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Abstract

The main contribution of this work is a new type of graph product, which we call the zig-zag product.
Taking a product of a large graph with a small graph, the resulting graph inherits (roughly) its size from
the large one, its degree from the small one, and its expansion properties from both! Iteration yields
simple explicit constructions of constant-degree expanders of every size, starting from one constant-size
expander.

Crucial to our intuition (and simple analysis) of the properties of this graph product is the view of
expanders as functions which act as “entropy wave” propagators — they transform probability distribu-
tions in which entropy is concentrated in one area to distributions where that concentration is dissipated.
In these terms, the graph product affords the constructive interference of two such waves.

A variant of this product can be applied to extractors, giving the first explicit extractors whose seed
length depends (poly)logarithmically on only the entropy deficiency of the source (rather than its length)
and that extract almost all the entropy of high min-entropy sources. These high min-entropy extractors
have several interesting applications, including the first constant-degree explicit expanders which beat
the “eigenvalue bound.”
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1 Introduction

1.1 Expanders

Expanders are graphs which are sparse but nevertheless highly connected. Such graphs have been used to
address many fundamental problems in computer science, on topics including network design (e.g. [Pip87,
PY82, AKS83]), complexity theory ([Val77, Sip88, Urq87]), derandomization ([NN93, INW94, IW97]),
coding theory ([SS96, Spi96]), and cryptography ([GIL � 90]). Standard probabilistic arguments ([Pin73])
show that almost every constant-degree ( ��� ) graph is an expander. However, explicitly constructing such
graphs seemed to be much harder and this led to an exciting and extensive body of research, developed
mainly by mathematicians intrigued by this computer science challenge.

Most of this work was guided by the sufficient1 condition for the expansion of (infinite families of
constant-degree regular) graphs discovered by Tanner [Tan84] (see also [AM85]): the second largest eigen-
value of the adjacency matrix should be strictly smaller than the degree. This naturally led researchers to
consider algebraic constructions, where this eigenvalue can be estimated. The celebrated sequence of papers
[Mar73, GG81, AM85, AGM87, JM87, LPS88, Mar88, Mor94] provided such constant-degree expanders.
All these graphs are extremely simple to describe: given the name of a vertex (in binary), its neighbors can
be computed in polynomial time (or even logarithmic space). This level of explicitness is essential for many
of the applications. However, the analysis bounding the eigenvalue is quite sophisticated (and often based
on deep mathematical results). Thus, it is hard to intuitively understand why these graphs are expanders.

A deviation from this path was taken by Ajtai [Ajt94], who proposed a combinatorial construction of
cubic expanders. It starts with an arbitrary cubic � -vertex graph and applies a sequence of polynomially
many local operations which gradually increase the girth and turn it into an expander. However, the resulting
graph does not have any simply described form and lacks the explicitness level (and hence applicability) of
the algebraic constructions mentioned above.

In this work, we give a simple, combinatorial construction of constant-degree expander graphs.2 More-
over, the analysis proving expansion (via the second eigenvalue) is as simple and follows a clear intuition.
The construction is iterative, and needs as a basic building block a single, almost arbitrary expander of
constant size. The parameters required from it can be easily obtained explicitly, but exhaustive search is an
equally good solution since it requires only constant time. Simple operations applied to this graph generate
another whose size is increased but whose degree and expansion remain unchanged. This process continues,
yielding arbitrarily large expanders.

The heart of the iteration is our new “zig-zag” graph product. Informally, taking a product of a large
graph with a small graph, the resulting graph inherits (roughly) its size from the large one, its degree from
the small one, and its expansion properties from both! (That is, the composed graph has good expansion
properties as long as the two original graphs have good expansion properties.)

Below we sketch the construction and the new graph product.

1.2 Overview of Expander Construction

In this section, we describe a simplified, but less efficient, version of our expander construction and omit
formal proofs. Our full construction is described in detail in Section 3. Throughout this section, all graphs
are undirected and may have loops and parallel edges.

The Basic Operations. Three essential parameters play a role in an expander — size, degree and expan-
sion. We classify graphs accordingly.

1This condition turned out to be necessary as well [Alo86a].
2We can even achieve degree 3, which is clearly the smallest possible.
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Definition 1.1 An � ���������	� -graph is any � -regular graph on � vertices, whose 2nd largest eigenvalue
(of the associated random walk) has absolute value at most � .3

We use two operations on (the adjacency matrices of) graphs — the standard matrix squaring, and our
new zig-zag graph product. Here is their effect on the above three parameters.

SQUARING: Let 
�� denote the square of 
 . That is, the edges in 

� are paths of length 2 in 
 . Then

Fact 1.2 � ���������	� ��� � ����� � ��� � �

THE ZIG-ZAG PRODUCT: Let 
�� z 
 � denote the zig-zag product of 
�� and 
 � . Then,

Theorem 1.3 � ����������������� � z ��������� � ��� � � � � ������������� �� ������� � � �!� �� �
(The eigenvalue bound of �"�"� � � �#� �� is improved somewhat in Sections 3 and 4.2.)

The Iterations. Let $ be any ���&%'������(�)'*+� -graph, which will serve as the building block for our con-
struction.4 We define a sequence of graphs 
�, as follows.

