
Universally Composable Security:

A New Paradigm for Cryptographic Protocols

Ran Canetti∗

July 16, 2013

Abstract

We present a general framework for representing cryptographic protocols and analyzing their
security. The framework allows specifying the security requirements of practically any crypto-
graphic task in a unified and systematic way. Furthermore, in this framework the security of
protocols is preserved under a general protocol composition operation, called universal composi-
tion.

The proposed framework with its security-preserving composition operation allows for mod-
ular design and analysis of complex cryptographic protocols from relatively simple building
blocks. Moreover, within this framework, protocols are guaranteed to maintain their security
in any context, even in the presence of an unbounded number of arbitrary protocol instances
that run concurrently in an adversarially controlled manner. This is a useful guarantee, that
allows arguing about the security of cryptographic protocols in complex and unpredictable en-
vironments such as modern communication networks.

Keywords: cryptographic protocols, security analysis, protocol composition, universal composi-
tion.

∗IBM T.J. Watson Research Center, canetti@watson.ibm.com. Supported by NSF CyberTrust Grant #0430450.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 16 (2001)

Contents

1 Introduction 1

1.1 The definitional approach . 2

1.2 Universal Composition . 5

1.3 Using the framework . 6

1.4 Organization . 8

2 The framework in a nutshell 8

2.1 The underlying computational model . 8

2.2 Defining security of protocols . 10

2.3 The composition theorem . 13

3 The model of computation 15

3.1 The basic model . 16

3.1.1 Interactive Turing Machines (ITMs) . 17

3.1.2 Executing Systems of ITMs . 18

3.1.3 Discussion . 22

3.2 Polynomial time ITMs and systems; Parameterized systems 29

3.2.1 Discussion . 31

4 Defining security of protocols 34

4.1 The model of protocol execution . 34

4.2 Protocol emulation . 36

4.3 Realizing ideal functionalities . 39

4.4 Alternative formulations of UC emulation . 41

4.4.1 Emulation with respect to the dummy adversary . 41

4.4.2 Emulation with respect to black box simulation . 44

4.4.3 Letting the simulator depend on the environment . 45

5 Universal composition 46

5.1 The universal composition operation and theorem . 46

5.2 Proof of the composition theorem . 48

5.2.1 Proof outline . 48

5.2.2 A detailed proof . 50

5.3 Discussion and extensions . 54

6 UC formulations of some computational models 57

6.1 Some corruption models . 58

6.2 Writing conventions for ideal functionalities . 61

6.3 Authenticated Communication . 63

6.4 Secure Communication . 65

6.5 Synchronous communication . 67

6.6 Non-concurrent Security . 70

A Related work 80

B The main changes from the previous versions 83

1 Introduction

Rigorously demonstrating that a protocol “does its job securely” is an essential component of
cryptographic protocol design. This requires coming up with an appropriate mathematical model
for representing protocols, and then formulating, within that model, a definition of security that
captures the requirements of the task at hand. Once such a definition is in place, we can show that
a protocol “does its job securely” by demonstrating that its mathematical representation satisfies
the definition of security within the devised mathematical model.

However, coming up with a good mathematical model for representing protocols, and even more
so formulating adequate definitions of security within the devised model, turns out to be a tricky
business. The model should be rich enough to represent all realistic adversarial behaviors, and the
definition should guarantee that the intuitive notion of security is captured with respect to any
adversarial behavior under consideration.

One main challenge in formulating the security of cryptographic protocols is capturing the
threats coming from the execution environment, and in particular potential “bad interactions”
with other protocols that are running in the same system or network. Another, related challenge
is the need to come up with notions that allow building cryptographic protocols and applications
from simpler building blocks while preserving security. Addressing these challenges is the focal
point of this work.

Initially, definitions of security for cryptographic tasks considered only a single execution of the
analyzed protocol. This is indeed a good choice for first-cut definitions of security. In particular, it
allows for relatively concise and intuitive problem statement, and for simpler analysis of protocols.
However, in many cases it turned out that the initial definitions are insufficient in more complex
contexts, where protocols are deployed within more general protocol environments. Some examples
include encryption, where the basic notion of semantic security [gm84] was later augmented with
several flavors of security against chosen ciphertext attacks [ny90, ddn00, rs91, bdpr98] and
adaptive security [bh92, cfgn96], in order to address general protocol settings; Commitment, where
the original notions were later augmented with some flavors of non-malleability [ddn00, dio98,
ff00] and equivocation [bcc88, b96] in order to address the requirement of some applications;
Zero-Knowledge protocols, where the original notions [gmra89, go94] were shown not to be closed
under parallel and concurrent composition, and new notions and constructions were needed [gk89,
f91, dns98, rk99, bggl04]; Key Exchange, where the original notions do not suffice for providing
secure sessions [br93, bck98, sh99, ck01]; Oblivious Transfer [r81, egl85, gm00], where the first
definitions do not guarantee security under concurrent composition.

One way to capture the security concerns that arise in a specific protocol environment or in
a given application is to directly represent the given environment or application within an ex-
tended definition of security. Such an approach is taken, for instance in the cases of key-exchange
[br93, ck01], non-malleable commitments [ddn00], concurrent zero-knowledge [dns98] and gen-
eral concurrently secure protocols [p04, bs05, g11], where the definitions explicitly model several
adversarially coordinated instances of the protocol in question. This approach, however, results in
definitions with ever-growing complexity, and is inherently limited in scope since it addresses only
specific environments and concerns.

An alternative approach, taken in this work, is to use definitions that consider the protocol in
isolation, but guarantee secure composition. In other words, here definitions of security inspect only
a single instance of the protocol “in vitro”. Security “in vivo”, namely in more realistic settings

1

where a protocol instance may run concurrently with other protocols, is guaranteed by making sure
that the security is preserved under a general composition operation on protocols. This approach
considerably simplifies the process of formulating a definition of security and analyzing protocols.
Furthermore, it guarantees security in arbitrary protocol environments, even ones which have not
been explicitly considered.

In order to make such an approach meaningful, we first need to have a general framework for
representing cryptographic protocols and their security properties. Indeed, otherwise it is not clear
what “preserving security when running alongside other protocols” means, especially when these
other protocols and the security requirements from them are arbitrary. Several general definitions
of secure protocols were developed over the years, e.g. [gl90, mr91, b91, bcg93, pw94, c00,
hm00, psw00, dm00, pw00]. These definitions are obvious candidates for such a general frame-
work. However, many of these works consider only restricted settings and classes of tasks; more
importantly, the composition operations considered in those works fall short of guaranteeing general
secure composition of cryptographic protocols, especially in settings where security holds only for
computationally bounded adversaries and many protocol instances may be running concurrently
in an adversarially coordinated way. We further elaborate on these works and their relation to the
present one in Appendix A.

This work proposes a framework for representing and analyzing the security of cryptographic
protocols. Within this framework, we formulate a general methodology for expressing the security
requirements of cryptographic tasks. Furthermore, we define a very general method for composing
protocols, and show that notions of security expressed within this framework preserve security
under this composition operation. We call this composition operation universal composition and say
that definitions of security in this framework (and the protocols that satisfy them) are universally
composable (UC). Consequently, we dub this framework the UC security framework.1 As we’ll see,
the fact that security in this framework is preserved under universal composition implies that
a secure protocol for some task remains secure even it is running in an arbitrary and unknown
multi-party, multi-execution environment. In particular, some standard security concerns, such as
non-malleability and security under concurrent composition, are satisfied even with respect to an
unbounded number of instances of either the same protocol or other protocols.

The rest of the Introduction is organized as follows. Section 1.1 presents the basic definitional
approach and the ideas underlying the formalism. Section 1.2 presents the universal composition
operation and theorem. Section 1.3 discusses the issues associated with substantiating the general
approach into a rigorous and usable framework. Related work, including both prior work and work
that was done following the publication of the first version of this work, is reviewed in Appendix A.

1.1 The definitional approach

We briefly sketch the proposed framework and highlight some of its properties. A more compre-
hensive motivational presentation appears in [c06]. The overall definitional approach is the same
as in most other general definitional frameworks mentioned above, and goes back to the seminal
work of Goldreich, Micali and Wigderson [gmw87]: In order to determine whether a given protocol
is secure for some cryptographic task, first envision an ideal process for carrying out the task in a
secure way. In the ideal process all parties hand their inputs to a trusted party who locally computes

1We use similar names for two very different objects: A notion of security and a composition operation. This
choice of names is motivated in Appendix A.

2

the outputs, and hands each party its prescribed output. This ideal process can be regarded as a
“formal specification” of the security requirements of the task. A protocol is said to securely realize
the task if running the protocol “emulates” the ideal process for the task, in the sense that any
damage that can be caused by an adversary interacting with the protocol can also be caused by an
adversary in the ideal process for the task.

Several formalizations of this general definitional approach exist, including the definitional works
mentioned above, providing a range of secure composability guarantees in a variety of computa-
tional models. To better understand the present framework, we first briefly sketch the definitional
framework of [c00], which provides a basic instantiation of the “ideal process paradigm” for the
traditional task of secure function evaluation, namely evaluating a known function of the secret
inputs of the parties in a synchronous and ideally authenticated network.

The model of protocol execution considered in [c00] consists of a set of interacting computing
elements, representing the parties running the protocol. Formally, these elements are modeled as
interactive Turing machines (ITMs).2 An additional ITM represents the adversary, who controls a
subset of the parties. In addition, the adversary has some control over the scheduling of message
delivery, subject to the synchrony guarantee. The parties and adversary interact on a given set of
inputs and each party eventually generates local output. The concatenation of the local outputs
of the adversary and all parties is called the global output. In the ideal process for evaluating some
function f , all parties ideally hand their inputs to an incorruptible trusted party, who computes
the function values and hands them to the parties as specified. Here the adversary is limited to
interacting with the trusted party in the name of the corrupted parties. Protocol π securely evaluates
a function f if for any adversary A (that interacts with the protocol) there exists an ideal-process
adversary S such that, for any set of inputs to the parties, the global output of running π with A
is indistinguishable from the global output of the ideal process for f with adversary S.

This definition suffices for capturing the security of protocols in a “stand-alone” setting where
only a single protocol instance runs in isolation. Indeed, if π securely evaluates f then the parties
running π are guaranteed to generate outputs that are indistinguishable from the values of f on
the same inputs. Furthermore, any information gathered by an adversary that interacts with π is
generatable by an adversary that only gets the inputs and outputs of the corrupted parties. In
addition, this definition is shown to guarantee security under non-concurrent composition, namely
as long as no two protocol instances run concurrently. However, when protocol instances run
concurrently, this definition no longer guarantees security: There are natural protocols that meet
the [c00] definition but are insecure when as few as two instances run concurrently. We refer the
reader to [c00, c06] for more discussions on the implications of, and motivation for, this definitional
approach. Some examples for the failure to preserve security under concurrent composition are given
in [c06].

The UC framework preserves the overall structure of that approach. The difference lies in new
formulations of the model of computation and the notion of “emulation”. As a preliminary step
towards presenting these new formulation, we first present an alternative and equivalent formulation
of the [c00] definition. In that formulation a new algorithmic entity, called the environment machine,
is added to the model of computation. (The environment machine can be regarded as representing
whatever is external to the current protocol execution. This includes other protocol executions

2While following tradition, the specific choice of Turing machines as the underlying computational model is
somewhat arbitrary. Any other model that provides a concrete way to measure the complexity of computations, such
as e.g. RAM or PRAM machines, and boolean or arithmetic circuits would be adequate.

3

and their adversaries, human users, etc.) The environment interacts with the protocol execution
twice: First, it hands arbitrary inputs of its choosing to the parties and to the adversary. Next, it
collects the outputs from the parties and the adversary. Finally, the environment outputs a single
bit, which is interpreted as saying whether the environment thinks that it has interacted with the
protocol or with the ideal process for f . Now, say that protocol π securely evaluates a function f if
for any adversary A there exists an “ideal adversary” S such that no environment E can tell with
non-negligible probability whether it is interacting with π and A or with S and the ideal process
for f . (In fact, a similar notion of environment is already used in [c00] to capture non-concurrent
composability for adaptive adversaries.)

The main difference between the UC framework and the basic framework of [c00] is in the way
the environment interacts with the adversary. Specifically, in the UC framework the environment
and the adversary are allowed to interact freely throughout the course of the computation. In par-
ticular, they can exchange information after each message or output generated by a party running
the protocol. If protocol π securely realizes function f with respect to this type of “interactive
environment” then we say that π UC-realizes f .

This seemingly small difference in the formulation of the computational models is in fact very
significant. From a conceptual point of view, it represents the fact that “information flow” between
the protocol instance under consideration and the rest of the network may happen at any time
during the run of the protocol, rather than only at input or output events. Furthermore, at each
point the information flow may be directed both “from the outside in” and “from the inside out”.
Modeling such “circular” information flow is essential for capturing the threats of a multi-instance
concurrent execution environment. (See some concrete examples in [c06].) From a technical point of
view, the environment now serves as an “interactive distinguisher” between the protocol execution
and the ideal process. This imposes a considerably more severe restriction on the ideal adversary
S, which must be constructed in the proof of security: In order to make sure that the environment
E cannot tell between a real protocol execution and the ideal process, S now has to interact with
E throughout the execution, just as A did. Furthermore, S cannot “rewind” E . Indeed, it is this
pattern of free interaction between E and A that allows proving that security is preserved under
universal composition.

An additional difference between the UC framework and the basic framework of [c00] is that
the UC framework allows capturing not only secure function evaluation but also reactive tasks
where new input values are received and new output values are generated throughout the computa-
tion.Furthermore, new inputs may depend on previously generated outputs, and new outputs may
depend on all past inputs and local random choices. This is obtained by replacing the “trusted
party” in the ideal process for secure function evaluation with a general algorithmic entity called
an ideal functionality. The ideal functionality, which is modeled as another ITM, repeatedly receives
inputs from the parties and provides them with appropriate output values, while maintaining local
state in between. This modeling guarantees that the outputs of the parties in the ideal process have
the expected properties with respect to the inputs, even when new inputs are chosen adaptively
based on previous outputs. We note that this extension of the model is “orthogonal” to the previous
one, in the sense that either extension is valid on its own. Some other differences from [c00] (e.g.,
capturing different communication models and the ability to dynamically generate programs) are
discussed in later sections.

The resulting definition of security turns out to be quite robust, in the sense that several natural
definitional variants end up being equivalent. For instance, the notion of security as stated above

4

is equivalent to the seemingly weaker variants where S may depend on the environment, or where
the real-life adversary A is restricted to simply serve as a channel for relaying information between
the environment and the protocol. It is also equivalent to the seemingly stronger variant where the
ideal adversary S is restricted to black-box access to the adversary A. (We remark that in other
frameworks these variants result in different formal requirements; see e.g. [hu05].)

1.2 Universal Composition

Consider the following method for composing two protocols into a single composite protocol. (It may
be useful to think of this composition operation as a generalization of the “subroutine substitution”
operation for sequential algorithms to the case of distributed protocols.) Let π be some arbitrary
protocol where the parties make ideal calls to some ideal functionality F ; in fact, they may make
calls to multiple instances of F . That is, in addition to the standard set of instructions, π may
include instructions to provide instances of F with some input values, and to obtain output values
from these instances of F . Here the different instances of F are running at the same time without
any global coordination. We call such protocols F-hybrid protocols. (For instance, π may be a
zero-knowledge protocol and F may provide the functionality of “digital envelopes”, representing
ideal commitment.) The burden of distinguishing among the instances of F is left with protocol π;
we provide a generic mechanism for doing so, using session identifiers.

Now, let ρ be a protocol that UC-realizes F , according to the above definition. Construct the
composed protocol πρ by starting with protocol π, and replacing each invocation of a new instance
of F with an invocation of a new instance of ρ. Similarly, inputs given to an instance of F are now
given to the corresponding instance of ρ, and any output of an instance of ρ is treated as an output
obtained from the corresponding instance of F . It is stressed that, since protocol π may use an
unbounded number of instances of F at the same time, we have that in protocol πρ there may be
an unbounded number of instances of ρ which are running concurrently on related and dynamically
chosen inputs.

The universal composition theorem states that running protocol πρ, with no access to F , has
essentially the same effect as running the original F-hybrid protocol π. More precisely, it guarantees
that for any adversary A there exists an adversary AF such that no environment machine can tell
with non-negligible probability whether it is interacting with A and parties running πρ, or with AF
and parties running π. In particular, if π UC-realizes some ideal functionality G then so does πρ.

On the universality of universal composition. Many different ways of “composing together”
protocols into larger systems are considered in the literature. Examples include sequential, parallel,
and concurrent composition, of varying number of protocol instances, where the composed instances
are run either by the same set of parties or by different sets of parties, use either the same program
or different programs, and have either the same input or different inputs. A more detailed discussion
appears in [c06].

All these composition methods can be captured as special cases of universal composition. That
is, any such method for composing together protocol instances can be captured via an appropriate
“calling protocol” ρ that uses the appropriate number of protocol instances as subroutines, provides
them with appropriately chosen inputs, and arranges for the appropriate synchronization in message
delivery among the various subroutine instances. Consequently, it is guaranteed that a protocol
that UC-realizes an ideal functionality F continues to UC-realize F even when composed with other

5

protocols using any of the composition operations considered in the literature. In addition, universal
composition allows expressing new ways of composing protocols, such as composing protocols where
some of the local states are shared by multiple instances.

Universal composition also allows formulating new ways to put together protocols (or, equiva-
lently, new ways to decompose complex systems); a salient example here is the case of composition
of protocol instances that have some joint state and randomness.

Interpreting the composition theorem. Traditionally, secure composition theorems are treated
as tools for modular design and analysis of complex protocols. (For instance, this is the main mo-
tivation in [mr91, c00, dm00, pw00, pw01].) That is, given a complex task, first partition the
task to several, simpler sub-tasks. Then, design protocols for securely realizing the sub-tasks, and
in addition design a protocol for realizing the given task assuming that evaluation of the sub-tasks
is possible. Finally, use the composition theorem to argue that the protocol composed from the
already-designed sub-protocols securely realizes the given task. Note that in this interpretation the
protocol designer knows in advance which protocol instances are running together and can control
how protocols are scheduled.

The above application is indeed very useful. In addition, this work proposes another interpre-
tation of the composition theorem, which is arguably stronger: We use it as a tool for addressing
the concern described at the beginning of the Introduction, namely for gaining confidence in the
sufficiency of a definition of security in a given protocol environment. Indeed, protocols that UC-
realize some functionality are guaranteed to continue doing so within any protocol environment —
even environments that are not known a-priori, and even environments where the participants in
a protocol execution are unaware of other protocol instances that may be running concurrently in
the system in an adversarially coordinated manner. This is a very useful (in fact, almost essen-
tial) security guarantee for protocols that run in complex and unpredictable environments, such as
modern communication networks.

1.3 Using the framework

Perhaps the most important criterion for a general analytical framework such as the present one
is its usefulness in analyzing the security of protocols of interest in settings of interest. There are
a number of aspects here. First off, a useful framework should allow us to represent the protocols
we are interested in. It should also allow expressing the security requirements of tasks of interest.
Similarly, it should allow us to adequately express the execution environment we are interested
in; This includes capturing the security threats we are concerned about, as well as the security
guarantees we are given. Finally, the framework should be as intuitive and easy to use as possible.
This means that representing requirements and guarantees should be natural and transparent. It
also means that the framework should be as simple as possible, and that there should be easy and
flexible ways to delineate and isolate individual parts of a given, potentially complex system.

These considerations are the leading guidelines in the many definitional choices made in sub-
stantiating the definitional ideas described earlier. Here we briefly highlight few of these choices.
More elaborate discussions of definitional choices appear throughout this work.

One set of choices is geared towards enhancing the ability of the model to express a variety
of realistic situations, protocol execution methods, and threats. Towards this goal, the model
allows capturing open, multi-party distributed systems where no a-priori bound on the number

6

of participants is known in advance, and where parties can join the system with programs and
identities that are chosen dynamically during the course of the computation. Indeed, such modeling
seems essential given the dynamic and reconfigurable nature of modern computer systems and
networks, and the dynamic and polymorphic nature of modern attacks and viruses. To enable
such modeling we develop formal mechanisms for participants to identify each other and to address
messages to the desired recipient. We also extend the traditional definitions of resource-bounded
computation so as to handle such dynamic systems. In addition, we provide mechanisms for
identifying individual protocols and protocol instances within such systems, so that the number and
identities of the participants in each protocol instance, as well as the number of protocol instances
running concurrently, can change dynamically depending on the execution with no a-priori bound.

We remark that this modeling approach stands in contrast to existing models of distributed
computing. Indeed, existing models typically impose more static restrictions on the system; this
results in reduced ability to express scenarios and concerns that are prevalent in modern networks.

Another set of choices is geared toward allowing the protocol analyst to express security re-
quirements in a precise and flexible way. This includes providing simple ways to express basic
concerns, such as correctness, secrecy and fairness. It also includes providing ways to “fine-tune”
the requirements at wish. In the present model, where a set of security requirements translates to
a program of an ideal functionality, this means providing ways for writing ideal functionalities that
express different types of requirements. A main tool here is to have the ideal functionality exchange
information directly with the adversary throughout the computation. This allows expressing both
the allowed adversarial influence and the allowed information leakage. In addition, the model allows
the ideal functionality to execute code provided by the adversary; this allows expressing adversarial
influence that is legitimate as long as it is carried out in isolation from the external environment.

Yet another set of choices is geared towards keeping the basic framework simple and concise,
while allowing to capture a variety of communication, corruption, and trust models. For this pur-
pose we use the same technical tool, ideal functionalities, to represent both a security specification
for protocols, and the abstractions provided by a given communication, corruption or trust model.
In the first use, we consider protocols that UC-realize the given ideal functionality, F . In the second
use, we consider F-hybrid protocols, namely protocols that use the ideal functionality as a “trusted
subroutine”. In fact, it is often convenient to use an ideal functionality in both ways. Here the
universal composition theorem implies that a protocol that UC-realizes F can be composed with a
protocol designed in the abstract model captured by F , to obtain a protocol that no longer needs
the abstractions provided by F .

Relying on this dual interpretation of ideal functionalities, we allow the framework to provide
only very basic and rudimentary methods of communication between parties. This basic model
is not intended to adequately capture any realistic setting. Realistic settings are then captured
via formulating appropriate ideal functionalities within the basic model. This approach greatly
simplifies the basic framework and facilitates arguing about it. It also makes assertions about the
framework (such as the universal composition theorem) more general, since they directly apply to
any communication, corruption or trust model devised within the framework. In addition, this
approach provides greater flexibility in expressing different abstractions and variants thereof. The
present modular approach to capturing abstract models should be contrasted with other models
in the literature for security analysis, which are typically tied to a specific setting and have to be
re-done with the appropriate modifications for each new setting.

To exemplify these aspects of the UC framework, we present a handful of ideal functionalities

7

that are aimed at capturing some salient communication and corruption models. Other ideal
functionalities appear in the literature.

Finally, to simplify the presentation of the model and make it more modular, we separate the
description of the basic model of computation from the definition of security. That is, we first
present a general model for representing multiple computational processes that run concurrently
and interact with each other. In contrast with other concurrency models in the literature, this
model is specifically geared towards capturing distributed computations that are computationally
bounded yet adaptive and dynamically changing. We then formulate UC-emulation on top of this
basic model. This separation highlights the importance of the underlying model, and allows consid-
ering alternative ones without losing in the overall structure of the definition and the composition
theorem. Furthermore, we believe that the basic model proposed here is valuable in of itself, even
without the notion of UC emulation that’s built on top.

1.4 Organization

Due to its length, the review of related work is postponed to the Appendix. Section 2 contains an
informal exposition of the framework, definition of security, and composition theorem. The basic
model for representing multiparty protocols is presented in Section 3. The general definition of
security is presented in Section 4. The composition theorem and its proof are presented in Section 5.
Finally, Section 6 demonstrates how some salient models of computation may be captured within
the UC framework.

2 The framework in a nutshell

This section presents a simplified and somewhat informal version of the definition of security and
the composition theorem. The purpose of this presentation is to highlight the salient definitional
ideas that underlie the UC framework. For this purpose, we intentionally “gloss over” many details
that are essential for a rigorous general treatment; these are postponed to later sections. Still, this
section intends to be self-contained.

Section 2.1 sketches a model for representing multiple interacting computer programs. Section
2.2 presents the definition of security. Section 2.3 presents the composition theorem and its proof.

2.1 The underlying computational model

As a first step, we present a model for representing computing elements that interact over an
asynchronous and untrusted network. This model is rather rudimentary, and is formulated only for
the purpose of the informal overview. A considerably more detailed and general model is presented
in Section 3, along with motivating discussions.

The basic computing unit. The basic computing unit represents a running instance of a com-
puter program (algorithm). For now, we omit a precise description of such a unit. Possible for-
malizations include an interactive Turing machine as in [gmra89, g01], a random-access-memory
(RAM) machine, a process (as in [m89, m99, h85, lmms99]) an I/O automaton (as in [ly96]), a
system in the Abstract Cryptography model [mr11], etc. For the rest of this section we’ll call such
a unit a machine.

8

The model of computation consists of several machines that run “concurrently” (i.e., alongside
each other) and provide each other with information. It will be convenient to distinguish three
different ways in which a machine M can provide information to a machine M ′. M can either
provide input to M ′, send a message to M ′, or provide subroutine output to M ′. Figure 2.1 presents
a graphical depiction of a machine. (This partitioning between types of input is not essential;
however we find it greatly clarifies and simplifies the mode.)

subroutine output

input

incoming communication

Figure 1: A basic computing unit (machine). Information from the outside world comes as either input, or
incoming communication, or subroutine output. For graphical clarity, in future drawings we draw inputs as
lines coming from above, incoming communication as lines coming from either side, and subroutine outputs
as lines coming from below.

There are many ways to model a system whose components run concurrently. While the def-
initional approach of this work applies regardless of the specific modeling, for concreteness we
consider a specific execution model. The model is simple: An execution of a system of machines
M1,M2, ... on input x starts by running M1, called the initial machine, with input x. From this
point on, the machines take turns in executing according to the following order: Initially, a single
machine is active. Whenever a machine M provides information to machine M ′, the execution of
M is suspended and the execution of M ′ begins (or resumes). It follows that at any point in time
throughout the computation only a single machine is active.

Protocols and protocol instances. A protocol is an algorithm written for a distributed system.
That is, a protocol consists of a collection of computer programs that exchange information with
each other, where each program is run by a different participant and with different local input.
For simplicity, in this section we restrict attention to protocols where the number of participants
is fixed. A protocol with m participants is called an m-party protocol.

An instance of a protocol within a system of machines represents a sequence of machines, such
that all these machines “relate to each other as part of the same protocol execution”. In the
general model, a precise formulation of this seemingly simple concept is tricky; for the purpose of
this section we simply specify an instance of an m-party protocol π = π1, ..., πm within a system
M = M1,M2, ... of machines by naming a specific subsequence ofM, such that the ith machine in
the subsequence runs the ith program, πi.

Some of the machines (or, parties) in a protocol instance may be designated as subroutines of
other parties in the instance. Intuitively, if party M ′ is a subroutine of party M then M will provide

9

input to M ′ and obtain subroutine output from M ′. A party of an instance of protocol π that is
not a subroutine of another party of this instance of π is called a main party of that instance of π.

Polynomial time ITMs and protocols. We restrict attention to systems where all the ma-
chines have only “feasible” computation time, where feasible is interpreted as polynomial in some
parameter. Furthermore, we assume that the overall computation of a system is “polynomial”, in
the sense that it can be simulated on a standard polynomially bounded Turing machine. We defer
more precise treatment to subsequent sections.

2.2 Defining security of protocols

Following [gmw87], security of protocols with respect to a given task is defined by comparing an
execution of the protocol to an ideal process where the outputs are computed by a trusted party
that sees all the inputs. We substantiate this approach as follows. First, we substantiate the process
of executing a protocol in the presence of an adversary and in a given computational environment.
Next, the “ideal process” for carrying out the task is substantiated. Finally, we define what it
means for an execution of the protocol to “mimic” the ideal process.

The model of protocol execution. We describe the model of executing an m-party protocol
π in the presence of an adversary and in a given execution environment (or, “context”).

The model consists of a system of machines (E ,A, π1, ..., πm) where E is called the environment,
A is called the adversary, and π1, ..., πm are an instance of protocol π. Intuitively, the environment
represents all the other protocols running in the system, including the protocols that provide inputs
to, and obtain outputs from, the protocol instance under consideration. The adversary represents
adversarial activity that is directly aimed at the protocol execution under consideration, including
attacks on protocol messages and corruption of protocol participants.

We impose the following restrictions on the way in which the machines may interact. The
environment E is allowed to provide only inputs to other machines. Furthermore, it can provide
inputs only to A and to the main parties of π. A party of π may send messages to A, give inputs to
its subroutines, or give subroutine output to the machines whose subroutine it is. If this party is a
main party of π then it may provide subroutine output to E . The adversary A may send messages
to the parties of π or give subroutine output to E . A graphical depiction of the model of protocol
execution appears in Figure 2.

