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Abstract. Restricted branching programs are considered in complexity
theory in order to study the space complexity of sequential computa-
tions and in applications as a data structure for Boolean functions. In
this paper (⊕, k)-branching programs and (∨, k)-branching programs are
considered, i.e., branching programs starting with a ⊕- (or ∨-)node with
a fan-out of k whose successors are k read-once branching programs. This
model is motivated by the investigation of the power of nondeterminism
in branching programs and of similar variants that have been consid-
ered as a data structure. Lower bound methods and hierarchy results for
polynomial size (⊕, k)- and (∨, k)-branching programs with respect to k

are presented.

1 Introduction

Branching Programs or Binary Decision Diagrams are a well-established model
for the representation and manipulation of Boolean functions in computer pro-
grams and for the investigation of their space complexity. In complexity theory
the goal is to prove superpolynomial lower bounds on the size of branching pro-
grams for explicitly defined functions, because such lower bounds imply super-
logarithmic lower bounds on the sequential space complexity of those functions.
However, the best lower bound on the branching program size for explicitly de-
fined functions is due to Nečiporuk [12] and is merely of size Ω(n2/ log2 n). In
order to study lower bound methods a lot of restricted variants of branching pro-
grams have been introduced and proofs of exponential lower bounds for those
restricted variants have been presented. The strongest results in this direction
are presented by Ajtai [1] and by Beame, Saks, Sun and Vee [2]. For further
references, see [13] and [16].
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Several restricted types of branching programs, in particular OBDDs, which
are defined below, are used to represent Boolean functions in computer programs
for applications like hardware design and verification. In such applications, data
structures for Boolean functions are needed that allow to store as many impor-
tant functions as possible in small space and to manipulate them efficiently. For
more information on the application of restricted branching programs as a data
structure we refer to Bryant [5, 6] and Wegener [16].

In the present paper, we investigate a generalization of read-once branching
programs (see below) obtained by combining k read-once branching programs
by a parity or a disjunction. We prove a hierarchy result for these models with
respect to k, i.e., we prove for some explicit functions that the size may decrease
from exponential to polynomial if k is increased by 1. This result holds for
k ≤ (2/3) log1/2 n.

We recall the definitions of deterministic and nondeterministic branching
programs. Let X = {x0, . . . , xn−1} be a set of Boolean variables. A deterministic
branching program over X is a directed acyclic graph. The graph consists of sink
nodes without outgoing edges and of internal nodes with a fan-out of 2. Each
sink is labeled by c ∈ {0, 1}. Each internal node v is labeled by a variable from X
and has an outgoing 0-edge and an outgoing 1-edge. Furthermore the branching
program has a source node, i.e., a node without incoming edges. The function
represented by the branching program is evaluated in the following way: For some
input a = (a0, . . . , an−1) the evaluation starts at the source. At each internal
node v labeled by xi the computation proceeds to the successor of v that is
reached via the ai-edge leaving v. The label of the sink that is finally reached
is equal to value of the represented function on the input a. The path that is
followed for the input a is called the computation path for a.

In a read-once branching program on each path from the source to a sink
each variable may be tested at most once. An OBDD (Ordered Binary Decision
Diagram) is a read-once branching program where an ordering of the variables
is fixed and during each computation the variables are tested according to this
ordering. OBDDs have been proposed by Bryant [5] as a data structure for the
representation and manipulation of Boolean functions.

A nondeterministic read-once branching program may contain “guessing”
nodes, i.e., nodes not labeled by any variable and with an arbitrary number of
outgoing edges. Then there may be multiple computation paths for the same
input, and an input is accepted, i.e. the value of the represented function is 1, if
and only if there is an accepting path for it, i.e., a path leading to the 1-sink. A
parity read-once branching program is a nondeterministic read-once branching
program with the parity acceptance mode, i.e., an input is accepted, iff there
is an odd number of accepting paths for it. For more details on the different
variants of nondeterminism in branching programs we refer to Meinel [11].