- 

�/.0$ �
- 
 , � �1.2
 �, � z $

From Fact 1.2 and Theorem 1.3 above, it is easy to conclude that this sequence is indeed an infinite family
of expanders:

Theorem 1.4 For every 3 , 
 , is an � � , ���4�'�65+)'*+� -graph with � , .0� % ,

As mentioned above, this construction is not as efficient as we would like — computing neighborhoods
in 
 , takes time 7�8+9;:�� � , � rather than 7�8+9;:<9=8?>@� � , � . As we show in Section 3, this is easily overcome by
augmenting the iterations with another standard graph operation.

1.3 The Zig-Zag Graph Product

The new product mentioned above takes a large graph and a small one, and produces a graph that (roughly
speaking) inherits the size of the large one but the degree of the small one. This was the key to creating
arbitrarily large graphs with bounded degrees. Naturally, we are concerned with maintaining the expansion
properties of the two graphs. First, we describe the product.

For simplicity, we assume that the edges in our � -regular graphs are actually partitioned to � perfect
matchings (or color classes). For a color 3BADC ��E and a vertex F let F�C 3GE be the neighbor of F along the edge
colored 3 .5 With this simple notation, we can formally define the zig-zag product � z (and then explain it).

Definition 1.5 Let 
H� be an ��� -regular graph on C �4�IE and 
 � a � � -regular graph on C �J�KE . Then 

� � z 
 �
is a ���� -regular graph on C �4�KEMLNC ���KE defined as follows: For all F�A C ���KEO�6P�A!C ���KEO�K36�RQ�A C � � E , the edge
�S3��RQ<� connects the vertex �SF	�6PT� to the vertex �SF�CUP�C 3GE;EO�6P�C 3GEVC Q?ES� .

3The transition matrix of the random walk on W is the adjacency matrix divided by X , and we are looking at the second largest
eigenvalue Y[Z \�]K^`_ of this matrix.

4For completeness, in Section 3.4 we include two simple explicit constructions of such an a based on [Alo86b, AR94].
5This assumption causes some loss of generality, because our “zig-zag” product does not preserve the property that the label

(color) of an edge b;cd]Ge�f is the same from the perspective of both c and e . The formal construction uses something we call a
“rotation map” (introduced in Section 2) to keep track of how the label of an edge changes when moving from one endpoint to the
other.
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What is going on? Note that the size of the small graph 
 � is the degree of the large graph 
�� . Thus a
vertex name in 

� � z 
 � has a first component which is a vertex of the large graph, and a second which is
viewed both as a vertex of the small graph and an edge color of the large one. The edge label in 
�� � z 
 � is
just a pair of edge labels in the small graph. One step in the new product graph from a vertex �SF@�6PT� along
the edge �S3��RQd� can be broken into three substeps.

1. �SF	�6PT� � �SF@�6P�C 3OES� — A step (“zig”) in the small graph moving P to P�C 3GE . This affects only the second
component, according to the first edge label.

2. �SF	�6P�C 3GES� � �SF CUP�C 3GE;EO�6P�C 3GES� — A step in the large graph, changing the first component according to the
second, viewed as an edge color.

3. �SF�CUP�C 3GE;EO�6P�C 3GES� � �SF CUP�C 3GE;EO�6P�C 3OEVC Q'ES� – A step (“zag”) in the small graph moving P�C 3GE to P�C 3OEVC Q'E . This
affects only the second component, according to the second edge label.

1.4 Analysis of the Zig-Zag Product

Intuition. Why does it work? More precisely, why does Theorem 1.3 hold? What this theorem says
intuitively, is that 
�� � z 
 � is a good expander as long as both 
�� and 
 � are good expanders. Consider the
above three steps as a random walk on 
��+� z 
 � . Then Steps 1 and 3 are independent random steps on the
small graph. If at least one of them “works” as well as it does in the small graph, this would guarantee that
the new graph is as good expander as the small one. So let’s argue (very intuitively) that indeed one of them
“works”.

A random step in an expander increases the (
�

� -) entropy of a distribution on the vertices, provided that
it is not already too close to uniform. Let us consider a distribution on the vertices of the new graph �SF@�6PT� .
Roughly speaking, there are two cases.

- If the distribution of the second component P (conditioned on F ) is not too uniform, then Step 1
“works”. Since Step 2 is just a permutation and Step 3 is a random step on a regular graph, these steps
cannot make the distribution less uniform and undo the progress made in Step 1.

- If P (conditioned on F ) is very close to uniform, then Step 1 is a “waste”. However, Step 2 is then
like a real random step in the large expander 
�� ! This means that the entropy of the first component
F increases. Note that Step 2 is a permutation on the vertices of 
 � � z 
 � , so if entropy increases in
the first component, it decreases in the second. That means that in Step 3 we are in the good case (the
conditional distribution on the second component is far from uniform), and the entropy of the second
component will increase by the expansion of the small graph.