Let execπ,A,E(z) denote the random variable (over the local random choices of all the in-
volved machines) describing the output of environment E when interacting with adversary A and
parties running protocol π on input z as described above. Let execπ,A,E denote the ensemble
{execπ,A,E(z)}z∈{0,1}∗ . For the purpose of the present framework, it suffices to consider the case
where the environment is allowed to output only a single bit. In other words, the ensemble execπ,A,E
is an ensemble of distributions over {0, 1}.

Discussion. Several remarks are in order at this point. First note that, throughout the process
of protocol execution, the environment E has access only to the inputs and outputs of the main
parties of π. It has direct access neither to the communication among the parties, nor to the inputs
and outputs of the subroutines of π. The adversary A has access only to the communication among
the parties and has no access to their inputs and outputs. This is in keeping with the intuition that

10

...A
E

�sid;pidn�sid;pid1
Figure 2: The model of protocol execution. The environment E writes the inputs and reads the subroutine
outputs of the main parties running the protocol, while the adversary A controls the communication. In
addition, E and A interact freely. The parties of π may have subroutines, to which E has no direct access.

E represents the protocols that provides inputs to and obtains outputs from the present instance of
π, while A represents an adversary that attacks the protocol via the communication links, without
having access to the local (and potentially secret) inputs and outputs.

In addition, E and A may exchange information freely during the course of the computation.
It may appear at first that no generality is lost by assuming that A and E disclose their entire
internal states to each other. A closer look shows that, while no generality is lost by assuming that
A reveals its entire state to E , the interesting cases occur when E holds some “secret” information
back from A, and tests whether the information received from A is correlated with the “secret”
information. In fact, as we’ll see, keeping A and E separate is crucial for the notion of security to
make sense.

Another point to notice is that this model gives the adversary complete control over the commu-
nication. That is, the model represents a completely asynchronous, unauthenticated, and unreliable
network. This is indeed a very rudimentary model for communication; we call it the bare model.
More “abstract” (or, “idealized”) models are defined later, building on this bare model.

Yet another point is that the model does not contain a dedicated instruction for party corrup-
tion. Party corruption is modeled as a special type of incoming message to the party; the party’s
response to this message is determined by a special part of the party’s program. (To guarantee
that the environment knows who is corrupted, we restrict attention to adversaries that notify the
environment upon each corruption of a party.)

Finally, note that the only external input to the process of protocol execution is the input of E .
This input can be seen as representing an initial state of the system; in particular, it includes the
inputs of all parties. From a complexity-theoretic point of view, providing the environment with
arbitrary input (of polynomial length) is equivalent to stating that the environment is a non-uniform
(polynomial time) ITM.

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal process for carrying out the task at hand. For convenience of
presentation, we formulate the ideal process for a task as a special protocol within the above model

11

... ...A �1 �n
F

Figure 3: The ideal protocol idealF for an ideal functionality F . The main parties of idealF , namely
φ1, ..., φn, are “dummy parties”: they only relay inputs to F , and relay outputs of F to the calling ITIs.
The adversary A communicates only with F .

of protocol execution. (This avoids formulating an ideal process from scratch.) A key ingredient
in this special protocol, called the ideal protocol, is an ideal functionality that captures the desired
functionality, or the specification, of the task by way of a set of instructions for a “trusted party”.

That is, let F be an ideal functionality (i.e., an algorithm for the trusted party), and assume
that F expects to interact with m participants. Then an instance of the ideal protocol idealF
consists of m main parties, called dummy parties, plus a party F that’s a subroutine of all the
main parties. Upon receiving an input v, each dummy party forwards v as input to the subroutine
running F . Any subroutine output coming from F is forwarded by the dummy party as subroutine
output to the environment. Note that the inputs and outputs are handed over directly and reliably.
A graphical depiction of the ideal protocol appears in Figure 3.

Note that F can model reactive computation, in the sense that it can maintain local state and
its outputs may depend on all the inputs received and all random choices so far. In addition, F may
receive messages directly from the adversary A, and may contain instructions to send messages to
A. This “back-door channel” of direct communication between F and A provides a way to relax the
security guarantees provided F . Specifically, by letting F take into account information received
from A, it is possible to capture the “allowed influence” of the adversary on the outputs of the
parties, in terms of both contents and timing. By letting F provide information directly to A it is
possible to capture the “allowed leakage” of information on the inputs and outputs of the parties.

Protocol emulation. It remains to define what it means for a protocol to “mimic” or “emulate”
the ideal process for some task. As a step towards this goal, we first formulate a more general
notion of emulation, which applies to any two protocols. Informally, protocol π emulates protocol
φ if, from the point of view of any environment, protocol π is “just as good” as φ, in the sense that
no environment can tell whether it is interacting with π and some (known) adversary, or with φ
and some other adversary. More precisely:

Definition (protocol emulation, informal statement): Protocol π UC-emulates protocol φ if
for any adversary A there exists an adversary S such that, for any environment E the ensembles
execπ,A,E and execφ,S,E are indistinguishable. That is, on any input, the probability that E outputs
1 after interacting with A and parties running π differs by at most a negligible amount from the
probability that E outputs 1 after interacting with S and φ.

12

We often call the adversary S a simulator. This is due to the fact that in typical proofs of
security the constructed S operates by simulating an execution of A. Also, we call the emulated
protocol φ as a reminder that in the definition of realizing a functionality (see below), φ takes the
role of the ideal protocol for some ideal functionality F .

The notion of protocol emulation treats the environment as an “interactive distinguisher” be-
tween the process of running protocol π with adversary A and the process of running protocol φ
with adversary S; it is required that the two interactions remain indistinguishable even given the
ability to interact with them as they evolve. In this sense, the present notion strengthens the tradi-
tional notion of indistinguishability of distributions, and in particular the security notion of [c00].
Still, this notion is a relaxation of the notion of observational equivalence of processes (see, e.g.,
[m89]); indeed, observational equivalence essentially fixes the entire system outside the protocol
instances, whereas protocol emulation allows the analyst to choose an appropriate simulator that
will make the two systems look observationally equivalent.

Securely realizing an ideal functionality. Once the general notion of protocol emulation is
defined, the notion of realizing an ideal functionality is immediate:

Definition (realizing functionalities, informal statement): Protocol π UC-realizes an ideal
functionality F if π emulates idealF , the ideal protocol for F .

We recall the rationale behind this definition. Consider a protocol π that UC-realizes and ideal
functionality F . Observe that the parties running π are guaranteed to generate outputs that are
indistinguishable from the outputs provided by F on the same inputs; this guarantees correctness.
Furthermore, any information gathered by an adversary that interacts with π is obtainable by an
adversary that only interacts with F ; this guarantees secrecy. See [c06] for more discussion on the
motivation for and meaning of this definitional style.

2.3 The composition theorem

As in the case of protocol emulation, we present the composition operation and theorem in the more
general context of composing two arbitrary protocols. The case of ideal protocols and protocols
that UC-realize them follows as a corollary.

We first define what it means for one protocol to use another protocol as a subroutine. Essen-
tially, a protocol ρ uses protocol φ as a subroutine if some or all of the programs of ρ use programs
of φ as subroutines, and these programs of φ communicate with each other as a single protocol
instance. Said otherwise, protocol instance ~φ = φ1, ..., φm of φ is a subroutine of protocol instance
~ρ = ρ1, ..., ρm′ of ρ if each machine in ~φ appears as a machine in ~ρ and is a subroutine of another
machine in ~ρ. We note that an instance of ρ may use multiple subroutine instances of φ; these
instances of φ may run concurrently, in the sense that activations of parties in the two instances
may interleave an an arbitrary order.

The universal composition operation. The universal composition operation is a natural gen-
eralization of the “subroutine substitution” operation for sequential algorithms to the case of dis-
tributed protocols. That is, let ρ be a protocol that uses protocol φ as a subroutine, and let π
be a protocol that UC-emulates φ. The composed protocol, denoted ρφ→π, is the protocol that is

13

identical to ρ, except for the following change. For each instance of φ that’s a subroutine of this
instance of ρ, and for all i, the ith machine of this instance of φ now runs the program of the ith
machine of π. In particular, all the inputs provided to an instance of φ that’s a subroutine of this
instance of ρ are now given to the corresponding instance of π, and all the outputs of this instance
of π are treated as coming from the corresponding instance of φ. It is stressed that an instance of
ρ may use multiple instances of φ; In this case, an instance ρφ→π will use multiple instances of ρ.
A graphical depiction of the composition operation appears in Figure 4.

AFsid1 Fsid2 �sid2;pid1 �sid2;pid2�sid1;pid1 �sid1;pid2A � � � �

Figure 4: The universal composition operation, for the case where the replaced protocol is an ideal protocol
for F . Each instance of F (left figure) is replaced by an instance of π (right figure). Specifically, for i = 1, 2,
πi,1 and πi,2 constitute an instance of protocol π that replaces the instance Fi of F . The solid lines represent
inputs and outputs. The dotted lines represent communication. The “dummy parties” for F are omitted
from the left figure for graphical clarity.

The composition theorem. In its general form, the composition theorem says that if protocol
π UC-emulates protocol φ then, for any protocol ρ, the composed protocol ρφ→π emulates ρ. This
can be interpreted as asserting that replacing calls to φ with calls to π does not affect the behavior
of ρ in any distinguishable way:

Theorem (universal composition, informal statement): Let ρ, φ, π be protocols such that ρ
uses φ as subroutine and π UC-emulates φ. Then protocol ρφ→π UC-emulates ρ.

A first, immediate corollary of the general theorem states that if protocol π UC-realizes an
ideal functionality F , and ρ uses as subroutine protocol idealF , the ideal protocol for F , then
the composed protocol ρφ→π

F
UC-emulates ρ. Another corollary is that if ρ UC-realizes an ideal

functionality G, then so does ρφ→π

On the proof of the universal composition theorem. We briefly sketch the main ideas
behind the proof. Let A be an adversary that interacts with parties running ρφ→π. We need to
construct an adversary S, such that no environment E will be able to tell whether it is interacting
with ρφ→π and A or with ρ and S. The idea is to construct S in two steps: First we define a special
adversary, denoted D, that operates against protocol π as a stand-alone protocol. The fact that π
emulates φ guarantees that there exist an adversary (“simulator”) Sπ, such that no environment
can tell whether it is interacting with π and D or with φ and Sπ. Next, we construct S out of A
and Sπ.

14

We sketch the above steps. Adversary D will be a “dummy adversary” that merely serves as a
“channel” between E and a single instance of π. That is, D expects to receive in its input (coming
from the environment E) requests to deliver messages to prescribed parties of an instance of π. D
then carries out these requests. In addition, any incoming message (from some party of the instance
of π) is forwarded by D to its environment. We are now given an adversary (“simulator”) Sπ, such
that no environment can tell whether it is interacting with π and D or with φ and Sπ.

Simulator S makes use of Sπ as follows. Recall that A expects to interact with an instance of ρ
and multiple instances of the subroutine protocol π, whereas S interacts with an instance of ρ and
instances of φ rather than instances of π. Now, S runs a simulated instance of A and follows the
instructions of A, with the exception that the interaction of A with the various instances of π is
simulated using instances of Sπ. Here S plays the role of the environment for the instances of Sπ.
The ability of S to obtain timely information from the instances of Sπ, by playing the environment
for them, is at the crux of the proof. We also use the fact that Sπ must be defined independently
of the environment; this is guaranteed by the order of quantifiers. (Some important details, such
as how S routes A’s messages to the various instances of Sπ, are postponed to the full proof.)

The validity of the simulation is demonstrated via reduction to the validity of Sπ. Dealing with
many instances of Sπ running concurrently is done using a hybrid argument: We define many hybrid
executions, where the first execution is an execution of ρ with A, and in each successive hybrid
execution one more instance of φ is replaced with an instance of π. Now, given an environment E
that distinguishes between two successive hybrid executions, we construct an environment Eπ that
distinguishes between an execution of π with adversary D and an execution of φ with adversary
Sπ. Essentially, Eπ orchestrates for E an entire interaction with ρ, where some of the instances of φ
are replaced with instances of π, and where one of these instances is relayed to the external system
that Eπ interacts with. This is done so that if Eπ interacts with an instance of π then E , run by Eπ,
“sees” an interaction with one hybrid execution, and if Eπ interacts with an instance of φ then E
“sees” an interaction with the next hybrid execution. Here we use the fact that an execution of an
entire system can be efficiently simulated on a single machine.

The composition theorem can be extended to handle polynomially many applications, namely
polynomial “depth of nesting” in calls to subroutines. However, when dealing with computational
security (i.e., polynomially bounded environment and adversaries), the composition theorem does
not hold in general in cases where the emulated protocol φ is not polynomially bounded; indeed,
in that case we no longer can simulate an entire execution on a polytime machine.

3 The model of computation

In order to turn the definitional sketch of Section 2 into a concrete definition, one first needs to
formulate a rigorous model for representing distributed systems and interacting computer programs
within them. This section presents such a model. We also put forth a definition of resource-bounded
computation that behaves well within the proposed model. While the proposed model is rooted in
existing ones, many of the choices are new. We try to motivate and justify departure from existing
formalisms. In order to allow for adequate presentation and motivation of the main definitional
ideas, we present the basic model of distributed computation separately from the definitions of
security (Section 4). This also simplifies the presentation in subsequent sections.

It is tempting to dismiss the specific details of such a model as being “of no real significance”

15

for the validity and meaningfulness of the notions of security built on top the model. This intuition
is perhaps rooted in the Church-Turing thesis, which stipulates that “all reasonable models of com-
putation lead to essentially equivalent notions and essentially the same results”. However, at least
in the case of distributed, resource-bounded systems with potentially adversarial components, this
intuition does not seem to hold. There are numerous meaningful definitional choices to be made on
several levels, including the basic modeling of resource-bounded computation and the communica-
tion between components, the modeling of scheduling and concurrency, and the representation of
the dynamically changing aspects of distributed systems. Indeed, as we’ll see, some seemingly small
and “inconsequential” choices in the modeling turn out to have significant effects on the meaning
of the notions of computability and security built on top of the model.

We thus strive to completely pinpoint the model of computation. When some details do not
seem to matter, we explicitly say so but choose a default. This approach should be contrasted with
the approach of, say, Abstract Cryptography, or the π-calculus [mr11, m99] that aim at capturing
properties that hold irrespective to a specific implementation and its complexity.

Still, we aim to achieve both simplicity and generality. That is, the model attempts to be general
and flexible enough so as to allow expressing the salient aspects of modern distributed systems.
At the same time, it attempts to be as simple and clear as possible, with a minimal number of
formal and notational constructs. While the model is intended to make sense on its own as a model
for distributed computation, it is of course geared towards enabling the representation of security
properties of algorithms in a way that is as natural and simple as possible, and with as little as
possible reference to the mechanics of the underlying model.

Section 3.1 presents the basic model. Section 3.2 presents the definition of resource-bounded
computation. Some alternative formulations are mentioned throughout, as well as in the Appendix.

3.1 The basic model

The main objects we wish to analyze are algorithms, or computer programs, written for a distributed
system. (We often use the term protocols when referring to such algorithms.) There are several
differences between distributed algorithms and algorithms written for standard one-shot sequential
execution: First, a distributed algorithm (protocol) may consist of several programs, where each
program runs on a separate computing device, with its own local input, and where the programs
interact by exchanging information with each other. We may be interested both in global properties
of executions and in properties that are local to program. Also, computations are often reactive,
namely they allow for interleaved inputs and outputs where each output potentially depends on all
prior inputs. Locating and routing information in a distributed system is an additional concern.

Second, different programs may be run by different entities with different interests, and one
has to take into account the that the programs run other entities may not be known or correctly
represented.

Third, distributed systems often consist of several different protocols (or several instances of
the same protocol), all running “at the same time”. These protocols may exchange information
with each other during their execution, say by providing inputs and outputs to each other, making
the separation between different executions more involved.

Fourth, modern systems allow programs to be generated dynamically within one device and
“executed” remotely within another device.

The devised model is aimed to account for these and other aspects of distributed algorithms. We

16

proceed in two main steps. First (Section 3.1.1), we define a syntax, or a “programming language”
for protocols. This language, which extends the notion of interactive Turing machine [gmra89],
allows expressing instructions and constructs needed for operating in a distributed system. Next
(Section 3.1.2), we define the semantics of a protocol, namely an execution model for distributed
systems which consist of one or more protocols as sketched above. To facilitate readability, we
postpone most of the motivating discussions to section 3.1.3. We point to the relevant parts of the
discussion as we go along.

3.1.1 Interactive Turing Machines (ITMs)

An interactive Turing machine (ITM) extends the standard Turing machine formalism to capture
a distributed algorithm (protocol). A definition of interactive Turing machines, geared towards
capturing pairs of interacting machines is given in [gmra89] (see also [g01, Vol I, Ch. 4.2.1]).
That definition adds to the standard definition of a Turing machine a mechanism that allows a pair
of machines to exchange information via writing on special “shared tapes”. Here we extend this
formalism to accommodate protocols written for systems with multiple computing elements, and
where multiple concurrent executions of various protocols co-exist. For this purpose, we define a
somewhat richer syntax (or, “programming language”) for ITMs. The full meaning of the added
syntax will become clear only in conjunction with the model of execution (Section 3.1.2). Still, we
sketch here the main additions.3

First, we provide a mechanism for identifying a specific addressee for a given piece of transmitted
information. Similarly, we allow a recipient of a piece of information to identify the source. Second,
we provide a mechanism for distinguishing between different “protocol instances” within a multi-
component system.

Third, we provide several types of “shared tapes”, in order to facilitate distinguishing between
different types of communicated information. The distinction proceeds on two planes: On one
plane, we wish to facilitate distinguishing between communication “internal to a protocol instance”
(namely, among the participants of the protocol instance) and communication “with other protocol
instances”. Furthermore, we wish to facilitate distinguishing between communication with “calling
protocols” and communication with “subroutine protocols”. On another plane, we wish to distin-
guish between information communicated over a “trusted medium”, say locally within the same
computing environment, and communication over an “untrusted medium”, say across a network.

Definition 1 An interactive Turing machine (ITM) M is a Turing machine (as in, say, [si05]) with
the following augmentations:

Special tapes (i.e., data structures):

• An identity tape. The contents of this tape is interpreted as two strings. The first string
contains a description, using some standard encoding, of the program of M (namely, its
transition function). We call this description the code of M . The second string is called
the identity of M . The identity of M together with its code is called the extended identity
of M . This tape is “read only”. That is, M cannot write to this tape.

3As mentioned in the introduction, the use of Turing machines as the underlying computational ‘device’ is mainly
due to tradition. Other computational devices (or, models) that allow accounting for computational complexity
of algorithms, such as RAM or PRAM machines, boolean or arithmetic circuits can serve as a replacement. See
additional discussion in Section 3.1.3.

17

• An outgoing message tape. Informally, this tape holds the current outgoing message gen-
erated by M , together with sufficient addressing information for delivery of the message.

• Three externally writable tapes for holding inputs coming form other computing devices
(or, processes):

– An input tape, representing inputs from the “calling program(s)” or external user.

– An incoming communication tape, representing information coming from other pro-
grams within the same “protocol instance”.

– A subroutine output tape, representing outputs coming from programs or modules
that were created as “subroutines” of the present program.

• A one-bit activation tape. Informally, this tape represents whether the ITM is currently
“in execution”.

New instructions:

• An external write instruction. Roughly, the effect of this instruction is that the message
currently written on the outgoing message tape is possibly written to the specified tape of
the machine with the identity specified in the outgoing message tape. Precise specification
is postponed to Section 3.1.2.

• A read next message instruction. This instruction specifies a tape out of {input, incoming
communication, subroutine output}. The effect is that the reading head jumps to the
beginning of the next message. (To implement this instruction, we assume that each
message ends with a special end-of-message (eom) character.)4

3.1.2 Executing Systems of ITMs

We specify the mechanics of executing a system that consists of multiple ITMs. Very roughly, the
execution process resembles the sketch given in Section 2. However, some significant differences
from that sketch do exist. First, here we make an explicit distinction between an ITM, which is a
“static object”, namely an algorithm or a program, and an ITM instance (ITI), which is a “run-time
object”, namely an instance of a program running on some specific data. In particular, the same
program (ITM) may have multiple instances (ITIs) in an execution of a system. (Conceptually, an
ITI is closely related to a process in a process calculus. We refrain from using this term to avoid
confusion with other formalisms.)

Second, the model provides a concrete mechanism for addressing ITIs and exchanging informa-
tion between them. The mechanism specifies how an addresee is determined, what information the
recipient obtains on the sender, and the computational costs involved.

Third,the model allows the number of ITIs to grow dynamically in an unbounded way as a func-
tion of the initial parameters, by explicitly modeling the “generation” of new ITIs. Furthermore,
new ITIs may have dynamically determined programs. Here the fact that programs of ITMs can
be represented as strings plays a central role.

Fourth, we augment the execution model with a control function, which regulates the transfer
of information between ITIs. Specifically, the control function determines which “external write”

4This intruction ins not needed if a RAM or PRAM machine is used as the underlying computing unit. See more
discussion in Section 3.1.3.

18

instructions are “allowed”. This added construct provides both clarity and flexibility to the execu-
tion model: All the model restrictions are expressed explicitly and in “one place.” Furthermore, it
is easy to define quite different execution models simply by changing the control function.

Systems of ITMs. Formally, a system of ITMs is a pair S = (I, C) where I is an ITM, called
the initial ITM, and C : {0, 1}∗ → {allow, disallow} is a control function.

Executions of systems of ITMs. A configuration of an ITM M consists of the description of
the control state, the contents of all tapes and the head positions. (Recall that the program, or the
transition function of M is written on the identity tape, so there is no need to explicitly specify
the code in a configuration.) A configuration is active if the activation tape is set to 1, else it is
inactive.

An instance µ = (M, id) of an ITM M consists of the program (transition function) of M , plus
an identity string id ∈ {0, 1}∗. We say that a configuration is a configuration of instance µ if the
contents of the identity tape in the configuration agrees with µ, namely if the program encoded in
the identity tape is M and the rest of the identity tape holds the string id. We use the acronym
ITI to denote an ITM instance.

An activation of an ITI µ = (M, id) is a sequence of configurations that correspond to a compu-
tation of M starting from some active configuration of µ, until an inactive configuration is reached.
(Informally, at this point the activation is complete and µ is waiting for the next activation.) If a
special halt state is reached then we say that µ has halted; in this case, it does nothing in all future
activations.

An execution of a system S = (I, C) with input x consists of a sequence of activations of ITIs.
The first activation starts from the configuration where the identity tape contains the code of I
followed by the identity 0, the input tape contains the value x, and a sufficiently long random string
is written on the random tape. In accordance, the ITI (I, 0) is called the initial ITI in this execution.

An execution ends when the initial ITI halts (that is, when a halting configuration of the initial
ITI is reached). An execution is accepting if the initial ITI halted in an accepting state. An
execution prefix is a prefix of an execution.

To complete the definition of an execution, it remains to specify: (a) The effect of an external-
write instruction, and (b) How to determine the first configuration in the next activation, once an
activation is complete. These points are described next.

Writing to a tape of another ITI and invoking new ITIs. The mechanism that allows
communication between ITIs is the external write instruction. The same instruction is used also
for invoking new ITIs. More specifically, the effect of an external write instruction is the following.
Let µ = (M, id) denote the ITI which performs the external write transition, The current contents
of the outgoing message tape is interpreted (using some standard encoding) as consisting of µ,
followed by an extended identity µ′ = (M ′, id′) of a “target ITI”, a tape name out of {input,
incoming communication, subroutine output}, and a string m called the message. Then:

1. If the control function C, applied to the current execution prefix, does not allow µ to write
to the specified tape of µ′ (i.e., it returns a disallow value) then the instruction is ignored.

19

2. If C allows the operation, and an ITI µ′′ = (M ′′, id′′) with identity id′′ = id′ currently exists
in the system (namely, one of the past configurations in the current execution prefix has
identity id′), then:

(a) If the target tape is the incoming communication tape, then the message m is written
on the incoming communication tape of µ′′, starting at the next blank space. (That is,
a new configuration of µ′′ is generated. This configuration is the last configuration of
µ′′ in this execution, with the new information written on the incoming communication
tape.) It is stressed that the code M ′′ of µ′′ need not equal the code M ′ specified in the
external write request.

This convention has the effect that an ITI does not necessarily know the code of the ITI
it sends messages to using the communication tape. The recipient ITI learns neither the
identity nor the code of the writing ITI. (Of course, this information may be included in
the message itself, but the model provides no guarantees regarding the authenticity of
this information.) The intuitive goal is to capture the effect of standard communication
over an untrusted medium, such as a communication network.

(b) If the target tape is the input tape or subroutine output tape, and M ′′ = M ′, then the
specified message is copied to the specified tape of µ′′, along with the code and identity
of µ. If M ′ 6= M ′′ then the message is not copied and µ transitions to a special error
state.

This convention has the effect that an ITI can verify the code of the ITI to whom it
provides input or subroutine output. Furthermore, the recipient of an input or subroutine
output knows both the identity and the code of the writing ITI. The intuitive goal here
is to capture the effect of communication between processes within a trusted computing
environment that allows verification of the code of receiver and sender.

3. If C allows the operation, and no ITI with identity id′ exists in the system, then a new ITI µ′

with code M ′ and identity id′ is invoked. That is, a new configuration is generated, with code
M ′, the value id′ written on the identity tape, and a sufficiently long random string is written
on the random input tape. Once the new ITI is invoked, the external-write instruction is
carried out as in Step 2. In this case, we say that µ invoked µ′.

On the uniqueness of identities. Section 3.1.3 discusses several aspects of the external-write in-
struction, and in particular motivates the differences from the inter-component communication
mechanisms provided in other frameworks. At this point we only observe that the above invocation
rules for ITIs, together with the fact that the execution starts with a single ITI, guarantee that each
ITI in a system has unique identity. That it, no execution of a system of ITIs has two ITIs with
the same identity, regardless of their codes. This property makes sure that the present addressing
mechanism is unambiguous.

Determining the next activated ITI. In order to simplify the process of determining the
next ITI to be activated, we allow an ITI to execute at most a single external-write instruction per
activation. That is, once an external-write instruction is executed, the activation of the writing
ITI completes. The next ITI to be activated is the ITI µ′′ whose tapes were written to. The first
configuration in the next activation is the last configuration of µ′′ in the current execution prefix,

20

with the exception that the activation tape of µ′′ is set to 1. If no external-write operation was
carried out, or the external write operation was unsuccessful, then the initial ITI is the next one
to be activated. See Section 3.1.3 for a discussion on the order of activations of ITMs.

Outputs of executions. We use the following notation. Let outI,C(x, id0) denote the random
variable describing the output of the execution of the system (I, C) of ITMs when I’s input is x
and identity is id0. Here the probability is taken over the random choices of all the ITMs in the
system.

Extended systems. The above definition of a system of ITMs makes sure that an ITI knows
the code of the ITIs to whose input and subroutine output it wrtes, as well as the code of the
ITIs that write to its own input and subroutine output taps. This provision is indeed important
for the meaningfulness of the model. Still, to facilitate the definition of security, formulated in
Section 4, we will need to provide a way to artificially modify the code of the target ITI specified
in the external write request, as well as the “code of the source ITI” field in the data written
to the target ITI. The mechanism we use to provide this extra flexibility is the control function.
That is, we extend the definition of a control function so that it can also modify the external-write
requests made by parties. Recall that in a system S = (I, C) the control function C takes as input
a sequence of external-write requests and outputs either allowed or disallowed. In an extended
system the output of C consists of an entire external-write instruction, which may be different
than the input request. The executed instruction is the output of C. We stress that, although the
above definition of an extended system gives the control function complete power in modifying the
external-write instructions, the extended systems considered in this work use control functions that
only modify the code of the target and source ITIs as specified in the external write operation.

Subroutines, etc. When an ITI µ writes a message m to the incoming communication tape of
ITI µ′, we say that µ sends m to µ′. When µ writes a value x onto the input tape of µ′, we say that
µ passes input x to µ′. When µ′ writes x to the subroutine-output tape of µ, we say that µ′ passes
output x (or simply outputs x) to µ. We say that µ′ is a subroutine of µ if µ has passed input to µ′

or µ′ has passed output to µ in this execution. (Note that µ′ may be a subroutine of µ even when
µ′ was invoked by an ITI other than µ.) If µ′ is a subroutine of µ then we say that µ is a parent of
µ′. µ′ is a subsidiary of µ if µ′ is a subroutine of µ or of another subsidiary of µ.

Protocols. A protocol is defined as a (single) ITM as in Definition 1. As already discussed,
the goal is to capture the notion of an algorithm written for a distributed system where physically
separated participants engage in a joint computation; namely, the ITM describes the program to be
run by each participant in the computation. If the protocol specifies different programs for different
participants, or “roles”, then the ITM should describe all these programs. (Alternatively, protocols
can be defined as sets, or sequences of machines, where different machines represent the code to be
run by different participants. However, such a formulation would add unnecessary complication to
the basic model, e.g. to the definition of protocol instances, considered next.)

Protocol instances. The notion of a running instance of a protocol has strong intuitive appeal.
However, rigorously defining it in way that’s both natural and reasonably general turns out to be

21

tricky. Indeed, what would be a natural way to delineate, or isolate, a single instance of a protocol
within an execution of a dynamic system where multiple parties run multiple pieces of code?