In the present paper, we consider (⊕, k)-branching programs. The source of
such a branching program is a nondeterministic node (labeled by ⊕) with a
fan-out of k and parity acceptance mode. The k successors of the source are
deterministic read-once branching programs P1, . . . , Pk. The semantics of such
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a branching program is defined in a straightforward way: It computes the value
1 for some input a iff an odd number of the read-once branching programs
P1, . . . , Pk compute the value 1 for a. Similarly, we define (∨, k)-branching pro-
grams. Now the source is a node labeled by ∨ with a fan-out of k, where the k
outgoing edges point to deterministic read-once branching programs P1, . . . , Pk.
The value 1 is computed for the input a if at least one of the branching programs
P1, . . . , Pk computes a 1 for a.

The results of Jukna [8], Krause, Meinel and Waack [10] and Borodin, Razborov
and Smolensky [4] imply exponential lower bounds for (∨, k)-branching pro-
grams. In order to prove lower bounds for (⊕, k)-branching programs one may
transform a given (⊕, k)-branching program into a syntactic read-k-times branch-
ing program and apply the lower bound methods of Borodin, Razborov and
Smolensky [4]. A syntactic read-k-times branching program has the restriction
that on each computation path each variable may be tested at most k times.
The transformation of a (⊕, k)-branching program consisting of P1, . . . , Pk into
a read-k-times branching program is straightforward; it suffices to combine one
copy of P1 and two copies of P2, . . . , Pk in such a way that the parity of the
results of P1, . . . , Pk is computed.

In the present paper, we provide a new method to prove exponential lower
bounds for (⊕, k)-branching programs and (∨, k)-branching programs and prove
a hierarchy result for these two models. The hierarchy result means that we
present a function with polynomial size (⊕, k + 1)-branching programs but only
exponential size (⊕, k)-branching programs (and a different function proving
a similar statement for (∨, k)-branching programs). By de Morgan’s rules the
hierarchy result for (∨, k)-branching programs implies a similar hierarchy result
for (∧, k)-branching programs.

Our result generalizes the hierarchy results for (∨, k)-OBDDs due to Bollig
and Wegener [3] and Sauerhoff [14]. A (∨, k)-OBDD is a branching program
with a ∨-node at the source with k outgoing edges pointing to OBDDs P1, . . . , Pk

(with possibly different variable orderings). Bollig and Wegener [3] and Sauerhoff [14]
provided functions with polynomial size (∨, k +1)-OBDDs but only exponential
size (∨, k)-OBDDs.

The motivation to consider (∨, k)-OBDDs was given by Jain, Bitner, Fussell
and Abraham [7] who suggested to use so-called Partitioned BDDs, which are
in fact restricted (∨, k)-OBDDs, as a data structure for Boolean functions. An-
other work considering restricted nondeterminism is the due to Sauerhoff [15].
He shows that restricting nondeterminism to the source of a nondeterministic
OBDD may cause an exponential blow-up of the size compared with ordinary
nondeterministic OBDDs.

The paper is organized as follows. In the following section we describe the gen-
eral lower bound methods for (⊕, k)- and (∨, k)-branching programs. In Section 3
we show how to apply these methods to particular functions and in Section 4 we
prove the hierarchy results.
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2 The Lower Bound Method

We first describe the lower bound method for (⊕, k)-branching programs. The
method is applicable to all (m, k)-full-degree functions, defined in Definitions 1
and 2. The lower bound for such functions is stated in Theorem 3. At the end of
this section we show how to adapt this lower bound method to (∨, k)-branching
programs. The lower bound is shown for (m, k)-full-sensitive functions (Defini-
tion 8, Theorem 9). In the following, let X = {x0, . . . , xn−1} denote the set of
variables.

