with the exception that
F' obtains from the adversary the code of some ITM A’ (A’ is thought of as a “proxy adversary” to be run by the
functionality). Furthermore, ' will accept messages from A, updating the current state of A’. Now, whenever F
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5 Universal composition

This section states and proves the universal composition theorem. Section 5.1 defines the compo-
sition operation and states the composition theorem. Section 5.2 presents the proof. Section 5.3
discusses and motivates some aspects of the theorem, and sketches some extensions. (This is in
addition to the discussion in Section 2.3.)

5.1 The universal composition operation and theorem

While the main intended use of universal composition is for replacing the communication with an
ideal functionality F with subroutine calls to a protocol that securely realizes F, we define universal
composition more generally, in terms of replacing one subroutine protocol with another. This both
simplifies the presentation and makes the result more powerful.

Universal composition. We present the composition operation in terms of an operator on
protocols. This operator, called the universal composition operator UC(), is defined as follows. Given
a protocol ¢, a protocol  (that presumably makes subroutine calls to ¢), and a protocol p (that
presumably UC-emulates ¢), the composed protocol m#/¢ = uc(n, p, ¢) is identical to protocol T,
with the following modifications.

1. Wherever 7 contains an instruction to pass input z to an I'TM running ¢ with identity
(sid, pid), then 7P/% contains instead an instruction to pass input z to an ITM running p
with identity (sid, pid).

2. Whenever 7°/% receives an output passed from P(sid,pid) (i.e., from an ITM running p with
identity (sid, pid'), it proceeds as 7 proceeds when it receives an output passed from ¢(,iq pig)-

When protocol ¢ is the ideal protocol IDEAL £ for some ideal functionality F, we denote the com-
posed protocol by 7#/%. Also, when ¢ is understood from the context we use the shorthand 7
instead. See a graphical depiction in Figure 4 on page 23.

We remark that the composition operation can alternatively be defined as a model operation
where the protocols remain unchanged, and only change is that the control function invokes in-
stances of p instead of instances ¢. While technically equivalent, we find the present formulation,
where the protocol determines the code run by its subroutines, more intuitively appealing.

Clearly, if protocols 7, ¢, and p are PPT then 7#/% is PPT (with a exponent that is the maximum
of the individual exponents).

Theorem statement. We are now ready to state the composition theorem. First we state a
general theorem, to be followed by two corollaries. The general formulation makes the following
statement: Let m, ¢, p be three protocols, such that protocol p UC-emulates protocol ¢ as in Def-
inition 6. Then the protocol ©?/¢ = vc(w, p, $) UC-emulates protocol w. Here all protocols may
be hybrid protocols, i.e. they may call the ideal protocol for some ideal functionalities, as long as
these ideal functionalities are PPT. (As usual, protocol p may in itself be a hybrid protocol, making
ideal calls to some ideal functionality £.)¢

needs a value provided by A, F' locally runs A’ and treats the output as the message coming from 4. Note that F’

needs no “immediate responses” from A, and its effect is identical to that of F with immediate responses from A.
8T previous versions of this work Theorem 11 was stated only for the case where protocol p is not a hybrid

protocol and ¢ is the ideal protocol for some ideal functionality. While the extension to the present formulation is
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Theorem 11 (Universal composition: General statement) Let w,p,¢ be PPT multi-party
protocols such that p UC-emulates ¢. Then protocol 7P/® UC-emulates protocol .

As a special case, we get:

Corollary 12 Let w,p be PPT multi-party protocols such that p UC-realizes a PPT ideal function-
ality F. Then protocol w°!/F UC-emulates protocol .

Next we concentrate on protocols m that securely realize some ideal functionality G. The
following corollary essentially states that if protocol 7 securely realizes G using calls to an ideal
functionality F, F is PPT, and p securely realizes F, then n?/% securely realizes G.

Corollary 13 (Universal composition: Realizing functionalities) Let F,G be ideal function-
alities such that F is PPT. Let m be a multi-party protocol that UC-realizes G, and let p be a
multi-party protocol that securely realizes F. Then the composed protocol Pl F securely realizes G.

Proof: Let A be an adversary that interacts with parties running 7?/%. Theorem 11 guarantees
that there exists an adversary Az such that EXECr 4.,z & EXEC,,/7 4 z for any environment Z.
Since m UC-realizes G, there exists a simulator S such that IDEALg s z &~ EXEC; 4, z for any Z.
Using the transitivity of indistinguishability of ensembles we obtain that IDEALg s,z = EXEC, /7 4 z
for any environment Z.

5.2 Proof of the composition theorem

A high-level sketch of the proof was presented in in section 2. Section 5.2.1 contains an outline of
the proof. A detailed proof appears in Section 5.2.2.

5.2.1 Proof outline

The proof uses the equivalent formulation of emulation with respect to dummy adversaries (see
Claim 8). This formulation considerably simplifies the presentation of the proof. Let 7, ¢ and p
be PPT multi-party protocols such that p UC-emulates ¢, and let n? = 7P/¢ = uc(m, p, ¢) be the
composed protocol. We wish to construct an adversary A, so that no Z will be able to tell whether
it is interacting with 7# (and no adversary) or with 7 and A,. That is, for any Z, A, should satisfy

EXECyp, z R EXECy A, 2. (2)

The general outline of the proof proceeds as follows. The fact that p emulates ¢ guarantees
that there exists an adversary (called a simulator) S, such that for any environment Z, we have:

EXEC) z, X EXECy,5 z,- (3)

Adversary A is constructed out of S. We then demonstrate that A, satisfies (2). This is done by
reduction: Given an environment Z that violates (2), we construct an environment Z, that violates

(3).

straightforward, and the proofs are essentially identical, formally speaking the present formulation is more useful
since most realistic protocols are in fact hybrid protocols with ideal access to some basic ideal functionalities (see e.g.
Section 6).
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Adversary A, operates as follows. Recall that Z expects to interact with parties running «°.
The idea is to separate the interaction between Z and the parties into two parts. To mimic the
sending and receiving of messages from the parties of each instance of p (and their subroutines),
A runs an instance of the simulator S. To mimic the sending and receiving of messages from the
parties running 7w, A, interacts directly with the actual, external parties running 7. A bit more
specifically, recall that Z receives the messages sent by the parties of 7, by the parties of all instances
of p, and by all their subsidiaries. In addition, Z delivers messages to all these entities. (These
messages include also the corruption instructions and the subsequently revealed information.) A,
runs an instance of the simulator S for each instance of ¢ invoked by a party running 7 in the
system it interacts with. When activated with a message sent by a party or sub-party of w, A,
passes this message to Z, together with the identity of the sender. When activated with message
m sent by Z to a party with identity id that runs p, then A, forwards (m,id) to the corresponding
instance of S. If Z sends a message to be delivered to another party (that runs either 7 or a
subroutine of ), then A, delivers m to the actual party, Piq)- Any message from an instance of
S is passed as output to Z. Figure 7 presents a graphical depiction of the operation of A;.

Figure 7: The operation of A,. Inputs from Z that represent messages of the instance of 7 are forwarded
to the actual instance of 7. Inputs directed to an instance of p are directed to the corresponding instance
of S. Messages from an instance of S are directed to the corresponding actual instance of ¢. For graphical
clarity we use a single box to represent a multi-party protocol instance.

The validity of A, is demonstrated, based on the validity of S, via a hybrids argument. While
the basic logic of the argument is standard, applying the argument to our setting requires some
care. We sketch this argument. (The actual argument is slightly more complex; still, this sketch
captures the essence of the argument.) Let m be an upper bound on the number of instances of p
that are invoked in this interaction. Informally, for I < m we let m; denote the protocol where the
interaction with the first /[ instances of ¢ remains unchanged, whereas the rest of the instances of
¢ are replaced with instances of p. In particular, protocol 7, is essentially identical to protocol .
Similarly, protocol 7y is essentially identical to protocol 7#.17

Now, assume that there exists an environment Z that distinguishes with probability e between
an interaction with A, and 7, and an interaction with 7#/¢. Then there is an 0 < [ < m such that
Z distinguishes between an interaction with A, and m;, and an interaction with A, and m;_;. We

"In the actual proof we consider a different model of computation for each hybrid, rather than considering a
different protocol. The reason is that the parties running the protocol may not know which is the (globally) Ith
instance to be invoked. See details within.
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then construct an environment Z, that can distinguish with probability e/m between an interaction
with parties running a single instance of p, and an interaction with S and ¢. Essentially, Z, runs a
simulated execution of Z, adversary A, and parties running m;, but with the following exception.
Z, uses its actual interaction (which is either with ¢ or with p) to replace the parts of the simulated
execution that have to do with the interaction with the /th instance of ¢, denoted ¢;. A bit more
specifically, whenever some simulated party running 7 passes an input = to ¢;, Z, passes input
to the corresponding actual party. Outputs generated by an actual party running p are treated
like outputs from ¢; to the corresponding simulated party running w. Furthermore, whenever the
simulated adversary A, passes input value v to the instance of S that corresponds to ¢;, Z, passes
input v to the actual adversary it interacts with. Any output obtained from the actual adversary is
passed to the simulated A, as an output from the corresponding instance of S. Once the simulated
Z halts, Z, halts and outputs whatever Z outputs. Figure 8 presents a graphical depiction of the
operation of Z,.