Traditionally, an instance of a protocol in a running system is defined as a fixed set of machines
that run a predefined program, often with identities that are fixed in advance. Such a definitional
approach, however, does not account for protocol instances where the number of participants, or
perhaps even only their identities, are determined dynamically as the execution unfolds. It also
doesnt account for instances of protocols where the code has been determined dynamically, rather
than being fixed at the onset of the execution of the entire system. Thus, a more flexible definition
is needed.

The definition proposed here attempts to formalize the following intuition: “A set of ITIs in
an execution of a system belong to the same instance of some protocol π if they all run π, and in
addition they were invoked with the intention of interacting with each other for a joint purpose.”
In fact, since different participants in an instance are typically invoked within different physical
entities in a distributed system, the last condition should probably be rephrased to say: “...and in
addition the invoker of each ITI in the instance intends that ITI to participate in a joint interaction
with the other ITIs in that instance.”

We provide a formal way for an invoker of an ITI to specify which protocol instance this ITI is
to participate in. The construct we use for this purpose is the identity string. That is, we interpret
(via some standard unambiguous encoding) the identity of an ITI as two strings, called the session
identifier (SID) and the party identifier (PID). We then say that a set of ITIs in a given execution
prefix of some system is an instance of protocol π if all these ITIs have the code π and all have
the same SID. The PIDs are used to differentiate between ITIs within a protocol instance; they
can also be used to associate ITIs with “clusters”, such as physical computers in a network. More
discussion on the SID/PID mechanism appears in Section 3.1.3.

Consider some execution prefix of some system of ITMs. Each ITI in a protocol instance in this
execution is called a party of that instance. A sub-party of a protocol instance is a subroutine either
of a party of the instance or of another sub-party of the instance. The extended instance of some
protocol instance includes all the parties and sub-parties of this instance. If two protocol instances
I and I ′ have the property that each party in instance I is a subroutine of a party in instance I ′

then we say that I is a subroutine instance of I ′.

3.1.3 Discussion

This section contains more lengthy discussion that highlights and motivates the main aspects of the
model. Indeed, several others general models of distributed computation with concurrently running
processes exist in the literature, some of which explicitly aim at modeling security of protocols. A
very incomplete list includes the CSP model of Hoare [h85], the CCS model and π-calculus of
Milner [m89, m99] (that is based on the λ-calculus as its basic model of computation), the spi-
calculus of Abadi and Gordon [ag97] (that is based on π-calculus), the framework of Lincoln et. al.
[lmms98] (that uses the functional representation of probabilistic polynomial time from [mms98]),
the I/O automata of Merritt and Lynch [ly96], the probabilistic I/O automata of Lynch, Segala and
Vaandrager [sl95, lsv03], and the Abstract Cryptography model of Maurer and Renner [mr11].

Motivating the use of ITMs. A first definitional choice is to use an explicit, “operational” for-
malism as the underlying computational model. That is, computation is represented as a sequence

22

of mechanical steps (as in Turing machines) rather than in a functional way (as in the λ-calculus)
or in a denotational way (as in Domain Theory). Indeed, while this operational model is less “el-
egant” and not as easily amenable to abstraction and formal reasoning, it most directly captures
the complexity of computations. Furthermore, it provides a direct way of capturing the interplay
between the complexity of local computation, communication, randomness, and resource-bounded
adversarial activity. This interplay is often at the heart of the security of cryptographic protocols.

Moreover, the operational formalism faithfully represents the way in which existing computers
operate in a network. Examples include the duality between data and code, which facilitates the
modeling of dynamic code generation, transmission and activation (“download”), and the use of
a small number of physical communication channels to interact with a large (in fact, potentially
unbounded) number of other parties. It also allows considering “low level” complexity issues that
are sometimes glossed over in other frameworks, such as the work spent on the addressing, sending,
and receiving of messages as a function of the message length or the address space.

Another advantage of using an operational formalism that directly represent the complexity
of computations is that it facilitates the modeling of adversarial yet computationally bounded
scheduling of events in a distributed system.

Also, operational formalisms naturally allow both for concrete, parametric treatment of security
as well as asymptotic treatment that meshes well with computational complexity theory.

Several “operational” models of computations exist in the literature, such as the original Turing
machine model, several RAM and PRAM models, and arithmetic and logical circuits. Our choice of
using Turing machines is mostly based on tradition, and is by no means essential. Any other “rea-
sonable” model that allows representing resource-bounded computation together with adversarially
controlled, resource bounded communication would do.

On the down side, we note that the ITM model, or “programming language” provides a rela-
tively low level abstraction of computer programs and protocols. In contrast, practically all existing
protocols are described in a much more high-level (and thus often informal) language. One way
to bridge this gap is to develop a library of subroutines that will allow for more convenient rep-
resentation of protocols as ITMs (or, say, interactice RAM machines). An alternative way is to
demonstrate “security preserving correspondences” between programs written in more abstract
models of computation and limited forms of the ITMs model, such as the correspondences in
[ar00, mw04, ch11, c+05].

On the external-write mechanism. Traditionally, models of distributed computation (such as
the ones mentioned above) allow the different components to exchange information via “dedicated
named channels”. That is, a component can, under various restrictions, write information to, and
read information from a “channel name.” Channel names are typically treated as fixed “system
parameters”, in the sense that they are not mutable by the programs running in the system.
Furthermore, sending information on a channel is treated as an atomic operation regardless of the
number of components in the system or the length of the message. Also, in some models the channel
names to be used by each component have to be declared in advance.

This modeling of the communication is clean and elegant. It also facilitates reasoning about
protocols framed within that model. In particular, it facilitates analytical operations that separate
a system into smaller components by “cutting the channels”, and re-connecting the components in
different ways. However, this modeling is somewhat abstract and over-restrictive for our purposes.
For one, The fact that the channel names are fixed in advance does not allow for effective addressing

23

in settings where the number and makeup of components changes as the system evolves. Also, it
does not allow for simple representation of protocols where the addressing mechanism is created
within the protocol itself, as is often the case in realistic protocols. It also doesn’t account for the
cost of message addressing and delivery; in a dynamically growing systems this complexity may be
an important factor. Finally, it does not account for dynamic generation of new programs.

The external-write mechanism, together with the control function, is aimed at providing a
sufficiently low-level and flexible modeling that allows taking into account the above issues. First,
they allow the analyzed protocols to generate the identities of participants in an algorithmic way, as
part of the execution. They also provide a more dynamic and flexible extension of the static notions
of “communication channels” or “ports” used in other models. Also, Requiring an ITI to explicitly
write the recipient address and the message on a special tape allows considering the associated
computational overhead. The only abstraction provided by this mechanism is the guarantee of
global uniqueness of identities. Indeed, this guarantee is essential for unambiguous addressing. See
more discussion on this point later on in this section. Below we highlight two additional aspects of
the external write mechanism.

Letting the addressing depend on the code. When writing to input or subroutine output tapes, the
external write mechanism provides the writing party with the guarantee that the message is written
only if the target ITI runs the code (program) specified by the writing party. Furthermore, in these
cases the recipient ITI learns the code of the writing party. Such an option is not explicitly given
in other models. Indeed, at first glance it may seem odd: Why should the sender and recipient
gain such information or control?

We first argue that, even when modeling systems that interact with untrusted entities, it is
necessary for effective modeling to give a program the ability to verify (and sometimes specify)
the program run by the processes it provides input to or gives output to. Similarly, it is necessary
to give a program the ability to verify the program run by the entity that provides it with input
or with “subroutine output”. Indeed, such modeling is needed to capture situations where the
partition of a program to subroutines is only logical, or when different programs run in a trusted
computing environment.

Now, in models that only capture systems where the components and communication channels
between them are fixed and known in advance, such a guarantee can be provided simply by allowing
communication only over a pre-specified set of communication channels. However, in the present
modeling, where components and identities are generated dynamically, and no static notions of
“connections” or “channels” exist, an alternative mechanism is needed for verifying the code run
by the communicating peer. The mechanism we employ here is to explicitly specify the code of the
recipient ITI and disclose the code of the writing ITI.

It is stressed that in order to make the above mechanism meaningful, programs need to be
written in ways that are “recognizable” by the peers. This can be done using standard encoding
mechanisms. Indeed, a peer may accept one representation of a program, and reject another
representation, even though the two might be functionally equivalent. Alternatively, programs may
be written in a way that allows the peer to verify some desired properties. (For instance, a recipient
may decide to ignore the received data unless the sending ITI’s code provides some basic guarantees
which appropriately restrict its behavior.)

See the formulation of Fauth, the ideal authentication functionality, in Section 6.3, for an
example of the use of this mechanism.

24

Invoking new ITIs. Allowing for dynamic invocation of new ITIs is important for modeling realistic
situations where parties may join a computation as it unfolds, and where the number of protocol
instances that run in the systems is not known in advance. (Indeed, such situations impose security
requirements on protocols, that are not naturally expressible in a model where the number of
components is fixed in advance. One example is the study of concurrent Zero-Knowledge, where
the number of sessions depends on the adversary and cannot be bounded by any fixed polynomial.
See e.g. [r06].) Similarly, we would like to be able to model commonplace situations where
programs are generated automatically, “downloaded”, and incorporated in a computation “on the
fly”. The external write mechanism provides a flexible way for incorporating in the computation
new programs, as well as new instances of existing programs.

Two additional remarks are in order here. First, it may seem at first glance that the ability to
dynamically generate arbitrary new code is not needed, since it suffices to consider only ITIs that
run the code of a “universal Turing machine”, and then provide these ITIs with appropriate code
to be run as part of the input. However, we argue that if such a generic convention were adopted
then ITIs would not be able to effectively verify that their communicating peers are running some
acceptable programs; the necessity of such a mechanism was argued in the previous remark. It is
thus important to allow newly generated ITIs to have code with some verifiable properties.

Second, recall that the invocation of a new ITI is implicit, i.e. it occurs only when an existing
ITI attempts to write to a tape of a non-existing ITI. Furthermore, the writing ITI does not learn
whether a new ITI was invoked. We adopt this convention since it seems natural; furthermore, it
simplifies the model, the definition of security, and subsequently the presentation and analysis of
protocols. Still, it is not essential: Once could, without significant effect on the expressibility of the
model, add an explicit “instance invocation” operation and require that an ITI is invoked before
it is first activated. In this case, however, a different mechanism for guaranteeing uniqueness of
identities would be needed.

On the distinction between input, communication, and subroutine output tapes. The
definition of ITMs provides three syntactically different methods to transfer information from one
ITI to another: either via the input tape, via the incoming communication tape, or via the sub-
routine output tape. This distinction is used for a number of different purposes. A first use is
to facilitate the distinction between various types of incoming information in a multi-party, multi-
protocol, multi-instance system, and in particular to make explicit the notion of subroutines (which
is central for the universal composition operation and theorem). Here the input tape is used to
model information coming from a “calling program,” namely a program that uses the present pro-
gram as a subroutine. The communication tape is used to model information coming from “peers”,
or other programs within the same protocol instance. The subroutine output tape is used to model
information coming from “subroutines” of the present program. This interpretation of the different
tapes is depicted in Figure 2.1 on page 9.

A second use (discussed earlier in the context of the external write instruction) is to facilitate
the distinction between “trusted” and “untrusted” communication, as expressed in the different
semantics of the external write instruction to different tapes. (See also the discussion on

A third use is made by the definition of resource-bounded computation (Section 3.2). There,
only information written on the input tape is used in the calculation of the allowed runtime.

These three interpretations, or “attributes” of the different communication tapes are, in prin-
ciple, orthogonal to each other. The specific “bundling” of attributes with tapes is rather ad hoc,

25

and is done for convenience only. For instance, the fact that the same tape is used to represent
communication with peers and also to represent an untrusted medium is not essential. It only
makes sense since in typical systems the various parties in a protocol instance are physically sepa-
rated and connected via a network. Similarly, the fact that the tape used to represent information
coming from a subroutine program also models trusted communication is not essential, and merely
represents typical systems of interest. A more general modeling would allow for full separation
of these interpretations, or “attributes” of tapes. That is, each external write instruction would
specify, in addition to the tape to be written to, whether the code of the receiver is to be verified
as a precondition to the writing operation, whether the identity and code of the sender is to be
included, and whether the incoming data should be used towards determining the allowed runtime
of the recipient. In the interest of simplicity, we choose not to provide such level of generality.

Jumping to the next received message. Recall that Definition 1 allows an ITM to move, in
a single instruction, the reading head on each of the three incoming data tapes to the beginning of
the next incoming message. At first, this instruction seems superfluous: Indeed, why not let the
ITM simply move the head in the usual way, namely cell by cell?

The reason is that such an instruction becomes necessary in order to maintain a reasonable
notion of resource-bounded computation in a heterogeneous and untrusted network, where the
computational powers of participants vary considerably, and in addition some participants may be
adversarial. In such a system, powerful participants may try to “overwhelm” less powerful par-
ticipants by simply sending them very long messages. In reality, such an “attack” can be easily
thwarted by having parties simply “drop” long messages, namely abort attempt to interpreted
incoming messages that become too long. However, without a “jump to the next message” instruc-
tion, the ITM model does not allow such an abortion, since the reading head must be moved to the
next incoming message in a cell-by-cell manner. (There are of course other ways in which powerful
parties may try to “overwhelm” less powerful ones. But, with respect to these, the ITM model
seems to adequately represent reality.)

We remark that the above discussion exemplifies the subtleties involved with modeling systems
of ITMs. In particular, the notions of security in subsequent sections would have different technical
meaning without the ability to jump to the beginning of the next incoming message. (In contrast,
in a RAM machine model, such a provision would not be necessary.) A similar phenomenon has
been independently observed in [p06] in the context of Zero-Knowledge protocols.

Making the identities available to the code. In contrast with other formalisms (such as
[dkmr05, k06, kt13]), The present formalism allows ITMs to read and use their identities, which
are guaranteed by the model to be globally unique. Indeed, providing parties with identities that
are guaranteed to be unique is a strong and potentially unrealistic guarantee. Still, in some cases
having unique identities available to the protocol is essential for a meaningful solution. (This fact
is exemplified in [llr02] for the basic tasks of broadcast and Byzantine agreement.)

We provide unique identities in order to facilitate representing protocols that used identities.
Still, it is of course possible to study within the present framework protocols that do not use the
identities given in the model, by explicitly considering only protocols that ignore the identities.

Finally note that there are a number of practical methods for guaranteeing global uniqueness
of identities. One such way is to have each identity contain a component that’s chosen at random
from a large enough domain. Alternatively, one can use a hierarchical encoding where each new

26

identity is pair (invoker ID, new ID). (Indeed, such a mechanism is mandated in [hs11].) These
methods can be regarded as ways to implement the abstraction of unique identities.

On the SID mechanism. As argued in the preamble to the definition of protocol instances (Sec-
tion 3.1.2), the SID mechanism provides a relatively simple and flexible way to delineate protocol
instances in a dynamically changing system. It also allows capturing, within the formal model, the
act of “creating an instance of a protocol” in a dynamic and distributed way.

One basic aspect of this act is that some sort of agreement or coordination between the entities
that invoke the participants of a protocol instance is needed. The SID mechanism postulates that
this agreement take the form of agreeing on a joint identifier, namely the SID. We briefly sketch
three common methods for reaching such agreement, and then point out some possible relaxations.

One method is to have the SID of the instance determined in advance (potentially as a function
of the SID of the calling protocol and other run-time parameters). This method is natural when
there is already some prior coordination between the entities that invoke the participants of a
protocol instance, say when the protocol instance in question is a subroutine in a larger protocol.

A second method is to design the protocol so that all the ITIs in a protocol instance (except for
the first one) are invoked via incoming messages from other ITIs in that instance itself, rather than
via inputs from other protocol instances. That is, the first activation of each party occurs due to
a message from another party of that protocol instance, rather than due to an input or a message
from another protocol instance. Furthermore, the invoking ITI will set the SID of the invoked ITI
to be the same as its own SID. This way, a multi-party instance of a protocol is created without
any prior coordination. (The ideal authentication and secure message transmission functionalities
from Section 1.3 are written in this manner, thus eliminating the need for prior agreement on the
SID, and allowing realization by non-interactive protocols.) We note that real-life implementation
of protocols that are written in this manner would require each participant to locally make sure
that no two protocol sessions it participates in have the same SID.

A third alternative is to run some agreement protocol among the parties in order to determine
a joint SID. This method is viable in situations where there is no prior coordination among the
entities that invoke the various ITIs in a protocol instance, and the parties wish to jointly determine
the SID. (See [blr04, b+11] for a protocol and more discussion.) In this case, one convenient way
to determine the SID of a protocol instance is to let it be the concatenation of the PIDs of some
or all of the parties in this instance.

We remark that it is possible to formulate alternative conventions that allow the SIDs of the
parties in a protocol instance to be related in some other way, rather than being equal. Such a
more general convention may allow more loose coordination between the ITIs in a protocol instance.
(For instance, one may allow the participants to have different SIDs, and only require that there
exists some global function that, given a state of the system and a pair of SIDs, determines whether
these SIDs belong to the same instance.) Also, SIDs may be allowed to change during the course
of the execution. However, such mechanisms would further complicate the model, and the extra
generality obtained does not seem essential for our treatment.

Finally we note that other frameworks, such as [hs11] put additional restrictions on the format
of the SIDs. Specifically, the SID of a protocol instance is required to include the SID of the calling
protocol instance. While this is a convenient convention in many cases, it is rather limiting in
others. Furthermore, the main properties of the model hold regardless of whether this convention
is adhered to.

27

On “true concurrency” and the order of activations. Recall the order of activations of
ITMs in an execution of a system: Once an ITI µ completes its activation, the (single) ITI on
whose tapes µ wrote is activated next; if µ didn’t write to any other ITI then the initial ITI is
activated.

One might wonder whether this simple and sequential order adequately represents concurrent
systems. Indeed, the model stands in contrast with the physical nature of distributed systems,
where computations take place in multiple physically separate places at the same time. It also
stands in contrast with other models of concurrent and distributed computation, which represent
concurrent (typically non-deterministic) scheduling already within the basic model of computation.

We claim however that this order does provide a sound basis for the study of concurrent systems
in general, and their security properties in particular. First we claim that, as long as individual
activations represent computations that are relatively short comparing to the communication time,
this sequential execution model actually provides “pseudo-concurrency” that is a reasonable ap-
proximation of “true concurrency”.

More substantially, within the present framework, the “unpredictable” or “non-deterministic”
nature of the communication among concurrently running physically separate processes is captured
only at a higher level, namely as part of the actual model of protocol execution with an environment
and adversary. (This model was sketched in Section 2 and will be described in more detail in
Section 4.) That is, the requirement that protocols should withstand multiple interleavings of local
computations is expressed within the context of adversarial scheduling of (small execution pieces
of) such computations.

In particular, in spite of its simplicity, the present model is actually sufficient for represent-
ing liveness, synchrony and fairness properties. This is exemplified in Section 6. Furthermore,
combining the scheduling together with the other adversarial activities allows for representing ad-
versarial scheduling which, on the one hand, is computationally bounded, and on the other hand
can adaptively depend on the adversarial view of the execution so far. Such modeling is essential
for capturing the security of cryptographic protocols.

Some models that combine non-deterministic treatment of concurrency with cryptographic mod-
eling are discussed in the Appendix.

The control function as an ITM. The control function is a convenient abstraction: First,
as argued earlier, the control function can be regarded as a generalization of the more traditional
notion of fixed “communication channels” or “ports”. Second, the control function allows separating
the definition of the basic communication model from definitions of security which are built on top
of such a model. In particular, the definition of security (Section 4) defines the model for protocol
execution by specifying a specific control function. Third, the control function can be used to
represent models where the order of activations is different than here, such as [bpw04, dkmr05,
cv12].

We note that an alternative and equivalent formulation of a system of ITMs might replace the
control function by a special-purpose “router ITM” C that controls the flow of information between
ITIs. Specifically, in this formulation the external input to the system is written on the input tape
of C. Once activated for the first time, C copies its input to the input tape of the initial ITM I.
From now on, all ITIs are allowed to write only to the incoming communication tape of C, and C
is allowed to write to any externally writable tape of anther ITI. In simple (non-extended) systems,
C always writes the requested value to the requested tape of the requested recipient, as long as the

28

operation is allowed. In extended systems, C may write arbitrary values to the externally writable
tapes of ITIs.

Deleting ITIs. The definition of a system of ITMs does not provide any means to “delete” an
ITI from the system. That is, once an ITI is invoked, it remains present in the system for the rest
of the execution, even after it has halted. In particular, its identity remains valid and “reserved”
throughout. If a halted ITI is activated, it performs no operation and the initial ITI is activated
next. The main reason for this convention is to avoid ambiguities in addressing of messages to ITIs.

3.2 Polynomial time ITMs and systems; Parameterized systems

We adapt the standard notions of “resource bounded computation” to the distributed setting con-
sidered in this work. This requires accommodating systems with dynamically changing number
of components and communication patterns, and where multiple protocols and instances thereof
co-exist. As usual in cryptography, where universal statements on the capabilities of any feasi-
ble computation are key, notions of security depend in a strong way on the precise formulation of
resource bounded computation. As we’ll see, current formulations do not behave well in a dynam-
ically changing distributed setting such as the one considered in this work. We thus propose an
extension that seems adequate within the present model.

Before proceeding with the definition itself, we first note that the notion of “resource bounded
computation” is typically used for two quite different purposes. One is the study of efficient
algorithms. Here we’d like to examine the number of steps required as a function of the complexity
of the input, often interpreted as the input length. Another purpose is bounding the power of
feasible computation, often for the purpose of security. Here we typically do not care whether the
computation is using “efficient algorithms”; we are only concerned with what can be done within
the given resource bounds.

At first glance it appears that for security we should be primarily interested in the second
interpretation. However, recall that to argue security we often prove an algorithmic reduction
that translates an attacker against the scheme in question to an attacker against some underlying
construct that’s assumed to be secure. This reduction should be efficient in the former, algorithmic
sense. Furthermore, the very definition of security, formulated later, will require presenting an
efficient transformation from one feasible computation to another. We conclude that a good model
should allow capturing both interpretations.

Let T : N → N. Traditionally, a Turing machine M is said to be T -bounded if, given any
input of length n, M halts within at most T (n) steps. There are several ways to generalize this
notion to the case of ITMs. One option is to require that each activation of the ITM completes
within T (n) steps, where n is either the length of the current incoming message, or, say, the overall
length of incoming messages on all externally writable tapes to the ITM. However, this option
does not bound the overall number of activations of the ITM; this allows a system of ITMs to
have unbounded executions, thus unbounded “computing power”, even when all its components
are resource bounded. This does not seem to capture the intuitive concept of resource bounded
distributed computation.

Another alternative is then to let T (n) bound the overall number of steps taken by the ITM since
its invocation, regardless of the number of activations. But what should n be, in this case? One
option is to let n be the overall length of incoming messages on all externally writable tapes of the

29

ITM. However, this would still allow a situation where a system of ITMs, all of whose components
are T (n)-bounded, consumes an unbounded number of resources. This is so since ITIs may send
each other messages of ever increasing lengths. In [gmra89] this problem was solved by setting n
to be the length of the input only. Indeed, in the [gmra89] setting, where ITMs cannot write to
input tapes of each other, this solution is adequate. However, in our setting no such restrictions
exist; thus, when n is set to the overall length of the input received so far, infinite runs of a systems
are possible even if all the ITIs are T (n)-bounded. Furthermore, infinite “chains” of ITIs can be
created, where each ITI in the chain invokes the next one, again causing potentially infinite runs.

We prevent this “infinite runs” problem via the following simple mechanism: We define n to be
the overall length of the input received so far, i.e. the number of bits written on the ITI’s input
tape, minus the overall number of bits written by the ITI to the input tapes of other ITIs. As we’ll
see, this provision allows guaranteeing that, for all “reasonable” functions T , the overall number of
steps taken in a system of ITMs which are all T -bounded is finite. In fact, this number is bound
by T (n), where n is the length of the initial input to the system. Intuitively, this provision treats
the characters written on the input tape as “tokens” that “buy” runtime. An ITI receives tokens
on its input tape, and gives out tokens to other ITI by writing on their input tapes. This way, it is
guaranteed that the number of tokens in the system remains unchanged, even if ITIs are generated
dynamically and write on the input tapes of each other.

In Section 3.2.1 we briefly mention some other potential formulations and their shortcomings.

Definition 2 (T -bounded, PPT) Let T : N → N. An ITM M is locally T -bounded if, at
any point during an execution of M (namely, in any configuration of M), the overall number of
computational steps taken by M so far is at most T (n), where n = nI−nO, nI is the overall number
of bits written so far on M ’s input tape, and nO is the number of bits written by M so far to input
tapes of ITM instances.

If M is locally T -bounded, and in addition either M does not make external write requests, or
each external write request specifies a recipient ITM which is T -bounded, then we say that M is
T -bounded.

M is PPT if there exists a polynomial p such that M is p-bounded. A protocol is PPT if it is
PPT as an ITM.

Recall that T : N→ N is super-additive if T (n+ n′) ≥ T (n) + T (n′) for all n, n′. We have:

Proposition 3 Let T : N → N be a super-additive increasing function. If the initial ITM in
a system (I, C) of ITMs is T -bounded, and in addition the control function C is computable in
time T ′(·), then an execution of the system can be simulated on a single (non-interactive) Turing
machine M , which takes for input the initial input x, and runs in time O(T (|x|)T ′(T (|x|))). In
particular, if both I and C are PPT then so it M . The same holds also for extended systems of
ITMs, as long as all the ITMs invoked are T -bounded.

Proof: We first claim that the overall number of configurations in an execution of a system (I, C)
where I is T -bounded is at most T (|x|), where x is the initial input of I. As mentioned above, this
can be seen by treating the bits written on the input tapes of ITIs as “tokens” that give runtime.
Initially, there are |x| tokens in the system. The tokens are “passed around” between ITIs, but
their number remains unchanged throughout. More formally, recall that an execution of a system
of ITMs consists of a sequence of activations, where each activation is a sequence of configurations

30

of the active ITI. Thus, an execution is essentially a sequence of configurations of ITIs. Consider
an execution, and et mi be the set of ITIs that were active up till the ith configuration in the
execution. For each µ ∈ mi let nµ,i be number of bits written on the input tape of ITI µ at the last
configuration where it was active before the ith configuration in the execution, minus the overall
number of bits written by µ to other ITIs in all previous configurations. Since I is T -bounded we
have that µ is also T -bounded, namely for any i, the number of steps taken by each µ ∈ mi is
at most T (nµ,i). It follows that i =

∑
µ∈mi(# steps taken by µ) ≤

∑
µ∈mi T (|nµ,i|). By super-

additivity of T we have that i ≤
∑

µ∈mi T (nµ,i) ≤ T (
∑

µ∈mi nµ,i). However,
∑

µ∈mi nµ,i ≤ |x|.
Thus i ≤ T (|x|).

The machine M that simulates the execution of the system (I, C) simply writes all the config-
urations of I, C) one after the other, until it reaches a halting configuration of I. It then accepts
if this configuration accepts. To bound the runtime of M , it thus remains to bound the time spent
on evaluating the control function C. However, C is evaluated at most T (|x|) times, on inputs of
length at most T (|x|) each. The bound follows. �

We note that the control functions of all the systems in this work run in linear time.

Parameterized systems. The definition of T -bounded ITMs guarantees that an execution of a
system of bounded ITMs completes in bounded time. However, it does not provide any guarantee
regarding the relative computing times of different ITMs in a system. To define security of protocols
we will want to bound the variability in computing power of different ITMs. To do that, we
assume that all parties know a common value, called the security parameter, that will be taken into
account when determining the allowed runtime. More specifically, we say that a system of ITMs is
parameterized with security parameter k if the following two conditions hold: First, at any external
write operation where a new ITI is invoked, the value 1k is first written on the input tape of the
invoked ITI. (This guarantees that each invoked ITI has some minimum runtime. It also This
provides some basic coordination between the parties regarding the desired “level of security”.)

Finally we note that subsequent sections will concentrate on the behavior of systems when the
length of the initial input is at most some function of (specifically, polynomial in) the security
parameter.

3.2.1 Discussion

We discuss some aspects of Definition 2 and mention some related definitional approaches.

Recognizing PPT ITMs. One general concern regarding notions of PPT Turing machines is
how to decide whether a given ITM is PPT. Of course, it is in general undecidable whether a given
ITM is PPT. The standard way of getting around this issue is to specify a set of rules on encodings
of ITMs such that: (a) it is easy to verify whether a given string obeys the rules, (b) all strings
obeying these rules encode PPT ITMs, and (c) for essentially any PPT ITM there is a string that
encodes it and obeys the rules. If there exists such a set of rules for a given notion of PPT, then
we say that the notion is efficiently recognizable.

It can be readily seen that the notion of PPT in Definition 2 is efficiently recognizable. Specif-
ically, an encoding σ of a locally PPT ITM will first specify an exponent c. It is then understood
that the ITM encoded in σ counts its computational steps and halts after nc steps. An encod-
ing of a PPT ITM will guarantee in addition that that all the codes specified by the external

31

write operations are also nc
′
-bounded with an exponent c′ ≤ c. These are simple conditions that

are straightforward to recognize. We note that other notions of PPT protocols, such as those in
[hmu09, hs11] are not known to be efficiently recognizable.