The key to this product is that Step 2 is simultaneously a permutation (so that any progress made in Step
1 is preserved) and an operation whose “projection” to the first component is simply a random step on the
large graph (when the second component is random). All previous discussions of expanders focused on the
increase of entropy to the vertex distribution by a step along a random edge. We insist on keeping track
of that edge name, and consider the joint distribution! In a good expander, if the edge is indeed random,
the entropy propagates from it to the vertex. This reduces the (conditional) entropy in the edge. Thus the
“entropy wave” in Step 2, in which no fresh randomness enters the distribution on vertices of 
 � � z 
 � , is
what facilitates entropy increase in Steps 1 or 3. Either the “zig” step does it, if there is room for more
entropy in P , or if not (which may be viewed as destructive interference of the large and small waves in Step
1), Step 2 guarantees constructive interference in Step 3. Moreover, Step 1 is not redundant as, if there is no
or little initial entropy in P , the wave of Step 2 (being a permutation) may flood P with entropy, destroying
the effect of Step 3. It is important to note that we discovered this viewpoint (of keeping track of the edge
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name) while trying to find expander analogies of constructions in the world of “extractors” (mainly from
[RR99]) that preserve entropy in a condensed form. The formal linear algebra proof, given in Section 3.3,
follows the above intuition very closely.

1.5 Extensions to the Expander Construction

Having achieved our basic goal of simple explicit construction of constant-degree expanders, we turn to
study some refinements and variants.

Smaller Degree. A naive and direct implementation of our graph product yields expanders whose degree
is reasonable, but not that small (something under 1000). In Section 3.2, we show how to combine this con-
struction, together with one, constant-size cycle, to obtain an infinite family of explicit degree 4 expanders.
Again, this combination uses the zig-zag product. Actually, using the simpler product mentioned below, we
can obtain degree 3 expanders.6

Better Degree vs. Eigenvalue Relation. It was shown by Alon and Boppana that � -regular expanders
cannot have their 2nd eigenvalue smaller than �H�I(�) � ��� � � (cf., [Alo86a, LPS88, Nil91]). Graphs achieving
this optimum were called Ramanujan, and were first constructed by Lubotzky, Phillips, and Sarnak [LPS88]
and Margulis [Mar88] (with more recent constructions by Morgenstern [Mor94]). Our basic zig-zag product,
applied recursively to one fixed Ramanujan graph will yield � -regular expanders of 2nd largest eigenvalue� �I(�) � ��� % � . A slightly more sophisticated zig-zag product, given in Section 4.1, improves this relation and
achieves second eigenvalue

� �I(�) � ����� � .

Expansion of Min-Entropy. Our basic zig-zag theorem analyzes the effect the composition has on the
second eigenvalue as expansion measure, or equivalently, how the graph increases Renyi’s

�

� -entropy. But
the intuition for the proof of the theorem suggests it should work for other entropy measures. Attempting
to apply it for the standard definition of set expansion (namely the support of a distribution — a very naive
“entropy” measure) fails. However, with hindsight, a natural choice strengthening this standard notion is
min-entropy expansion. In a subsequent paper, we will introduce this notion, relate it to standard expansion
on the one hand, and show that the zig-zag product affects it as it does the 2-entropy expansion. Further-
more, this definition appears to lead to a better relationship between degree and (vertex) expansion than that
achieved by the zig-zag product for 2-entropy. The reason is that this definition allows us to incorporate
extractors into the zig-zag product.

A Simpler Product. In the zig-zag product, the traversal of an edge consists of three substeps. An more
natural and simpler graph product 
���� 
 � is obtained by taking the union of the edges corresponding to
the substeps rather than combining them into a single edge. In the notation of Section 1.2, connect vertex
�SF@�6PT� A C ���KE L C ���KE to vertex �SF�CUPdEO�6PT� and the vertices �SF	�6P�C 3GES� for all 3JA � � . This product has the
advantage that the degree is only � � � ( , rather than � �� . (The “cube-connected cycle” is a well-known
example of this product, obtained by taking 
4� to be a hypercube of 5	� vertices and degree 
 , and 
 � to
be a cycle on 
 vertices.) Moreover, we can use the zig-zag analysis to show that if 
J� and 
 � are good
expanders then so is 
 � � 
 � .7 We defer further details of this product to a subsequent paper.

6As pointed out to us by Noga Alon, any family of constant-degree expanders can be easily turned into a family of degree 3
expanders, but our methods give a way to reduce the degree of any expander with good control over the effect on the eigenvalue.

7One way to see this is to observe that the cube of W���
"W�� contains W���� z W�� as a regular subgraph. However, we can obtain
a better bound on the eigenvalue via a direct analysis. Actually, to optimize the degree-eigenvalue relationship, it turns out to be
better to give the edges of the form b;e?Z ��_=]�� f multiplicity X�� , for total degree of �6X�� .
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A Connection to Algebra. Lubotzky and Wigderson [LW00] have shown that, under certain algebraic
conditions, if we take the zig-zag product of Cayley graphs for groups 
&� and 
 � , we obtain a Cayley graph
for the semidirect product of 
�� and 
 � . They have used this connection to disprove the conjecture of
Lubotzky and Weiss [LW93] that the property of a Cayley graph being an expander is independent of the set
of generators.

1.6 Extractors

Like expanders, extractors are a fundamental construct in theoretical computer science. They originate in
three independent research tracks regarding probabilistic algorithms:

Deterministic Amplification The attempts to reduce their error with few random bits (initiated in [KPS85,
CG89, Sip88, CW89, IZ89],

Weak Random Sources The attempts to perform them using a source of biased, correlated coin flips (ini-
tiated in [Blu86, SV86, CG88, VV85]), and

Derandomization The attempts to derandomize completely probabilistic small-space algorithms which use
a few random bits (initiated in [AKS87])

In 1990, Zuckerman (cf., [Zuc96]) proposed the following definition of a weak random source (param-
eterized by a number P and termed a P -source): It is a probability distribution on 
 bits in which no string
has probability larger than 5�� � . So, intuitively, the distribution has P bits of randomness, and this particular
(

���
) notion of entropy turns out to be the most appropriate in this setting. With this definition and the sub-

sequent paper of Nisan and Zuckerman [NZ96], it became clear that the same construct — the extractor,
which they defined — addresses all of the above three problems. Moreover, it turned out to be fundamental
derandomization tool and found other applications, such as sampling [Zuc97] and various combinatorial
constructions (including certain kinds of expander graphs and other networks) [WZ99].