Definition 1. Let A ⊆ X. A mapping φ : {0, 1}d → {0, 1}A is called a projec-
tion of degree d, if each of the |A| coordinates of φ(y1, . . . , yd) is defined by a
constant or a literal in one of the variables yi, i = 1, . . . , d, and, moreover, each
of the variables y1, . . . , yd is used (positively or negatively) in at least one of the
coordinates.

Definition 2. A Boolean function f is called (m, k)-full-degree, if the following
is satisfied. For any partition of its variables into subsets A, B, where |A| ≤ m,
and every projection φ : {0, 1}d → {0, 1}A of degree d ≤ k, there is a setting
b to the variables B, such that substituting φ(y1, . . . , yd) for the variables in A
and b for the variables in B leads to a function f(φ(y1, . . . , yd), b), which is an
F2-polynomial of degree d in the variables y1, . . . , yd.

Let us point out that the (m, k)-full-degree property generalizes the m-mixed
property introduced by Jukna [6], since a function is m-mixed if and only if it
is (m, 1)-full-degree. To see this, note that if d = 1, then it is only required that
f(ϕ(y1), b) is non-constant. The following theorem will be applied in situations,
where k = Θ(log n) and m/k24k = Ω(nε).

Theorem 3. If a Boolean function f of n variables is (m, k)-full-degree, then

each (⊕, k)-branching program for f has at least 2Ω(m/k24k)−log n nodes.

Proof. Let f be (m, k)-full-degree, and let a (⊕, k)-branching program P for
f be given. Let P consist of the read-once branching programs P1, . . . , Pk. In
the following, we assume that P1, . . . , Pk are complete read-once branching pro-
grams, i.e., on each computation path each variable is tested exactly once. Since
making read-once branching programs complete increases the size by a factor

of at most O(n), the lower bound 2m/k24k−1 on the total size of the complete
branching program, which we prove in the following, implies the claimed lower
bound.

Let t = bm/kc, and for i ∈ {1, . . . , k} let Vi be the set of all nodes on the
(t + 1)-th level of Pi, i.e. the nodes that are reached after t tests have been
performed. For every input a k-tuple (v1, . . . , vk) ∈ V1 × · · · × Vk of nodes is
reached. Now, let (v1, . . . , vk) be fixed. Since the read-once branching programs
P1, . . . , Pk are complete, on each path from the source of Pi to vi the same set
Xi of variables is tested. Let A =

⋃k
i=1 Xi and let B = X − A. By the choice of

vi we have |Xi| = t and |A| ≤ m. Let T be the set of all settings of the variables
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in A for which v1, . . . , vk are reached. We are going to prove the upper bound

2|A|+1/2t/4k

on the size of T . Any upper bound U on the size of T implies the
lower bound 2|A|/U on the number of tuples (v1, . . . , vk). Since the total size of
the branching program is at least the kth root of the number of such tuples, the
claimed lower bound follows.

Let us remark that, if T is large, after reaching vi the branching program Pi

“forgets much information” about the values of the bits read before. We show
that if T is large enough, then it contains a subset of size 2d, d ≤ k, on which
P can compute only polynomials of degree at most d − 1. This contradicts the
assumption that the computed function is (m, k)-full-degree. The critical subset
used for this is an image of an appropriate projection with the following property.

Definition 4. A projection φ : {0, 1}d → {0, 1}A is called a covering projection
for sets X1, . . . , Xk if for every i = 1, . . . , k, there is a variable among y1, . . . , yd

such that all its occurrences (negative and positive) are only used to determine
the values of Xi-variables in the output of φ.

We split the proof of the upper bound on the size of T into two lemmas.
If |T | is large, the first lemma guarantees the existence of a suitable covering
projection. By the second lemma, this implies that the computed function is
not an (m, k)-full-degree function in contradiction to the assumptions of the

theorem. Hence, the two lemmas imply the upper bound 2|A|+1/2t/4k

on |T |,
which completes the proof of Theorem 3 as mentioned above.