Imposing an overall bound on the running time. Recall that it does not suffice in of
itself to simply bound the runtime of each individual activation of an ITI by some function of
the length of the contents of the externally writable tapes. This is so since, as discussed prior
to Definition 2, we might still have unbounded executions of systems even when all the ITMs are
bounded. Definition 2 gets around this problem by making a restriction on the overall number
of steps taken by the ITI so far. An alternative approach might be to directly impose an overall
bound on the runtime of the system. For instance, one can potentially bound the overall number
of bits that are externally written in the execution. This approach seems attractive at first since it
is considerably simpler; it also avoids directly “linking” the runtime in an activation of an ITM to
the run-times in previous activations of this ITM. However this approach has a severe drawback:
It causes an execution of a system to halt at a point which is determined by the overall number of
steps taken by the system, rather than by the local behavior of the last ITI to be activated (namely
the initial ITI). This provides an “artificial” way for the initial ITI to obtain global information
on the execution via the timing in which the execution halts. (For instance, the initial ITI I can
start in a rejecting state, and then pass control to another ITI µ. If I ever gets activated again,
it moves to an accepting state. Now, whether I gets activated again depends only on whether
the computation carried out by µ, together with the ITIs that µ might have invoked, exceeds the
allotted number of steps, which in turn may be known to I. Thus, we have that whether I accepts
depends on information that should not be “legitimately available” to I in a distributed system.)
Jumping ahead, we note that this property would cause the notions of security considered in the
rest of this work to be artificially restrictive. Specifically, the environment would now be able to
distinguish between two executions as soon as the overall number of steps in the two executions
differs even by one operation. In contrast, we would like to consider two systems equivalent from
the point of view of the environment even in cases where the overall number of computational steps
and communicated bits in the two systems might differ by some polynomial amount.

Bounding the runtime by a function of the security parameter alone. Another al-
ternative way to define resource bounded ITMs is to consider parameterized systems as defined
above, and then restrict the number of steps taken by each ITI in the computation by a function
of the security parameter alone. That is, let the overall number of steps taken by each ITI in
the system be bounded by T (k), where k is the security parameter. This formulation is actually
quite popular; In particular, it is the notion of choice in earlier versions of this work as well as in
[c00, pw00, bpw04, bpw07, mms03, c+05].

Bounding the runtime this way is simpler than the method used here. It also allows proving a
proposition akin to Proposition 3. However, it has a number of drawbacks. First, it does not allow
capturing algorithms and protocols which work for any input size, or alternatively work for any
number of activations. For instance, any signature scheme that’s PPT in the security parameter
alone can only sign a number of messages that’s bounded by a fixed polynomial in the security
parameter. Similarly, it can only sign messages whose length is bounded by a fixed polynomial in the
security parameter. In contrast, standard definitions of cryptographic primitives such as signature
schemes, encryption schemes, or pseudorandom functions require schemes to handle a number of

32

activations that’s determined by an arbitrary PPT adversary, and thus cannot be bounded by
any specific polynomial in the security parameter. Consequently, bounding the runtime by a fixed
function of the security parameter severely restricts the set of protocols and tasks that can be
expressed and analyzed within the framework.5

Furthermore, when this definition of bounded computation is used, security definitions are
inevitably weaker, since the standard quantification over “all PPT adversaries” fails to consider
those adversaries that are polynomial in the length of their inputs but not bounded by a polynomial
in the security parameter. In fact, there exist protocols that are secure against adversaries that
are PPT in the security parameter, but insecure against adversaries that are PPT in the length of
their inputs (see e.g. the separating example in [hu05]).

Another drawback of bounding the runtime by a fixed function of the security parameter is
that it does not allow taking advantage of the universality of computation and the duality between
machines and their encodings. Let us elaborate, considering the case of PPT ITMs: When the
runtime can vary with the length of the input, it is possible to have a single PPT ITM U that
can “simulate” the operation of all PPT ITMs, when given sufficiently long input. (As the name
suggests, U will be the universal Turing machine that receives the description of the ITM to be
simulated, plus sufficiently long input that allows completing the simulation.) This universality is
at the heart of the notion of “feasible computation”. Also, this property turns out to be useful in
gaining assurance in the validity of the definition of security, defined later in this work.

Bounding the runtime of ITMs by a function of the security parameter alone does not seem to
allow for such a natural property to hold. Indeed, as discussed in Section 4.4, some of the properties
of the notion of security defined here no longer hold when the runtime of ITMs is bounded this
way.

A more general notion. The present notion of resource bounded ITMs treats all the bits on the
input tape, and only those bits, as “resource tokens”. A more general notion of resource bounded
ITMs may allow any external write operation to provide any number of “runtime tokens” to the
target ITI by explicitly specifying as much. (Of course, any “runtime tokens” transferred to the
target ITI would be deducted from the writing ITI.) This more general notion gives somewhat
more expressibility to the model. However, we stick with the present notion since it is simpler, and
furthermore it is closer to existing notions of resource bounded computation (which also measure
runtime as a function of the input length).

Thanks. We thank Oded Goldreich, Dennis Hofheinz, Ralf Küsters, Yehuda Lindell, Jörn Müller-
Quade, Rainer Steinwandt and Dominic Unruh for very useful discussions on modeling PPT ITMs
and systems, and for pointing out to us shortcomings of the definition of PPT ITMs in earlier
versions of this work and of some other definitional attempts. Discussions with Dennis were par-
ticularly instructive.

5We remark that the difference is not only “cosmetic.” For instance, pseudorandom functions with respect to
a number of queries that is bounded by a fixed polynomial in the security parameter can be constructed without
computational assumptions, whereas the standard notion implies one-way functions.

33

4 Defining security of protocols

This section presents the main definition of this work, namely the definition of protocols that
securely realize a given ideal functionality, as outlined in Section 2.2. Section 4.1 presents the basic
computational model for executing distributed protocols. The general notion of protocol emulation
and some variants are presented in Section 4.2. Ideal functionalities and the ideal protocol for
carrying out a given functionality are presented in Section 4.3, followed by the definition of securely
realizing an ideal functionality. Finally, Section 4.4 presents several alternative formalizations of
the definition of protocol emulation and demonstrates their equivalence to the main one.

4.1 The model of protocol execution

The model of protocol execution is defined in terms of a system of ITMs, as defined in Section 3. The
model gives the adversary complete control over the communication between parties. Ths modeling
is not aimed at representing some specific realistic setting for distributed computation. Rather, the
goal is to provide a basic platform on top of which one can define various communication models
that correspond to realistic settings. Several such communication models are defined in Section 6.

The model presented here differs from the informal model of protocol execution in Section 2.2
in two main ways. First, here we do not model party corruption within the basic model; instead,
party corruptions are modeled at a later stage via special protocol conventions, thus simplifying
the basic model and providing extra flexibility in defining various types of corruption. Second, here
we need to accommodate the fact that parties (ITIs) expect to know the identity and code of the
ITIs they provide input and output to, and obtain input or subroutine output from. This makes
the incorporation of the environment machine in the model a bit more tricky: ITIs representing
computing elements in an actual system never give output to or get input from an “environment
ITI”; they only get input or give output to actual other ITIs. Thus the model should “hide” the
existence of the environment from the ITIs representing the protocol. Similarly, it needs to al-
low substituting one protocol for another without the environment knowing that such substitution
occurred. (Jumping ahead, we note that the universal composition operation cannot be meaning-
fully defined without appropriate modeling of this fact.) These issues are handled via the control
function, as described below.

The model is parameterized by three ITMs: the protocol π to be executed, an environment E
and an adversary A. That is, given π, E ,A, the model for executing π is the following extended,
parameterized system of PPT ITMs (E , Cπ,Aexec), as defined in Section 3. The initial ITM in the
system is the environment E . The control function Cπ,Aexec is defined in the paragraphs below.
Figure 5 presents a summary of the model. A graphical depiction appears in Figure 2 on page 11.

The input of the initial ITM E represents some initial state of the environment in which the
protocol execution takes place. In particular, it represent all the external inputs to the system,
including the local inputs of all parties. The first ITI to be invoked by E is set by the control
function to be A.

In addition, as the computation proceeds, E can invoke and pass inputs to an unlimited number
of ITIs, subject to the restriction that all these ITIs have the same SID (which is chosen by E).
More precisely, external write operations by E are required to be of the form (v, idsource, idtarget),
where v is an input value, idsource = (pidsource, sidsource) is an extended identity representing the
claimed source of the input value, and idtarget = (pidtarget, sidtarget) is an identity for the target

34

Execution of protocol π with environment E and adversary A

An execution of protocol π with adversary A and environment E is a run of an extended, param-
eterized system of ITMs as specified in Section 3, with initial ITM E , and a control function that
enforces the following restrictions:

1. E may only pass inputs to other parties. The first ITI that E passes input to is set to be the
adversary: the identity of this ITI is required to have a special value, say id = 1, and the code
of that ITI is set (by the control function) to be A.

All the other ITIs that E passes input to are required to be an instance of protocol π. More
precisely, any external write operation by E (other than the first one) is required to be of
the form (v, idsource, idtarget), where v is an input value, idsource is an extended identity
representing the claimed source of the input value, and idtarget is an identity for the target
ITI. If the SID s in idtarget is the same as the SID of the target identity in previous external
write instructions of E , and the SID in idsource is different than s, then the message m with
extended source idsource is written to the input tape of an ITI with code π and identity
idtarget. If no such ITI exists then one is created.

2. The adversary A can write to any tape of any ITI. There are no restrictions on the contents
and sender identities of delivered messages.

3. ITIs other than E or A (including the parties invoked by E and A and their subsidiaries) can
send messages to A, and also pass inputs and outputs to any ITI other than A, E . If the
extended identity of the target ITI of an external write request coincides with the claimed
source identity value ids in one of the previous external write requests of E , and the target
tape is the subroutine output tape, then the control function writes the requested message on
the subroutine output tape of E , with the code of the writing ITI removed. (That is, E sees
the identity but not the code of the ITI that writes to its subroutine output tape.)

Figure 5: A summary of the model for protocol execution

ITI. The control function then verifies that sidtarget, the SID in idtarget, is the same as the SID of
the target ITI in previous external write instructions of E , and that sidsource, the SID in idsource,
is different than sidtarget. It then writes message m with extended source ids to the input tape of
an ITI with code π and identity idt = (p, s). If no such ITI exists then one is created.6

The adversary A can write to any tape of any ITI in the system. If A writes to the incoming
communication tape of an ITI then we say that A delivers this message. We use a different term for
the delivery operation to stress the fact that sending by the adversary models actual delivery of the
message to the recipient. Note that there need not be any correspondence between the messages

6Jumping ahead, we note that restricting the environment to invoke only a single instance of π considerably
simplifies the analysis of protocols, since it restricts attention to a single, “stand-alone” protocol execution. An
alternative formulation would allow E to invoke arbitrary ITIs with multiple different SIDs. This more general (but
more complex) formulation captures a meaningful extension of the model. See more details in [cdpw07].

We also note that revious version of this work did not provide adequate treatment of the translation, done by the
control function, from inputs provided by the environment to the values received by protocol instance, and from the
outputs provided by the protocol instance to the values received by environment. Jumping ahead, this flaw resulted
in imprecision in the composition theorem and the specification of protocols and ideal functionalities. We thank
Margarita Vald for pointing out this flaw.

35

sent by the parties and the messages delivered by the adversary.7

Any ITI other than E and A, namely the parties and sub-parties of the main instance of π, as
well as the ITIs invoked by A, are allowed to pass inputs and outputs to any other ITI other than
E and A, with the exception that only the main parties of this instance of π can pass inputs to
(other) main parties of this instance. In addition, they can send messages to A. (These messages
may indicate an identity of an intended recipient ITI; but the adversary is not obliged to respect
these indications.)

The control function responds to these external-write operations as so: If the extended identity
of the target ITI of an external write request coincides with the claimed source extended identity
value idsource in one of the previous external write operations of E , and the target tape it the
subroutine output tape, then the control function writes the requested message on the subroutine
output of E , with the code of the writing ITI removed. That is, E sees the identity — but not the
code — of the ITI that writes to its subroutine output tape. (If some ITI M performs an external
write request to an ITI with extended identity id′source that differs from idsource only in the code
of the target ITI, then the operation is not performed and M transitions to an error state, in the
same way as described in the specification of the external write instruction in Section 3.1.8)

4.2 Protocol emulation

This section formalizes the general notion of emulating one protocol via another protocol, as
sketched in Section 2.2. In preparation for the formal definition, we first recall the notions of
probability ensembles and indistinguishability, and define a restricted class of environments, called
balanced environments. We then define UC-emulation in its general form, followed by some variants,
including statistical, perfect, and uniform-complexity emulation. Next we formulate several more
quantitative notions of emulation, and assert a somewhat surprising quantitative property of UC
emulation. The section concludes with a discussion of the transitivity properties of UC emulation.

Distribution ensembles and indistinguishability. A probability distribution ensemble X =
{X(k, z)}k∈N,x∈{0,1}∗ is an infinite set of probability distributions, where a distribution X(k, z)
is associated with each k ∈ N and z ∈ {0, 1}∗. The ensembles considered in this work describe
outputs of computations where the parameter z represents input, and the parameter k represents
the security parameter. As we’ll see, it will suffice to restrict attention to binary distributions, i.e.
distributions over {0, 1}.

Definition 4 Two binary probability distribution ensembles X and Y are indistinguishable (written
X ≈ Y) if for any c, d ∈ N there exists k0 ∈ N such that for all k > k0 and all z ∈ ∪κ≤kd{0, 1}κ
we have:

|Pr(X(k, z) = 1)− Pr(Y (k, z) = 1)| < k−c.

7In previous versions of the framework, A was restricted to delivering messages and passing outputs to E . However,
it will sometimes be convenient for modeling purposes to allow the adversary to pass input or outputs to other special
ITIs, thus we do not disallow these operations. Still,“standard” protocols will typically ignore input or subroutine
output coming directly from the adversary.

8Note that the above “redirection of outputs” to the environment takes place whenever E assumes source identity
idsource — even when idsource is the extended identity of an existing ITI. This captures the concept that, while
a protocol might specify an intended recipient of its output values, it has no control over where these outputs are
redirected to. In particular, a “well constructed” protocol should make sure that no main party of the protocol will
pass output to an ITI which is a subsidiary of this protocol.

36

The probability distribution ensembles considered in this work represent outputs of systems
of ITMs, namely outputs of environments. More precisely, we consider ensembles of the form

execπ,A,E
def
= {execπ,A,E(k, z)}k∈N,z∈{0,1}∗ . It is stressed that Definition 4 considers the distribu-

tions X(k, z) and Y (k, z) only when the length of z is polynomial in k. This essentially means that
we consider only environments that set the security parameter to be some polynomial fraction of
the length of their input.

Balanced environments. In order to keep the notion of protocol emulation from being unnec-
essarily restrictive, we need to restrict attention to environments that satisfy some basic conditions
regarding the lengths of inputs given to the parties. Recall that we have already restricted ourselves
to parameterized systems where the length of input to each party must be at least the security
parameter, and where the security parameter is a polynomial fraction of the length of input to
the environment. However, this restriction does not limit the relative lengths of the inputs that
the environment provides to the adversary and the parties; the difference can be any arbitrary
polynomial in the security parameter, and the ratio can be arbitrary. Consequently, the model
still allows the environment to create situations where the input length to the protocol, hence the
protocol’s complexity and communication complexity, are arbitrarily large relative to the input
length and complexity of the adversary. Such situations seem unnatural; for instance, with such
an environment no polytime adversary can deliver even a fraction of the protocol’s communication.
Indeed, it turns out that if we allow such situations then the definition of protocol emulation below
(Definition 5) becomes overly restrictive.9

To avoid such situations, we wish to consider only environments where the amount of resources
given to the adversary (namely, the length of the adversary’s input) is at least some fixed polyno-
mial fraction of the amount of resources given to the protocol. To be concrete, we consider only
environments where, at any point in time during the execution, the overall length of the inputs
given by E to the parties of the main instance of π is at most k times the the length of input to
the adversary. We call such environments balanced. It is stressed that the input of the adversary
can still be arbitrarily (but polynomially) long relative to the input of the parties.

We finally turn to the definition of protocol emulation:

Definition 5 (Protocol Emulation) Let π and φ be PPT protocols. We say that π UC-emulates
φ if for any PPT adversary A there exists a PPT adversary S such that for any balanced PPT
environment E we have:

execφ,S,E ≈ execπ,A,E . (1)

On statistical and perfect emulation. Definition 5 can be extended to the standard notions of
statistical and perfect emulation (as in, say, [c00]). That is, when A and E are allowed unbounded
complexity, and the simulator S is allowed to be polynomial in the complexity of A, we say that π
statistically UC-emulates φ. If in addition the two sides of (1) are required to be identical then we say
that π perfectly UC-emulates φ. Another variant allows S to have unlimited computational power,

9 The definition will require that any adversary be “simulatable” given a comparable amount of resources, in the
sense that no environment can tell the simulated adversary from the real one. When this requirement is applied to
environments that give the adversary much less resources than to the protocol, the simulation may not even be able
to run the code of the protocol in question.

37

regardless of the complexity of A; however, this variant provides a weaker security guarantee, see
discussion in [c00].

On security with respect to closed environments. Definition 5 considers “open environ-
ments”, namely environments that take input (of some polynomial length) that was generated in
an arbitrary way, perhaps not even recursively. Alternatively, one may choose to consider only
“closed environments”, namely environment that do not receive meaningful external input. Here
the inputs given to the protocol are the result of some uniform, polynomial time process. This
notion of security can be captured by considering only environments whose external input contains
no information other than its length, e.g. it is 1n for some n. Such environments would choose the
inputs of the parties using some internal stochastic process.

We note that the former notion corresponds naturally to considering environments and adver-
saries that are non-uniform polynomial time, whereas the latter notion corresponds to considering
uniform polynomial time environments and adversaries. Here it is guaranteed that the simulator
gets exactly the same advice as the adversary.

More quantitative notions of emulation. The notion of protocol emulation as defined above
only provides a “qualitative” measure of security. That is, it essentially only gives the guarantee
that “any feasible attack against π can be turned into a feasible attack against φ,” where “fea-
sible” is interpreted broadly as “polynomial time”. We formulate more quantitative variants of
this definition. We note that, besides being informative in of itself, the material here will prove
instrumental in later sections.

We quantify two parameters: the emulation slack, meaning the probability by which the environ-
ment distinguishes between the interaction with π from the interaction with φ, and the simulation
overhead, meaning the difference between the complexity of the given adversary A and that of the
constructed adversary S. Recall that an ITM is T -bounded if the function bounding its running
time is T (·) (see Definition 2), and that a functional is a function from functions to functions. Then:

Definition 6 Let π and φ be protocols and let ε, g be functionals. We say that π UC-emulates φ
with emulation slack ε and simulation overhead g (or, in short, π (e, g)-UC-emulates φ), if for any
polynomial pA(·) and any pA-bounded adversary A, there exists a g(pA)-bounded adversary S, such
that for any polynomial pE , any pE -bounded environment E, any large enough value k ∈ N and any
input x ∈ {0, 1}pE(k) we have:

|execφ,S,E(k, x)− execπ,A,E(k, x)| < ε(pA, pE)(k).

Including the security parameter k is necessary when the protocol depends on it. Naturally,
when k is understood from the context it can be omitted. A more concrete variant of Definition
6 abandons the asymptotic framework and instead concentrates on a specific value of the security
parameter k:

Definition 7 Let π and φ be protocols, let k ∈ N, and let g, ε : N→ N. We say that π (k, e, g)-UC-
emulates φ if for any tA ∈ N and any adversary A that runs in time tA there exists an adversary
S that runs in time g(tA) such that for any tE ∈ N, any environment E that runs in time tE , and
any input x ∈ {0, 1}tE we have:

|execφ,S,E(k, x)− execπ,A,E(k, x)| < ε(k, tA, tE).

38

It is stressed that Definition 7 still quantifies over all environments and adversaries of all com-
plexities. One can potentially formulate a definition that parameterizes also the run-times of the
environment, adversary and simulator. That is, the the quantifies only over environments and ad-
versaries that have specific complexity. It should be noted, however, that such a definition would be
considerably weaker than definition 7, since it guarantees security only for adversaries and environ-
ments that are bounded by specific run-times. Furthermore, both the protocols and the simulator
can depend on these run-times. In contrast, Definition 7 bounds the specified parameters for any
arbitrarily complex environment and adversary. Consequently, while the UC theorem can be easily
adapted to the formulations of Definitions 6 and 7, a definition that parameterizes complexity of
the environment and adversary does not seem to guarantee universal composability.

The simulation overhead is always additive. An interesting property of the notion of UC-
emulation is that the simulation overhead can be always bounded by an additive polynomial factor
that depends only on the protocols in question, and is independent of the adversary and environ-
ment. That is:

Claim 8 Let π and φ be protocols such that π UC-emulates φ with emulation slack ε and simulation
overhead g, as in Definition 6. Then there exists a polynomial α such that π UC-emulates φ with
emulation slack ε and simulation overhead g′(pA)(·) = pA(·) + α(·).

Said otherwise, if π (ε, g)-UC-emulates φ then it is guaranteed that the overhead of running S
rather than A can be made to be at most an additive polynomial factor α(·) that depends only on
π and φ. Furthermore, this can be done with no increase in the emulation slack. We call α(·) the
intrinsic simulation overhead of π with respect to φ.

The proof of Claim 8, while not immediate from the definition of the simulation overhead,
follows as an easy corollary from the proof of Claim 10 below. We thus postpone the proof of
Claim 8 till after the proof of Claim 10.

On the transitivity of emulation. It is easy to see that if protocol π1 UC-emulates protocol π2,
and π2 UC-emulates π3, then π1 UC-emulates π3. Moreover, if π1 (e1, g1)-UC-emulates π2, and π2
(e2, g2)-UC-emulates π3, then π1 (e1+e2, g2◦g1)-UC-emulates π3. (Here e1+e2 is the functional that
output the sum of the outputs of e1 and e2, and ◦ denotes composition of functionals.) Transitivity
for any number of protocols π1, ..., πn follows in the same way. Note that if the number of protocols
is not bounded by a constant then the complexity of the adversary may no longer be bounded
by a polynomial. Still, when there is an overall polynomial bound on the intrinsic simulation
overheads of each πi w.r.t. πi+1, Claim 8 implies that the simulation overhead remains polynomial
as long as the number of protocols is polynomial. Similarly the emulation slack remains negligible
as long as the number of protocols is polynomial. Finally, we stress that the question of transitivity
of emulation should not be confused with the question of multiple nesting of protocols, which is
discussed in Section 5.3.

4.3 Realizing ideal functionalities

We now turn to applying the general machinery of protocol emulation towards one of the main
goals of this work, namely defining security of protocols via realizing ideal functionalities.

39

Ideal functionalities. As discussed in Section 2, an ideal functionality represents the expected
functionality of a certain task. This includes both “correctness”, namely the expected input-
output relations of uncorrupted parties, and “secrecy”, or the acceptable leakage of information
to the adversary. Technically, an ideal functionality F is simply an ITM as in Definition 1. In
typical use, the input tape of an ideal functionality is expected to be written to by a number of
ITIs; it also expects to write to the subroutine output tapes of multiple ITIs. In other words,
an ideal functionality behaves like a subroutine machine for a number of different ITIs (which are
thought of as parties of some protocol instance). Next, the PID of an ideal functionality is typically
meaningless, and set to ⊥. Often ideal functionalities will have some additional structure, such as
specifying the response to party corruption requests by the adversary, or verifying the identity
and code of the ITIs that pass input to or receive subroutine output from the ideal functionality.
However, to avoid cluttering the basic definition with unnecessary details, further restrictions and
conventions regarding ideal functionalities are postponed to Section 6.

Ideal protocols. In order to facilitate the use of ideal functionalities as subroutines within other
protocols, we provide a “wrapper” that makes an instance of an ideal functionality look, syntacti-
cally, like an instance of multi-party protocol. This mechanism takes the form of “dummy parties”.
These are simple ITIs that act as placeholders for “local subroutines” of the individual ITIs of the
calling protocol instance, while relaying all inputs and outputs between the calling ITIs and the
ideal functionality. In accordance, the dummy parties of an instance of an ideal protocol will have
the same session ID as the ideal functionality, and party IDs that are specified by their calling ITIs.

More formally, the ideal protocol idealF for ideal an functionality F is defined as follows:

1. When activated with input (v, eidc, id), where v is the actual input value, eidc is the extended
identity of the calling ITI, and id = (s, p) is the local identity, pass input (v, eidc) to an
instance of F with identity (s,⊥). If the input operation was not successful then pass a
failure output to eidc.

2. When activated with subroutine output (v, id, eidt) from an ITI with code F and identity
(s,⊥), where id is the local identity and v is the actual output value, pass output v to the
ITI with extended identity eidt. If the output operation was not successful then pass a failure
input to F , namely to the ITI (F , s,⊥).

3. Messages delivered by A, including corruption messages, are ignored. (The intention here
is that, in the ideal protocol, the adversary should send corruption messages directly to the
ideal functionality. See more discussion in Section 6.2.)

Notice that the dummy parties pass the code of the calling ITIs to the ideal functionality, and allow
the ideal functionality to verify the code of recipient ITIs. This is essential for modeling tasks such
as entity and message authentication. The present structure also allows an ideal functionality to
create a recipient ITI. It does not require that such an ITI (with appropriate SID and PID) be
created ahead of time via an external mechanism. Also, if F is PPT then so is IF . Finally note
that a dummy party makes no use of its PID. Indeed, the PID is there only as a ‘placeholder’ to
be used by protocols that realize the ideal protocol. We use the term F-hybrid protocols to denote
protocols that make subroutine calls to IF .10

10The above description of IF is not necessarily PPT as in Definition 2. This is so since a dummy party of IF may

40

Realizing an ideal functionality. Protocols that realize an ideal functionality are defined as
protocols that emulate the ideal protocol for this ideal functionality:

Definition 9 Let F be an ideal functionality and let π be a protocol. We say that π UC-realizes F
if π UC-emulates the ideal protocol for F .

4.4 Alternative formulations of UC emulation

We discuss some alternative formulations of the definition of protocol emulation (Definition 5) and
show that they are all equivalent to that formulation.

On environments with non-binary outputs. Definition 5 quantifies only over environments
that generate binary outputs. One may consider an extension to the models where the environment
has arbitrary output; here the definition of security would require that the two output ensembles
execπ,A,E and execφ,S,E (that would no longer be binary) be computationally indistinguishable, as
defined by Yao [y82] (see also [g01]). It is easy to see, however, that this extra generality results
in a definition that is equivalent to Definition 5. We leave the proof as an exercise.

On deterministic environments. Since we consider environments that receive an arbitrary
external input of polynomial length, it suffices to consider only deterministic environments. That
is, the definition that quantifies only over deterministic environments is equivalent to Definition 5.
Again, we leave the proof as an exercise. Note however that this equivalence does not hold for the
case of closed environments, where the environment only receives inputs of the form 1n.

4.4.1 Emulation with respect to the dummy adversary

We show that Definition 5 can be simplified as follows. Instead of quantifying over all possible
adversaries A, it suffices to require that the ideal-protocol adversary S be able to simulate, for any
environment E , the behavior of a specific and very simple adversary. This adversary, called the
“dummy adversary”, only delivers to parties messages generated by the environment, and delivers
to the environment all messages generated by the parties. Said otherwise, we essentially show that
the dummy adversary is “the hardest adversary to simulate”, in the sense that simulating this
adversary implies simulating all adversaries. Intuitively, the reason that the dummy adversary is
the “hardest to simulate” is that it gives the environment full control over the communication. It
thus leaves the simulator with very little “wiggle room.”

receive little or no input from E , while receiving long incoming communication from some other party. One way to
resolve this issue is to demonstrate that Proposition 3 holds as long as F is PPT, even when IF is not. We take an
alternative route, and modify IF to make it PT. We do this in two steps. First, we bound the runtime of IF by some
arbitrary polynomial, say it is allowed some constant times the number of operations as the length of its input. By
itself, however, this stipulation is over-restrictive since it means that a dummy party cannot generate outputs prior
to receiving input of comparable length. We thus let a dummy party distinguish between two types of input: One
type of input is the one described above, to be forwarded to F . The other type of input is of the form 1m for some
m. This input is ignored by the dummy party; it is used only to allow the calling ITI to provide the dummy party
with extra runtime.

We note that previous formulations of the ideal protocol (and also of the dummy adversary in Claim 10) ignored
this aspect, thus resulting in an incorrect proof of Claims 10 and 11. We thank Ralf Küsters for pointing out these
errors.

41

More specifically, the dummy adversary, denoted D, proceeds as follows. When activated with
an incoming message m on its incoming communication tape, adversary D passes m as output to
E , along with the extended identity of the sender. When activated with an input (m, id, c) from E ,
where m is a message, id is an identity, and c is a code for a party, D delivers the message m to
the party with identity id and code c. (Jumping ahead, this in particular means that D corrupts
parties when instructed by E , and passes all gathered information to E .) Finally, D ignores any
prefix of its input of the form 1∗. This allows E to provide D with additional runtime without
specifing any value to be delivered.