For the purpose of the introduction, we will use a simplified definition. Intuitively, an extractor is a
function that converts the P bits of entropy “hidden” in every P -source on 
 bits into an (almost) uniform
distribution on P bits. It is not hard to see that this task is impossible if the extractor is completely deter-
ministic, so we allow a few additional truly random

�
bits of randomness as another input to the extractor.

This input, sometimes referred to as the seed, serves as a catalyst to the process of extraction. So formally,
denoting by ����� the set of all strings of length � and �
	 the uniform distribution on this set, we can give a
simplified definition of extractors. (The more general definition, which can be found in Section 5, allows
the output of fewer bits, and on the other hand may demand subconstant error � .)
Definition 1.6 (extractors, simplified) A function E �@� 
 � L[� � ��
� �GPT� is an extractor if for every P -source�

, the distribution E � � �����'� has statistical difference � from � � (for some small constant � , e.g. � .���� ( ).
Minimizing the seed length

�
(and trading it off with the other parameters we hid under the rug in this

definition) is the goal in constructing extractors. Intuitively, in most derandomization tasks, a deterministic
algorithm will enumerate all 5 � possible values of the seed, thus relying only on the randomness of the
source. So, the efficiency of such applications depends crucially on

�
.

Nisan and Zuckerman [NZ96] proved that the seed length
�

is at least ����9;8?> � 
�� PT�K� . This is easily
matched by a nonconstructive upper bound, applying the Probabilistic Method to a random function E as
above. However, all applications clearly need an explicit extractor, namely a function E which can be
computed in polynomial time. An impressive body of work has developed on the problem of explicitly
constructing extractors over the last few years (see, e.g., [Zuc97, NT99, Tre99, RSW00] and the references
therein).
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1.7 The Case of High Min-Entropy

Almost all the previous work on extractors focused on the case that the source min-entropy P is smaller than� 
 for some constant ��� ( . (This is indeed the case for most applications.) In this case, the lower bound
on the seed length

�
is ����9;8?>�
 � and efforts concentrated on achieving, or coming close to, this bound with

explicit extractors. However, when P is much closer to 
 (which is natural in several applications mentioned
below), even smaller values of

�
are possible. It is natural in this case to define � . 
 �&P to be the entropy

deficiency of the P -source and look for explicit extractors whose seed length depends only on � , but not
on 
 . Goldreich and Wigderson [GW97] studied this “high min-entropy” case, giving an explicit extractor
whose seed length is

� . � ����� . They also gave extractors (under the more general definition) with shorter
seeds; however, these extractors lose more than � bits of entropy (i.e. their output length is less than P ��� ,
rather than being P ).

In this paper, we continue that work, giving explicit extractors with the optimal (up to constant factors)� . � ��9;8?>���� for small values of � (below 9;8?>+9;8?> 
 ) and nearly optimal
� . � ��9;8?> � ��� for every value

of � (without losing entropy as in [GW97]). Stated differently, we give a reduction from the problem of
constructing high min-entropy extractors for long sources (of length 
 ) to that of constructing extractors for
sources of length

� ���4� , the deficiency! When � is sufficiently small, optimal extractors can be obtained
in polynomial time by brute force. Otherwise, we use the best existing explicit constructions. This reduc-
tion is achieved using a “Zig-Zag Composition Theorem” for extractors (which is analogous to the zig-zag
product for expanders). It is interesting to note that we obtained this composition theorem before the one
for expanders.

1.8 Applications of Our Extractors

The significance of the improved bounds we obtain is illustrated by several applications described below
(with more details in Section 7). Below and throughout the paper, all logarithms are base 2.

Averaging Samplers. A function � � �	��� � C � ��( E is given by a black box and we want to efficiently
estimate its average, up to an additive error � .���� ( (for simplicity). An averaging sampler (also known as
an oblivious sampler [BR94]) uses some 
 random bits to compute some � sample points in �	��� , and returns
the average of their � -values. The probability that this average deviates too much from the truth should be at
most 
 , regardless of which � is in the box. The goal is to simultaneously minimize both 
 , the number of
random bits used, and � , the number of samples. Nonconstructively, it can be done with 
�.��!��9=8?>	�I(�)�
�� �� �I(�� random bits and � . � ��9;8?> �I(�)�
 �K� samples [CEG95, Zuc97]. The most randomness-efficient explicit
(i.e., polynomial-time) construction is due to Zuckerman [Zuc97]. He observed that averaging samplers are
essentially equivalent to extractors, and using his extractor construction obtained 
�. �I(���
M��� �	��� 9=8?>��I(�)�
 �K�
for an arbitrarily small constant 
 , with �/. 7 8+9=:��	� ��9;8?>��I(�)�
��K� . Using one of our extractors (which makes
use of of Zuckerman’s extractor), we improve this to 
�.�� �0�I(1��
 � � 9=8?> �I(�)�
�� and ��. 7�8+9;:���9;8?> �I(�)�
 �K� .
Most notably, the polynomial dependence of � on � and 9=8?>	�I(�)�
�� in Zuckerman’s construction has turned
into a polynomial dependence on just 9;8?>��I(�)�
�� ; this corresponds to the fact that number of truly random
bits in our extractor depends only on the entropy deficiency � rather than the source length 
 .