Figure 8: The operation of Z,. An interaction of Z with = is simulated, so that the first  — 1 instances of
¢ remain unchanged, the /th instance is mapped to the external execution, and the rest of the instances of ¢
are replaced by instances of p. For graphical clarity we use a single box to represent a multi-party protocol
instance.

The proof is completed by observing that, if Z, interacts with S and ¢, then the view of the
simulated Z within Z, has the same distribution as the view of Z when interacting with A, and
m. Similarly, if Z, interacts with parties running p, then the view of the simulated Z within Z,
has the same distribution as the view of Z when interacting with A, and 7 ;.

5.2.2 A detailed proof

We proceed with a detailed proof of Theorem 11, along the lines of the above outline. Most of the
terminology and notations were defined in Section 3.

Construction of A;. Let 7, ¢, p be protocols, where p emulates ¢, and and let 7 = 7#/¢ be the
composed protocol. The fact that p UC-emulates ¢ guarantees that there exists an ideal-process
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Adversary A,

Adversary A, proceeds as follows, interacting with parties running protocol 7 and environment Z.
Initially A, keeps no instances of S running.

1. When activated with input (m,id,¢) (coming from Z), where m is a message, id = (sid, pid)
is an identity, and ¢ is a code for an ITM, do:

(a) If ¢ = p (i-e., the code ¢ is the code of protocol p), and there is no instance of S running
internally with SID sid, then internally invoke a new instance of S with identity (sid, 1),
activate this instance with input (m, id, ¢), and follow its instructions. The new instance
of § is denoted S(siq,1)-

(b) Else, if there already exists an instance Sy;qr, 1) of S, running internally, that handles the
protocol instance associated with SID= sid (that is, either sid' = sid or sid is the SID
of a subsidiary of a party with SID=sid'), then activate S;q,1) with input (m,id, c)
and follow its instructions.

(c) Otherwise, deliver the message m to the party with identity ¢d. (Using the terminology

of Definition 2, this means that A, executes an external-write request to the incoming
message tape of a party with extended identity (c,id).)

2. When activated with an incoming message m from some party running =, do:

(a) If m was sent by some party ¢(sia,piq) of protocol ¢ then internally activate the instance
S(sid, 1) of S with incoming message m from ¢(,;q,piq), and follow its instructions. (If no
such instance of S exists then invoke it, internally, and label it S(,;q, 1))

(b) Else (i.e., if m was sent by another party or sub-party m(;q) of m, then pass (m,id) as
output to Z.

3. When an instance S(;4) of S internally generates a request to deliver a message m to some
party running ¢, then deliver m to this party. Similarly, when S;4) requests to pass an output
v to its environment then pass v to Z.

Figure 9: The adversary for protocol 7.

adversary S such that EXECy s z, & EXEC), z, holds for any environment Z,.

Adversary A, uses S and is presented in Figure 9. Observe that the handling of corruptions of
ITMs (parties and sub-parties of m and p) is implicit in the description of A;. Indeed, recall that
the corruption requests and the returned information are modeled as special cases of messages and
outputs.

Validity of A,. Clearly, A; is A-PPT. (This is so since it runs at most a polynomial number of
instances of S, and the overall size of incoming data of each instance of S is polynomial in the size
of incoming data of A,.) Assume that there exists an environment machine Z that violates the
validity of A; (that is, Z violates Equation (2)). We construct an environment machine Z, that
violates the validity of S with respect to a single run of p. (That is, Z, violates Equation (3).)
More specifically, fix some input value z and a value k of the security parameter, and assume that

EXECp» z(k,2) — EXECy 4, z(k,z) > e. (4)

We show that
EXEC, z,(k,2) — IDEALy s, z, (K, 2) > e/t (5)
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where t = t(k, |z|) is a polynomial function.

In preparation to constructing Z,, we define the following distributions, and make some obser-
vations on A;. Consider an execution of protocol n with adversary A; and environment Z. Let
t = t(k,|z|) be an upper bound on the number of instances of ¢ within 7 in this execution. (The
bound t is used in the analysis only. The parties need not be aware of ¢. Also, ¢ is polynomial in
k,|z| since all ITMs considered are strongly polynomial.) For 0 <[ < ¢, Let the [-hybrid model
for running protocol 7 denote the extended system of ITMs that is identical to the basic model of
computation, with the exception that the control function is modified as follows. (Recall that the
control function of an extended system of ITMs determines, among other things, the target ITMs
of external-write requests.) The external-write requests to tapes of the first [ instances of ¢ to be
invoked are treated as usual. The external-write requests to the tapes of all other instances of ¢
are directed to the corresponding instances of parties running p. That is, let sid; denote the SID
of the ith instance of ¢ to be invoked in an execution. Then, given an external-write request made
by an some ITM to @(sq; piq) (i-., to the party running ¢ with identity (sid;, pid) for some pid,
where i > [, the control function writes the requested value to the requested tape of p(giq; pig)- (As
usual, if no such ITM exists then one is invoked.) We let EXEC%’ 4,z (k, z) denote the output of this
system of ITMs on input z and security parameter k for the environment Z.

We also define the following variants of adversary A, and environment Z. Let A, denote the
adversary that is identical to A, with the following exception. Recall that A, expects its inputs to
have the form (m,id, ¢) (see Step 1 in Figure 9). A, expects to have its input include an additional
flag, s, that determines whether to consider invoking an instance of § in this activation. That is,
if a = 1 then A, operates as A;. If a = 0 then Ay skips Step la in Figure 9. Let Z%) denote the
environment machine that is identical to Z, with the following exceptions. Whenever Z generates
a message (m,id, p) to be delivered to the party running p with identity id, then Z() passes input
(m,id, c,a) to the adversary, where a is set as follows. Let id = (sid, pid). If sid is the SID of one
of the first [ instances of p, then ZW sets a = 1. Otherwise, a = 0.

We observe that, when A, interacts with Z() and parties running 7 in the /-hybrid model, then
it internally runs at most [ instances of the simulator S. (These are the instances that correspond
to the first [ instances of protocol ¢ with which A, interacts.) The rest of the instances of S are
replaced by interacting with the actual parties or sub-parties of the corresponding instances of p.
Consequently, we have that the output of Z®) from an interaction with 7 and A, in the t-hybrid
model is distributed identically to the output of Z from an interaction with = and A, in the basic

model, i.e. EXEC;, Az = EXECy 4, z. Similarly, the output of Z© from an interaction with 7

and A, in the 0-hybrid model is distributed identically to the output of Z from an interaction with

7P in the basic model of computation, i.e. EXEC?r Az = EXECrz. Consequently, Inequality (4)
can be rewritten as:

0 t

EXECmAP,Z(O)(k,z) - EXECW,AP,Z(t)(k,z) >e. (6)

We turn to constructing and analyzing environment Z,. The construction of Z, is presented in

Figure 10. Clearly, Z, is PPT. This follows from the fact that the entire execution of the system is

completed in polynomial number of steps. (Here we use the fact that the composed protocol, 7,

is PPT.)
The rest of the proof analyzes the performance of Z,, demonstrating (5). It follows from (6)
that there exists a value [ € {1,...,m} such that

(k,z) —EXEC'™L (K, 2)| > €/t. (7)

!
|EXEC7T, A 20

A, 20
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Environment Z,

Environment Z, proceeds as follows, given a value k for the security parameter, input z,, and
expecting to interact with parties running a single instance of p. We first present a procedure called
Simulate(). Next we describe the main program of Z,.

Procedure Simulate(s, )

1. Expect the parameter s to contain a global state of a system of ITMs representing an execution
of protocol 7w in the [-hybrid model, with adversary A, and environment Z. Continue a
simulated execution from state s (making the necessary random choices along the way), until
one of the following events occurs. Let ¢; denote the [th instance of ¢ that is invoked in the
simulated execution, and let sid; denote the SID of ¢;.

(a) Some simulated party passes input x to a party with identity (sid,pid). (That is, the
recipient party participates in the /th instance of ¢.) In this case, save the current state
of the simulated system in s, pass input z the actual party with identity (sid;, pid), and
complete this activation.

(b) The simulated Z passes input (m,id,c,a) to the simulated adversary Ay, where id =
(sidy, pid) for some pid. In this case, save the current state of the simulated system in s,
deliver the message (m,id, ¢) to the party running code ¢ with identity id, and complete
this activation.

(c) The simulated environment Z halts. In this case, Z, outputs whatever Z outputs and
halts.

Main program for Z,:

1. When activated for the first time, interpret the input z, as a pair z, = (2,!) where z is an
input for Z, and I € N. Initialize a variable s to hold the initial global state of a system of
ITMs representing an execution of protocol 7 in the [-hybrid model, with adversary A, and
environment Z on input z and security parameter k. Next, run Simulate(s, ).