Say that protocol π UC-emulates protocol φ with respect to the dummy adversary if there exists
an adversary S such that for any environment E we have execφ,S,E ≈ execπ,D,E . We show:

Claim 10 Let π, φ be protocols. Then π UC-emulates φ according to Definition 5 if and only if it
UC-emulates φ with respect to the dummy adversary.

Proof: Clearly if π UC-emulates φ according to Definition 5 then it UC-emulates φ with respect
to dummy adversaries. The idea of the derivation in the other direction is that, given direct access
to the communication sent and received by the parties, the environment can run any adversary
by itself. Thus quantifying over all environments essentially implies quantification also over all
adversaries. More precisely, let π, φ be protocols and let SD be the adversary guaranteed by the
definition of emulation with respect to dummy adversaries (that is, SD satisfies execφ,SD,E ≈
execπ,Dcπ ,E for all E .) We show that π UC-emulates φ according to Definition 5. For this purpose,
given an adversary A we construct the adversary S as follows. S runs simulated instances of A
and SD. In addition:

1. S forwards any input from the environment to the simulated A, and passes any output of A
to the environment.

2. When the simulated A delivers a message m to an ITI with identity id and code c, S activates
SD with input (m, id, c). Similarly, any output generated by SD is copied to the incoming
communication tape of A.

3. Whenever SD writes a message m on some tape of some ITI, S writes m to that tape of that
ITI. Finally, when S obtains a message m on its incoming communication tape, it proceeds
as follows: It first writes 1m on the input tape of SD; next (i.e., in the next activation) it
writes m on the incoming communication tape of SD.

A graphical depiction of the operation of S appears in Figure 6.

Analysis of S. We first argue that S is PPT. The running time of S is dominated by the runtime
of the A module plus the runtime of the SD module. When S has input of length n, the runtime
of the A module is bounded by pA(n), where pA is the polynomial bounding the running time of
A. To bound the runtime of SD, recall that SD gets inputs both from A and from S itself. The
overall length of the first input is bounded by pA(n). The length of the second input is bounded by
the overall communication generated by φ. This quantity may in principle be unrelated to n, the
length of S’s input. However, since the environment is balanced, we have that the communication
generated by π is at most n′pπ(kn), where pπ is the polynomial bounding the complexity of π,
where n′ is the number of ITIs in the main instance of π. In addition, without loss of generality

42

...
E

�sid;pidnAS �sid;pid1Sd
Figure 6: The operation of simulator S in the proof of Claim 10: Both A and SD are simulated internally
by S. The same structure represents also the operation of the shell adversary in the definition of black-box
simulation (see Section 4.4.2).

the length of the input coming from A can also be bounded by n′pπ(kn). We conclude that the
polynomial bounding the runtime of S is at most

pS(a) = pA(a) + pSD(n′pπ(ka))

Note that the right hand side summand is a polynomial that depends only on π and φ; this fact is
used in the proof of Claim 8 below.

Next we assert the validity of S. Assume for contradiction that there is an adversary A and a
balanced environment E such that execφ,S,E 6≈ execπ,A,E . We construct a balanced environment
ED such that execπ,SD,ED 6≈ execπ,D,ED . Environment ED runs an interaction between simulated
instances of E and A. In addition:

1. All the inputs generated by E to the adversary are forwarded to A, and all of A’s outputs are
forwarded to E .

2. Whenever ED receives an output value v from its adversary, ED passes v to the simulated
A. Similarly, whenever the simulated A delivers a message m to some ITI, ED instructs the
external adversary to deliver message m to that ITI.

3. All inputs from E to the parties of π are forwarded to the external parties, and all the outputs
coming from the external parties are forwarded to E as coming from the parties of π.

4. In addition, whenever ED passes input of length m to some party, it first passes input 1p(m)

to the external adversary, where p() is the maximum between the polynomials bounding the
run times of φ and π. This makes sure that ED is balanced.

5. Finally, ED outputs whatever the simulated E outputs.

It can be readily verified that the ensembles execπ,D,ED and execπ,A,E are identical. In particu-
lar, ED makes sure that D never halts due to insufficient runtime. Similarly, ensembles execφ,SD,ED
and execφ,S,E are identical. �

43

Discussion. From a technical point of view, emulation with respect to the dummy adversary is
an easier definition to work with, since it involves one less quantifier, and furthermore it restricts
the interface of the environment with the adversary to be very simple. Indeed, we almost always
prefer to work with this notion. However, we chose not to present this formulation as the main
notion of protocol emulation, since we feel is is less intuitively appealing than Definition 9. In other
words, we find it harder to get convinced that this definition captures the security requirements of
a given task. In particular, it looks farther away from the the basic notion of security in, say, [c00].
Also, it is less obvious that this definition has some basic closure properties such as transitivity.11

Proof of Claim 8. Claim 8 states that if a protocol π UC-emulates protocol φ then there exists
a polynomial α(·) such that, for any adversary A whose running time is bounded by the polynomial
pA(·), there is a simulator whose running time is bounded by pA(·) + α(·). The claim follows from
the proof of Claim 10. Indeed, the proof of Claim 10 shows how to construct, for any adversary A,
a valid simulator SD, whose complexity is bounded by pA(n) + α(n), where pA is the polynomial
bounding the running time of A and α(·) is a polynomial that depends only on π and φ. �

4.4.2 Emulation with respect to black box simulation

Another alternative formulation of Definition 5 imposes the following technical restriction on the
simulator S: Instead of allowing a different simulator for any adversary A, let the simulator have
“black-box access” to A, and require that the code of the simulator remains the same for all A.
Restricting the simulator in this manner does not seem to capture any tangible security concern.
Still, in other contexts, e.g. in the classic notion of Zero-Knowledge, this requirement results in a
strictly more restrictive notion of security than the definition that lets S depend on the description
of A, see e.g. [gk88, b01]. We show that in the UC framework security via black-box simulation
is equivalent to the standard notion of security.

We formulate black box emulation in a way that keeps the overall model of protocol execution
unchanged, and instead imposes restrictions on the operation of the simulator. Specifically, an
adversary S is called a shell simulator if it operates as follows, given an ITM Ŝ (called a black-box
simulator) and a PPT adversary A. S first internally invokes an instance of A and an instance of
Ŝ. Next:

• Upon receiving an input from the environment, S forwards this input to A. Any outgoing
message generated by A is given as input to Ŝ. Instructions of Ŝ regarding delivering messages
to parties are carried out.

• Upon receiving an incoming message from some party, S forwards this incoming message to
Ŝ. Outputs of Ŝ are forwarded as incoming messages to A, and outputs of A are outputted
to E .

Observe that the structure of S is the same as the structure of the simulator S in the proof of Claim
10, where Ŝ plays the role of SD. Indeed, Figure 6 depicts the operation of a black-box simulator
(substitute Ŝ for SD).

11One might be tempted to further simplify the notion of emulation with respect to the dummy adversary by
removing the dummy adversary altogether and letting the environment interact directly with the ITIs running the
protocol. We note however that this definition would be over-restrictive, unless the environment is required to be
balanced. See discussion in Footnote 9.

44

Let exec
φ,SŜ,A,E denote the output of E from an interaction with protocol φ and a shell adversary

S that runs a black-box simulator Ŝ and an adversary A. Say that a protocol π UC-emulates
protocol φ with black-box simulation if there exists a black-box simulator Ŝ such that for any PPT
adversary A, the resulting shell adversary S is PPT, and furthermore, and any PPT environment
E , we have exec

φ,SŜ,A,E ≈ execπ,A,E . (It is stressed that Ŝ need not necessarily be PPT as an

ITM; only S needs to be PPT.) We show:

Claim 11 Let π, φ be PPT multiparty protocols. Then π UC-emulates φ according to Definition 5
if and only if it UC-emulates φ with black-box simulation.

Proof: The ‘only if’ direction follows from the definition. For the ‘if’ direction, notice that the
simulator S in the proof of Claim 10 can be cast as a shell adversary with adversary A and the
following black-box simulator Ŝ: Ŝ runs SD; in addition, before delivering a message of length m
to the input tape of SD, Ŝ writes 1m on the input tape of SD. (Indeed, Ŝ is not PPT as an ITM by
itself. However, as argued in the proof of Claim 10, for any PPT adversary A, the shell simulator
S is PPT with runtime bounded by pA(·) + pSD(pφ(·)).) �

Discussion. The present formulation of security via black-box simulation is considerably more
restrictive than that of standard cryptographic modeling of black-box simulation. In particular,
in the standard modeling S may query A in arbitrary ways. In contrast, here the communication
between Ŝ and A is restricted, in that Ŝ cannot “reset” or “rewind” A. Still, the present definition
is equivalent to the general (non black-box) notion of security.

We remark that the present formulation of black-box simulation is reminiscent of the notions
of strong black-box simulation in [dkmr05] and in [pw00] (except for the introduction of the shell
adversary). However, in these works this notion is not equivalent to the standard one, due to
different formalizations of probabilistic polynomial time.

4.4.3 Letting the simulator depend on the environment

Consider a seemingly weaker variant of Definition 5, where the simulator S can depend on the code
of the environment E . That is, for any A and E there should exist a simulator S that satisfies
execφ,S,E ≈ execπ,A,E . Following [l03], we call this variant security with respect to specialized
simulators. We demonstrate that this variant is equivalent to the main definition (Definition 5).

Claim 12 A protocol π UC-emulates protocol φ according to Definition 5 if and only if it UC-
emulates φ with respect to specialized simulators.

Proof: Clearly, if π UC-emulates φ as in Definition 5 then UC-emulates φ with respect to specialized
simulators. To show the other direction, assume that π UC emulates φ with respect to specialized
simulators. That is, for any PPT adversary A and PPT environment E there exists a PPT simulator
S such that (1) holds. Consider the “universal environment” Eu which expects its input to consist
of (〈E〉, z, 1t), where 〈E〉 is an encoding of an ITM E , z is an input to E , and t is a bound on the
running time of E . Then, Eu runs E on input z for up to t steps, outputs whatever E outputs, and
halts. Clearly, machine Eu is PPT. (in fact, it runs in linear time in its input length). We are thus
guaranteed that there exists a simulator S for Eu such that (1) holds. We claim that S satisfies

45

(1) with respect to any balanced PPT environment E . To see this, fix a PPT machine E as in
Definition 2, and let c be the constant exponent that bounds E ’s running time. For each k ∈ N
and z ∈ {0, 1}∗, the distribution execφ,S,E(k, z) is identical to the distribution execφ,S,Eu(k, zu),
where zu = (〈E〉, z, 1c·|z|). Similarly, the distribution execπ,A,E(k, z) is identical to the distribution
execπ,A,Eu(k, zu). Consequently, for any d ∈ N we have:

{execφ,S,E(k, z)}k∈N,z∈{0,1}≤kd = {execφ,S,Eu(k, zu)}
k∈N,zu=(〈E〉,z∈{0,1}≤kd ,1c·|z|)

≈ {execπ,A,Eu(k, zu)}
k∈N,zu=(〈E〉,z∈{0,1}≤kd ,1c·|z|)

= {execπ,A,E(k, z)}k∈N,z∈{0,1}≤kd .

In particular, as long as |z| is polynomial in k, we have that |zu| is also polynomial in k (albeit
with a different polynomial). Consequently, execφ,S,E ≈ execπ,A,E . (Notice that if |zu| were not
polynomial in k then the last derivation would not hold.) �

Remark: Claim 12 is an extension of the equivalence argument for the case of computationally
unbounded environment and adversaries, discussed in [c00], in the context of computationally
unbounded adversaries. A crucial element in the proof of this claim is the fact that the class
of allowed environment permits existence of an environment Eu that is universal with respect to
all allowed environments. In the context of computationally bounded environments, this feature
becomes possible when using a definition of PPT ITMs where the running time may depend not
only on the security parameter, but also on the length of the input. Indeed, in [c00] and in previous
versions of this work, which restrict ITMs to run in time that is bound by a fixed polynomial in
the security parameter, standard security and security with respect to specialized simulators end
up being different notions (see, e.g., [l03, hu05]). Similarly, the proof of Claim 12 does not hold
for the notion of security with respect to closed environments, i.e. environments that take inputs
only of the form 1n for some n.

Finally we note that the the current proof of the UC composition theorem does not hold for
UC emulation with respect to specialized simulators.

5 Universal composition

This section states and proves the universal composition theorem. Section 5.1 defines the compo-
sition operation and states the composition theorem. Section 5.2 presents the proof. Section 5.3
discusses and motivates some aspects of the theorem, and sketches some extensions. Additional
discussion on the implications of the UC operation and theorem appears in [c06, c13].

5.1 The universal composition operation and theorem

While the main intended use of universal composition is for replacing an ideal functionality F with
a protocol that securely realizes F , we define universal composition more generally, in terms of
replacing one subroutine protocol with another. This both simplifies the presentation and makes
the result more powerful.

Universal composition. We present the composition operation in terms of an operator on
protocols. This operator, called the universal composition operator uc(), is defined as follows. Given

46

a protocol φ, a protocol ρ (that presumably makes subroutine calls to φ), and a protocol π (that
presumably UC-emulates φ), the composed protocol ρφ→π = uc(ρ, π, φ) is identical to protocol ρ,
with the following modifications.

1. Wherever ρ contains an instruction to pass input x to an ITI running φ with identity (sid, pid),
then ρφ→π contains instead an instruction to pass input x to an ITI running π with identity
(sid, pid).

2. Whenever ρφ→π receives an output passed from π(sid,pid′) (i.e., from an ITI running π with
identity (sid, pid′), it proceeds as ρ proceeds when it receives an output passed from φ(sid,pid′).

In other words, the program of ρφ→π can be thought of as consisting of an internal “core” part
that’s identical to ρ, and a separate “shell” part that performs the translation between calling φ
and calling π. When protocol φ is the ideal protocol idealF for some ideal functionality F , we
denote the composed protocol by ρπ/F . Also, when φ is understood from the context we use the
shorthand ρπ instead for ρφ→π. See a graphical depiction in Figure 4 on page 14.

We remark that the composition operation can alternatively be defined as a model operation
where the protocols remain unchanged, and the only change is that the control function invokes
instances of ρ instead of instances φ. We find the present formulation, where the protocol determines
the code run by its subroutines, intuitively appealing. It is also more expressive, allowing to capture
protocols where the identities and code of the subroutines are not statically pre-determined.

Clearly, if protocols ρ, φ, and π are PPT then ρφ→π is PPT (with a bounding polynomial that
is the maximum of the individual bounding polynomials).

Subroutine Respecting protocols. Before stating the theorem, We define the following set of
properties of protocols. While natural, these properties are needed for the proof to go through.
Roughly speaking, a protocol π is subroutine respecting if: (a) the only input/output interface
between each instance of π and other protocol instances in the system is done by the main parties
of π, and (b) the identities of all the subsidiaries of each instance of π are known to the adversary.

More precisely, say that protocol π is subroutine respecting if the following properties hold with
respect to any instance of π in any execution of any protocol ρ that makes subroutine calls to π:

1. No ITI which is a subsidiary of this instance passes outputs to an ITI which is not a party or
subsidiary of this instance. Furthermore, all subsuduaries of this instance of π ignore all inputs
received from parties other than the parties and subsidiaries of this instance. (Technically,
ignoring an incoming value means immediately erasing it and reverting to the state prior to
reading.)

2. At first activation, each ITI that is currently a subsidiary of this instance, or will ever become
one, sends a special message to the adversary, notifying it of its own code and identity, as
well as the code π and the SID of this instance.12

12Prior versions of this work did not provide an adequate treatment of the need to expose the subroutine structure
of protocols, resulting in a flaw in the proof of the UC theorem (see Footnote 14). The flaw was pointed out in [hs11].

One natural method for guaranteeing the second property (and thus avoiding this flaw) is to mandate a hierarchical
tree-like subroutine structure for protocol invocation, and have the hierarchical structure be reflected in the session
IDs. This method is indeed mandated in [hs11]. We note however that there are other ways to guarantee property
2. Furthermore, at times this hierarchical structure is over-restrictive. See more discussion in Section 6.3.

47

Theorem statement. We are now ready to state the composition theorem. First we state a
general theorem, to be followed by two corollaries. The general formulation makes the following
statement: Let ρ, π, φ be protocols, such that protocol π UC-emulates protocol φ as in Definition
5 and both φ and π are subroutine respecting. Then the protocol ρφ→π = uc(ρ, π, φ) UC-emulates
protocol ρ. A more quantitative statement of the UC theorem is discussed in Section 5.3.

Theorem 13 (Universal composition: General statement) Let ρ, π, φ be PPT protocols such
that π UC-emulates φ and both φ and π are subroutine respecting. Then protocol ρφ→π UC-emulates
protocol ρ.

As a special case, we get:

Corollary 14 Let ρ, π be PPT protocols such that π UC-realizes a PPT ideal functionality F , and
both φ and π are subroutine respecting. Then protocol ρπ/F UC-emulates protocol ρ.

Next we concentrate on protocols ρ that securely realize some ideal functionality G. The fol-
lowing corollary essentially states that if protocol ρ securely realizes G using calls to an ideal
functionality F , F is PPT, and π securely realizes F , then ρπ/F securely realizes G.

Corollary 15 (Universal composition: Realizing functionalities) Let F ,G be ideal function-
alities such that F is PPT. Let ρ be a subroutine respecting protocol that UC-realizes G, and let π be
a subroutine respecting protocol that securely realizes F . Then the composed protocol ρπ/F securely
realizes G.

Proof: Let A be an adversary that interacts with parties running ρπ/F . Theorem 13 guarantees
that there exists an adversary AF such that execπ,AF ,E ≈ execρπ/F ,A,E for any environment E .
Since ρ UC-realizes G, there exists a simulator S such that idealG,S,E ≈ execρ,AF ,E for any E .
Using the transitivity of indistinguishability of ensembles we obtain that idealG,S,E ≈ execρπ/F ,A,E
for any environment E . �

5.2 Proof of the composition theorem

A high-level sketch of the proof was presented in section 2. Section 5.2.1 contains an outline of the
proof. A detailed proof appears in Section 5.2.2.

5.2.1 Proof outline

The proof uses the equivalent formulation of emulation with respect to dummy adversaries (see
Claim 10). This formulation considerably simplifies the presentation of the proof.

Let ρ, φ and π be PPT protocols such that π UC-emulates φ, and let ρπ = ρφ→π = uc(ρ, π, φ)
be the composed protocol. We wish to construct an adversary S so that no E will be able to tell
whether it is interacting with ρφ→π and the dummy adversary or with ρ and S. That is, for any E ,
S should satisfy

execρφ→π ,D,E ≈ execρ,S,E . (2)

The general outline of the proof proceeds as follows. The fact that π emulates φ guarantees
that there exists an adversary (called a simulator) Sπ, such that for any environment Eπ we have:

execπ,D,Eπ ≈ execφ,Sπ ,Eπ . (3)

48

Simulator S is constructed out of Sπ. We then demonstrate that S satisfies (2). This is done
by reduction: Given an environment E that violates (2), we construct an environment Eπ that
violates (3).

Simulator S operates as follows. Recall that E expects to interact with parties running ρπ.
The idea is to separate the interaction between E and the parties into several parts. To mimic the
sending and receiving of messages from the parties of each instance of π (and their subsidiaries),
S runs an instance of the simulator Sπ. To mimic the sending and receiving of messages from the
rest of the ITIs in the system (including the main parties of ρ and their subsidiaries which are not
parties or subsidiaries of an instance of π), S interacts directly with these parties.

A bit more specifically, recall that E expects to receive, via the dummy adversary, the messages
sent by the parties of ρ, by the parties of all instances of π, and by all their subsidiaries. In addition,
E delivers messages to all these entities. S runs an instance of the simulator Sπ for each instance
of π in the system it interacts with. When activated with a message sent by a party which is a
party or subsidiary of an instance of φ, S forwards this message to the corresponding instance of
Sπ. If the message is coming from another ITI, S forwards this message to E , just as the dummy
adversary would. (In fact, only “top-level” instances of φ, namely only instances of φ that are not
subsidiaries of other instances of φ, will have an instance of Sπ associated with them. The other
instances of φ will be “handled” by the instance of Sπ associated with the corrsponding top-level
instance of φ.)

When activated with message m sent by E to a party or subsidiary of an instance of π, S
forwards m to the corresponding instance of Sπ. If the message is to be delivered to another
ITI, then S delivers m to the actual intended recipient. Any output from an instance of Sπ is
passed as output to E , and any outgoing message delivered by an instance of Sπ is delivered to
the actual party. (Since π and φ are subroutine respecting, S has enough information to decide,
given a message from E to be delivered, or a message coming from the rest of the system, whether
the target ITI specified in the message is a party or subsidiary of some instance of π.) Figure 7
presents a graphical depiction of the operation of S. E�Ssid1 Ssid2 �sid1 �sid2

�
S

�sid1 �sid2
Figure 7: The operation of S. Inputs from E that represent messages of the instance of ρ are forwarded to
the actual instance of ρ. Inputs directed to an instance of π are directed to the corresponding instance of S.
Messages from an instance of S are directed to the corresponding actual instance of φ. For graphical clarity
we use a single box to represent an instance of a multi-party protocol.

49

The validity of S is demonstrated, based on the validity of Sπ, via a hybrids argument. While
the basic logic of the argument is standard, applying the argument to our setting requires some
care. We sketch this argument. (The actual argument is slightly more complex; still, this sketch
captures the essence of the argument.) Let t be an upper bound on the number of instances of π
that are invoked in this interaction. Informally, for 1 ≤ l ≤ t we let ρl denote the protocol where
the interaction with the first l instances of φ remains unchanged, whereas the rest of the instances
of φ are replaced with instances of π. In particular, protocol ρt is essentially identical to protocol
ρ. Similarly, protocol ρ0 is essentially identical to protocol ρπ.13

Now, assume that there exists an environment E that distinguishes with probability ε between
an interaction with S and ρ, and an interaction with D and ρφ→π. Then there is an 0 < l ≤ t
such that E distinguishes between an interaction with S and ρl, and an interaction with S and
ρl−1. We then construct an environment Eπ that uses E distinguish with probability ε/t between
an interaction with D and parties running a single instance of π, and an interaction with Sπ and φ.

Essentially, Eπ runs a simulated execution of E , adversary S, and parties running ρl, but with
the following exception. Eπ uses its actual interaction (which is either with φ or with ρ) to replace
the parts of the simulated execution that have to do with the interaction with the lth instance of
φ, denoted φl. A bit more specifically, whenever some simulated party running ρ passes an input x
to φl, Eπ passes input x to the corresponding actual party. Outputs generated by an actual party
running π are treated like outputs from φl to the corresponding simulated party running ρ. (Since
π and φ are subroutine respecting, we are guaranteed that the only inputs and outputs between the
external protocol instance and Eπ are done via the inputs and outputs of the parties themselves.)
Furthermore, whenever the simulated adversary S passes input value v to the instance of Sπ that
corresponds to φl, Eπ passes input v to the actual adversary it interacts with. Any output obtained
from the actual adversary is passed to the simulated S as an output from the corresponding instance
of Sπ. Once the simulated E halts, Eπ halts and outputs whatever E outputs. Figure 8 presents a
graphical depiction of the operation of Eπ.

The proof is completed by observing that, if Eπ interacts with Sπ and φ, then the view of the
simulated E within Eπ has the same distribution as the view of E when interacting with S and ρl.
Similarly, if Eπ interacts with D and parties running π, then the view of the simulated E within Eπ
has the same distribution as the view of E when interacting with S and ρl−1.

5.2.2 A detailed proof

We proceed with a detailed proof of Theorem 13, substantiating the above outline.

Construction of S. Let ρ, φ, π be protocols, where π emulates φ, and and let ρπ = ρφ→π be the
composed protocol. The fact that π UC-emulates φ guarantees that there exists an ideal-process
adversary Sπ such that execφ,Sπ ,Eπ ≈ execπ,Eπ holds for any environment Eπ. Adversary S uses
Sπ and is presented in Figure 9. We use the following terminology: An instance of protocol α in
an execution is called top-level if it is not a subsidiary of any other instance of α in that execution.

13In the actual proof we consider a different model of computation for each hybrid, rather than considering a
different protocol. The reason is that the parties running the protocol may not know which is the (globally) lth
instance to be invoked. Also, for this argument we only consider the top-level instances of φ as discussed above. See
details within.

50

E� E��1 ... �l�1 �l �m...
� or �

�l+1
S or A

S
Figure 8: The operation of Eπ. An interaction of E with π is simulated, so that the first l − 1 instances
of φ remain unchanged, the lth instance is mapped to the external execution, and the remaining instances
of φ are replaced by instances of π. For graphical clarity we use a single box to represent an instance of a
multi-party protocol.

Validity of S. First, note that S is PPT. In fact, the polynomial p(·) bounding the running time
of S can be set to be the polynomial bounding the running time of S, plus a linear polynomial.
(Note that p(·) does not depend on the number of instances of ρ. The linear polynomial is needed
to take care of relaying the messages of protocol π.)

Another point to note is that S can determine, upon receiving an incoming message, whether
the sender ITI is a party or subsdiary of an instance of φ. Indeed, since φ is subroutine respecting,
S gets notified whenever a subsidiary of an instance of φ is created, and can thus keep record of
which ITIs are subsidiaries of each instance of φ, and which is the corresponding top-level instance
of φ.

Similarly, since π is subroutine respecting, S gets notified (by the instances of Sπ that it runs
locally) whenever a subsidiary of an instance of π is created, and can thus keep record of which ITIs
are subsidiaries of each instance of φ in the simulated execution of ρπ that S mimics for E . This
allows S to determine, upon receiving from E a message to be delivered, whether the recipient is a
party or subsidiary of an instance of π, and which is the corresponding top-level instance of π.14

Next, assume that there exists an environment machine E that violates the validity of S (that
is, E violates Equation (2)). We construct an environment machine Eπ that violates the validity
of Sπ with respect to a single run of π. (That is, Eπ violates Equation (3).) More specifically, fix
some input value z and a value k of the security parameter, and assume that

execρπ ,E(k, z)− execρ,S,E(k, z) ≥ e. (4)

14 We note that the requirement that π and φ expose their subroutine structure is necessary: [hs11] demonstrate
that without it the UC theorem may fail.

51

Adversary S

Adversary S proceeds as follows, interacting with parties running protocol ρ and environment E .

1. When activated with input (m, id, c) (coming from E), where m is a message, id = (sid, pid)
is an identity, and α is a code for an ITM, do:

(a) If the specified recipient is a party of a top-level instance sid′ of π, or a subsidiary thereof,
then first locate the internally running instance S(sid,>) of Sπ that handles the protocol
instance with SID= sid′. If no such instance of Sπ is found, then internally invoke a
new instance of Sπ with identity (sid′,>). Next, activate this instance of Sπ with input
(m, id, α) and follow its instructions.

(b) Else (i.e., the specified recipient is not a party or subsidiary of an instance of π), deliver
the message m to the recipient. Using the terminology of Definition 1, this means that
S executes an external-write request to the incoming message tape of an ITI (c, id).

2. When activated with an incoming message m from an ITI with ID id = (sid, pid) and code
α, do:

(a) If the sending ITI is a party of a top-level instance sid′ of protocol φ, or a subsidiary
thereof, then internally activate the instance S(sid′,>) of S with incoming message m
from (id, α), and follow its instructions. If no such instance of Sπ exists then invoke it,
internally, and label it S(sid′,>).

(b) Else, pass output (m, id, α) to E .

3. When an instance of Sπ internally generates a request to deliver a message m to some party,
then deliver m to this party. When an instance of Sπ requests to pass an output v to its
environment then output v to E , but with the the exception that S mimics the time bounds
of a dummy adversary. That is, S stops delivering output to E as soon as the output length
exceeds the overall input length of S.

Figure 9: The adversary for protocol ρ.

We show that
execπ,D,Eπ(k, z)− idealφ,Sπ ,Eπ(k, z) ≥ e/t (5)

where t = t(k, |z|) is a polynomial function.

In preparation to constructing Eπ, we define the following distributions and make some ob-
servations on S. Consider an execution of protocol ρ with adversary S and environment E . Let
t = t(k, |z|) be an upper bound on the number of top-level instances of φ within ρ in this execution.
(The bound t is used in the analysis only. The parties need not be aware of t. Also, t is polynomial
in k, |z| since E is PPT.) For 0 ≤ l ≤ t, Let the l-hybrid model for running protocol ρ denote the
extended system of ITMs that is identical to the basic model of computation, with the exception
that the control function is modified as follows. (Recall that the control function of an extended
system of ITMs determines, among other things, the target ITIs of external-write requests.) The
external-write requests to tapes of the first l top-level instances of φ to be invoked are treated as
usual. The external-write requests to the tapes of all other top-level instances of φ are directed to
the corresponding instances of parties running π. That is, let sidi denote the SID of the ith top-
level instance of φ to be invoked in an execution. Then, given an external-write request made by

52

an some ITI to the input tape of φ(sidi,pid) (i.e., to the party running φ with identity (sidi, pid)) for
some pid, where i > l, the control function writes the requested value to the input tape of π(sidi,pid);
if no such ITI exists then one is invoked. Note that these modifications apply to external-write
requests by any ITI, including ITIs that participate in instances of φ and π, as well as subsidiaries
thereof. Similarly, whenever π(sidi,pid) requests to pass output to some ITI M , the control function
changes the code of the sending ITI, as written on the subroutine output tape of M , to be φ. We
let execlρ,A,E(k, z) denote the output of this system of ITMs on input z and security parameter k
for the environment E .