Lemma 5. If |T | ≥ 2|A|+1/2t/22k

, then there is a covering projection φ of some

degree d, 1 ≤ d ≤ k, such that φ({0, 1}d) ⊆ T .

Lemma 6. Let φ be a covering projection of degree d ≤ k, and let φ({0, 1}d) ⊆
T . For each setting b of the variables in B the following holds: If the variables in

A are substituted in P by φ(y1, . . . , yd) and the variables in B are substituted by

b, the represented function is a polynomial of degree at most d−1 over y1, . . . , yd.

Proof. We first consider the effect of substituting the variables in A by φ(y) and
the variables in B by b on the function represented by the read-once branching
program Pi. Let Pi(φ(y), b) denote the result of this substitution. All the vari-
ables tested on paths from the source to vi belong to A. Since φ({0, 1}d) ⊆ T ,
for each setting of the y-variables the computation of Pi goes through the node
vi. Let yj be the variable whose occurrences in φ only determine Xi-variables.
Then the computation of Pi(φ(y), b) does not test the variable yj at vi or after
vi, i.e., the function computed at vi does not essentially depend on yj . It follows
that the function computed by Pi is a polynomial of degree at most d− 1. Then
also the function represented by P is a polynomial of degree at most d− 1, since
it is the parity of the functions represented by Pi for i = 1, . . . , k. ut

Proof of Lemma 5. In order to construct a covering projection we first select
subsets A1, . . . , Ad of X1, . . . , Xk. Later on all variables in Aj are determined by
yj . Different sets Xi and Xi′ may share the same subset Aj . Then we inductively
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construct the correspondence between the variables in Aj and yj . Finally, by a
counting argument we show that this is possible in such a way that φ({0, 1}k) ⊆
T .

Since the set Xi contains at most 2k−1 cells of the Venn diagram of the sets
X1, . . . , Xk, we may choose for each set Xi a cell contained in Xi of size at least
|Xi|/2

k−1 = t/2k−1. The same cell may be used for two different sets Xi. Let
A1, . . . , Ad be the list of the distinct selected cells. These sets are disjoint, each
has size at least t/2k and for each Xi there is a set Aj(i) among A1, . . . , Ad such
that Aj(i) ⊆ Xi. Let Ad+1 = A − (A1 ∪ . . . ∪ Ad).

We are going to construct a covering projection by considering special rect-
angular sets. Let s ∈ {0, . . . , d} and let

Ds = A
(2)
1 × · · · × A(2)

s ×As+1 × · · · × Ad+1,

where Ai is the set of all settings of the variables of Ai, and A
(2)
i is the set of

all unordered pairs of such settings. The elements of Ds are (d + 1)-tuples of
the form ({a1, p1}, . . . , {as, ps}, {as+1}, . . . , {ad+1}), where ai, pi ∈ {0, 1}Ai and
ai 6= pi for 1 ≤ i ≤ s, and ai ∈ {0, 1}Ai for s + 1 ≤ i ≤ d + 1. We interpret each
element of Ds as the product

{a1, p1} × · · · × {as, ps} × {as+1} × · · · × {ad+1},

which is a set of 2s settings of the variables in A. We call such sets rectangular

sets of dimension s.
We may consider elements of T as rectangular sets of dimension 0, i.e. T ⊆

D0. For any 0 ≤ s ≤ d, let Ts ⊆ Ds be the set of all rectangular sets of
dimension s that are subsets of T . In particular, T0 = T . We shall prove that Td

is not empty, provided that all sets Ai, i = 1, . . . , d, are large enough. Then Td

contains all elements of a rectangular set {a1, p1} × · · · × {ad, pd} × {ad+1}. Let
φ be the projection defined by

φ(y1, . . . , yd) = (c1, . . . , cd, ad+1), where ci =

{

ai, if yi = 0,
pi, if yi = 1.

The choice of the partition A1, . . . , Ad+1 implies that φ is a covering projection.
Since φ is constructed from a rectangular set in Td, we have φ({0, 1}d) ⊆ T .