2. In any other activation, let x be the new value written on the subroutine-output tape. Next:

(a) Update the state s. That is:

i. If the new value, x, was written by some party P;q) with identity id = (sid;, pid)
then write (z,id) to the subroutine-output tape of the simulated party that invoked
Pia))- (Piay) is either a party running ¢ or a party running p.)

ii. If the new value, x, was written by the adversary, then update the state of the
simulated adversary /Lr to include an output z generated by S(,iq,) (i-e., by the
instance of the simulator S with SID= sid;).

(b) Simulate an execution of the system from state s. That is, run Simulate(s, ).

Figure 10: The environment for a single instance of p.

However, for every | € {1,..,m} we have

EXECy,s,z, (k, (2,1)) = EXEC;’AMZU_I) (k, 2)
and
EXECyrho,z2, (K, (2,1)) = 1*3>(ch:}‘7r Z(l_l)(k,z)-

(8)

(9)

Equations (8) and (9) follow from inspecting the code of Z, and A,. In particular, if Z, interacts
with parties running ¢ then the view of the simulated Z within Z, is distributed identically to
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the view of Z, run within Z®), when interacting with = and A, in the I-hybrid model. Similarly,
if Z, interacts with parties running p then the view of the simulated Z within Z, is distributed
identically to the view of Z run within Z®), when interacting with = and A, in the (I — 1)-hybrid
model.

From Equations (7), (8) and (9) it follows that:

[EXEC, 2, (k, (2,1) — EXECy,5 2, (K, (2,))] > e/t (10)

as desired.

5.3 Discussion and extensions

Some aspects of the universal composition theorem were discussed in Section 2.3. This section
highlights additional aspects, and presents some extensions of the theorem.

On composability with respect to uniform-complexity inputs. Recall that a uniform-
complexity variant of the definition of emulation (Definition 6) considers only environments that
take external input that contains no information other than its length, e.g. inputs of the form 1"
for some n. We note that the UC theorem still holds even for this definition: the only difference is
that, instead of receiving the index [ of the hybrid execution as part of the input, the distinguishing
environment Z, chooses [ uniformly at random in 1...m.

Composing multiple different protocols. The composition theorem (Theorem 11) is stated
only for the case of replacing instances of a single protocol ¢ with instances of another protocol.
Yet the theorem holds, with essentially the same proof, also for the case where multiple different
protocols ¢1, ¢9, ... are replaced by protocols p1, p2, ..., respectively. Notice however that the more
general formalization hardly adds any power to the model and the theorem, since one can always
define a single protocol that mimics multiple different ones, say via a “universal protocol”. In
particular, in the special case where each ¢; is an ideal protocol for an ideal functionality J;, one
can write a single ideal functionality that captures all the Fs.

Nesting of protocol instances. The universal composition operation can be applied repeatedly
to handle multiple “nesting” of replacements of calls to sub-protocols with calls to other sub-
protocols. We demonstrate that repeated applications of the composition operation maintains
security. For instance, if a protocol p; UC-emulates protocol ¢;, and protocol po UC-emulates
protocol ¢y using calls to ¢;, then for any protocol 7 that uses calls to ¢2 it holds that the

(W5/*1) /92 — uc(m, uC(p2, p1,P1), $2) UC-emulates .

When the number of applications of the composition operation (i.e., the “depth of the nesting”)
is constant, the fact that the composed protocol UC-emulates the original one follows directly by
repeated applications of the UC theorem. When the number of applications is not bounded by a
constant (e.g., in the case of recursive calls to subroutines, where the “depth of the recursion” can
depend on the input size or the security parameter), the implication no longer follows from the
theorem statement alone, since the complexity of the simulator may not be polynomially bounded,
and furthermore the distinguishing probability of the environment may not remain negligible. Still,
we demonstrate that repeated applications of the UC operations preserves security as long as the
number of applications (i.e., the “depth of the nesting”) is polynomial in the security parameter,

composed protocol 7

53



and there exists a polynomial that bounds the complexity of all simulators. We note that essentially
the same observation was already made in [BM04]. That is, we have:

Corollary 14 (Universal composition: polynomial nesting) Lett: N — N be a polynomial.
Let ¢ be a protocol, and let p be a ¢-hybrid protocol that UC-emulates ¢. Let p? be the protocol that,
given security parameter k, is obtained by repeatedly applying the universal composition operation,
starting with p, for t(k) times. That s, p\t) (k) = vc(p,...uc(p, p, d)...,$). Then protocol p (k)
UC-emulates p.

For simplicity, Corollary 14 is stated for the case where the replaced protocols at all levels are

the same (i.e., ¢), and the replacing protocols at all levels are the same (i.e., p). No generality is
lost since the code of the protocol can specify different actions to different levels, or more generally
may run code that is provided as part of the input. Another simplifying detail is that in protocol
7{t) the bound ¢(k) is determined in advance, given the security parameter k. This avoids the case
where different parties have different values for the “depth of nesting”.
Proof (sketch): The proof is a straightforward extension of the proof of the UC theorem (Theorem
11). Here we only sketch these extensions. As there, we use security with respect to dummy
adversaries (see Claim 8). That is, we construct an adversary S* and show that EXEC, s« z =
EXEC,(1) z for all environments Z.

Let S be the simulator, guaranteed from the fact that p UC-emulates ¢, such that EXECy 5 =z =~
EXEC, z for all Z. The instance of p that’s invoked by Z is said to be at depth 0. An instance of a
protocol is at depth 7 if it is invoked by an instance of a protocol at depth ¢ — 1. The construction
of §* is a natural extension of adversary A, from the proof of Theorem 11, where the top level
instance of p plays the role of protocol w. That is, &* internally runs an instance of S for each
instance of ¢ that is replaced by an instance of p in p{*. Somewhat more precisely, it proceeds as
follows.

1. Inputs from Z that contain messages to be sent to parties running the instance of p of depth
0 are delivered as instructed. Similarly, messages sent by parties running this instance are
forwarded to Z.

2. Messages from Z to be sent to another instance of p are forwarded to the corresponding
instance of §. Similarly, outputs generate by an instances of S that describe protocol messages
sent by the parties running the corresponding instances of p are forwarded to Z.

3. Messages coming from an actual instance of ¢ are forwarded to the corresponding instance of
S. (These instances of ¢ are at depth 1.) Messages from an instance of S to an instance of
¢ at depth 1 are forwarded to that instance. (These are the instances of ¢ that exist in the
actual run of p.)

4. Messages sent by an instance of S to the corresponding instance of ¢, where this instance is
at depth greater than 1, are forwarded to the instance of S that corresponds to the instance
of p invoked this instance of ¢. (Notice that if the sending instance of S corresponds to an
instance at depth i then the recipient instance is of S corresponds to an instance at depth
i — 1.) Similarly, outputs of an instance of S (to be sent to the environment) that describe
messages coming from an instance of ¢ are forwarded to the instance of § that simulates the
instance of p that replaces this instance of ¢. (Here, if the sending instance of S corresponds
to an instance at depth 4, then the recipient instance of S corresponds to an instance at depth
i+1.)
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Analysis of §* is practically identical to the analysis of A, at the proof of Theorem 11. First, we
note that S* is PPT. This is so since the overall number of instances of S’s run by §* is polynomial,
each instance is PPT, and the input length of each instance is polynomial in the input length of S*.
(Notice that there is no “nesting” in the calls to the instances of S’s. That is, §* directly calls all the
instances of S.) Now, assume that there is an environment Z such that EXEC pow:: #% EXEC) s+ z.

Then we define the hybrid environments ZU) and construct the distinguishing environment Z, in
exactly the same way as there. As there, the number of hybrids is the overall number of instances
of all the instances of p. This number may be considerably larger than ¢(k); still, it is polynomial.
O

On universal composition with joint state. Informally speaking, the UC theorem implies
that if a protocol ¢ UC-realizes some functionality G then multiple concurrent instances of ¢ UC
realize multiple instances of G. Consequently, instead of directly analyzing the security of the multi-
instance system, it suffices to analyze the security of a single instance, and deduce the security of
the multi-instance system from the UC theorem.

However this type of analysis is valid only when the uncorrupted instances of ¢ have mutually
disjoint local states and local randomness. In contrast, in many cases we have a system where
multiple concurrent instances of some protocol ¢ use the same instance of an underlying subrou-
tine, p. Two common examples are (a) multiple instances of a pairwise key-exchange or a secure
communication protocol, where all instances use the same instance of a long-term authentication
mechanism (say, digital signatures, public-key encryption, or a pre-shared key), and (b) multiple
instances of a protocol in the common reference string model (i.e., a protocol where the parties use
a common source of randomness), where all instances use the same instance of the reference string.
Here it is impossible to “de-compose” the system into protocol instances with disjoint local states;
thus the UC theorem cannot be directly applied.

The Universal Composition with Joint State (JUC) theorem [CR03] provides a means to deduce
the security of the multi-instance case from the security of a single instance, even when multiple
instances use some joint state, or a joint subroutine. Informally, using this theorem we can deduce
that at if we have a protocol v that UC-realizes functionality G using an ideal functionality F, and
a protocol p that UC realizes, within a single instance, multiple instances of F, then the protocol
that consists of multiple concurrent instances of -y, where all the calls to F made by all instances of
~ are replaced by calls to a single instance of p, UC-realizes multiple instances of G. See Figure 11
for a graphic depiction.