We observe that, when S interacts with E and parties running ρ in the l-hybrid model, it
internally runs at most l instances of the simulator Sπ. (These are the instances that correspond
to the first top-level l instances of protocol φ with which S interacts.) The remaining instances of
Sπ are replaced by interacting with the actual parties or sub-parties of the corresponding instances
of π. In particular, we have that the output of E from an interaction with ρ and S in the t-hybrid
model is distributed identically to the output of E from an interaction with ρ and S in the basic
model, i.e. exectρ,S,E = execρ,S,E . Similarly, the output of E from an interaction with ρ and S
in the 0-hybrid model is distributed identically to the output of E from an interaction with ρπ in
the basic model of computation, i.e. exec0

ρ,S,E = execρ,D,E . Consequently, Inequality (4) can be
rewritten as:

exec0
ρ,S,E(k, z)− exectρ,S,E(k, z) ≥ ε. (6)

We turn to constructing and analyzing environment Eπ. The construction of Eπ is presented in
Figure 10. We first note that Eπ is PPT. This follows from the fact that the entire execution of the
system is completed in polynomial number of steps. (Indeed, the polynomial bounding the runtime
of Eπ can be bounded by the maximum among the polynomials bounding the running times of E ,
ρ, and ρφ→π.)

The rest of the proof analyzes the validity of Eπ, demonstrating (5). For 1 ≤ l ≤ t, let
execφ,S,Elπ(k, z) denote the distribution of execφ,S,Eπ(k, z) conditioned on the event that Eπ chose
hybrid l. We first argue that, for every k, z, and 1 ≤ l ≤ t, we have:

execφ,Sπ ,Elπ(k, z) = execlρ,S,E(k, z) (7)

and
execπ,D,Elπ(k, z) = execl−1ρ,S,E(k, z). (8)

Equations (7) and (8) follow from inspecting the code of Eπ and S. In particular, if Eπ interacts
with parties running φ then the view of the simulated E within Eπ is distributed identically to the
view of E when interacting with ρ and S in the l-hybrid model. Similarly, if Eπ interacts with
parties running π then the view of the simulated E within Eπ is distributed identically to the view
of E when interacting with ρ and S in the (l − 1)-hybrid model. (Here it is important to note
that, since both π and φ are subroutine respecting, the only communication between the external
instance of π or φ, and the ITIs outside this instance, is the inputs and outputs of the main parties
of this instance.)

From Equations (6), (7) and (8) it follows that:

|execπ,D,Eπ(k, z)− execφ,Sπ ,Eπ(k, z)| = |1
t

t∑
l=1

(execlρ,S,E(k, z)− execl−1ρ,S,E(k, z))| ≥ ε/t (9)

in contradiction to the assumption that Sπ is a valid simulator for π.

53

Environment Eπ

Environment Eπ proceeds as follows, given a value k for the security parameter, input z, and ex-
pecting to interact with parties running a single instance of π. We first present a procedure called
Simulate(). Next we describe the main program of Eπ.

Procedure Simulate(s, l)

1. Expect the parameter s to contain a global state of a system of ITMs representing an execution
of protocol ρ in the l-hybrid model, with adversary S and environment E . Continue a simulated
execution from state s (making the necessary random choices along the way), until one of the
following events occurs. Let sidl denote the SID of the lth top-level instance of φ to be invoked
in the simulated execution.

(a) Some simulated ITI with identity id passes input x to an ITI id′ which is a party or
subsidiary of instance sidl of φ. In this case, save the current state of the simulated
system in s, pass input x from claimed source id to the external ITI id′, and complete
this activation.

(b) The simulated E passes input (m, id) to the simulated adversary S, where id is the
extended identity of an ITI which is a party or subsidiary of instance sidl of φ. In this
case, save the current state of the simulated system in s, pass the input (m, id) to the
external dummy adversary, and complete this activation.

(c) The simulated environment E halts. In this case, Eπ outputs whatever E outputs and
halts.

Main program for Eπ:

1. When activated for the first time, with input z, choose l
R← {1..t}, and initialize a variable s

to hold the initial global state of a system of ITMs representing an execution of protocol π in
the l-hybrid model, with adversary S and environment E on input z and security parameter
k. Next, run Simulate(s, l).

2. In any other activation, let x be the new value written on the subroutine-output tape. Next:

(a) Update the state s. That is:

i. If the new value x was written by one of the main parties of the external protocol
instance, then write x to the subroutine-output tape of the
simulated party that’s specified in the output x. (Recall that values written to the
subroutine output tape of the environment include an extended identity of a target
ITI.)

ii. If the new value x was written by the external adversary, then update the state of
the simulated adversary S to include an output v generated by the instance of Sφ
that corresponds to instance sidl of φ.

(b) Simulate an execution of the system from state s. That is, run Simulate(s, l).

Figure 10: The environment for a single instance of π.

5.3 Discussion and extensions

Some aspects of the universal composition theorem were discussed in Section 2.3. This section
highlights additional aspects, and presents some extensions of the theorem.

54

On composability with respect to closed environments. Recall that the closed-environment
variant of the definition of emulation (Definition 5) considers only environments that take external
input that contains no information other than its length, e.g. inputs of the form 1n for some n. We
note that the UC theorem still holds even for this variant, with the same proof.

Composing multiple different protocols. The composition theorem (Theorem 13) is stated
only for the case of replacing instances of a single protocol φ with instances of another protocol.
The theorem holds also for the case where multiple different protocols φ1, φ2, ... are replaced by
protocols ρ1, ρ2, ..., respectively. (This can be seen either by directly extending the current proof,
or by defining a single “universal” protocol that mimics multiple different ones.)

A quantitative statement of the UC theorem. We observe that the polynomial bounding
the running time of the constructed environment Eπ is no larger than the polynomial bounding the
running time of the given environment E . From this, along with the fact that the distinguishing
probability of Eπ decreases proportionally to the number of instances of ρ, we have that if ρ (k, ε, g)-
UC-emulates φ for some value k of the security parameter, then protocol πρ/φ (k, ε′, g)-UC-emulates
protocol π, where ε′(pA, PE)() = t · ε(c · pA, c · pE)(), t is a bound on the number of instances of ρ
in πρ, and c is some small constant. That is, the emulation slack increases by a factor of roughly
t, and the simulation overhead remains the same.

An alternative proof of the UC theorem. The above proof of Theorem 13 constructs, in a
single step, a simulator Sπ that handles all the instances of ρ. An alternative proof proceeds as
follows:

1. Prove Theorem 13 for the case where protocol π calls only a single instance of φ, or equivalently
when only one instance of φ, out of potentially many instances called by π, is replaced with
an instance of ρ. Call this theorem the “single-instance UC theorem”. Proving this theorem
is considerably simpler than the current proof; in particular, the hybrids argument is not
necessary. Furthermore, in this case the UC theorem preserves both the emulation slack ε
and the simulation overhead g.

2. To handle replacement of polynomially many concurrent instances of φ by instances of ρ,
simply apply the “single-instance UC theorem” iteratively, where in each iteration a new
instance of φ is replaced by an instance of ρ and the remaining instances of ρ, φ and π are
treated as part of the environment. Then, use the transitivity of UC-emulation to deduce
that πρ UC-emulates π.

When comparing this proof to the direct proof in Section 5.2, one should take into account the
degradation in the quality of the emulation, namely the growth of the emulation slack ε and the
simulation overhead g. Recall that, by transitivity, the emulation slack increases additively under
iterative applications of UC-emulation (see discussion on page 39). This means that the emulation
slack grows linearly in the number of instances of the composed protocol; this is the same as in the
proof of Section 5.2.

However, the proof of Section 5.2 does better in terms of the simulation overhead: In that proof,
there is no increase in the simulation overhead. In contrast, in the alternative proof mentioned here
the simulation overhead when composing t instances is the t-wise composition of the overheads

55

incurred by the t applications of the UC theorem. Therefore, the simulation overhead increases
proportionally to the number of composed instances. Still, the increase is moderate: By Claim 8,
we have that each such overhead is an additive polynomial p() that depends only on protocols ρ
and φ. This means that the simulation overhead increases by an additive factor of tp().

Nesting of protocol instances. The universal composition operation can be applied repeatedly
to perform “nested” replacements of calls to sub-protocols with calls to other sub-protocols. We
observe that repeated application of the composition operation preserves security. For instance,
if a protocol ρ1 UC-emulates protocol φ1, and protocol ρ2 UC-emulates protocol φ2 using calls to

φ1, then for any protocol π that uses calls to φ2 it holds that the composed protocol π(ρ
ρ1/φ1
2)/φ2 =

uc(π,uc(ρ2, ρ1, φ1), φ2) UC-emulates π.

Security for nested applications of universal composition can be argued by repeated application
of the UC theorem, similarly to the alternative proof of the UC theorem, sketched above. As there,
the emulation slack and the simulation overhead increase linearly in the number of composed
instances, regardless of whether these instances are nested or not. In addition, it is possible to
extend the direct proof of Section 5.2 to deal with the case of nested applications of the UC
operation with arbitrary polynomial depth, and with no increase in the simulation overhead. We
omit further details. The fact that the UC theorem extends to arbitrary polynomial nesting of the
UC operation was independently observed in [bm04] for their variant of the UC framework.

Beyond PPT. The UC theorem is stated and proven for PPT systems of ITMs, namely for the
case where all the involved entities are PPT. It is readily seen that the theorem holds also for other
classes of ITMs and systems, as long as the definition of the class guarantees that any execution of
any system of ITMs can be “simulated” on a single ITM from the same class.

More precisely, say that a class C of ITMs is self-simulatable if, for any system (I, C) of ITMs
where both I and C (in its ITM representation) are in C, there exists an ITM M in C such that, on
any input and any random input, the output of a single instance of M equals the output of (I, C).
(Stated in these terms, Proposition 3 on page 30 asserts that for any super-additive function T (),
the class of ITMs that run in time T () is self-simulatable.)

Say that protocol π UC-emulates protocol φ with respect to class C if Definition 5 holds when
the class of PPT ITMs is replaced with class C, namely when π, A, S, and E are taken to be ITMs
in C. Then we have:

Proposition 16 Let C be a self-simulatable class of ITMs, and let π, ρ, φ be protocols in C such
that ρ UC-emulates φ with respect to class C. Then protocol πρ/φ UC-emulates protocol π with
respect to class C.

It is stressed, however, that the UC theorem is, in general, false in settings where systems of
ITMs cannot be simulated on a single ITM from the same class. We exemplify this point for the
case where all entities in the system are bound to be PPT, except for the protocol φ which is not
PPT.15 More specifically, we present an ideal functionality F that is not PPT, and a PPT protocol
π that UC-realizes F with respect to PPT environments. Then we present a protocol ρ, that calls
two instances of the ideal protocol for F , and such that ρπ/F does not UC-emulate π. In fact, for
any PPT π′ we have that ρπ

′/F does not emulate ρ.

15We thank Manoj Prabhakaran and Amit Sahai for this example.

56

In order to define F , we first recall the definition of pseudorandom ensembles of evasive sets,
defined in [gk89] for a related purpose. An ensemble S = {Sk}k∈N where each Sk = {sk,i}i∈{0,1}k
and each sk,i ⊂ {0, 1}k is a pseudorandom evasive set ensemble if: (a) S is pseudorandom, that is

for all large enough k ∈ N and for all i ∈ {0, 1}k we have that a random element x
R← sk,i is

computationally indistinguishable from x
R← {0, 1}k. (b) S is evasive, that is for any non-uniform

PPT algorithm A and for any z ∈ {0, 1}∗, we have that Prob
i
R←{0,1}k

[A(z, i) ∈ sk,i] is negligible in

k, where k = |z|. It is shown in [gk89], via a counting argument, that pseudorandom evasive set
ensembles exist.

Now, define F as follows. F uses the ensemble S and interacts with one party only. Given
security parameter k, it first chooses i

R← {0, 1}k and outputs i. Then, given an input (x, i′) ∈
{0, 1}k × [2k], it first checks whether x ∈ sk,i. If so, then it outputs success. Otherwise it outputs

r
R← sk,i′ .

Protocol π for realizing F is simple: Given security parameter k it outputs i
R← {0, 1}k. Given

an input x ∈ {0, 1}k, it outputs r
R← {0, 1}k. It is easy to see that π UC-realizes F : Since S is

evasive, then the probability that the input x is in the set sk,i is negligible, thus F outputs success
only with negligible probability. Furthermore, F outputs a pseudorandom k-bit value, which is
indistinguishable from the output of π.

Now, consider the following F-hybrid protocol ρ. ρ runs two instances of F , denoted F1 and
F2. Upon invocation with security parameter k, it activates F1 and F2 with k, and obtains the
indices i1 and i2. Next, it chooses x1

R← {0, 1}k, and feeds (x1, i2) to F1. If F1 outputs success

then ρ outputs success and halts. Otherwise, π feeds the value x2 obtained from F1 to F2. If
F2 outputs success then ρ outputs success; otherwise it outputs fail. It is easy to see that ρ
always outputs success. However, ρπ/F never outputs success. Furthermore, for any PPT protocol
π′ that UC-realizes F , we have that ρπ

′/F outputs success only with negligible probability.

6 UC formulations of some computational models

Recall that the basic model of computation, captured in Figure 5 on page 35, provides only a very
rudimentary way for communication between parties. Specifically, the communication is completely
controlled by the adversary, in terms of both the contents and the timing of delivered messages.
Also, no specific provisions for party corruption are given. In fact, this model is not intended to
be a viable model of computation at all. Rather, it is intended to provide a formal basis on top of
which more realistic — and more abstract — models of computation can be formulated.

As sketched and motivated in the Introduction (Section 1.3), communication models can be
captured within the present framework by way of formulating appropriate ideal functionalities.
That is, we say that an ideal functionality F represents some communication model if protocols
in this communication model can be represented by considering protocols that make subroutine
calls to IF . Using the same approach, a corruption model is captured by adding to the protocol
description a set of instructions to be executed upon receiving a special “corruption” message from
the adversary.

This section exemplifies this approach by presenting ideal functionalities that are aimed at
capturing some salient communication models. Specifically, we address authenticated and secure
communication, synchronous communication, and non-concurrent protocol execution. We also

57

formulate within the framework some standard models for party corruption.

In addition to presenting the specific ideal functionalities considered, this section intends to
exemplify the use of the framework and to provide the reader with basic techniques for writing
ideal functionalities. For this purpose, we also set some general writing conventions for ideal
functionalities, and demonstrate their use.

We start with presenting some basic corruption models, in Section 6.1. We then turn to writing
ideal functionalities: Section 6.2 presents general writing conventions. Sections 6.3 ad 6.4 present
the ideal functionalities for capturing authenticated and secure communication, respectively. Sec-
tion 6.5 present the ideal functionality capturing synchronous communication, and Section 6.6
presents the ideal functionality capturing non-concurrent protocol execution.

6.1 Some corruption models

The operation of party corruption is a common basic construct in modeling and analyzing the secu-
rity of cryptographic protocols. Party corruption is used to capture a large variety of concerns and
situations, including preserving secrecy in face of eavesdroppers, resilience to adversarial (“Byzan-
tine”) behavior by protocol participants, resilience to viruses and software exploits, resilience to
side channel attacks, etc.

The basic model of protocol execution and the definition of protocol emulation from Section 4 do
not provide an explicit mechanism for modeling party corruption. Instead, this section demonstrates
how party corruption can be modeled via a set of conventions regarding protocol instructions to be
performed upon receiving a special message from the adversary. We argue that this choice keeps
the basic model simpler and cleaner, and at the same time provides greater flexibility in capturing
a variety of concerns via the corruption mechanism.

First we need a way to separate separate between protocol instructions that represent instruc-
tions that represent “real code” and ones that represent artificial model operations. We do this as
follows. Say that a protocol is compliant if it consists of two separate parts, or “sub-processes,”
called a body and a shell. The shell; however the body does not have access to the state of the
shell. Each incoming message, input or subroutine output is first processed by the shell, which
then potentially forwards this message (or some function of it) to the body. Similarly, each ex-
ternal write instruction executed by the body is passed to the shell, who may modify it before
sending it out. From now on we assume all protocols are compliant. The conventions below specify
the behavior of the shell, which represents artificial model instructions. The body of the protocol
remains unrestricted.

To corrupt an ITI M , the adversary delivers a (corrupt, p) message to M , where p is some
parameter of the corruption. Say that a protocol π is standard corruption if, as soon as the shell
of am ITI M running π receives a (corrupt, p) message, it first passes a (corrupt, p,M) output
to all “parents” of M (i.e., to all ITIs of which M is a subroutine). Furthermore, when activated
with a (corrupt, p,M ′) subroutine output, the shell of M passes output (corrupt, p,M ′) to all
parent ITIs. This mechanism guarantees that the fact that some ITI was corrupted immediately
“percolates” all the way to the environment. This guarantees that party corruption operations can
be accounted for in the analysis. (To hide its subroutine structure, protocol π may choose to modify
or hide some of the the information regarding M , the corrupted ITI. See more details below.)

58

Byzantine corruption. Perhaps the simplest form of corruption to capture is total corrup-
tion, often called Byzantine corruptions. A protocol is Byzantine corruptions if, upon receiving the
(corrupt) message, the shell first complies with the above standard corruption requirement. From
this point on, any message received on the incoming communication tape is interpreted as an in-
struction to write a given value to a tape of another ITI; this instruction is carried out. In an
activation due to an incoming input or subroutine output, the protocol instructs to send the entire
local state to the adversary. (If the code of M is non-erasing, namely it only writes to each memory
location once, then this state includes all past states of M .) Note that here the body of π becomes
completely inactive from the time of corruption on.

Non-adaptive (static) corruptions. The above formulation of Byzantine corruption captures
adaptive party corruptions, namely corruptions that occur as the computation proceeds, based
on the information gathered by the adversary so far. It is sometimes useful to consider also a
weaker threat model, where the identities of the adversarially controlled parties are fixed before
the computation starts; this is the case of non-adaptive (or, static) adversaries. In the present
framework, a protocol is static corruption if it instructs, upon invocation, to send a notification
message to the adversary; a corruption message is considered only in it is delivered in the very next
activation. Later corruption messages are ignored.

Passive (honest-but-curious) corruptions. Byzantine corruptions capture situations where
the adversary obtains total control over the behavior of corrupted parties. Another standard
corruption model only allows the adversary to observe the internal state of the corrupted party.
We call such adversaries passive. Passive corruptions can be captured by changing the reaction of
the shell of a party to a (corrupt) message from the adversary, as follows. A protocol π is passive
corruptions if it proceeds as follows from the point when a (corrupt) message has been received.
Upon receipt of an incoming input or subroutine output, the shell activates the body, and at the
end of the activation sends the internal state to the adversary. If the next activation is due to
an incoming (continue) message from the adversary, then the shell performs the external write
operation instructed by the body in the previous activation. Else the shell halts for the remainder
of the protocol execution. when activated due to anther incoming message from the adversary, the
shell forwards the message to the body, and follows the instructions of the body in this activation.

We remark that one can consider two variants of passive corruptions, depending on whether
the adversary is allowed to modify the inputs of the corrupted parties. The two variants can be
captured via appropriate sets of instructions for parties upon corruption.

Transient (mobile) corruptions and proactive security. All the corruption methods so
far represent “permanent” corruptions, in the sense that once an ITI gets corrupted it remains
corrupted throughout the computation. Another variant allows ITIs to “recover” from a corruption
and regain their security. Such corruptions are often called mobile (or, transient). Security against
such corruptions is often called proactive security. Transient corruptions can be captured by adding
a (recover) message from the adversary. Upon receiving a (recover) message, the ITI stops
reporting its state to the adversary, and stops following the adversary’s instructions.

Coercion. In a coercion attack an external entity tries to influence the input that the attacked
party contributes to a computation, without physically controlling the attacked party at the time

59

where the input is being contributed. The typical coercion method is to ask the coerced party
to reveal, at some later point in time, its local state at time of obtaining the secret input, and
then verifying consistency with the public transcript of the protocol. Resilience to coercion is an
important requirement in setting where the participants are humans that are susceptible to social
pressure, such as in voting schemes.

In the present framework, coercion attacks can be modeled in a straightforward way, along the
lines of [cg96]. That is, upon receipt of a coercion message, the shell notifies the body of the
corruption and follows the instructions of the body. This allows the attacked party to run some
pre-determined algorithm for modifying its internal state before handing it over to the adversary.

Physical (“side channel”) attacks. A practical and very realistic security concern is protection
against “physical attacks” on computing devices, where the attacker is able to gather information
on, and sometimes even modify, the internal computation of a device via physical access to it.
(Examples include the “timing attack” of [k96], the “microwave attacks” of [bdl97, bs97] and the
“power analysis” attacks of [cjrr99].) These attacks are often dubbed “side-channel” attacks in
the literature. Some formalizations of security against such attacks appear in [mr04, glmmr04].

This type of attacks can be directly modeled via different reaction patterns of parties to corrup-
tion messages. For instance, the ability of the adversary to observe certain memory locations, or
to detect whenever a certain internal operation (such as modular multiplication) takes place, can
be directly modeled by having the corrupted ITI send to the adversary an appropriate function of
its internal state.

However, this modeling is rather limited since it allows the adversary to only obtain leakage
information from a single process (or, ITI). Instead, we would like to be able to capture leakage
that is taken from a physical device that runs several processes. This is one of the motivations to
the notion of PID-wise corruption, discussed next.

PID-wise corruption. An ITI is an abstract construct that captures a process, or an instance
of a running program. It is not directly associated with a physical computing device. Indeed, it is
often convenient to consider different processes that run on the same physical computer as separate
ITIs, thus “abstracting out” the fact that these processes actually share resources such as memory,
CPU and network access. Furthermore, it is possible to capture different components of modern
computers and their operating systems as ITIs within the present model, thus enabling rigorous
analysis of their security (see e.g. [c+11]). In all of these cases, it is often convenient to provide
a mechanism for corrupting a set of ITIs “together”. (For instance, we may want all the ITIs
that represent processes that “run on the same physical computer,” or all the ITIs that use the
same public key, to be corrupted together.) We capture this requirement as follows: Assume for
simplicity that all the ITIs that are to be corrupted together have the same PID (or the same value
of some field in the PID). Furthermore, we assume that the protocols in question are such that all
the ITIs that have the same PID are in the same “ancestry tree”, namely all ITIs with a given PID
are subsidiaries of a single ITI with that PID. Then, upon receiving a (corrupt) message, the shell
of the corrupted ITI passes along the tree inputs and outputs to all the ITIs with the same PID,
notifying them of the corruption. From now on, all the ITIs with that PID behave as corrupted.

In the case of PID-wise leakage a more sophisticated mechanism is required, for aggragating
the local states of all ITIs with the same PID, and computing leakage on the aggragate state. See
[bch12] for more details.

60

So far we only dealt with the modeling of various actual adversarial attacks on protocols by way
of specific protocol instructions. Specifying security requirements in face of corruptions is done by
specifying the response of the change once more than some number of parties have been corrupted.
We give some examples in Section 6.2.

6.2 Writing conventions for ideal functionalities

The model is designed so as to allow expressing a large variety of concerns and expected behavior
patterns in face of a wide variety of attacks. Still, in of itself the basic model is rather rudimentary.
This section presents some conventions and mechanisms that facilitate expressing common concerns
and requirements within the present formalism.

Specifying the identities of the calling parties. It is often important to allow an ideal
functionality F to verify the identites of its parent ITIs, namely the ITIs that provide it with
input. Similarly, an ideal functionality should be able to determine the identities of the parties on
whose subroutine output tape it is writing. Furthermore, this should hold not only with respect
to the dummy parties in the ideal protocol for F . Rather, F often needs access to the identities of
the parents of the dummy parties in the ideal protocol for F . (A quintessential example for this
need is Fauth, the message authentication functionality, described in the next section.) We note
that the framework makes this information available to F ; in particular, the code of the dummy
parties contains the identites and code of their parent ITIs.

When writing ideal functionalities, we allow ourselves to say “receive input v from party P”
and mean “upon activation with an input value v, verify that the writing ITI is a dummy party
whose (single) parent is an ITI with identity P”. Similarly we say “generate output v for party P”,
meaning “perform an external write operation of value v to a dummy ITI whose prescribed parent
has extended identity P .” Recall that the dummy ITI and its parent may actually be created as
a result of this write instrution. Also, we slightly abuse terminology and say that an ITI P is a
parent of F even when P is a parent of a dummy party in the ideal protocol for F .

SID conventions. It will be convenient to write ideal functionalities so that functionality never
expects to get an input from an ITI (other than its initial invoker), before passing an output to this
ITI. In other words, the functionality first ‘announces its existence” (and its SID) to an ITI, and
only then expects an input from this ITI. This convention is in line with protocol design principles
in anynchronous networks. It also means that there is no need for prior agreement on the SID of
an ideal functionality: The SID is determined by the first invoker of the instance of F . It will also
be convenient to include within the SID the identity of the initiator (namely, the identity of the
parent that invoked F), and sometimes even the identities of the intended future parents of F .

Note that the SID is typically treated as a public value, so if it is desired that the identities of
the participants be kept secret then some aliasing mechanism should be used (say, the SID includes
a list of aliases and the functionality is privately given the identity that corresponds to each alias).

Behavior upon party corruption. In the ideal protocol IF , corruption of a parties is modeled
as messages delivered by the adversary to the dummy parties and the ideal functionality F . By
convention, corruption messages delivered to the dummy parties are ignored. This makes sure that
decisions about behavior upon party corruption are made only within F . Indeed, the behavior of F

61

upon receipt of a corruption message is an important part of the security specification represented
by F .

We set some conventions for this behavior. While we do not mandate that an ideal functionality
is writen as a compliant protocol, we set a notion of standard corruption which is similar to
the corresponding notion for general protocols. We say that an ideal functionality F is standard
corruption if it proceds as follows upon receiving a (corrupt P) message from the adversary S,
where P is an identity of a dummy party for the present instance of IF : First, F marks P as
corrupted and passes output to P notifying it of the corruption. In the next activation, F sends to
the adversary all the inputs and outputs of P so far. In addition, from this point on, whenever F
gets an input value v from P , it forwards v to the adversary, and receives a “modified input value”
v′ from the adversary. Also, all output values intended for P are sent to the adversary instead. This
captures the standard behavior of the ideal process upon corruption of a party in existing definitional
frameworks. The functionalities presented in this section are standard-corruption unless explicitly
said otherwise.16

Delayed output. Recall that an output from an ideal functionality to a party is read by the
recipient immediately, in the next activation. In contrast, we often want to be able to represent
the fact that outputs generated by distributed protocols are inevitably delayed due to delays in
message delivery. One natural way to relax an ideal functionality so as to allow this slack is to
have the functionality “ask for the permission of the adversary” before generating an output. More
precisely, we say that an ideal functionality F sends a delayed output v to party P if it engages
in the following interaction: Instead of simply outputting v to P , F first sends to the adversary a
message that it is ready to generate an output to P . If the output is public, then the value v is
included in the message to the adversary. If the output is private then v is not not mentioned in
this message. Furthermore, the message contains a unique identifier that distinguishes it from all
other messages sent by F to the adversary in this execution. When the adversary replies to the
message (say, by echoing the unique identifier), F outputs the value v to P .

Sending public delayed output v to a set P of parties is carried out as follows: First, F sends
(v,P) to the adversary. Then, whenever the adversary responds with an identity P ∈ P, F outputs
v to P . If the output is private then the procedure is the same except that F does not send v
to the adversary. Sending delayed output which is partially private and partially public is defined
analogously.

Running arbitrary code. It is often convenient to let an ideal functionality F receive a de-
scription of an arbitrary code c from parties, or even directly from the adversary, and then run this
code while inspecting some properties of it. One use of such technique is for writing ideal func-
tionalities with only minimal, well-specified requirements from the implementation. For instance,
F may receive from the adversary a code for an algorithm; it will then run this algorithm as long
as some set of security or correctness properties are satisfied. If a required property is violated, F

16We remark that other behavior patterns upon party corruption are sometimes useful in capturing realistic con-
cerns. For instance, forward secrecy can be captured by making sure that the adversary does not obtain past inputs
or outputs of the party even when the party is corrupted. Partial security reduction due to leakage can be captured
by sending to the adversary only some function of the inputs and outputs. Furthermore, more global changes in
behavior can be formulated, say letting the adversary learn some secret input as soon as more than some fraction of
the participants are corrupted.

62

will output an error message to the relevant parties. Examples of this use include the signature
and encryption functionalities as formalized in [ch11, c05]. Another use for this “programming
technique” is to enable expressing the requirement that some adversarial processes be carried out
in isolation from the external environment the the protocol runs in. An example for this use is the
formulation of non-concurrent security in Section 6.6.