It remains to prove that the set Td is not empty. Let density(Ts) = |Ts|/|Ds|.
The following lemma shows how to obtain lower bounds on the density of Ts+1

from a lower bound on the density of Ts. By applying this lemma inductively,
one can obtain that the density of Td is larger than 0, i.e., that Td is not empty.

Lemma 7. Let s ∈ {0, . . . , d− 1}, let a = |As+1| and let ε = density(Ts). Then

density(Ts+1) ≥ ε2

(

1 −
1

εa

)

.

Proof. Partition Ds = A
(2)
1 × · · · × A

(2)
s × As+1 × · · · × Ad+1 into classes of

elements that coincide in all coordinates except the (s+1)-th one. Each of these
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classes has size a = |As+1|. Let N = |Ds|/a be the number of these classes and
let li for i = 1, 2, . . . , N be the size of the intersection of Ts and the ith class.
Clearly, (1/N)

∑N
i=1 li = |Ts|/N = εa. Since there are

(

li
2

)

pairs of elements of

the ith class, we obtain from the ith class
(

li
2

)

elements of Ts+1. Furthermore,

the size of Ds+1 is N
(

a
2

)

. Hence, we have the estimate

density(Ts+1) =
1

N
(

a
2

)

N
∑

i=1

(

li
2

)

≥
1

(

a
2

)

(

εa

2

)

≥
εa(εa − 1)

a2
= ε2

(

1 −
1

εa

)

,

where the first inequality follows from the convexity of
(

x
2

)

. ut

Since we apply Lemma 7 only for s ∈ {0, . . . , d−1}, in all applications of the

lemma we have a = 2|As+1| ≥ 2t/2k

.
Let ε0 be the density of T0 (= T ). By the assumption of Lemma 5 we have

|T | ≥ 2|A|+1/2t/22k

and, therefore, ε0 ≥ 2

2t/22k . Let εs be the lower bound on the
density of Ts that we obtain after the sth application of Lemma 7. Clearly, ε0a ≥

2 · 2t/2k−t/22k

≥ 2. Hence, the first application of Lemma 7 yields density(T1) ≥
ε1 ≥ ε2

0/2 = 2(ε0/2)
2. It is easy to verify that ε1a ≥ 2 and we can estimate the

density after the second application of the lemma in a similar way. In general,
after the sth application of the lemma, we obtain density(Ts) ≥ εs ≥ 2(ε0/2)

2s

.

For every s < d, we have εsa ≥ 2 · 2t/2k−t/22k−s

≥ 2, which allows to perform
the next step. Hence, after d applications of Lemma 7 we obtain a positive lower
bound on the density of Td, which implies the existence of a covering projection.

ut

The proofs of Lemmas 5–7 complete the proof of Theorem 3. ut

Finally, we present the adaptation of the lower bound method to (∨, k)-
branching programs. The lower bound method can be applied to functions that
are (m, k)-full-sensitive – a property that is defined in the following definition.

Definition 8. A function g on d variables is called full-sensitive, if there is an
input c for g such that g(c) = 1 and the shortest prime implicant covering c has
length d.

A function f is called (m, k)-full-sensitive, if the following is satisfied. For any
partition of its variables into subsets A, B, where |A| ≤ m, and every projection
φ : {0, 1}d → {0, 1}A of degree d ≤ k, there is a setting b to the variables B such
that substituting φ(y1, . . . , yd) for the variables in A and b for the variables in
B leads to a full-sensitive function f(φ(y1, . . . , yd), b).

It is easy to see that a full-sensitive function g has the following property: If
c is the input only covered by a prime implicant of length d, then for all inputs c′

obtained from c by flipping one variable it holds that g(c′) = 0. Similarly to the
case of (m, k)-full-degree functions the property (m, k)-full-sensitive generalizes
the notion m-mixed: A function is m-mixed iff it is (m, 1)-full-sensitive.
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Theorem 9. If a Boolean function f of n variables is (m, k)-full-sensitive, then

each (∨, k)-branching program for f has at least 2Ω(m/k24k)−log n nodes.