Expanders Beating the Eigenvalue Bound. What is the smallest degree needed to ensure that in a graph
of � vertices every two sets of size ��)�� have an edge between them? Random graphs show that degree� ��� ��9=8?>�� � suffices, but explicit constructions have failed to match this bound. An application of the best
known relation between eigenvalues and vertex expansion [Tan84] shows that Ramanujan graphs (e.g., as
given by [LPS88, Mar88, Mor94]) of degree �H������� suffice. To beat this “eigenvalue bound,” Wigderson and
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Zuckerman [WZ99] suggested to build such graphs from extractors and obtained degree �2� ���
� ��� , which

was important for many applications where � is a fixed power of � . However, for very small � , even much
better dependence on � obtained in subsequent work (e.g., [NT99]) does not beat the eigenvalue bound. We
show for any constant � , that degree

� ��� ��9;8?> % � � suffices, almost matching the random graph bound.

Error Reduction for Dispersers. Dispersers are the one-sided analogue of extractors — instead of in-
ducing a distribution that is � -close to uniform on their output, they are only required to hit all but an �
fraction of their range with nonzero probability. They were introduced by Sipser [Sip88] and predate the
notion of extractors. For simplicity above, we treated the error � of extractors as a small constant, but in
general one wants dispersers and extractors whose parameters have a near-optimal dependence on � . An
optimal disperser’s parameters have a better dependence on � than an optimal extractor — in a disperser,
to achieve an error of � , the seed length need only grow by an additive 9;8?>	�I(�) �'� and the “entropy loss” 8

need only be 9;8?>+9=8?> �I(�) � � , whereas for extractors both the seed length and entropy loss must be at least
5M9;8?>��I(�) � � ) [RT97]. Using our high min-entropy extractors, we give the first explicit constructions of dis-
persers which achieve a better dependence on � than can be achieved with extractors (in both the seed length
and entropy loss). More generally, we use our high min-entropy extractors to give a method to reduce the
error of any disperser from a constant to an arbitrary � paying an essentially optimal price in terms of seed
length and entropy loss. (A related error reduction technique for dispersers was independently discovered
by Ta-Shma and Zuckerman.)

2 Expander Preliminaries

2.1 Graphs and Rotations

All graphs we discuss may have self loops and parallel edges. They are best described by their (nonnegative,
integral) adjacency matrix. Such a graph is undirected iff the adjacency matrix is symmetric. It is � -
regular if the sum of entries in each row (and column) is � (so exactly � edges are incident on every
vertex).

Let 
 be a � -regular undirected graph on � vertices. Suppose that the edges leaving each vertex of 

are labeled from ( to � in some arbitrary, but fixed, way. Then for F@��� A!C ��E and 3BA!C ��E , it makes sense
(and is standard) to say “the 3 ’th neighbor of vertex F is � ”. In this work, we make a point to always keep
track of the edge traversed to get from F to � . This is formalized as follows:

Definition 2.1 For a � -regular undirected graph 
 , the rotation map � 8	��
 � C ��EML C ��E � C ��EMLNC ��E is
defined as follows: � 8	��
B�SF@�K3I��. �
� �RQd� if the 3 ’th edge incident to F leads to � , and this edge is the Q ’th
edge incident to � .

This definition enables us to remove the simplifying assumption made in the introduction, which was that
the label of an edge is the same from the perspective of both endpoints, i.e. � 8	��
B�SF@�K3`� . �
� �RQd��� 3/.0Q .
From Definition 2.1, it is clear that � 8	� 
 is a permutation, and moreover � 8	� 
�� � 8	� 
 is the identity map.
We will always view graphs as being specified by their rotation maps. Hence we call a family � of graphs
explicit if for every 
 A�� , � 8	��
 is computable in time 7�8+9;: 9;8?> � , where � is the number of vertices of

 . That is, graphs in � are indexed by some parameters (such as the number of vertices and the degree,
which may be required to satisfy some additional relations) and there should be a single algorithm which
efficiently computes � 8	� 
 for any 
 A�� when given these parameters as an additional input. We will often

8This is the total randomness invested ( ����� ) minus the output length. Definition 1.6 assumes the output is � , but the more
general definitions allow it to vary.
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informally refer to an individual graph as explicit, as shorthand for saying that the graph comes from an
explicit family.

2.2 Eigenvalues and Expansion

The normalized adjacency matrix � of 
 is the adjacency matrix of 
 divided by � . In terms of the
rotation map, we have:

����� � . (� �
���� �S3��RQ<� A C ��E � � � 8	� 
 �
	 �K3`��. �SF	�RQd��� �� �

� is simply the transition matrix of a random walk on 
 . By the � -regularity of 
 , the all-1’s vector
(�
0. �I('��('� � � � ��(�� A�� 
 is an eigenvector of � of eigenvalue 1. It is turns out that all the other eigenvalues
of � have absolute value at most 1, and it is well-known that the second largest eigenvalue of 
 is a
good measure of 
 ’s expansion properties [Tan84, AM85, Alo86a]. We will use the following variational
characterization of the second largest eigenvalue.