At first glance, this technique seems problematic in that F is expected to run algorithms of
arbitrary polynomial running time, whereas its runtime is bounded by some fixed polynomial. We
get around this problem by assuming that the entity that provides the code c explicitly invokes
an ITI γ that runs the program c; γ then takes inputs from F and providing outputs to F . This
way, the “burden of providing sufficient resources to run c” is shifted to the entity that provides
c. Note however that the length of the outputs of c should be bound by the polynomial bounding
F , otherwise F will not be able to read these outputs. Also, recall that the basic model allows F
to know the real code run by this ITI. In particular, F can make sure that c does not provide any
illegitimate output to parties other than F .

6.3 Authenticated Communication

Ideally authenticated message transmission means that an entity R will receive a message m from
an entity S only if S has sent the message m to R. Furthermore, if S sent m to R only t times
then R will receive m from S at most t times. These requirements are of course meaningful only
as long as both S and R follow their protocols, namely are not corrupted. In the case of adaptive
corruptions, the authenticity requirement is meaningful only if both S and R are uncorrupted at
the time when R receives the message.

In the present framework, protocols that assume ideally authenticated message transmission can
be cast as protocols with access to an “ideal authenticated message transmission functionality”.
This functionality, denoted Fauth, is presented in Figure 11. Fauth first waits to receive an input
(Send, S,R, sid,m) from a dummy party D, where S is the identity of the ITI that called D
(hereforth called the sender), R is an identity for the intended reciver, sid is the local SID, and
m is the message to be delivered. (It will be convenient to think of sid as containing S and R
as subfields, but this is certainly not necessary for the modeling to work.) Fauth then generates
a public delayed output (Sent, S,R, sid,m) to R. That is, Fauth first sends this value to the
adversary. When the adversary responds, Fauth writes this value to the subroutine output tape of
a dummy party with SID sid and PID R. This dummy party then passes output (Sent, S, sid,m)

to an ITI with identity R.

Fauth is a standard corruption functionality. That is, if Fauth receives a message from the
adversary to corrupt a party, then Fauth notifies the relevant dummy party of the corruption. In
addition, if the sender gets corrupted before the output value was actually delivered to R, then
Fauth allows the adversary to provide a new message m′ of its choice. In this case, Fauth outputs
(Corrupted) to S, outputs (Send, S, sid,m′) to R and halts.

We highlight several points regarding the security guarantees provided by Fauth. First, Fauth

reveals the contents of the message to the adversary. This captures the fact that secrecy of the
message is not guaranteed. Second, the output is delayed, namely Fauth delivers a message only
when the adversary responds, even if both the sender and the receiver are uncorrupted. This
means that Fauth allows the adversary to delay a message indefinitely, and even to block delivery
altogether. Third, Fauth allows the adversary to change the contents of the message, as long as

63

Functionality Fauth

1. Upon receiving an input (Send, S,R, sid,m) from ITI S, generate a public delayed output
(Sent,S, sid,m) to R and halt.

2. Upon receiving (Corrupt-sender, sid,m′) from the adversary, and if the (Sent, S, sid,m)

output is not yet delivered to R, then output (Sent, S, sid,m′) to R and halt.

Figure 11: The Message Authentication functionality, Fauth. For simplicity, the dummy parties
are omitted from this description. Also, the function is standard corruption, meaning that upon
receiving a (Corrupt,P) instructionm it outputs (Corrupted) to the dummy party with PID P .

the sender is corrupted at the time of delivery, even if the sender was uncorrupted at the point
when it sent the message. This provision captures the fact that in general the received value is
not determined until the point where the recipient actually generates its output.17 Fourth, Fauth

guarantees “non-transferable authentication”: By interacting with Fauth, the receiver R does not
gain ability to run protocols with a third party V , whereby V reliably learns that the message was
indeed sent by the sender. In situations where this strong guarantee is not needed, it might suffice
to use an appropriately relaxed variant of Fauth.

Next, let us highlight two modeling aspects of Fauth. First, Fauth deals with authenticated
transmission of a single message. Authenticated transmission of multiple messages is obtained by
using multiple instances of Fauth, and relying on the universal composition theorem for security.
This is an important property: It allows different instances of protocols that use authenticated
communication to use different instances of Fauth, thereby making sure that these protocols can be
analyzed per instance, independently of other instances. This modeling also significantly simplifies
the analysis of protocols that obtain authenticated communication. Another modeling aspect is
that Fauth generates an output for the receiver without requiring the receiver to provide any input.
This means that the SID is determined exclusively by the sender, and there is no need for the
sender and receiver to agree on the SID in advance.18

On realizing Fauth. Fauth is used not only as a formalization of the authenticated communi-
cation model. It also serves as a way for specifying the security requirements from authentication
protocols. (As discussed earlier, the validity of this dual use comes from the universal composition
theorem.) We very briefly summarize some basic results regarding the realizability of Fauth.

As a first step, we note that it is impossible to realize Fauth in the bare model, except by
protocols that never generate any output. That is, say that a protocol is useless if no party ever
generates output with non-negligible probability for any PPT environment and adversary. Then,
we have:

17Previous formulations of of Fauth failed to let the adversary change the delivered message and recipient identity
if the sender gets corrupted between sending and delivery. This results in an unrealistically strong security guarantee,
that is not intuitively essential and is not provided by reasonable authentication protocols. This oversight was pointed
out in several places, including [hms03, af04].

18 We point out that this non-interactive formulation of Fauth makes crucial use of the fact that the underlying
computational model from Section 3.1 allows for dynamic addressing and generation of ITIs. Indeed, allowing such
simple and powerful formulation of Fauth and similar functionalities has been one of the main motivations for the
present formulation of the underlying computational model.

64

Claim 17 ([c04]) Any protocol that UC-realizes Fauth in the bare model is useless.

Still, there are a number of ways to realize Fauth in algorithmic ways, given some other ab-
stractions on the system. Following the same definitional approach, these abstractions are again
formulated by way of ideal functionalities. One such abstraction is allowing the parties to commu-
nicate in an ideally authenticated way at some preliminary stage. Another abstraction postulates
existence of a trusted “bulletin board”, where parties can register public values (e.g., keys) that
can be authentically obtained by other parties upon request. These abstractions come in a number
of flavors, that significantly influence the feasibility and efficiency of realizing Fauth. See more
discussion in [c04].

6.4 Secure Communication

The abstraction of secure communication, often called secure message transmission, usually means
that the communication is authenticated, and in addition the adversary has no access to the contents
of the transmitted message. It is typically assumed that the adversary learns that a message was
sent, plus some partial information on the message (such as, say, its length, or more generally some
information on the domain from which the message is taken). In the present framework, having
access to an ideal secure message transmission mechanism can be cast as having access to the
“secure message transmission functionality”, Fsmt, presented in Figure 12. The behavior of Fsmt is
similar to that of Fauth with the following exception. Fsmt is parameterized by a leakage function
l : {0, 1}∗ → {0, 1}∗ that captures the allowed information leakage on the transmitted plaintext m.
That is, the adversary only learns the leakable information l(m) rather than the entire m. (In fact,
Fauth can be regarded as the special case of F lsmt where l is the identity function.) In particular,
Fsmt is standard corruption.

Functionality F lsmt

F lsmt proceeds as follows, when parameterized by leakage function l : {0, 1}∗ → {0, 1}∗.

1. Upon receiving an input (Send, S,R, sid,m) from ITI S, send (Sent, S,R, sid, l(m)) to the
adversary, generate a private delayed output (Sent,S, sid,m) to R and halt.

2. Upon receiving (Corrupt, sid, P) from the adversary, where P ∈ {S,R}, disclose m to the
adversary. Next, if the adversary provides a value m′, and P = S, and no output has been
yet written to R, then output (Sent,S, sid,m′) to R and halt.

Figure 12: The Secure Message Transmission functionality parameterized by leakage function l.
The functionality is standard corruption.

Like Fauth, Fsmt only deals with transmission of a single message. Secure transmission of
multiple messages is obtained by using multiple instances of Fsmt. In addition, like Fauth, Fsmt

allows the adversary to change the contents of the message and the identity of the recipient as long
as the sender is corrupted at the time of delivery, even if the sender was uncorrupted at the point
when it sent the message. In addition, following our convention regarding party corruption, when
either the sender or the receiver are corrupted, Fsmt discloses the sender’s input to the adversary.

65

Stronger variants. One common requirement from secure message transmission protocols is
forward secrecy: the transmitted message should remain secret, even if the the sender and receiver
of the message are corrupted after the protocol execution is completed. A natural way to capture
forward secrecy in the present formulation is to modify the behavior upon corruption of either the
sender or the receiver, so as to not disclose the plaintext message m to the adversary. Note that
the rest of the code of Fsmt need not be changed at all.

Another common requirement is protection from traffic analysis. Recall that, whenever a party
S sends a message to some R, Fsmt notifies the adversary that S sent a message to R. This reflects
the common view that encryption does not hide the fact that a message was sent, namely there is
no protection against traffic analysis. To capture security against traffic analysis, modify Fsmt so
that the adversary does not learn that a message was sent, or alternatively employ a mechanism
for hiding the identities of the sender or the receiver from the adversary.

On realizing Fsmt. Protocols that UC-realize Fsmt can be constructed, based on public-key
encryption schemes that are semantically secure against chosen plaintext attacks, by using each
encryption key for encrypting only a single message, and authenticating the communication via
Fauth. That is, let E = (gen, enc, dec) be an encryption scheme for domain D of plaintexts. (Here
gen is the key generation algorithm, enc is the encryption algorithm, dec is the decryption algo-
rithm, and correct decryption is guaranteed for any plaintext in D.) Then, consider the following
protocol, denoted πE . When invoked with input (Send, sid,m) where m ∈ D and sid = (S,R, sid′),
πE first sends an initialization message to R, namely it invokes an instance of IFauth with input
(Send, sid′′,init-smt), where sid′′ = (S,R, sid′1), and with PID S. Upon invocation with sub-
routine output (Sent, sid′′,init-smt) and with identity (R, sid), πE runs algorithm gen, gets the
secret key sk and the public key pk, and sends (sid, pk) back to (sid, S), using Fauth in the same
way. Next, (sid, S) computes c = enc(pk,m), uses Fauth again to send c to (sid,R), and returns.
Finally, upon receipt of (sid, c), πE within R computes m = dec(sk, c), and outputs (Sent, sid,m).

It can be verified that the above protocol UC-realizes Fsmt as long as the underlying encryption
scheme is semantically secure against chosen plaintext attacks. That is, given a domain D of
plaintexts, let lD be the “leakage function” that, given input x, returns ⊥ if x ∈ D and returns x
otherwise. Then:

Claim 18 If E is semantically secure for domain D as in [gm84, g01] then πE UC realizes F lDsmt
in the presence of non-adaptive adversaries.

Furthermore, if E is non-committing (as in [cfgn96]) then πE UC-realizes F lDsmt with adaptive
adversaries. This holds even if data erasures are not trusted and the adversary sees all the past
internal states of the corrupted parties.

Choosing new keys for each message to be transmitted is of course highly inefficient and does
not capture common practice for achieving secure communication. As in the case of Fauth, it is
possible to realize multiple instances of Fsmt using a single instance of a more complex protocol, in
a way that is considerably more efficient than running multiple independent instances of a protocol
that realizes Fsmt. One way of doing this is to use the same encryption scheme to encrypt all the
messages sent to some party. Here the encryption scheme should have additional properties on
top of being semantically secure. In [ckn03] it is shown that replayable chosen ciphertext security
(RCCA) suffices for this purpose for the case of non-adaptive party corruptions. In the case of

66

adaptive corruptions stronger properties and constructions are needed, see further discussion in
[n02, chk05].

6.5 Synchronous communication

A common and convenient abstraction of communication networks is that of synchronous commu-
nication. Roughly speaking, here the computation proceeds in rounds, where in each round each
party receives all the messages that were sent to it in the previous round, and generates outgoing
messages for the next round. There are of course many variants of the synchronous model. We
concentrate here on modeling one basic variant, which provides the following guarantee:

Timely delivery. Each message sent by an uncorrupted party is guaranteed to arrive in the next
communication round. In other words, no party will receive messages sent at round r before
all uncorrupted parties had a chance to receive the messages sent at round r − 1.

This guarantee implies in turn two other ones:

Guaranteed delivery. Each party is guaranteed to receive all messages that were sent to it by
uncorrupted parties.

Authentic delivery. Each message sent by an uncorrupted party is guaranteed to arrive unmod-
ified. Furthermore, the recipient knows the real sender identity of each message.

Typically, the order of activation of parties within a round is assumed to be under adversarial
control, thus the messages sent by the corrupted parties may depend on the messages sent by the
uncorrupted parties in the same round. This is often called the “rushing” model for synchronous
networks.

Synchronous variants of the UC framework are presented in [n03, hm04a, kmtz13]. Here we
provide an alternative way of capturing synchronous communication within the UC framework: We
show how synchronous communication can be captured by having access to an ideal functionality
Fsyn that provides the above guarantees. We first describe Fsyn, and then discuss and motivate
some aspects of its design.19 Fsyn is presented in Figure 13. It expects its SID to include a list P
of parties among which synchronization is to be provided. At the first activation, Fsyn initializes a
round number r to 1, and sends a delayed public output init to all parties in P. (The purpose of
this output is to notify the parties in P that a synchronous session with the given SID has started;
in particular, it frees the calling protocol from the need to agree on the SID in advance.) Next, Fsyn

responds to two types of inputs: Given input of the form (Send, sid,M) from party P ∈ P, Fsyn

interprets M as a list of messages to be sent to other parties in P. The list M is recorded together
with the sender identity and the current round number, and is also forwarded to the adversary.
Upon receiving a (Corrupt, P) from the adversary, for some P ∈ P, Fsyn marks P as corrupted.

Given an input (Receive, sid, r′) from a party P ∈ P, where r′ is a round number, Fsyn

proceeds as follows. If r′ is the current round number and the round is complete (in the sense that
all uncorrupted parties have sent their messages for this round), then Fsyn completes this round,
prepares the list of messages sent to each party at this round, and advances the round number.

19The formulation of Fsyn in earlier versions of this work was slightly different: It allowed the adversary to
indefinitely delay the round advancement operation, consequently that formulation did not guarantee eventual delivery
of messages. This is pointed out in [kmtz13], where an alternative fix to the one used here is proposed.

67

Functionality Fsyn

Fsyn expects its SID to be of the form sid = (P, sid′), where P is a list of party identities among
which synchronization is to be provided. It proceeds as follows.

1. At the first activation, initialize a round counter r ← 1, and send a public delayed output
(Init, sid) to all parties in P.

2. Upon receiving input (Send, sid,M) from a party P ∈ P, where M = {(mi, Ri)} is a set of
pairs of messages mi and recipient identities Ri ∈ P, record (P,M, r) and output (sid, P,M, r)
to the adversary.

3. Upon receiving input (Receive, sid, r′) from a party P ∈ P, do:

(a) If r′ = r (i.e., r′ is the current round), and all uncorrupted parties in P have already
sent their messages for round r, then:

i. Interpret N as the list of messages sent by all parties in this round. That is,
N = {(Si, Ri,mi)} where each Si, Ri ∈ P, m is a message, and Si, Ri ∈ P. (Si is
taken as the sender of message mi and Ri is the receiver. Note that either sender
or receiver may be corrupted.)

ii. Prepare for each party P ∈ P the list LrP of messages that were sent to it in round r.

iii. Increment the round number: r ← r + 1.

iv. Output (Received, sid, Lr−1P) to P . (Let L0
P =⊥.)

(b) If r′ < r then output (Received, sid, Lr
′

P) to P .

(c) Else (i.e., r′ > r or not all parties in P have sent their messages for round r), output
(Round Incomplete) to P .

Figure 13: The synchronous communication functionality, Fsyn.

Then it returns to the requesting party the messages sent to it in this round. If r′ refers to an
already completed round then the corresponding list of messages for that round is returned. If r′

refers to an incomplete or future round then an error message is returned.

It is stressed that Fsyn does not deliver messages to a party until being explicitly requested
by the party to obtain the messages. This mechanism facilitates capturing guaranteed delivery of
messages within the present framework. In particular, a protocol that uses Fsyn can be guaranteed
that as soon as all uncorrupted have sent messages for a round, the round will complete and all
sent messages will be available to their recipients. Similarly, any protocol that realizes Fsyn must
guarantee delivery of all messages sent by uncorrupted parties. See more discussion below.

To highlight the properties of Fsyn, let us sketch a typical use of Fsyn by some protocol π. All
parties of π use the same instance of Fsyn. This instance can be invoked by any of the parties,
or even the adversary. If the parties know in advance the SID of this instance then they can send
messages to it right away. Otherwise, they can wait for the init message where the SID is specified.
In any case, each party of π first initializes a round counter to 1, and inputs to Fsyn a list M of
first-round messages to be sent to the other parties of π. In each subsequent activation, the party
calls Fsyn with input (Receive, sid, r), where sid is typically derived from the current SID of π
and r is the current round number. In response, the party obtains the list of messages received in
this round, performs its local processing, increments the local round number, and calls Fsyn again

68

with input (Send, sid,M) where M contains the outgoing messages for this round. If Fsyn returns
(round Incomplete), this means that some parties have not completed this round yet. In this
case, π does nothing (thus returning the control to the environment).

It can be seen that the message delivery pattern for such a protocol π is essentially the same as
in a traditional synchronous network. Indeed, Fsyn requires that all parties actively participate in
the computation in each round. That is, the round counter does not advance until all uncorrupted
parties are activated at least once and send a (possibly empty) list of messages for that round.
Furthermore, as soon as one uncorrupted party is able to obtain its incoming messages for some
round, all uncorrupted parties are able to obtain their messages for that round.

The present formulation of Fsyn does not guarantee “fairness”, in the sense that the adversary
may obtain the messages sent by the uncorrupted parties for the last round while the uncorrupted
parties may have not received these messages. (This might happen if the adversary fails to advance
the round.) To guarantee fairness, modify Fsyn so that the adversary learns the messages sent by
the uncorrupted parties in a round only after the round is complete.

Another point worth elaboration is that each instance of Fsyn guarantees synchronous message
delivery only within the context of the messages sent using that instance. Delivery of messages sent
in other ways (e.g., directly or via other instances of Fsyn) may be arbitrarily faster or arbitrarily
slower. This allows capturing, in addition to the traditional model of a completely synchronous
network where everyone is synchronized, also more general settings such as synchronous execution
of a protocol within a larger asynchronous environment, or several protocol executions where each
execution is internally synchronous but the executions are mutually asynchronous.

Also note that, even when using Fsyn, the inputs to the parties are received in an “asynchronous”
way, i.e. it is not guaranteed that all inputs are received within the same round. Still, a protocol
that uses Fsyn can deploy standard mechanisms for guaranteeing that the actual computation does
not start until enough (or all) parties have inputs.

Finally, including the set P of participants in the SID captures cases where the identities of
all participants are known to the initiator in advance. Alternative situations, where the set of
participants is not known a priori can be captured by letting parties join in as the computation
proceeds, and have Fsyn update the set P accordingly.

Potential relaxations. The reliability and authenticity guarantees provided within a single in-
stance of Fsyn are quite strong: Once a round number advances, all the messages to be delivered to
the parties at this round are fixed, and are guaranteed to be delivered upon request. It is possible
to relax Fsyn by, say, allowing the adversary to stop delivering messages or to modify messages sent
by corrupted parties even in “mid-round”.

Another potential relaxation of Fsyn is to relax the “timeliness” guarantee. Specifically, it may
only be guaranteed that messages are delivered within a given number, δ, of rounds from the time
they are generated. The bound δ may be either known in advance or alternatively unknown and
determined dynamically (e.g., specified by the adversary when the message is sent). The case of
known delay δ corresponds to the “timing model” of [dns98, g02, lpt04]. The case of unknown
delay corresponds to the model of non-blocking asynchronous communication model where message
are guaranteed to be delivered, but with unknown delay (see, e.g., [bcg93, cr93]).

69

On composing Fsyn-hybrid protocols. Recall that each instance of Fsyn represents a single
synchronous system, and different instances of Fsyn are mutually asynchronous, even when they
run in the same system. This means that different protocol instances that wish to be mutually
synchronized would need to use the same instance of Fsyn. In particular, if we have a complex,
multi-component protocol that assumes a globally synchronous network, then all the components
of this protocol would need to use the same instance of Fsyn.

A priori, this observation may seem to prevent the use of the universal composition operation
for constructing such protocols, since this operation does not allow the composed protocols to have
any joint subroutines. We note, however, that protocol instances that use the same instance of Fsyn

can be composed using a tool called universal composition with joint state [cr03]. This tool allows
analyzing each such protocol instance as if it is the only instance using Fsyn, while still asserting
security of the system where multiple protocol instances use the same instance of Fsyn. A key
observation here is that one can straightforwardly realize multiple independent instances of Fsyn

using a single instance of Fsyn, whose set of participants is the union of the sets of participants of
the realized instances.

6.6 Non-concurrent Security

One of the main features of the UC framework is that it guarantees security even when protocol
instances are running concurrently in an adversarially controlled manner. Still, sometimes it may
be useful to capture within the UC framework also security properties that are not necessarily
preserved under concurrent composition, and are thus realizable by simpler protocols or with milder
setup assumptions.

This section provides a way to express such “non-concurrent” security properties within the
present framework. Specifically, we present an ideal functionality, Fnc, that guarantees to the
calling protocol instance that no other parties are activated as long as the current instance is
running. other protocol instances are running concurrently in the system. Thus, modeling a
protocol as an Fnc-hybrid protocol is paramount to analyzing this protocol in a system where there
are no protocol instances running concurrently.

Functionality Fnc is presented in Figure 14. It first expects to receive a code of an adversary,
Â. It then behaves as adversary Â would in the non-concurrent security model. That is, Fnc runs
Â and follows its instructions with respect to receipt and delivery of messages between parties.
As soon as Â terminates the execution, Fnc reports the current state of Â back to the external
adversary, and halts. (Recall the convention from Section 6.2 regarding running arbitrary code.)

We remark that, in addition to analyzing “pure” non-concurrent security of protocols, Fnc

can also be used to analyze systems where some of the components may be running concurrently
with each other, where other components cannot. Here the “non-composable” components can be
written as Fnc-hybrid protocols.

Non-concurrent security of protocols that assume some idealized communication model (such
as, say, authenticated or synchronous communication) can be captured by using Fnc in conjunc-
tion with the ideal functionality that captures the desired model. For instance, to capture non-
concurrent security of synchronous protocols, let the protocol use Fsyn as described in Section 6.5,
with the exception that Fsyn interacts with Fnc instead of interacting directly with the adversary.
(Fnc, in turn, interacts with the adversary as described above.)

70

Functionality Fnc

1. When receiving message (Start, sid, Â) from the adversary, where Â is the code of an ITM
(representing an adversary), invoke Â and change state to running.

2. When receiving input (Send, sid,m,Q) from party P , and if the state is running, activate Â
with incoming message (m,Q) from party P . Then:

(a) If Â instructs to deliver a message (m′, P ′) to party Q′ then output (sid,m′, P ′) to Q′.

(b) If Â halts without delivering a message to any party then send the current state of Â to
the adversary and halt.

Figure 14: The non-concurrent communication functionality, Fnc.

Equivalence with the definition of [c00]. Recall the security definition of [c00], that guar-
antees that security is preserved under non-concurrent composition of protocols. (See discussion in
Section 1.1.) More specifically, recall that the notion of [c00] is essentially the same as UC security
with two main exceptions: first, there the model of execution is synchronous, which is analogous to
the present use of Fsyn. Second, there the environment E and the adversary A are prohibited from
sending inputs and outputs to each other from the moment where the first activation of a party of
the protocol until the last activation of a party of the protocol.

Here we wish to concentrate on the second difference. We thus provide an alternative formula-
tion within the current framework. Say that an environment is non-concurrent if it does not provide
any input to the adversary other than the input provided to the adversary at its first activation,
and furthermore does not provide any inputs to the protocol parties after receiving the first output
of the adversary. Then:

Definition 19 Let π and φ be PPT protocols. We say that π NC-emulates φ if for any PPT
adversary A there exists a PPT adversary S such that for any non-concurrent PPT environment
E, we have execφ,S,E ≈ execπ,A,E .

We argue that NC-emulation captures the essence of the notion of [c00]. An important feature of
this notion of security is that it is easier to realize. In particular, known protocols (e.g., the protocol
of [gmw87], see also [g04]) for realizing a general class of ideal functionality with any number of
faults, assuming authenticated communication as the only set-up assumption, can be shown secure
in this model. This stands in contrast to the impossibility results regarding the realizability of the
same functionalities in the UC framework, even with authenticated communication.

We show that having access to Fnc is equivalent to running in the non-concurrent security model
described above. More specifically, say that a protocol π is NC if all protocol messages are sent
via Fnc (that is, there is no use of the communication links). Then, an NC protocol π UC-realizes
some ideal functionality F if and only if π realizes F with non-concurrent security. More generally:

Proposition 20 Let π and φ be protocols, where π is NC. Then π UC-emulates φ if and only if π
NC-emulates φ.

Notice that Proposition 20, together with the UC theorem, provide an alternative (albeit some-
what roundabout) formulation of the non-concurrent composition theorem of [c00].

71

Proof: Clearly if π UC-emulates φ then π NC-emulates φ. For the other direction, assume that π
NC-emulates φ. This means that for any adversary A there exists an adversary (simulator) S such
that execφ,S,E ≈ execπ,A,E for all non-concurrent environments E . To show that π UC-emulates
φ, consider an interaction of π with the dummy adversary D. Since π is an Fnc-hybrid protocol,
the environment E must now provide some code Â to Fnc. From this point on, E sees no outgoing
messages from any of the participants of π. Furthermore, it only receives one message from Fnc,
describing the “final” state of Â. Once this message is given, no party generates any further output
to E .

Now, consider the simulator Ŝ such that execφ,Ŝ,E ≈ execπ,Â,E for any non-concurrent E .

(Existence of Ŝ follows from the assumption that π NC-emulates φ.) We claim that execφ,Ŝ,E ≈
execπ,D,E even when E is not necessarily non-concurrent. This is so since the interaction of D
with π is limited in the same way as that of a non-concurrent environment. In other words, when
interacting with D and an Fnc-hybrid protocol π, any environment is effectively bound to be non-
concurrent. �

Acknowledgments

Much of the motivation for undertaking this project, and many of the ideas that appear here, come
from studying secure key-exchange protocols together with Hugo Krawczyk. I thank him for this
long, fruitful, and enjoyable collaboration. I am also grateful to Oded Goldreich who, as usual,
gave me both essential moral support and invaluable technical and presentational advice.

Many thanks also to the many people with whom I have interacted over the years on definitions
of security and secure composition. A very partial list includes Martin Abadi, Michael Backes,
Mihir Bellare, Ivan Damgaard, Marc Fischlin, Shafi Goldwasser, Rosario Gennaro, Shai Halevi,
Dennis Hofheinz, Yuval Ishai, Ralf Küsters, Eyal Kushilevitz, Yehuda Lindell, Phil MacKenzie,
Tal Malkin, Cathy Meadows, Silvio Micali, Daniele Micciancio, Moni Naor, Rafi Ostrovsky, Rafael
Pass, Birgit Pfitzmann, Tal Rabin, Charlie Rackoff, Phil Rogaway, Victor Shoup, Paul Syverson
and Michael Waidner. In particular, it was Daniele who proposed to keep the basic framework
minimal and model subsequent abstractions as ideal functionalities within the basic model.

References

[ag97] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
4th ACM Conference on Computer and Communications Security, 1997, pp.36-47. Fuller
version available at http://www.research.digital.com/SRC/ abadi.

[ar00] M. Abadi and P. Rogaway. Reconciling Two Views of Cryptography (The Computational
Soundness of Formal Encryption). J. Cryptology 15(2): 103-127 (2002). Preliminary version
at International Conference on Theoretical Computer Science IFIP TCS 2000, LNCS, 2000.
On-line version at http://pa.bell-labs.com/ abadi/.

[af04] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. Crypto ’04, 2004.

[a04] J. Almansa. The Full Abstraction of the UC Framework. BRICS, Technical Report RS-04-15
University of Aarhus, Denmark, August 2004. Also available at eprint.iacr.org/2005/019.

72

[bpw03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with
nested operations. In 10th ACM conference on computer and communications security
(CCS), 2003. Extended version at the eprint archive, http://eprint.iacr.org/2003/015/.

[bpw04] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure
reactive systems. In 1st Theory of Cryptography Conference (TCC), LNCS 2951 pp. 336–
354, Feb. 2004.

[bpw07] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework
for asynchronous systems. Inf. Comput. 205(12): 1685-1720 (2007)

[b01] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pp. 106–115,
2001.

[b+11] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without
Authentication. J. Cryptology 24(4): 720-760 (2011)

[bcnp04] B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols with
Relaxed Set-Up Assumptions. 36th FOCS, pp. 186–195. 2004.

[bggl04] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledge
and its Applications. 42nd FOCS, pp. 116-125, 2001.

[blr04] B. Barak, Y. Lindell and T. Rabin. Protocol Initialization for the Framework of Universal
Composability. Eprint archive. eprint.iacr.org/2004/006.

[bs05] B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net - Concurrent
Composition via Super-Polynomial Simulation. FOCS, 2005.

[b91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. J. Cryptology, (1991) 4: 75-122.

[b96] D. Beaver. Adaptive Zero-Knowledge and Computational Equivocation. 28th Symposium
on Theory of Computing (STOC), ACM, 1996.