Proof. Let f be (m, k)-full-sensitive, and let a (∨, k)-branching program P
for f be given. As in the proof of Theorem 3 we assume that P consists of
the complete read-once branching programs P1, . . . , Pk, and we prove the lower

bound 2m/k24k−1 on the total size of the complete branching program. Let t and
V1, . . . , Vk be defined as in the proof of Theorem 3. Moreover, let any selection
of elements v1, . . . , vk from V1, . . . , Vk and corresponding sets X1, . . . , Xk, A, B
and T be also as in the proof of Theorem 3.

If |T | ≥ 2|A|+1/2t/4k

, then, by Lemma 5, there is a covering projection φ
of degree d such that d ≤ k and φ({0, 1}d) ⊆ T . Using Lemma 10 below, this
contradicts the assumption that P computes an (m, k)-full-sensitive function.

Altogether, we have the upper bound 2|A|+1/2t/4k

on the size of T , which, by
the same arguments as in the proof of Theorem 3, implies the claimed lower
bound on the total size of the read-once branching programs Pi.

Lemma 10. Let φ be a covering projection of degree d ≤ k, and let φ({0, 1}d) ⊆
T . For each setting b of the variables in B the followings holds: If the variables

in A are substituted in P by φ(y1, . . . , yd) and the variables in B are substituted

by b, the resulting function P (φ(y), b) is not full-sensitive.

Proof. If P (φ(y), b) is the zero function, it is not full-sensitive. Otherwise, let c
be any setting of the y-variables such that P (φ(c), b) = 1. This implies that there
is some i ∈ {1, . . . , k} such that Pi(φ(c), b) = 1. Let yj be the variable whose
occurrences in φ(y) only belong to Xi. Then, the computation of Pi(φ(c), b) does
not test the variable yj at vi or after vi. Let c∗ be the input obtained from c by
flipping the value of yj . Since φ(c∗) ∈ T , the computation of Pi(φ(c∗), b) goes
through the node vi and continues exactly as the computation of Pi(φ(c), b).
Consequently, in the functions Pi(φ(y), b) and P (φ(y), b), the input c is covered
by an implicant of length at most d − 1. Since this holds for every c satisfying
P (φ(c), b) = 1, P (φ(y), b) is not full-sensitive. ut

This concludes the proof of Theorem 9. ut

3 The Lower Bounds

Let us start with the definitions of the functions which we use. The considered
functions are multipointer functions where the pointers are obtained similarly
to functions used in [9]. Let n be a power of 2 and k an integer that possibly
depends on n. In order to compute fk

n(x0, . . . , xn−1) and gk
n(x0, . . . , xn−1) the

input X = {x0, . . . , xn−1} is partitioned into k(k + 1) blocks Bi,j , where i ∈
{1, . . . , k + 1} and j ∈ {1, . . . , k} and, if necessary, to some remaining variables.
Each block Bi,j consists of log n subblocks of size

s =

⌊

n

k(k + 1) log n

⌋

.
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Each of the blocks Bi,j determines a binary representation of an integer pi,j ,
0 ≤ pi,j ≤ n − 1. Each of the log n bits of pi,j is determined by the majority of
the s bits in one of the log n subblocks of the block Bi,j .

The function fk
n(x) takes the value 1 iff

1. ∀j ∈ {1, . . . , k} : p1,j = · · · = pk+1,j and
2. xp1,1

∧ . . . ∧ xp1,k
= 1.

The function gk
n(x) takes the value 1 iff

1. ∀j ∈ {1, . . . , k} : p1,j = · · · = pk+1,j and
2. xp1,1

⊕ · · · ⊕ xp1,k
= 1.