Definition 2.2 �"�O
 � denotes the second largest eigenvalue (in absolute value) of 
 ’s normalized adja-
cency matrix. Equivalently,

�"�O
 ��.��������� ���
��� 
1��� 
 � �� 
/� 
!� ."�#������ ���

$ � 
 $$ 
 $ �

Above,
� �;���%� refers to the standard inner product in � 
 and

$ 
 $ .'& � 
/� 
!� .
The meaning of � �O
 � can be understood as follows: Suppose ( A C � ��( E 
 is a probability distribution

on the vertices of 
 . By linear algebra, ( can be decomposed as ( .�	)
 �*( � , where 	+
 . (�
 ) � is
the uniform distribution and ( ��, 	 
 . Then �-( ..	 
 �/�0( � is the probability distribution on vertices
obtained by selecting a vertex F according to ( and then moving to a uniformly selected neighbor of F . By
Definition 2.2,

$ �-( � $�1 �"�O
 �/� $ ( � $ . Thus � �O
 � is a measure of how quickly the random walk on 

converges to the uniform distribution. Intuitively, the smaller � �O
 � is, the better the expansion properties
of 
 . Accordingly, an (infinite) family � of graphs is called a family of expanders if these eigenvalues are
bounded away from 1, i.e. there is a constant � � ( such that � �O
 � 1 � for all 
 A � . It was shown by
Tanner [Tan84] and Alon and Milman [AM85] that this implies (and is in fact equivalent to [Alo86a]) the
standard notion of vertex expansion: there is a constant �32 � such that for every 
 A � and for any set 4
of at most half the vertices in 
 , at least �I(/� � �M� � 4 � vertices of 
 are connected to some vertex in 4 .

As mentioned in the introduction, we refer to a � -regular undirected graph 
 on � vertices such that
� �O
 � 1 � as an � ��������� � -graph. Clearly, achieving expansion is easier as the degree gets larger. The
main goal in constructing expanders is to minimize the degree, and, more generally, obtain the best degree-
expansion tradeoff. Using the Probabilistic Method, Pinsker [Pin73] showed that most 3-regular graphs
are expanders (in the sense of vertex expansion), and this result was extended to eigenvalue bounds in
[Alo86a, BS87, FKS89, Fri91]. The best known bound on the eigenvalues of random graphs is due to
Friedman [Fri91], who showed that most � -regular graphs have second largest eigenvalue at most 5+)+5 �0�� �K��9=8?>/�J�K) �&� (for even � ). In fact, the bound of 6 5+) 5 � is the best possible for an infinite family of
graphs, as shown by Alon and Boppana (cf., [Alo86a, LPS88, Nil91]). Infinite families of graphs whose
second largest eigenvalues are bounded by

� �I(�)75 �&� are referred to as Ramanujan graphs.9

While these probabilistic arguments provide strong existential results, applications of expanders in com-
puter science often require explicit families of constant-degree expanders. The first such construction was
given by Margulis [Mar73], with improvements and simplifications by Gabber and Galil [GG81], Jimbo and

9In order for this big-Oh notation to make sense, we must consider families of graphs containing not just infinitely many graphs
of a fixed degree X , but families in which both the number of vertices and the degree can be arbitrarily large.
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Maruoka [JM87], Alon and Milman [AM85], and Alon, Galil, and Milman [AGM87]. Explicit families of
Ramanujan graphs were first constructed by Lubotzky, Phillips, and Sarnak [LPS88] and Margulis [Mar88],
with more recent constructions given by Morgenstern [Mor94].The best eigenvalues we know how to achieve
using our approach are

� �I(�) � ����� � .

2.3 Squaring and Tensoring

In addition to the new zig-zag product, our expander construction makes use of two standard operations on
graphs — squaring and tensoring. Here we describe these operations in terms of rotation maps and state
their effects on the eigenvalues.

Let 
 be a � -regular multigraph on C ��E given by rotation map � 8	� 
 . The � ’th power of 
 is the
� 	 -regular graph 
 	 whose rotation map is given by � 8	� 
�� �SF��'���GP ���6P � � � � ���6P 	`�K� . �SF 	K���

� 	K� � 	 � ��� � � � �
� � �K� ,

where these values are computed via the rule �SFd,V� � ,R� . � 8	� 
 �SF', � � �6P?,R� .
Proposition 2.3 If 
 is an � ��������� � -graph, then 
 	 is an � ����� 	 ��� 	 � -graph. Moreover, � 8	� 
�� is com-
putable in time 7�8+9;:���9;8?> ����9;8?> ��� ��� with � oracle queries to � 8	� 
 .

Proof: The normalized adjacency matrix of 
 	 is the � ’th power of the normalized adjacency matrix of 
 ,
so all the eigenvalues also get raised to the � ’th power.