[b97] D. Beaver. Plug and play encryption. CRYPTO 97, 1997.

[bh92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adver-
saries. In Eurocrypt ’92, LNCS No. 658, 1992, pages 307–323.

[bck98] M. Bellare, R. Canetti and H. Krawczyk. A modular approach to the design and analysis
of authentication and key-exchange protocols. 30th Symposium on Theory of Computing
(STOC), ACM, 1998.

[bdpr98] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of security
for public-key encryption schemes. CRYPTO ’98, 1998, pp. 26-40.

[br93] M. Bellare and P. Rogaway. Entity authentication and key distribution. CRYPTO’93,
LNCS. 773, pp. 232-249, 1994. (Full version from the authors or from http://

www-cse.ucsd.edu/users/mihir.)

73

[bcg93] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computations. 25th Sym-
posium on Theory of Computing (STOC), ACM, 1993, pp. 52-61.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. 20th Symposium on Theory of
Computing (STOC), ACM, 1988, pp. 1-10.

[bkr94] M. Ben-Or, B. Kelmer and T. Rabin. Asynchronous Secure Computations with Optimal
Resilience. 13th PODC, 1994, pp. 183-192.

[bm04] M. Ben-Or, D. Mayers. General Security Definition and Composability for Quantum &
Classical Protocols. arXiv archive, http://arxiv.org/abs/quant-ph/0409062.

[bs97] E. Biham, A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. CRYPTO
’97, pp. 513–525. 1997.

[bch12] N. Bitansky, R. Canetti, S. Halevi. Leakage-Tolerant Interactive Protocols. TCC 2012:
266-284

[b82] M. Blum. Coin flipping by telephone. IEEE Spring COMPCOM, pp. 133-137, Feb. 1982.

[bdl97] D. Boneh, R. A. DeMillo, R. J. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults (Extended Abstract). Eurocrypt ’97, pp. 37–51. 1997.

[bcc88] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156–189, 1988.

[ban90] M. Burrows, M. Abadi and R. Needham. A logic for authentication. DEC Systems Re-
search Center Technical Report 39, February 1990. Earlier versions in the Second Conference
on Theoretical Aspects of Reasoning about Knowledge, 1988, and the Twelfth ACM Sym-
posium on Operating Systems Principles, 1989.

[c95] R. Canetti. Studies in Secure Multi-party Computation and Applications.Ph.D. Thesis,
Weizmann Institute, Israel, 1995.

[c98] R. Canetti. Security and composition of multi-party cryptographic protocols.
ftp://theory.lcs.mit.edu/pub/tcryptol/98-18.ps, 1998.

[c00] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of
Cryptology, Vol. 13, No. 1, winter 2000.

[c01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Version of October 2001. Available at http://eccc.uni-trier.de/eccc-reports/2001/TR01-
016/revision01.ps.

[c04] R. Canetti. Universally Composable Signature, Certification, and Authentication.
17th Computer Security Foundations Workshop (CSFW), 2004. Long version at
eprint.iacr.org/2003/239.

[c05] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Version of December 2005. Available at http://eccc.uni-trier.de/eccc-reports/2001/TR01-
016.

74

[c06] Ran Canetti. Security and composition of cryptographic protocols: A tutorial. SIGACT
News, Vol. 37, Nos. 3 & 4, 2006. Available also at the Cryptology ePrint Archive, Report
2006/465.

[c07] R. Canetti. Obtaining Universally Composable Security: Towards the Bare Bones of Trust.
ASIACRYPT 2007, pp. 88-112.

[c08] R. Canetti. Composable Formal Security Analysis: Juggling Soundness, Simplicity and
Efficiency. ICALP (2) 2008: 1-13

[c13] Ran Canetti. Security and composition of cryptographic protocols. Chapter in Secure Mul-
tiparty Computation, ed. Prabhakaran and Sahai. IOS Press, 2013.

[c+11] R. Canetti, S. Chari, S. Halevi, B. Pfitzmann, A. Roy, M. Steiner, W. Venema. Composable
Security Analysis of OS Services. ACNS 2011: 431-448

[c+05] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
Probabilistic I/O Automata to Analyze an Oblivious Transfer Protocol. MIT Technical
Report MIT-LCS-TR-1001, August 2005.

[cdpw07] R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universally Composable Security with
Pre-Existing Setup. 4th theory of Cryptology Conference (TCC), 2007.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Computation. 28th
Symposium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR
682, 1996.

[cg96] R. Canetti and R. Gennaro. Incoercible multi-party computation. 37th Symp. on Founda-
tions of Computer Science (FOCS), IEEE, 1996.

[chk05] R. Canetti, S. Halevi and J, Katz. Adaptively Secure Non-Interactive Public-Key Encryp-
tion. 2nd theory of Cryptology Conference (TCC), 2005.

[ch11] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Cryptographic
Protocols (The case of encryption-based mutual authentication and key exchange). J. Cryp-
tology 24(1): 83-147 (2011)

[ck01] R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for building
secure channels. Eurocrypt ’01, 2001. Extended version at http://eprint.iacr.org/2001/040.

[ckn03] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing Chosen Ciphertext Security
of Encryption Schemes. Crypto ’03, 2003. Extended version at the eprint archive,
eprint.iacr.org/2003/174.

[cr93] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine Agreement. 25th STOC, 1993,
pp. 42-51.

[cr03] R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto’03, 2003.

[cv12] R. Canetti, M. Vald. Universally Composable Security with Local Adversaries. SCN 2012:
281-301. See also IACR Cryptology ePrint Archive 2012: 117.

75

[cjrr99] S. Chari, C. S. Jutla, J. R. Rao, P. Rohatgi. Towards Sound Approaches to Counteract
Power-Analysis Attacks. CRYPTO ’99, pp. 398–412. 1999.

[d05] A. Datta, Security Analysis of Network Protocols: Compositional Reasoning and
Complexity-theoretic Foundations. PhD Thesis, Computer Science Department, Stanford
University, September 2005.

[ddmrs06] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan and A. Scedrov. Games and the
Impossibility of Realizable Ideal Functionality. 3rd theory of Cryptology Conference (TCC),
2006.

[dkmr05] A. Datta, R. Küsters, J. C. Mitchell and A. Ramanathan. On the Relationships between
Notions of Simulation-based Security. 2nd theory of Cryptology Conference (TCC), 2005.

[dio98] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-interactive and non-malleable commit-
ment. 30th STOC, 1998, pp. 141-150.

[dm00] Y. Dodis and S. Micali. Secure Computation. CRYPTO ’00, 2000.

[ddn00] D. Dolev. C. Dwork and M. Naor. Non-malleable cryptography. SIAM. J. Computing,
Vol. 30, No. 2, 2000, pp. 391-437. Preliminary version in 23rd Symposium on Theory of
Computing (STOC), ACM, 1991.

[dy83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory, 2(29), 1983.

[dlms04] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Multiset rewriting and the complexity
of bounded security protocols. Journal of Computer Security, 12(2):247–311, 2004.

[dns98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409–418, 1998.

[egl85] S. Even, O. Goldreich and A. Lempel, A randomized protocol for signing contracts, CACM,
vol. 28, No. 6, 1985, pp. 637-647.

[f91] U. Feige. Ph.D. thesis, Weizmann Institute of Science, 1991.

[ff00] M. Fischlin and R. Fischlin, Efficient non-malleable commitment schemes, CRYPTO ’00,
LNCS 1880, 2000, pp. 413-428.

[gm00] J. Garay and P. MacKenzie, Concurrent Oblivious Transfer, 41st FOCS, 2000.

[glmmr04] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali and T. Rabin. Tamper Proof Secu-
rity: Theoretical Foundations for Security Against Hardware Tampering. Theory of Cryp-
tography Conference (TCC), LNCS 2951. 2004.

[grr98] R. Gennaro, M. Rabin and T Rabin. Simplified VSS and Fast-track Multiparty Compu-
tations with Applications to Threshold Cryptography, 17th PODC, 1998, pp. 101-112.

[g01] O. Goldreich. Foundations of Cryptography. Cambridge Press, Vol 1 (2001).

[g02] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. 34th STOC, 2002.

76

[g04] O. Goldreich. Foundations of Cryptography. Cambridge Press, Vol 2 (2004).

[gk88] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pp. 167–189, 1996.

[gk89] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM. J. Computing, Vol. 25, No. 1, 1996.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Sympo-
sium on Theory of Computing (STOC), ACM, 1987, pp. 218-229.

[go94] O. Goldreich and Y. Oren. Definitions and properties of Zero-Knowledge proof systems.
Journal of Cryptology, Vol. 7, No. 1, 1994, pp. 1–32. Preliminary version by Y. Oren in 28th
Symp. on Foundations of Computer Science (FOCS), IEEE, 1987.

[gl90] S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. CRYPTO ’90, LNCS 537, 1990.

[gm84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, Vol. 28, No 2, April 1984, pp.
270-299.

[gmra89] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[g11] V. Goyal. Positive Results for Concurrently Secure Computation in the Plain Model. FOCS
2012: 41-50

[hm00] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation. Journal of Cryptology, Vol 13, No. 1, 2000, pp. 31-60. Preliminary
version in 16th Symp. on Principles of Distributed Computing (PODC), ACM, 1997, pp.
25–34.

[h85] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science, Prentice Hall, 1985.

[hms03] D. Hofheinz and J. Müler-Quade and R. Steinwandt. Initiator-Resilient Universally
Composable Key Exchange. ESORICS, 2003. Extended version at the eprint archive,
eprint.iacr.org/2003/063.

[hm04a] D. Hofheinz and J. Müller-Quade. A Synchronous Model for Multi-Party Computation and
the Incompleteness of Oblivious Transfer. Eprint archive, http:/eprint.iacr.org/2004/016,
2004.

[hmu09] D. Hofheinz, J. Müller-Quade and D. Unruh. Polynomial Runtime and Composability.
IACR Cryptology ePrint Archive (IACR) 2009:23 (2009)

[hs11] D. Hofheinz, V. Shoup. GNUC: A New Universal Composability Framework. IACR Cryp-
tology ePrint Archive 2011: 303 (2011)

[hu05] D. Hofheinz and D. Unruh. Comparing Two Notions of Simulatability. 2nd theory of Cryp-
tology Conference (TCC), pp. 86-103, 2005.

77

[kmtz13] J. Katz, U. Maurer, B. Tackmann, V. Zikas. Universally Composable Synchronous Com-
putation. Theory of Cryptology Conference (TCC) 2013: 477-498

[kmm94] R. Kemmerer, C. Meadows and J. Millen. Three systems for cryptographic protocol
analysis. J. Cryptology, 7(2):79-130, 1994.

[k96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. CRYPTO ’96, pp. 104–113. 1996.

[k06] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines.
CSFW 2006, pp. 309-320.

[kt13] R. Ksters, M. Tuengerthal. The IITM Model: a Simple and Expressive Model for Universal
Composability. IACR Cryptology ePrint Archive 2013: 25 (2013)

[l03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-
putation. 43rd FOCS, pp. 394–403. 2003.

[llr02] Y. Lindell, A. Lysyanskaya and T. Rabin. On the composition of authenticated Byzantine
agreement. 34th STOC, 2002.

[lpt04] Y. Lindell, M. Prabhakaran, Y. Tauman. Concurrent General Composition of Secure Pro-
tocols in the Timing Model. Manuscript, 2004.

[lmms98] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov. A Probabilistic Poly-time Framework
for Protocol Analysis. 5th ACM Conf. on Computer and Communication Security, 1998,
pp. 112-121.

[lmms99] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov. Probabilistic Polynomial-time
equivalence and security analysis. Formal Methods Workshop, 1999. Available at
ftp://theory.stanford.edu/pub/jcm/papers/fm-99.ps.

[ly96] N. Lynch. Distributed Algorithms. Morgan Kaufman, San Francisco, 1996.

[lsv03] N. Lynch, R. Segala and F. Vaandrager. Compositionality for Probabilistic Automata. 14th
CONCUR, LNCS vol. 2761, pages 208-221, 2003. Fuller version appears in MIT Technical
Report MIT-LCS-TR-907.

[mms03] P. Mateus, J. C. Mitchell and A. Scedrov. Composition of Cryptographic Protocols in a
Probabilistic Polynomial-Time Process Calculus. CONCUR, pp. 323-345. 2003.

[mr11] U. Maurer, R. Renner. Abstract Cryptography. Innovations in Computer Science 2011:
1-21

[mpr06] S. Micali, R. Pass, A. Rosen. Input-Indistinguishable Computation. FOCS 2006, pp. 367-
378.

[mr04] S. Micali and L. Reyzin. Physically Observable Cryptography. 1st Theory of Cryptography
Conference (TCC), LNCS 2951, 2004.

[mr91] S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992. Preliminary
version in CRYPTO ’91, LNCS 576, 1991.

78

[mw04] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In the 1st Theory of Cryptography Conference (TCC), LNCS 2951, pp. 133–151.
2004.

[m89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[m99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, 1999.

[mms98] J. Mitchell, M. Mitchell, A. Schedrov. A Linguistic Characterization of Bounded Oracle
Computation and Probabilistic Polynomial Time. 39th FOCS, 1998, pp. 725-734.

[ny90] M. Naor and M. Yung. Public key cryptosystems provably secure against chosen ciphertext
attacks”. 22nd STOC, 427-437, 1990.

[n02] J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-committing Encryption Case. CRYPTO, pp. 111–126. 2002.

[n03] J. B. Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis, Aarhus Uni-
versity, 2003.

[p04] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority.
36th STOC, pp. 232–241. 2004.

[p06] R. Pass. A Precise Computational Approach to Knowledge. PhD Thesis, MIT. 2006.

[pr03] R. Pass, A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. 44th FOCS, 2003

[pr05a] R. Pass, A. Rosen. New and improved constructions of non-malleable cryptographic pro-
tocols. STOC, pp. 533-542, 2005.

[pw94] B. Pfitzmann and M. Waidner. A general framework for formal notions of secure sys-
tems. Hildesheimer Informatik-Berichte 11/94, Universitat Hildesheim, 1994. Available at
http://www.semper.org/sirene/lit.

[psw00] B. Pfitzmann, M. Schunter and M. Waidner. Secure Reactive Systems. IBM Research
Report RZ 3206 (#93252), IBM Research, Zurich, May 2000.

[psw00a] B. Pfitzmann, M. Schunter and M. Waidner. Provably Secure Certified Mail. IBM Re-
search Report RZ 3207 (#93253), IBM Research, Zurich, August 2000.

[pw00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. 7th ACM Conf. on Computer and Communication Security, 2000, pp. 245-254.

[pw01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its applica-
tion to secure message transmission. IEEE Symposium on Security and Privacy, May 2001.
Preliminary version in http://eprint.iacr.org/2000/066 and IBM Research Report RZ 3304
(#93350), IBM Research, Zurich, December 2000.

[r81] M. Rabin. How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken Com-
putation Laboratory, Harvard U., 1981.

79

[rs91] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. CRYPTO ’91, 1991.

[rk99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In Eurocrypt99, LNCS 1592, pages 415–413.

[r06] Alon Rosen. Concurrent Zero-Knowledge. Series on Information Security and Cryptography.
Springer-Verlag, 2006.

[r+00] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe and B. Roscoe. The Modeling and Analysis
of Security Protocols: the CSP Approach. Addison-Wesley, 2000.

[sl95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing, Vol. 2. No. 2, pp 250-273, 1995.

[sh99] V. Shoup. On Formal Models for Secure Key Exchange. manuscript, 1999. Available at:
http://www.shoup.org.

[si05] M. Sipser. Introduction to the Theory of Computation. Second edition, Course Technology,
2005.

[s+06] C. Sprenger, M. Backes, D. A. Basin, B. Pfitzmann, and M. Waidner. Cryptographically
sound theorem proving. In CSFW, pages 153–166. IEEE Computer Society, July 2006.

[y82] A. Yao. Theory and applications of trapdoor functions. In Proc. 23rd Annual Symp. on
Foundations of Computer Science (FOCS), pages 80–91. IEEE, 1982.

[y82] A. Yao. Protocols for Secure Computation. In Proc. 23rd Annual Symp. on Foundations of
Computer Science (FOCS), pages 160–164. IEEE, 1982.

[y86] A. Yao, How to generate and exchange secrets, In Proc. 27th Annual Symp. on Foundations
of Computer Science (FOCS), pages 162–167. IEEE, 1986.

A Related work

This section surveys some related work. For brevity, we concentrate on works lead to the present
framework or directly affect it, thus omitting many works that use this framework, study it and
extend it. The surveys in [c01, c06, c07, c08, c13] cover some of these works.

Two works that essentially “laid out the field” of general security definitions for cryptographic
protocols are the work of Yao [y82], which stated for the first time the need for a general “unified”
framework for expressing the security requirements of cryptographic tasks and for analyzing cryp-
tographic protocols; and the work of Goldreich, Micali and Wigderson [gmw87], which put forth
the “trusted-party paradigm”, namely the approach of defining security via comparison with an
ideal process involving a trusted party (albeit in a very informal way).

Another work that greatly influenced the formation of notions of security is the work of Dolev,
Dwork and Naor [ddn00]. This work points out some important security concerns that arise when
cryptographic protocols run concurrently within a larger system. In particular, making sure that
the concerns pointed out in [ddn00] are addressed is central to the present framework.

80

The first rigorous definitional framework is due to Goldwasser and Levin [gl90], and was
followed shortly by the frameworks of Micali and Rogaway [mr91] and Beaver [b91]. In particular,
the notion of “reducibility” in [mr91] directly underlies the notion of protocol composition in many
subsequent works including the present one. Beaver’s framework was the first to directly formalize
the idea of comparing a run of a protocol to an ideal process. (However, the [mr91, b91] formalisms
only address security in restricted settings; in particular, they do not deal with computational
issues.) [gl90, mr91, b91] are surveyed in [c00] in more detail.

The frameworks of [gl90, mr91, b91] concentrate on synchronous communication. Also, al-
though in [gmw87] the trusted-party paradigm was put forth for reactive functionalities, the three
frameworks concentrate on the task of secure function evaluation. An extension to asynchronous
communication networks with eventual message delivery is formulated in [bcg93]. A system model
and notion of security for reactive functionalities is sketched in Pfitzmann and Waidner [pw94].

Canetti [c95] provides the first ideal-process based definition of computational security against
resource bounded adversaries. [c00] strengthens the framework of [c95] to handle secure compo-
sition. In particular, [c00] defines a general composition operation, called modular composition,
which is a non-concurrent version of universal composition. That is, only a single protocol instance
can be active at each point in time. (See more details in Section 6.6.) In addition, security of
protocols in that framework is shown to be preserved under modular composition. That work also
contains sketches on how to strengthen the definition to support concurrent composition. The UC
framework implements these sketches in a direct way. A closely related formulation appears in
[g04].

The framework of Hirt and Maurer [hm00] provides a rigorous treatment of reactive function-
alities. Dodis and Micali [dm00] build on the definition of Micali and Rogaway [mr91] for uncon-
ditionally secure function evaluation, where ideally private communication channels are assumed.
In that setting, they prove that their notion of security is preserved under a general concurrent
composition operation similar to universal composition. They also formulate an additional compo-
sition operation (called synchronous composition) that provides stronger security guarantees, and
show that their definition is closed under that composition operation in cases where the scheduling
of the various instances of the protocols can be controlled. However, their definition applies only to
settings where the communication is ideally private. It is not clear how to extend this definitional
approach to settings where the adversary has access to the communication between honest parties.

The framework of Pfitzmann, Schunter and Waidner [psw00, pw00] is the first to rigorously
address concurrent universal composition in a computational setting. (This work is based on the
sketches in [pw94]). They define security for reactive functionalities in a synchronous setting and
prove that security is preserved when a single instance of a subroutine protocol is composed con-
currently with the calling protocol. An extension of the [psw00, pw00] framework to asynchronous
networks appears in [pw01].

At high level, the notion of security in [psw00, pw00, pw01], called reactive simulatability, is
similar to the one here. In particular, the role of their “honest user” can be roughly mapped to
the role of the environment as defined here. However, there are several differences. They use a
finite-state machine model of computation that builds on the I/O automata model of [ly96], as
opposed to the ITM-based model used in this work. On the one hand, their model provides a
richer set of methods for scheduling events in an execution. On the other hand, they postulate a
closed system where the number of participants is constant and fixed in advance. Furthermore,
the number of protocol instances run by the parties is constant and fixed in advance, thus it is

81

impossible to argue about the security of systems where the number of protocol instances may be
a non-constant function of the security parameter (even if this number is known in advance). That
model also automatically provides each pair of parties with a dedicated and labeled communication
channel; thus it does not facilitate arguing about situations where dedicated channels are not
available a-priori. Other technical differences include the notion of polynomial time computation
and the generation of outputs.

Backes, Pfitzmann and Waidner [bpw04] extend the framework of [pw01] to deal with the case
where the number of parties and protocol instances depends on the security parameter. In that
framework, they prove that reactive simulatability is preserved under universal composition. The
[bpw07] formulation returns to the original approach where the number of entities and protocol
instances is fixed irrespective of the security parameter. Nielsen [n03], Hofheinz and Müller-Quade
[hm04a], and Katz et. al. [kmtz13] formulate synchronous variants of the UC framework.

Lincoln, Mitchell, Mitchell and Scedrov [lmms98, lmms99] develop a process calculus, based
on the π-calculus of Milner [m89, m99], that incorporates random choices and computational lim-
itations on adversaries. (In [mms98] it is demonstrated how to express probabilistic polynomial
time within such a process calculus.) In that setting, their definitional approach has a number of
similarities to the simulation-based approach taken here: They define a computational variant of
observational equivalence, and say that a real-life process is secure if it is observationally equiva-
lent to an “ideal process” where the desired functionality is guaranteed. This is indeed similar to
requiring that no environment can tell whether it is interacting with the ideal process or with the
protocol execution. However, their ideal process must vary with the protocol to be analyzed, and
they do not seem to have an equivalent of the notion of an “ideal functionality” which is associated
only with the task and is independent of the analyzed protocol. This makes it harder to formalize
the security requirements of a given task.

Mateus, Mitchell and Scedrov [mms03] and Datta, Küsters, Mitchell, and Ranamanathan
[dkmr05] (see also [d05]) extend the [lmms98, lmms99] framework to express simulatability as
defined here, cast in a polytime probabilistic process calculus, and demonstrate that the universal
composition theorem holds in their framework. They also rigorously compare certain aspects of the
present framework (as defined in [c01]) and reactive simulatability (as defined in [bpw07]). Tight
correspondence between the [mms03] notion of security and the one defined here is demonstrated
in Almansa [a04].

Canetti et al. [c+05] extend the probabilistic I/O automata of Lynch, Segala and Vaandrager
[sl95, lsv03] to a framework that allows formulating security of cryptographic protocols along
the lines of the present UC framework. This involves developing a special mechanism, called the
task schedule, for curbing the power of non-deterministic scheduling; it also requires modeling
resource-bounded computations. The result is a framework that represents the concurrent nature
of distributed systems in a direct way, that allows for analyzing partially-specified protocols (such
as, say, standards), that allows some scheduling choices to be determined non-deterministically
during run-time, and at the same time still allows for meaningful UC-style security specifications.

Küsters [k06, kt13] formulates an ITM-based model of computation that allows for defin-
ing UC-style notions of security. The model contains new constructs that facilitate both flexible
addressing of messages and a flexible notion of resource-bounded computation in a distributed
environment. This work also adapts abstract notations from the process calculus literature to his
ITM-based model, allowing for succinct and clear presentation of composition theorems and proofs.
The present version of this work uses ideas from [k06].

82

Hofheinz, Müller-Quade and Unruh [hmu09] provides an alternative definition of polynomial
time ITMs that works well within the present framework. Hofheinz and Shoup [hs11] point to a
number of flaws in previous versions of this work and formulate a variant of the UC framework that
avoids these flaws. Their framework (called GNUC) differs from the present one in two main ways:
First, their notion of polynomial time is close to that of [hmu09]. Second, they mandate a more
rigid subroutine structure for protocols, as well as a specific format for SIDs that represents the said
subroutine structure. While indeed simplifying the argumentation on a natural class of protocols,
the GNUC framework does not allow representing and arguing about other natural classes (see e.g.
Footnote 18).

Finally, we note that the present framework has evolved considerably over the years. Previous
versions of this work, and some comparisons between them, appear in [c01].

B The main changes from the previous versions

We list the changes made to this document since its first public posting in 2001. The changes are
listed in chronological order.

Changes in the 1/6/2005 version from the 10/2001 version. The changes from this version
(see [c01]) are detailed throughout the text. Here we provide a brief, high-level outline of the main
changes:

Non-technical changes:

1. A more complete survey of related work (prior, concurrent, and subsequent) is added in
Section A.

2. The section on realizing general ideal functionalities (Section 7 in the October ’01 version)
is not included. It will be completed to contain a full proof and published separately.

3. Motivational discussion is added throughout.

Technical changes:

1. Extended and more detailed definitions for a “system of interacting ITMs” are added,
handling dynamic generation and addressing of ITM instances (i.e., ITIs) in a multi-
party, multi-protocol, multi-instance environment.

2. New notions of probabilistic polynomial time ITMs and systems are used. The new
notions provide greater expressibility and generality. They also allow proving equivalence
of several natural variants of the basic notion of security.

3. The model for protocol execution is restated in terms of a system of interacting ITMs.
In particular, the order of activations is simplified.

4. The ideal process and the hybrid model are simplified and made more expressive. In
particular, they are presented as special types of protocols within the general model of
protocol execution.

5. The composition theorem is stated and proven in more general terms, considering the
general case of replacing one subroutine protocol with another.

83

6. Various models of computation, including authenticated channels, secure channels, and
synchronous communication, are captured as hybrid protocols that use appropriate ideal
functionalities within the basic model of computation. This avoids defining extensions
to the model to handle these cases, and in particular avoids the need to re-prove the
UC theorem for these extended models. Various corruption models are also captured as
special protocol instructions within the same model of execution.

Additional changes in the 1/28/2005 version. The main change in this version is in the
definition of PPT ITMs and systems. Instead of globally bounding the running time of the system
by a fixed polynomial, we provide a more “locally enforceable” characterization of PPT ITMs that
guarantees that an execution of the system completes in polynomial time overall. See discussion in
Section 3.2.1. These changes required updating the notion of black-box simulation and the proof
of Claim 10, both in Section 4.4. Thanks to Dennis Hofheinz for pointing out the shortcomings of
the previous formulation of PPT ITMs.

Additional changes in the 12/2005 version. Discussions are updated and added. In addition,
the main technical changes are:

1. The notions of security with respect to the dummy adversary and with black-box simulation
were modified. Indeed, the proof of equivalence of security with dummy adversary and stan-
dard UC security was flawed, and a change in the definition was needed. See more details in
Section 4.4. (Thanks to Ralf Küsters for pointing out the flaw.)

A related change is that in prior versions the definition of security allowed the adversaries
to be A-PPT rather than PPT. Here all ITMs, including the adversaries, should be PPT
(namely, their running time is bounded by a function only of the input length and the security
parameter.) This simplifies the definition somewhat.

2. A more concrete treatment of UC security with respect to actual numeric parameters is added,
parameterizing two main quantities: the emulation slack, namely the probability of distin-
guishing between the emulated and the emulating executions, and the simulation overhead,
namely the difference between running times of the adversaries in the compared executions.

3. Formulations of ideal functionalities for most of the primitives considered in the 10/2001
version, and some additional primitives, are added. The formulations of practically all these
primitives are updated in a number of ways, see more details in the relevant sections. Still,
the spirit of the formulations remains unchanged. Some of the ideal functionalities included
in the 1/2005 versions were also updated.

Main changes in the 7/2013 version from the 12/2005 version Section 7 (UC formulations
of some primitives) was deleted. The hope is to upload an up-to-date version of section 7 shortly.
Also much of the survey of subsequent work in the Introduction was deleted. The survey of prior and
concurrent work was moved to the Appendix. In addition, discussions were updated throughout.

We list the main technical changes. The list is rather laconic. Motivation and more details
appear within.

84

1. The basic model of computation (Section 3.1) was simplified in a number of ways, most
prominently in the semantics of the “external write” operation and in the notion of polynomial
time machines.

2. The model of protocol execution (Section 4) was simplified and updated in two ways:

(a) Party corruption (with its many variants) was taken out of the basic model. It it modeled
as protocol operations.

(b) The model now allows the main parties of the protocol to explicitly specify the target
of their outputs. This is accompanied by a mechanism for the environment to “im-
personate” identities of ITIs that give inputs to and obtain outputs from the protocol
instance.

3. The notion of UC emulation (Section 4) was relaxed to quantify only over environments that
are “balanced” in the lengths of inputs it gives to the adversary vs the protocol parties.

4. The notion of subroutine respecting protocols (Section 5) was updated to require also that
the subroutine structure of the protocol (namely the IDs and programs of all subroutines) be
known to the adversary.

5. The behavior of parties upon corruption was modified, to allow for a more expressive treat-
ment of the party corruption operation.

6. The formulation of the synchronous communication functionality, Fsyn, was fixed. The previ-
ous formulation was buggy: contrary to what was claimed, Fsyn did not guarantee “liveness”,
or delivery of messages. The present formulation does.

85

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