Vsidy Vsidy Vsidn

fsidl fsidg FSidn

Figure 11: Universal composition with joint state. The instances of v (in the left figure) are analyzed
assuming that each instance has access to a separate instance of F. Later, all instances of F are replaced
by a single instance of p (right figure).

More rigorously, given an ideal functionality F, let F, the multi-session extension of F, be the
ideal functionality that represents multiple independent instances of F within a single instance.
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That is, F expects to receive inputs of the form (sid, ssid,v), where sid is the SID of F, and ssid
(for “sub-session identifier”) is an arbitrary string. Upon receiving such an input, F internally
invokes a instance of F whose SID is ssid, and forwards the input (ssid,v) to that instance. (If
such an instance already exists then F simply forwards (ssid,v) to it.) When an internal instance
of F generates output (ssid,v) to some party, F generates output (sid, ssid, v) to the same party.

Now, the universal composition with joint state operation, JuUC, is defined as follows.'® We
start with an F-hybrid protocol 7, and a protocol p that UC-realizes F. (Using the above termi-
nology, protocol 7 represents the multi-instance version of protocol .) Then the composed protocol
mlP/F] = Juc(m, F,p) is identical to = with the exception that, at the onset of the computation,
7lP/F] instructs each party to invoke a instance of p with some arbitrary sid, say a fixed value.
Then, each call (ssid,v) to the instance ssid of F is replaced with an input (sid, ssid,v) to the
instance sid of p, and each output (sid, ssid,v) of the instance sid of p is treated as a value v
received from instance ssid of F. Then, the JUC theorem states that protocol 7/#1 UC-emulates
protocol 7. That is:

Theorem 15 ([CRO3]) Let F be an ideal functionality, let ™ be an F-hybrid protocol, let p be a
protocol that UC-realizes F, and let wlP/F) = Juc(m, F,p) be the composed protocol. Then protocol
7P/ Fl UC-emulates protocol .

Let us exemplify the use of the JUC theorem to analyzing a system that consists of multiple
concurrent instances of a two-party key-exchange protocol, where each party uses a single instance
of a signature scheme (i.e., a single signing key and a single verification key) to authenticate all the
exchanges it participates in. We proceed in several steps: (a) Capture the functionality expected
from a single instance of a key-exchange protocol via an ideal functionality, Fxg. (b) Capture
the behavior of a single instance of a signature scheme via a functionality, Fgq. (c) Construct a
protocol, p, that realizes ﬁsm, the multi-session extension of Fgq, using a single instance of an
actual signature scheme. (d) Construct a protocol, -, that realizes Fxg in the Fgg-hybrid model.
It is stressed that each instance of protocol 7y realizes only a single exchange of a key, and is
analyzed under the assumption that no other protocols exist; in particular, it is assumed that Fg
is used by no other instance. This step is typically the main part of the analysis. (e) Let m denote
the protocol that consists of multiple independent instance of . Then use the JUC theorem to
conclude that protocol 7l?/7s1¢] emulates protocol «r. In particular, wl?/7s1¢] exhibits the behavior
of multiple independent instances of Fyg, in spite of the fact that in 7[?/7sc] all instances of v
within 7 use the same joint instance of protocol p. (Said otherwise, notice that protocol 7 in fact
UC-realizes Fyg. It then follows from the JUC theorem that protocol wlP/7sicl UC-realizes Fup as
well. For more details about the application to key exchange protocols, and for other applications,
see [CRO3, cLOS02, c04].

Beyond PPT. The UC theorem is stated and proven for PPT systems of I'TMs, namely for the
case where all the involved entities are PPT. It is readily seen that the theorem holds also for other
classes of ITMs and systems, as long as the definition of the class guarantees that any execution of
any system of ITMs can be “simulated” on a single ITM from the same class.

That is, say that a class C of ITMs is self-simulatable if, for any system (I, C) of ITMs where
both I and C (in its ITM representation) are in C, there exists an ITM M in C such that, on any
input and any random input, the output of a single instance of M equals the output of (I, C). Say

8For clarity, we present the JuUC operation and theorem for the special case of replacing an ideal functionality with
a protocol. As in the case of UC, the operation is defined for any two protocols.
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that protocol m UC-emulates protocol ¢ with respect to class C if Definition 6 holds when the class
of PPT ITMs is replaced with class C (i.e., when 7, A, S, and Z are taken to be ITMs in C). Then
we have:

Proposition 16 Let C be a self-simulatable class of ITMs, and let 7, p, ¢ be multi-party protocols
in C such that p UC-emulates ¢ with respect to class C. Then protocol ©°/¢ UC-emulates protocol
7 with respect to class C.

Furthermore, the UC theorem holds with respect to statistical and perfect emulation. That
is, if p statistically (resp., perfectly) UC-emulates ¢ then 7#/¢ statistically (resp., perfectly) UC-
emulates protocol w. (We remark that these statements do not follow from Proposition 16, since
the notions of statistical and perfect emulation impose stricter requirements on the simulator than
on the adversary.)

It is stressed, however, that the UC theorem is, in general, false in settings where systems of
ITMs cannot be simulated on a single ITM (more specifically, by an environment machine). We
exemplify this point for the case where all entities in the system are bound to be PPT, except
for the protocol ¢ which is not PPT. More specifically, we present an ideal functionality F that is
not PPT, and a PPT protocol p that UC-realizes F with respect to PPT environments. Then we
present an F-hybrid protocol 7, that uses only two instances of the ideal protocol for F, and such
that 7#/7 does not emulate «. In fact, for any PPT p’ we have that 7”'/F does not emulate 7.

In order to define F, we first recall the notion of pseudorandom evasive sets defined in [GK89)]
for a related purpose. (We use the notion of set ensembles, which is needed when dealing with non-
uniform adversaries.) An ensemble S = {S}ren where each Sy, = {s,; }c[o6) and each si; C {0, 1}*
is a pseudorandom evasive set ensemble if: (a) S is pseudorandom, that is for all large enough k£ € N
and for all i € [2¥] we have that a random element z & Sk is computationally indistinguishable

from z & {0,1}*. (b) S is evasive, that is for any PPT algorithm A and for any z € {0,1}*, we
have that Probi}{_[Qk][A(z,i) € sg,] is negligible in k, where k = |z|. It is shown in [GK89], via a
counting argument, that pseudorandom evasive set ensembles exist.

Now, define F as follows. F interacts with one party only. Given security parameter k, it
first chooses i & [2¥] and outputs 4. Then, given an input (z,i') € {0,1}*, it first checks whether
T € Sg. If so, then it outputs success. Otherwise it outputs r & Sk it-

Protocol p for realizing F is simple: Given security parameter k it outputs i & [2¥]. Given
an input z € {0,1}*, it outputs r < {0,1}*. It is easy to see that p UC-realizes F: Since S is
evasive, then the probability that the input z is in the set s ; is negligible, thus F outputs success
only with negligible probability. Furthermore, F outputs a pseudorandom k-bit value, which is
indistinguishable from the output of p.

Now, consider the following F-hybrid protocol w. 7« runs two instances of F, denoted F; and
F5. Upon invocation with security parameter k, it activates F; and F, with k, and obtains the
indices 77 and 7. Next, it chooses z1 & {0,1}*, and feeds (z1,42) to Fi. If Fi outputs success
then 7 outputs success and halts. Otherwise, m feeds the value x5 obtained from F; to Fp. If
F> outputs success then 7w outputs success; otherwise it outputs fail. It is easy to see that 7
always outputs success. However, 7”/% never outputs success. Furthermore, for any PPT protocol
p' that UC-realizes F, we have that 7”/7 outputs success only with negligible probability.

We thank Manoj Prabhakaran and Amit Sahai for this example.
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6 Capturing various computational models

Definition 7 captures one specific model of computation, which we call the bare model. Essentially,
this model represents networks with unauthenticated, asynchronous, and unreliable communica-
tion, and an adversary that corrupts parties in an adaptive and Byzantine way throughout the
computation. (See more discussion in Section 2.)

This is a very adversarial environment for designing protocols. We would of course like to be
able to capture also a number of other models of computation, such as models that guarantee
authenticated or secure communication, several levels of synchrony, or other abstractions. One way
to do that would be to specify, for each such model or variant, an appropriately modified framework.
However, re-defining the framework, and in particular re-proving the composition theorem for each
variant is quite tedious, and also limits the number of options and model variants we can hope to
specify.

Here we take an alternative approach, which makes strong use of the modularity of the frame-
work: We demonstrate how several computational models of interest can be cast within the present
model of computation, via making use of specific types of protocols. The main tool is to use hy-
brid protocols with access to ideal functionalities that capture the specific properties of the desired
model. These ideal functionalities can be regarded either as set-up assumptions, or as a security
goal for other “low level” protocols that are aimed at realizing these models. In addition, we specify
different corruption models via different response modes to corruption requests from the adversary.