Let us point out that the conditions 1 in these definitions are only needed to
prove the upper bound of the hierarchy result. For the lower bound alone, the
functions xp1,1

∧ . . . ∧ xp1,k
and xp1,1

⊕ · · · ⊕ xp1,k
are sufficient. Moreover, the

lower bounds could be made slightly larger, if we don’t use blocks Bi,j for i ≥ 2
at all and split all the variables among blocks B1,j .

For each i = 1, . . . , k+1, the blocks Bi,j for j = 1, . . . , k determine a collection
of k pointers. The functions may take the value 1 only if all of these k + 1
collections coincide. Note that the fact that two pointers coincide does not imply
that the blocks from which the pointers are derived are identical. The lower
bound results use the following lemma.

Lemma 11. If c ∈ {0, 1} is a constant and some set A of at most s/2 − 2
variables is selected, then for each choice p̄1, . . . , p̄d ∈ {0, . . . , n − 1}, where

d ≤ k, one can find settings of the variables not in A such that

1. The pointers pi,j for all i = 1, . . . , k + 1 and j = 1, . . . , k do not depend on

the variables in A.

2. For all i = 1, . . . , k+1 and j ≤ d, we have pi,j = p̄j and for all i = 1, . . . , k+1
and j ≥ d + 1, pi,j is an index of the same variable set to the constant c.

Proof. Set one of the variables not in A to c and let q be its index. Define,
moreover, p̄j = q for all j = d+1, . . . , k. Since |A| ≤ s/2−2, less than one half of
the bits of each of the blocks is contained in A∪{q}. Thus, setting the remaining
bits may force the majority of the bits in each block to any predetermined value
independently from the values of the bits in A.

We use this to force the majority of the bits in Bi,j for all i = 1, . . . , k + 1
and j = 1, . . . , k according to the binary representation of p̄1, . . . , p̄k. ut

In the following theorems we state the lower bounds for the above defined
functions.

Theorem 12. Each (⊕, k)-branching program for f k
n has at least

2
Ω

(

n

k44k log n

)

−log n

nodes. This number grows exponentially, if k ≤ (1/2 − γ) log n for some γ > 0.

9



Proof. By Theorem 3 it suffices to prove that fk
n is (s/2 − 2, k)-full-degree.

Let A ⊆ X such that |A| ≤ s/2 − 2. Let d ≤ k and let φ : {0, 1}d → {0, 1}A

be any projection of degree d ≤ k. Since by the definition of the projections
each variable y1, . . . , yd occurs at least once in the projection, we can define
p̄1, . . . , p̄d in such a way that xp̄i

is an occurrence of yi or ¬yi. Using Lemma
11 with c = 1, we can find a setting b of the variables in B = X − A in such a
way that the resulting function fk

n(φ(y), b) is the conjunction of the y-variables
or their negations, which is an F2-polynomial of degree d. ut

Theorem 13. Each (∨, k)-branching program for gk
n has at least

2
Ω

(

n

k44k log n

)

−log n

nodes. This number grows exponentially, if k ≤ (1/2 − γ) log n for some γ > 0.

Proof. By Theorem 9 it suffices to prove that gk
n is (s/2 − 2, k)-full-sensitive.

Let A ⊆ X such that |A| ≤ s/2− 2. Let φ : {0, 1}d → {0, 1}A be a projection of
degree d ≤ k. Again let p̄1, . . . , p̄d be such that xp̄i

is an index of an occurrence
of yi or its negation. Using Lemma 11 with c = 0, one can find a setting b of
the variables in B = X −A in such a way that the resulting function gk

n(φ(y), b)
is the parity of all the y-variables or their negations, which is obviously a full-
sensitive function. ut

4 The Hierarchy Result

In order to obtain the hierarchy result we first prove a polynomial upper bound
on the size (⊕, k + 1)- and (∨, k + 1)-branching programs for f k

n and gk
n, resp.,

where k is a constant.