Let 

� be a �&� -regular multigraph on C �4�KE and let 
 � be a � � -regular multigraph on C � � E . Define the
tensor product 
H����
 � to be the �&� � � � -regular multigraph on C ���KE6L C � � E given by � 8	� 
 ��� 
 � �K�SF@��� �����S3��RQd�K� .
�K�SF
	�����	 �����S3�	��RQ�	 �K� , where �SF
	��K3�	 � . � 8	� 
B�SF@�K3`� and �
��	��RQ�	=�1. � 8	� 
B�
� �RQd� . In order to analyze this construc-
tion (and our new graph product), we need some concepts from linear algebra. For vectors 
 A/� 
 � and� A � 
 � , their tensor product is the vector 
�� � A � 
 ��� 
 � whose �S3��RQ<� ’th entry is 
M,"� �
� . If � is an
��� L ��� matrix and � is an � � L � � matrix, there is a unique ��� � � L ��� � � matrix ����� (again called
the tensor product) such that ��������� ��
�� � �1. ��� 
 ��� ��� � � for all 
/� � .

Proposition 2.4 If 
�� is an � ��� ����� ������� -graph and 
 � is an � � � ��� � ��� � � -graph, then 
H����
 � is an � ���	�
� � �����/� � � ���#���"�O������� � �K� -graph. Moreover, � 8	��
 ��� 
 � is computable in time 7�8+9;:���9;8?> ��� � � ��9=8?>/���6� � �
with one oracle query to � 8	� 
 � and one oracle query to � 8	��
 � .

Proof: The normalized adjacency matrix of 
4��� 
 � is the tensor product of the normalized adjacency
matrices of 
 � and 
 � . Hence its eigenvalues are the pairwise products of eigenvalues of 
 � and 
 � . The
largest eigenvalue is ( � ( , and the second largest eigenvalue is either (B� � � or �����d( .

3 Expander Construction

In the introduction, we described how to obtain a family of expanders by iterating two operations on graphs
— squaring and the new “zig-zag” product. That description used a simplifying assumption about the edge
labelings. In terms of rotation maps, the assumption was that � 8	� �SF	�K3`� . �
� �RQ<��� 3/.0Q . In this section,
we describe the construction in terms of arbitrary rotation maps and prove its properties. The expander
construction given here will also use tensoring to improve the efficiency to polylogarithmic in the number
of vertices.
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3.1 The Zig-Zag Graph Product

We begin by describing the new graph product in terms of rotation maps. Let 
&� be a ��� -regular multigraph
on C ���`E and 
 � a � � -regular multigraph on C ���KE . Their zig-zag product is a � �� -regular multigraph 
H� � z 
 �
on C ���KE�L C ���KE . We view every vertex F of 
�� being blown up to a “cloud” of � � vertices �SF@��(���� � � �'���SF@���&� � ,
one for each edge of 
H� leaving F . Thus for every edge � . �SF	��� � of 
�� , there are two associated vertices
of 

�?� z 
 � — �SF@�6PT� and �
� � � � , where � is the P ’th edge leaving F and the

�
’th edge leaving � . Note that

these pairs satisfy the relation �
� � � �H. � 8	� 
 � �SF	�6PT� . Since 
 � is a graph on C �&�KE , we can also imagine
connecting the vertices of each such cloud using the edges of 
 � . Now, the edges of 
 � � z 
 � are defined
(informally) as follows: we connect two vertices �SF	�6PT� and �
� � � � if it is possible to get from �SF@�6PT� to �
� � � �
by a sequence of moves of the following form:

1. Move to a neighboring vertex �SF	�6P 	 � within the initial cloud (using an edge of 
 � ).
2. Jump across clouds (using edge P 	 of 

� ) to get to �
� � � 	 � .
3. Move to a neighboring vertex �
� � � � within the new cloud (using an edge of 
 � ).

To make this precise, we describe how to compute the � 8	� 
 ��� z 
 � given � 8	� 
 � and � 8	� 
 � .
Definition 3.1 If 
H� is a ��� -regular graph on C �4�KE with rotation map � 8	��
 � and 
 � is a � � -regular graph
on C ���KE with rotation map � 8	� 
 � , then their zig-zag product 
�� � z 
 � is defined to be the � �� -regular graph
on C � � E LNC � � E whose rotation map � 8	� 
 ��� z 
 � is as follows:

� 8	� 
 � � z 
 � �K�SF	�6PT�����S3��RQd�K� :
1. Let �GP 	 �K3 	 ��. � 8	� 
 � �GP �K3`� .
2. Let �
� � � 	 � . � 8	� 
 � �SF@�6P 	 � .
3. Let � � �RQ 	 � . � 8	� 
 � � � 	 �RQd� .
4. Output �K�
� � � �����;Q�	O�K3�	 �K� .
The important feature of this graph product is that 
4� � z 
 � is a good expander if both 
�� and 
 � are,

as shown by the following theorem.

Theorem 3.2 If 

� is an � ����������������� -graph and 
 � is a ��������� � ��� � � -graph, then 

� � z 
 � is a � ��� �
� � ��� �� � � �O� � ��� � �K� -graph, where � �O� � ��� � �

1 � � ��� � ��� �� and � �O� � ��� � �
� ( when � � ��� �

� ( . Moreover,
� 8	� 
 � � z 
 � can be computed in time 7�8+9;:���9;8?> ����9;8?>/�J����9;8?> � � � with one oracle query to � 8	��
 � and two
oracle queries to � 8	� 
 � .

Stronger bounds on the function � �O� ����� � � are given in Section 4.2. Before proving Theorem 3.2, we
show how it can be used to construct an infinite family of constant-degree expanders starting from a constant-
size expander.