The main advantage of this approach is that it keeps the basic framework (i.e., the bare model)
relatively simple and with few options, and at the same time avoids re-defining the framework and
re-proving the composition theorem for each variant. In addition, this approach buys us greater
flexibility in defining combinations and variants of models. For instance, we can model a system
where different protocol instances use different levels of synchrony or different levels of authenticity,
and we can define new variants by slight modifications to the relevant ideal functionalities.

We start with authenticated and secure communication. We then proceed to synchronous
communication. Next we show how to capture within the present framework protocols that only
guarantee security when run as “stand-alone”, in the sense that no other protocol instance may be
running concurrently to it. (This notion of security turns out to be essentially equivalent to the
general security notion of [c00], which is easier to realize.) Finally, we discuss several models for
the corruption of parties.

First, however, we set some writing conventions for ideal functionalities. These conventions will
be used throughout the rest of this work.

6.1 Some writing conventions for ideal functionalities

Specifying the identities of the calling parties. Recall that an instance of an ideal func-
tionality F with SID sid accepts inputs only from parties P = (sidp,pidp) whose SID equals the
local SID, i.e. sidp = sid. Similarly, this instance generates outputs only to parties whose SID
equals sid. Consequently, when describing an ideal functionality, we allow ourselves to say “receive
input from party P” and “generate output for party P”, where P specifies only the PID of the
corresponding party. The intention is that the input is to be received from the party (sid, P) or
sent to party (sid, P), whichever is the case, where sid is the local SID.

Behavior upon party corruption. Recall that, in the ideal processes, corruption of a parties
is modeled as messages sent by the adversary to the ideal functionality. The behavior of the
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functionality upon receiving such a message is not determined by the model. We say that an ideal
functionality F is standard corruption if, upon receiving a (corrupt P) input from the adversary,
F returns to the adversary all the inputs and outputs of P so far. In addition, from this point
on, whenever F gets an input value v from P, it forwards v to S, and receives a “modified input
value” v’ from 8. Also, all output values intended for P are sent to S instead. This behavior
captures the standard behavior of the ideal process upon corruption of a party in existing definitional
frameworks.'®

Delayed output. Recall that an output from an ideal functionality to a party is read by the
recipient immediately, in the next activation. In contrast, we often want to capture the fact that
outputs generated by interactive protocols may be delayed due to delays in message delivery. One
natural way to relax an ideal functionality along these lines is to have the functionality “ask for
the permission of the adversary” before generating an output. More precisely, we say that an ideal
functionality F sends a delayed output v to party P if it engages in the following interaction: Instead
of simply outputting v to P, F first sends to the adversary a note that it is ready to generate an
output to P. (The value v is not mentioned in this request. Furthermore, the request contains a
unique identifier that distinguishes it from all other messages sent by F to the adversary in this
execution.) When the adversary replies to the request (by echoing the unique identifier), F outputs
the value v to P.

6.2 Authenticated Communication

Ideally authenticated message transmission means that a party R will receive a message m from
some party S only if S has sent the message m to R. Furthermore, if S sent m to R only ¢ times
then R will receive m from S at most ¢ times. (These requirements are of course meaningful only
as long as both S and R are uncorrupted at the time when R receives the message.)

In the present formalization, protocols that make use of ideally authenticated message trans-
mission can be cast as hybrid protocols with ideal access to an “authenticated message transmission
functionality”. This functionality, denoted F,yry, is presented in Figure 12. F,yry first waits to
receive an input (send, sid, R, m) from a party with PID S and SID sid. We require that the
sender’s PID is encoded also in the SID. (This convention essentially provides each party with a
“reserved name-space” for SIDs of instances of F,yry where it is the sender. It also highlights the
fact that each instance of F,yry is associated with a single, known sender.) F,yry then records
(S, R,m) and forwards this value to the adversary. Only when the adversary responds, with some
input (send, sid, R',m'), does F,yru generate output: If the sender, (sid, S), is uncorrupted at this
time then Fpyry delivers (S, R',m') to R’ only if R' = R and m' = m. Otherwise, Fyyry puts no
restrictions on R' or m/.

Let us highlight several points regarding the formalization of Fyrg. First, Fayra deals with
authenticated transmission of a single message. Authenticated transmission of multiple messages
is obtained by using multiple instances of Fyru, and relying on the universal composition theorem
for security. This is an important property: It allows us to concentrate on the simpler task of
designing and analyzing protocols for authenticating only a single message, rather than dealing
directly with a multi-message, multi-party protocol. Similarly, it allows higher-level protocols that
use authenticated communication to be defined and analyzed for a single instance. Second, Fayrn

19We remark that other behavior patterns upon party corruption are sometimes useful in capturing realistic con-
cerns. For instance, forward secrecy can be captured by making sure that the adversary does not obtain past inputs
or outputs of the party even when the party is corrupted.
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Functionality Fayry
1. Upon receiving an input (send, sid, R,m) from party S, do: If sid = (S, sid') then record
(R,m) and send (sent,sid, R,m) to the adversary. Else, ignore this input.

2. Upon receiving (deliver, sid, R',m') from the adversary, where sid = (5, sid’), do: If (R',m')
is recorded, or S is corrupted, then output (sent,sid,m') to party R’ and halt. Else halt.

Figure 12: The Message Authentication functionality, Fayra

reveals the contents of the message to the adversary. This captures the fact that secrecy is not
provided. Third, F,yry delivers a message only when the adversary responds, even if both the
sender and the receiver are uncorrupted. This means that F,yry allows the adversary to delay a
message indefinitely, and even to block delivery altogether. Finally, F,yry allows the adversary
to change the contents of the message and the identity of the recipient, as long as the sender is
corrupted at the time of delivery. This holds even if the sender was uncorrupted at the point when
it sent the message.?°

On realizing F,yry. While it is impossible to UC-realize F,yry in the bare model (see proof
in [c04]), there are a number of ways to realize Fyru given some standard set-up assumptions.
Examples include ideally authenticated communication between parties at a preliminary stage, or
alternatively trusted “registration services”, where parties can register public values (e.g., keys) that
can be authentically obtained by other parties upon request. A rigorous treatment of one particular
way of realizing Fyrn is given in [C04]. Specifically, it is shown there how to realize Fyyrn given
any signature scheme that is secure against chosen message attacks (see [GMRa89, G01]), if an ideal
“registration service” as described above is available. That is, we have:

Claim 17 [c04] If there ezist signature schemes secure against chosen message attacks then Fayru
can be realized by Frpc-hybrid protocols.

Here Frpe formalizes the registration service described above. We remark that protocols that
UC-realize Fyru are closely related to the authenticators of [BCK98]. (A similar notion was used
in [cHHOO] in a different setting.) These are general “compilers” that transform any protocol
that assumes ideally authenticated links into a protocol with essentially the same functionality
in a model where the communication is unauthenticated. Specifically, applying an authenticator
to a protocol 7 (that assumes authenticated communication) corresponds to composing 7 with a
protocol p that UC-realizes Fpury- In fact, the protocol used in the proof of Claim 17 is essentially
the signature-based authenticator of [BCK98], which has the sender sign the message together with
a fresh “nonce” provided by the receiver. Here, however, since a different instance of the protocol
is used per message, a new instance of a signature scheme is used to authenticate each message.

Finally, we mention two methods for realizing multiple instances of F,yry more efficiently than
running multiple independent copies of a protocol that realizes a single instance of Fyyry. First, as
demonstrated in [C04], it is possible to realize multiple instances of F,yru using a single instance

20previous formulations of Faura (e.g., [c01]) failed to let the adversary change the delivered message and recipient
if the sender gets corrupted between sending and delivery. This resulted in an unnecessarily strong guarantee, that
is in fact unrealizable by reasonable protocols. This oversight in the previous formulations was pointed out in several
places, including [HMS03, AF04].
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of a signature scheme per party. This method uses universal composition with joint state [CR03] in
an essential way. Furthermore, when two parties engage in a “communication session” where they
exchange multiple messages between them, they can use session authentication protocols, which em-
ploy symmetric message authentication mechanisms that are based on a secret shared key between
the parties. See more details on modeling and analysis of such protocols in Section 7.1 and in
[ck01, cK02].

6.3 Secure Communication

The abstraction of secure message transmission usually means that the transmission is ideally
authenticated, and in addition that the adversary has no access to the contents of the transmitted
message. It is typically assumed that the adversary learns that a message was sent, plus some
partial information on the message (such as, say, its length, or some information on the domain
from which the message is drawn). In the present framework, having access to an ideal secure
message transmission mechanism can be cast as having access to the “secure message transmission
functionality”, Fgyr, presented in Figure 13. The behavior of Fgyr is similar to that of Fuyrg with
the following exception. Fgyr is parameterized by a leakage function [ : {0,1}* — {0,1}* that
captures the allowed information leakage on the transmitted plaintext m, the adversary only learns
the leakable information [(m) rather than the entire m. (In fact, Fayra can be regarded as the
special case of F.,,, where [ is the identity function.)