Theorem 14. There are (⊕, k +1)-branching programs for the function f k
n and

(∨, k+1)-branching programs for the function gk
n of size O(nk+2). These branch-

ing programs even consist of k + 1 OBDDs.

Proof. We start with the construction of a (⊕, k + 1)-branching program P for
fk

n . We call the set of input variables contained in Bi,1, Bi,2, . . . , Bi,k the ith
sector of the input. We first describe the OBDDs Pi, i ∈ {1, . . . , k + 1}, that P
consists of. The OBDD Pi works in the following way. It first reads the subblocks
in the ith sector and computes for each subblock the majority of its variables. For
each subblock the majority is stored. Storing means that the computation paths
for the inputs x and y do not join before a sink, if the majority of some subblock
in x is 1, while the majority of the same subblock in y is 0. For computing the
majority of s variables width s is sufficient. Since for each of the k log n subblocks
the majority of s variables is computed, width O(snk) is sufficient. In particular,
after reading the ith sector all pointers derived from the ith sector are known.
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If there is a pointer addressing a bit in ith sector, the OBDD Pi computes
a 0. If there is some j < i such that no pointer addresses any bit of jth sector,
also a 0 is computed. Otherwise i is the smallest number such that there is no
pointer addressing a bit of the ith sector. Then Pi sequentially reads the other
sectors and compares the stored pointers pi,1, . . . , pi,k with the corresponding
pointers of the other sectors in order to test condition 1 of the definition of f k

n . If
this condition is not fulfilled, a 0 is computed. Since the pointers are stored, it is
possible to compute the conjunction of the addressed bits during the comparison
of the pointers.

The correctness of P follows from the observation that exactly one of the
branching programs Pi, namely that where i is the smallest number of a sector
without an addressed bit, computes the correct function value, while all Pj ,
where j 6= i, compute a 0. The branching program Pi is able to compute the
function value since it has not read any of the addressed bits before it knows all
pointers.

The width of Pi is bounded by O(snk) and, hence, its size is bounded by
O(snk+1). The total size of P is bounded by O(ksnk+1) = O(nk+2). It is easy
to construct Pi in such a way that a variable ordering is respected, i.e. such that
Pi is an OBDD.

For the function gk
n and (∨, k + 1)-branching programs the same arguments

work with the only exception that the parity of the addressed bit has to be
computed instead of the conjunction. This may increase the width by a factor
of at most 2. ut

In order to state the hierarchy result, let P-(⊕, k)-BP denote the set of
all Boolean functions with polynomial size (⊕, k)-branching programs, and let
P-(∨, k)-BP and P-(∧, k)-BP be defined similarly.

Theorem 15. If k ≤ (2/3) log1/2 n, it holds that

P-(⊕, k)-BP $ P-(⊕, k + 1)-BP,

P-(∨, k)-BP $ P-(∨, k + 1)-BP and

P-(∧, k)-BP $ P-(∧, k + 1)-BP.

Proof. The third inequality follows from the second one by de Morgan’s rules. For
constant k the first and second inequalities follow directly from Theorems 12–14.
In order to prove the hierarchy results for nonconstant k we apply a padding ar-
gument. The following arguments are given for the hierarchy of (⊕, k)-branching
programs, but they work for the hierarchy of (∨, k)-branching programs in
the same way. Let ñ = dn1/ke. We define the function hk

n(x0, . . . , xn−1) =
fk

ñ(x0, . . . , xñ−1). This means we consider the same function as above with a
large number of dummy variables. The upper bound for (⊕, k + 1)-branching
programs for hk is then O(ñk+2) = O(n2). The lower bound is

2
Ω

(

ñ

k422k log ñ

)

−log n
= 2

Ω

(

2
log n

k
−4 log k−2k−log log n

)

−log n
.
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The last term is superpolynomial, since it is bounded below by 22Ω(log1/2 n)

=

2logα(n) n for a function α such that α(n) → ∞. ut
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the connection between (⊕, k)-branching programs and syntactic read-k-times
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