Functionality ]—'éMT

Fiur proceeds as follows, when parameterized by leakage function I : {0,1}* — {0,1}*.

1. Upon receiving an input (send, sid, R, m) from party S, do: If sid = (S, sid') then record
(R,m) and send (sent,sid, R,l1(m)) to the adversary. Else, ignore this input.

2. Upon receiving (deliver, sid, R',m') from the adversary, where sid = (S, sid’), do: If R' =1
and a record (R, m) exists, then output (sent,sid, m) to party R. Else if S is corrupted then
output (sent,sid,m') to R'. In any case, halt.

Figure 13: The Secure Message Transmission functionality parameterized by leakage function [.

Like Fayru, Fsur only deals with transmission of a single message. Secure transmission of
multiple messages is obtained by using multiple instances of Fgyr. In addition, like Fpyru, Fsur
allows the adversary to change the contents of the message and the identity of the recipient as long
as the sender is corrupted at the time of delivery, even if the sender was uncorrupted at the point
when it sent the message. In addition, following our convention regarding party corruption, when
either the sender or the receiver are corrupted, Fqyr discloses to the adversary all the inputs of the
sender since the beginning of the computation.

On preventing traffic analysis. Recall that, whenever a party S sends a message to some
R, Fsur notifies the adversary that S sent a message to R. This reflects the common view that
encryption does not hide the fact that a message was sent. (Using common terminology, there is
no protection against traffic analysis.) Schemes that hide the fact that a message was sent, (and
are thus robust to traffic analysis) can be modeled by appropriate modifications to Fgyr.
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On realizing Fgyr. Protocols that UC-realize Fgyr can be constructed, based on semantically
secure public-key encryption schemes, by using each encryption key for encrypting only a single
message, and authenticating the communication via Fyyra. That is, let E = (gen, enc, dec) be an
encryption scheme for domain D of plaintexts. (Here gen is the key generation algorithm, enc is
the encryption algorithm, dec is the decryption algorithm, and correct decryption is guaranteed for
any plaintext in D.) Then, consider the following protocol, denoted mg. When invoked within S
with input (send, sid, R,m) with m € D, ng first sends an (init, sid) message to R. R then runs
algorithm gen, gets the secret key sk and the public key pk, and sends (sid, pk) back to S. Next,
S sends (sid, enc(pk,m)) to R and returns. Finally, upon receipt of (sid,c), 7g within R outputs
dec(sk, c) and returns.

Choosing new keys for each message to be transmitted is of course highly inefficient and does
not capture common practice for achieving secure communication. Nonetheless, it is easy to see
that:

Claim 18 If E is semantically secure for domain D as in [GM84, GO1] then 7y UC realizes FL.,

in the presence of non-adaptive adversaries.

Furthermore, if E is non-committing (as in [CFGN96)) then mp UC-realizes FZ., with adaptive

adversaries. This holds even if data erasures are not trusted and the adversary sees all the past
internal states of the corrupted parties.

Finally, as in the case of F,yru, it is possible to realize multiple instances of Fgyr using a
single instance of a more complex protocol, in a way that is considerably more efficient than
running multiple independent instances of a protocol that realizes Fgyr. One way of doing this
is by using the same encryption scheme to encrypt all the messages sent to some party. Here
the encryption scheme should have additional properties on top of being semantically secure. In
[ckNO03] it is shown that replayable chosen ciphertext security (RCCA) suffices for this purpose for
the case of non-adaptive party corruptions. In the case of adaptive corruptions stronger properties
and constructions are needed, see e.g. [N02, CHK05].

In addition, to encrypt multiple messages exchanged between a pair of parties, have the parties
generate a shared secret key and then use an appropriate symmetric encryption function (see e.g.
[cK01, ck02]). Also here, security-preserving composition of such a protocol for encrypting multiple
messages, with higher level protocols that assume multiple independent instances of Fgyr, can be
done using universal composition with joint state.

6.4 Synchronous Communication

A popular and convenient abstraction of communication networks is that of synchronous commu-
nication. Roughly speaking, here the computation proceeds in rounds, where in each round each
party receives all the messages that were sent to it in the previous round, and generates outgoing
messages for the next round. There are of course many variants of the synchronous model. We
concentrate here on modeling one specific and popular variant. Essentially, this variant of the
synchronous communication model provides the following guarantee:

Timely delivery. Each message sent by an uncorrupted party is guaranteed to arrive in the next
communication round. In other words, no party will receive messages sent at round r before
all uncorrupted parties had a chance to receive the messages sent at round r — 1.

Note that this guarantee implies in essence two other guarantees:
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Guaranteed delivery. Each message sent by an uncorrupted party is guaranteed to arrive at the
destination.

Authentic delivery. Each message sent by an uncorrupted party is guaranteed to arrive unmod-
ified. Furthermore, the recipient knows the real sender identity of each message.

Typically, the order of activation of parties within a round is assumed to be under the control of
the adversary, thus the messages sent by the corrupted parties may depend on the messages sent
by the uncorrupted parties in the same round.

Synchronous variants of the UC framework are presented in [N03, HM04a]. Here we provide
an alternative way of capturing synchronous communication within the UC framework: We show
how synchronous communication can be captured by having access to an ideal functionality Fgyx
that provides the above guarantees. We first describe Fsyy, and then discuss and motivate some
aspects of its design. Fsyy is presented in Figure 14. It expects its SID to include a list P of parties
among which synchronization is to be provided. At the first activation, Fsyy initializes a round
number r to 0. It then responds to three types of inputs: Given input of the form (Send, sid, M)
from party P € P, Fsyy interprets M as a list of messages to be sent to other parties in P. The
list M is recorded together with the sender identity and the current round number, and is also
forwarded to the adversary. Given a request (Advance-Round, sid, N) from the adversary, where
N is a list of messages sent from the corrupted parties to the uncorrupted ones, Fgyy first verifies
that all uncorrupted parties sent messages in this round. If yes, then Fgyy advances the round
number. If not, then the request is ignored. This provision guarantees that a round does not end
before all parties have a chance to send messages. If a party gets corrupted after it has sent its
messages for this round, but before the round advances, then at this time the adversary has the
opportunity to “rewrite” the messages that were sent by this party at this round. In any case, once
the round number advances, the set of messages sent at a round is fixed. Finally, given an input
(Receive, sid) from a party P € P, Fgyy returns to P all the messages that were sent to it at the
previous round, together with the round number.?! 22

In order to highlight the properties of Fsyn, let us sketch a typical use of Fgyy by some Fgyy-
hybrid protocol «r. Initially (e.g., when activated for the first time), each party of = locally initializes
a round counter to 0, and inputs to Fsyy a list M of messages to be sent to the other parties of
m. In each subsequent activation, the party calls Fsyy with a (Receive, sid) input (where sid is
typically derived from the current SID of 7). If the round number in the response from Fgyy is
no larger than the local round number then this means that the global round number has not yet
advanced, and so the response is ignored. Else, the party obtains the list of messages received in
this round, performs its local processing, increments the local round number, and call Fsyy again
with input (Send, sid, M) where M contains the outgoing messages for this round. If the list of
incoming messages is empty then 7 halts.

It can be seen that the message delivery pattern for such a protocol 7 is essentially the same as
in a traditional synchronous network. Indeed, Fgyy requires that all parties actively participate in
the computation in each round. That is, a round does not advance until all uncorrupted parties are
activated at least once and send a (possibly empty) list of messages for that round. Furthermore,
as soon as one uncorrupted party is able to obtain its incoming messages for some round, all

211t is stressed that Fsyn does not deliver messages to a party until being explicitly requested by the party to obtain
the messages. This formulation facilitates capturing guaranteed delivery of messages within the present framework;
see more discussion below.

22 An alternative formulation of Fsyn would advance a round only if all uncorrupted parties in P have requested
to read their messages for the previous round. This formulation would have the same effect as the present one.
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Functionality Fgyn

Fsyn expects its SID to be of the form sid = (P, sid'), where P is a list of party identities among
which synchronization is to be provided. It proceeds as follows.

1. At the first activation, initialize a round counter r + 0.

2. Upon receiving input (Send, sid, M) from a party P € P, where M = {(m;, R;)} is a set of
pairs of messages m; and recipient identities R; € P, record (P, M, r) and output (sid, P, M, r)
to the adversary. (If P later becomes corrupted then the record (P, M,r) is deleted.)

3. Upon receiving a message (Advance-Round, sid, N) from the adversary, do: If there exist
uncorrupted parties P € P for which no record (P, M, r) exists then ignore the message. Else:

(a) Interpret N as the list of messages sent by corrupted parties in this round. That is,
N = {(S;i, Ri;,m;)} where each S;, R; € P, m is a message, and S; is corrupted. (S; is
taken as the sender of message m; and R; is the receiver.)

(b) Prepare for each party P € P the list L, of messages that were sent to it in round r by
all parties in P, both corrupted and uncorrupted.

(¢) Increment the round number: r ¢ r + 1.

4. Upon receiving input (Receive, sid) from a party P € P, output (Received, sid,r, LTP_I) to
P. (Let Lp' =1.)

Figure 14: The synchronous communication functionality, Fgyy-

uncorrupted parties are able to obtain their messages for that round. Consequently, if the adversary
fails to advance the round number then the computation effectively halts altogether.

The present formulation of Fgyx does not guarantee “fairness”, in the sense that the adversary
may obtain the messages sent by the uncorrupted parties for a round while the uncorrupted parties
may have not received these messages. To guarantee fairness, modify Fgyy so that the adversary
learns the messages sent by the uncorrupted parties in a round only after it advances the round.

Another point worth elaboration is that each instance of Fgyy guarantees synchronous message
delivery only within the context of the messages sent using that instance. Delivery of messages sent
in other ways (e.g., directly or via other instances of Fgsyy) may be arbitrarily fast or arbitrarily
slow. This allows capturing, in addition to the traditional model of a completely synchronous
network where everyone is synchronized, also more general settings such as synchronous execution
of a protocol within a larger asynchronous environment, or several protocol executions where each
execution is internally synchronous but the executions are mutually asynchronous.

Finally note that, even when using Fgyy, the inputs to the parties are received in an “asyn-
chronous” way, i.e. it is not guaranteed that all inputs are received within the same round. Still,
a protocol that uses Fsyy can deploy standard mechanisms for guaranteeing that the actual com-
putation does not start until enough (or all) parties have inputs.

Potential relaxations. The reliability and authenticity guarantees provided within a single in-
stance of Fgyy are quite strong: Once a round number advances, all the messages to be delivered
to the parties at this round are fixed, and are guaranteed to be delivered upon request. Alternative
formulations of Fgyn, which, say, allow the adversary to stop delivering messages or to modify
messages sent by corrupted parties also in “mid-round”, are of course possible.
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Another potential relaxation of Fgyy is to reduce the “timeliness” guarantee. Specifically, it
may only be guaranteed that messages are delivered within a given number, d, of rounds from the
time they are generated. The bound § may be either known in advance or alternatively unknown
and determined dynamically (e.g., specified by the adversary when the message is sent). The case
of known delay § corresponds to the “timing model” of [DNS98, G02, LPT04]. The case of unknown
delay corresponds to the model of non-blocking asynchronous communication model where message
are guaranteed to be delivered, but with unknown delay (see, e.g., [BCG93, CrR93]).

On composing Fgyn-hybrid protocols. Recall that each instance of Fgyy represents a single
synchronous system, and different instances of Fsyy are mutually asynchronous, even when they
run in the same system. This means that different protocol instances that wish to be mutually
synchronized would need to use the same instance of Fgyy. In particular, if we have a complex,
multi-component protocol that assumes a globally synchronous network, then all the components
of this protocol would need to use the same instance of Fgyy.

A priori, this observation may seem to prevent the use of the universal composition operation
for such protocols, since this operation does not allow the composed protocols to have any joint
subroutines. We note, however, that protocol copies that use the same instance of Fgyy can be
composed using universal composition with joint state (see Section 5.3). That is, it is easy to see
that multiple instances of Fgyx can be easily realized using a single “larger” instance of Fgyy, whose
set of participants is the union of the sets of participants of the realized instances. In other words,
there exists a simple Fgyy-hybrid protocol that UC-realizes .7:"SYN, the multi-session extension of
Fsvn, using a single instance of Fgyy. (Intuitively, the point here is that having access to a globally
synchronizing functionality provides a stronger guarantee than having access to multiple more local
synchronizing functionalities.)

6.5 Non-concurrent Security

One of the main features of the UC framework is that it guarantees security even when protocol
instances are running concurrently in an adversarially controlled manner. Still, sometimes it may
be useful to capture within the UC framework also security properties that are not necessarily
preserved under concurrent composition, and are thus realizable by simpler protocols or with milder
setup assumptions.

This section provides a way to specify such “non-concurrent” security properties. Specifically,
we present an ideal functionality, Fyc, that guarantees that no other protocol instances are running
concurrently to the calling instance. Thus, an Fyc-hybrid protocol is essentially guaranteed to
be running as “stand-alone” in the system. Functionality Fy¢ is presented in Figure 15. It first
expects to receive a code of an adversary, A. Tt then behaves as adversary A would in the non-
concurrent security model. That is, Fy¢ runs A and follows its instructions with respect to receipt
and delivery of messages between parties. As soon as A terminates the execution, Fyo reports
the current state of A back to the external adversary, and halts. (Figure 15 presents a variant of
Fxe that emulates the bare, unauthenticated communication model. To capture non-concurrent
security with, say, authenticated communication, Fy¢ needs to be modified somewhat so that only
authentic communication can be delivered, mimicking the guarantees provided by Fayrs-)

One use for Fy¢ is to analyze systems where some of the components cannot run concurrently
with other protocols, whereas the rest of the system components may be running concurrently with
each other. Here the “non-composable” components can be written as Fyc-hybrid protocols. For
some concrete examples see Section 7.3.
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Functionality Fyc

1. When receiving message (Start, sid,/l) from the adversary, where A is the code of an ITM
(representing an adversary), invoke A and change state to running.

2. When receiving input (Send, sid, m, Q) from party P, and if the state is running, activate A
with incoming message (m, Q) from party P. Then:
(a) If A instructs to deliver a message (m', P') to party @' then output (sid,m', P') to Q'.

(b) If A halts without delivering a message to any party then send the current state of A to
the adversary and halt.

Figure 15: The non-concurrent communication functionality, Fyc-

Equivalence with the definition of [c00]. Recall the security definition of [c00] that guar-
antees that security is preserved under non-concurrent composition of protocols. (See discussion
in Section 1.1.) More specifically, consider the natural generalization of the [c00] notion (which
is stated for secure function evaluation in a synchronous communication networks) to the case of
reactive functionalities and asynchronous networks. Recall that this generalized [c00] notion, which
we call non-concurrent security, is the same as UC security with the following exception: in the case
of non-concurrent security, the environment Z and the adversary A are prohibited from interacting
(i.e., they cannot send inputs and outputs to each other) from the moment where the first protocol
message is sent until the moment where the last protocol message is delivered. That is:

Definition 19 Let © and ¢ be PPT multi-party protocols. We say that m NC-emulates ¢ if for
any PPT adversary A there ezists a PPT adversary S such that for any PPT environment Z, that
interacts with A in a restricted way as described above, we have EXECy s,z = EXECy 4 z.

An important feature of non-concurrent security is that it is easier to realize. In particular,
known protocols (e.g., the protocol of [GMW87], see also [G01]) for realizing a general class of ideal
functionality with any number of faults, assuming authenticated communication as the only set-up
assumption, can be shown secure in this model. This stands in contrast to the impossibility results
regarding the realizability of the same functionalities in the UC framework.

We claim that having access to Fy¢ is essentially equivalent to running in the non-concurrent
security model described above. More specifically, we claim that a protocol that sends all its
messages via Fye UC-realizes some ideal functionality F if and only if the protocol realizes F in
the above non-concurrent security model. More generally:

Proposition 20 Let m be an Fyc-hybrid protocol that sends all its messages via Fyc. Then w
UC-emulates protocol ¢ if and only if 1 NC-emulates ¢.

Notice that Proposition 20, together with the UC theorem, provides an alternative (albeit
somewhat roundabout) formulation of the non-concurrent composition theorem of [c00].

6.6 Various corruption models

The basic model of protocol execution does not fully specify the behavior of parties upon corruption.
This highlights the fact that the composition operation and theorem apply to any type of behavior
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upon corruption. Specifically, recall that party P corruption is captured as a reserved (corrupt)
message that is delivered to the party by the adversary. (This operation is possible only once the
environment has explicitly “agreed” to corrupting P.) Different corruption models are captured
via different protocol instructions for the case that such a message is received. This modeling
provides greater flexibility in defining variants of standard corruption models; in addition, different
corruption methods (say, passive, Byzantine, various levels of adaptivity, Fail-Stop) can co-exist in
the same system.

The modeling of Byzantine corruption behavior was given in Section 4.1. This section describes
how other standard corruption models are captured within the present framework. We concentrate
on non-adaptive, passive (semi-honest), and proactive corruptions. While these corruption models
are very different from each other in the security guarantees they provide, from a definitional point
of view they are treated in similar ways, and are thus discussed together.

Non-adaptive (static) party corruptions. Definition 7 postulates adaptive party corruptions,
namely corruptions that occur as the computation proceeds, based on the information gathered
by the adversary so far. Arguably, adaptive corruption of parties is a realistic threat in existing
networks. Nonetheless, it is sometimes useful to consider also a weaker threat model, where the
identities of the adversarially controlled parties are fixed before the computation starts; this is the
case of non-adaptive (or, static) adversaries. See more discussion on the differences between the two
models in [c00, cDDIMO04].

In the present framework, non-adaptive corruptions can be captured by specifying that any
corruption message that is received in any activation other than the first activation of the party is
ignored.

Passive (honest-but-curious) party corruptions. Definition 7 postulates active party corrup-
tions, namely corruptions where the adversary obtains total control over the behavior of corrupted
parties. Another standard corruption model assumes that even corrupted parties continue to follow
their prescribed protocol. Here the only advantage the adversary gains from corrupting parties is
in learning the internal states of those parties. We call such adversaries passive.

In the present framework, passive corruptions can be captured by changing the reaction of
a party to a corrupt message from the adversary: While a corrupted party still reports to the
adversary all of its internal state, it no longer follows the instructions of .A.

We remark that one can consider two variants of passive corruptions, depending on whether
the adversary is allowed to modify the inputs of the corrupted parties prior to the beginning of the
computation. Both variants can be captured in a natural way via different sets of instructions for
parties upon corruption.

Transient (mobile) corruptions and proactive security. All the corruption methods so far
represent “permanent” party corruptions, in the sense that once a party gets corrupted it remains
corrupted throughout the computation. Another variant allows parties to “recover” from a cor-
ruption and regain their security. Such corruptions are often called mobile (or, transient). Security
against such corruptions is often called proactive security. In the present framework, transient cor-
ruptions can be captured by adding a (recover P) message from the adversary to P. (As with
corruption messages, a recover message can be delivered only after being explicitly “approved” in
a message from the environment to the adversary.) Upon receiving a (recover P) message, P
stops reporting its state to the adversary, and stops following the adversary’s instructions. (The
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fact that P may not “know” whether it was corrupted and recovered can be captured by making
sure that the rest of the code run by P does not depend on the corruption and recovery messages.)

Physical, “side channel” attacks. A practical and very realistic security concern is protection
against “physical attacks” on computing devices, where the attacker is able to gather information
on, and sometimes even modify, the internal computation of a device via physical access to it.
(Famous examples include the “timing attack” of [K96], the “microwave attacks” of [BDLI7, BS97]
and the “power analysis” attacks of [CJRR99].) These attacks are often dubbed “side-channel”
attacks in the literature. Some formalizations of security against such attacks appear in [MR04,
GLMMRO04].

In the present framework, this type of attacks can be directly modeled via appropriate sets of
reactions of parties to corruption requests. Security against such attacks is then defined as usual
(i.e., by realizing an ideal functionality), with the exception that the corruption model is chosen
appropriately. For instance, the ability of the adversary to observe or modify certain memory
locations, or to detect whenever a certain internal operation (such as modular multiplication) takes
place, can be directly modeled by having the party send an appropriate message to the adversary.

7 UC formulations of some primitives

This section demonstrates the general applicability of the framework by using it to provide univer-
sally composable definitions of a number of known cryptographic tasks. To do that, we formulate
ideal functionalities that capture the security requirements of these tasks; a protocol is said to se-
curely carry out a task if it securely realizes the corresponding ideal functionality as in Definition 7.

In most cases, the ideal functionalities here are formulated somewhat differently than the ones
in the previous version of this work. This is due to two main factors. First, substantial progress
was made on understanding and modeling some of these primitives since the first version of this
work. In particular, a number of works have pointed out mistakes in the original formulations,
as well as additional interesting variants of the corresponding primitives. Second, some changes
are necessitated by the changes in the details of the overall framework. In all, this section can
be regarded as a brief survey of current knowledge regarding UC formulations of the relevant
primitives. It is stressed, though, that these formulations are not “set in stone”; they can (and
should) be modified to fit different settings.

The rest of this section is still under construction. It should be available shortly. Please
check http://eprint.iacr.org/2000/067.

8 Future directions

The present work puts forth a general framework for defining and analyzing security or protocols.
This may be regarded as a step towards putting the art of cryptographic protocol design on firm
grounds. Let us briefly mention several current and future directions for furthering this goal and
related ones. Some of these directions are the focus of current research reviewed in Section 1.4.
Others are yet to be explored.

Capturing and realizing cryptographic tasks and concerns. In principle, the UC frame-
work allows capturing practically any cryptographic task and concern. Some basic examples have
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been given in the previous sections. Works that show how to capture other tasks, primitives, and
concerns are reviewed in Section 1.4. Other tasks and concerns remain to be captured. A very in-
complete list includes concerns such as anonymity; deniability and accountability; (in)coercibility;
fairness; and tasks such as distributed (“threshold”) versions of known primitives such as signa-
ture, encryption, zero-knowledge, etc.; agreement primitives such as broadcast and multicast with
various levels of security.

Finding better notions of security. Another goal is to try to relax the requirements from
protocols that realize a certain task, while maintaining “reasonable” security as well as strong
composability properties. Indeed, the approach of defining security as the ability to “emulate”
an ideal process has traditionally resulted in definitions that are more stringent than definitions
based on other methods for defining security. Examples include Zero-Knowledge versus Witness-
Indistinguishability of Interactive Proof-systems [GMRa89, Fs90], and Key Exchange and Secure
Session protocols [Ck01, ck02]. The present framework is even more restrictive in that it gives
more power to the adversarial environment. Indeed, the inability to demonstrate security of a given
protocol within the present framework does not necessarily mean that the protocol is “bad” for its
task. Formulating more relaxed notions of security is thus a natural and important goal.

Let us point to two alternative ways in which this can be done. A first direction may be to
modify the framework itself (i.e., to relax Definition 7) in a way that maintains its main security
and composability features, but is easier to realize. (Such an attempt was made in e.g. [PS04].) A
second direction is to try to formulate ideal functionalities in a way that relaxes the requirements
as much as possible. Examples of how this can be done include the treatment of digital signatures
in [c04], Key-Exchange in [cK02], and commitments in [PS05].

A related question is to find characterizations of the functionalities that can be realized in
certain settings. Some initial work was done in [CKL03|, which concentrate on the task of two-
party function evaluation given authenticated communication. Still, the question remains open in
many other interesting settings.

Formalizing and automating the analysis. As discussed in Section 1.4, casting cryptographic
analysis of protocols within a formal framework has many benefits, including eventual automation
of parts of the analytical process. First steps towards this goal were described there. This is a
promising research direction, with potentially far-reaching influence both on theoretical cryptog-
raphy and on the security of actual computer systems. In particular, it may eventually enable
cryptographic analysis of large-scale systems and networks.

Exploring connections with game theory and mechanism design. Similarly to cryptogra-
phy, the disciplines of Game Theory and Mechanism Design study the interactions between mutually
distrustful parties, which have potentially conflicting interests, but still wish to perform some joint
computation. Some interesting connections between the theory of cryptographic protocols and
game theory were explored in [DHR0O0, LMPS04]. The present framework may provide additional
insight into these connections. In particular, it may help understand the compositional aspects of
games and mechanisms.

Extending to quantum computation and communication. Designing cryptographic pro-
tocols and analyzing their security in a setting where all or some of the computing agents and
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communication links exploit the effects of Quantum Physics is a non-trivial task that is quite dif-
ferent than its “classical” counterpart. Issues include delineating the borders between quantum
and classical components, and compositionality of quantum adversaries. In particular, being able
to define security against quantum adversaries that is preserved under protocol composition is a
desirable goal. Current work towards extending the present framework to the quantum setting was
described in Section 1.4. Future work includes extending the definitions of cryptographic tasks
(such as commitment, coin-tossing, oblivious transfer, or zero-knowledge) to the quantum setting,
and finding protocols for realizing them.
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A The main changes from the previous versions

Changes from the version of October 2001. The changes from this version (see [c01]) are
detailed throughout the text. Here we provide a brief, high-level outline of the main changes:

Non-technical changes:

1. A more complete survey of related work (prior, concurrent, and subsequent) is added in
Section 1.4.

2. The section on realizing general ideal functionalities (Section 7 in the October '01 version)
is not included. It will be completed to contain a full proof and published separately.

3. Motivational discussion is added throughout.
Technical changes:

1. Extended and more detailed definitions for a “system of interacting ITMs” are added,
handling dynamic generation and addressing of ITM instances in a multi-party, multi-
protocol, multi-instance environment.

2. New notions of probabilistic polynomial time ITMs and systems are used. The new
notions provide greater expressibility and generality. They also allow proving equivalence
of several natural variants of the basic notion of security.

3. The model for protocol execution is restated in terms of a system of interacting ITMs.
In particular, the order of activations is simplified.

4. The ideal process and the hybrid model are simplified and made more expressive. In
particular, they are presented as special types of protocols within the general model of
protocol execution.

5. The composition theorem is stated and proven in more general terms, considering the
general case of replacing one subroutine protocol with another.

6. Various models of computation, including authenticated channels, secure channels, and
synchronous communication, are captured as hybrid protocols that use appropriate ideal
functionalities within the basic model of computation. This avoids defining extensions
to the model to handle these cases, and in particular avoids the need to re-prove the
UC theorem for these extended models. Various corruption models are also captured as
special protocol instructions within the same model of execution.

Changes from the version of January 6, 2005. The main change from this version is in the
definition of PPT ITMs and systems. Instead of globally bounding the running time of the system
by a fixed polynomial, we provide a more “locally enforceable” characterization of PPT ITMs that
guarantees that an execution of the system completes in polynomial time overall. See discussion in
Section 3.4.3. These changes required updating the notion of black-box simulation and the proof
of Claim 8, both in Section 4.4.
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