3.2 The Recursion

The construction is like the construction in the introduction, except that we use tensoring to reduce the depth
of the recursion and thereby make the construction run in polylogarithmic time (in the size of the graph).
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Let $ be a ����� ������� � -graph for some � and � . (We describe two ways of obtaining such $ in Sec-
tion 3.4.) For every � � � , we will define a ��� � 	 ��� � ��� 	V� -graph 
 	 . 

� is $ � and 
 � is $ �N$ . For � 22( ,

�	 is recursively defined by


 	 .
�

�� ��� ���� �#

	 ��� �����
 � � z $ �

Theorem 3.3 For every � � � , 
 	 is an ��� � 	 ��� � ��� 	V� -graph with � 	1. �H� � �O� � � . Moreover, � 8	� 
 � can
be computed in time 7 8+9=:���� ��9;8?>B�&� with 7�8+9;:����K� oracle queries to � 8	��� .

Proof: A straightforward induction establishes that the number of vertices in 
 	 is � � 	 and that its degree
is ��� . To analyze the eigenvalues, define ��	1. �#��� � ����� � � ����� 	 � . Then we have � 	 1 �#��� � � 	 � ����� �	 � � ��H� � � � for all � � 5 . Solving this recurrence gives � 	 1 �H� � �O� � � for all � . For the efficiency, note that
the depth of the recursion is at most 9=8?> � � and evaluating the rotation maps for 
 	 requires 4 evaluations of
rotation maps for smaller graphs, so the total number of recursive calls is at most ������� � 	 . �`� .

In order for Theorem 3.3 to guarantee that graphs � 
 	 � are expanders, the second largest eigenvalue �
of the building block $ must be sufficiently small (say, � 1 (�)'* ). This forces the degree of $ and hence the
degree of the expander family to be rather large, though still constant. However, by zig-zagging the family� 
�	 � with a cycle, we can obtain a family of degree 4 expanders. More generally, we can use this method
convert any family of odd-degree expanders into a family of degree 4 expanders:

Corollary 3.4 For every � � ( and every odd � , there exists a � 	 � ( such that if 
 is an � ��������� � -graph
and � is the cycle on � vertices, then 
�� z � is a � � ����� ��� 	 � -graph.

As mentioned in Section 1.5, we can obtain degree 3 expanders using a simpler, but related graph
product.

3.3 Analysis of the Zig-Zag Product

Now we prove Theorem 3.2. Recall the intuition behind the zig-zag product. We aim to show that for any
(non-uniform) initial probability distribution ( on the vertices of 
 �6� z 
 � , taking a random step on 
 �6� z 
 �
results in a distribution that is more uniform. We argued this intuitively in the introduction, by considering
two extreme cases, based on the conditional distributions induced by ( on the � � “clouds” of � � vertices
each: one in which these conditional distributions are far from uniform, and the second in which they are
uniform. The actual linear algebra proof below will restrict itself to these two cases by decomposing any
other vector into a linear combination of the two. Also, the argument in the introduction was not symmetric
in the first and second steps on the small graph. Using the variational definition of the second largest
eigenvalue, we get a cleaner analysis than by following that intuition directly.

Let � be the normalized adjacency matrix of 
4�K� z 
 � . According to Definition 2.2, we must show that,
for every vector 
 A � 
 ��� ��� such that 
 , ( 
 � � � , ��� � 
1� 
!� � is smaller than

� 
1� 
!� by a factor � �O�"����� � � .10

For every F�A C �4�KE , define 
 � A � ��� by ��
 � � � . 
 � � . Also define a (linear) map � �7� 
 ��� � � � � 
 � by
����
 � � .�� � ���� � 
 � � . Thus, for a probability distribution ( on the vertices of 
�� � z 
 � , ( � is a multiple of the
conditional distribution on “cloud F ” and � ( gives the marginal distribution on set of clouds. By definition,

 . � � � � � 
 � , where � � denotes the F ’th standard basis vector in � 
 � . By basic linear algebra, every 
 �

10For intuition, � should be thought of as the nonuniform component of the probability distribution  referred to above, i.e. "! c �$#&%�# �'� , where c �$#(%�# !!^ �$#(%�#�)+* �VX � is the uniform distribution on Z * �RX �G_ . Thus, we are showing that  becomes
more uniform after a random step on W � � z W � .
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can be decomposed (uniquely) into 
!� . 
��� � 
 �� where 
��� is parallel to ( � � (i.e., all of its entries are the
same) and 
 �� is orthogonal to ( ��� (i.e., the sum of its entries are 0). Thus, we obtain a decomposition of 
 :


 .
�
� � � � 
 �

.
�
� � � � 
 �� � � � � � � 
 �������

. 
 � � 
 �
This decomposition corresponds to to the two cases in our intuition: 
 � corresponds to a probability

distribution on the vertices of 
�� � z 
 � such that the conditional distributions on the clouds are all uniform.

 � corresponds to a distribution such that the conditional distributions on the clouds are all far from uniform.
Another way of matching 
 � with the intuition is to note that 
 � . ��
 � ( � � ) ��� . Since 
 and 
 � are both
orthogonal to ( 
 �(� � , so is 
 � and hence also � 
 is orthogonal to ( 
 � .

To analyze how � acts on these two vectors, we relate � to the normalized adjacency matrices of

[� and 
 � , which we denote by � and � , respectively. First, we decompose � into the product of three
matrices, corresponding to the three steps in the definition of 
��+� z 
 � ’s edges. Let 	� be the (normalized)
adjacency matrix of the graph on C �&�KE L C ���KE where we connect the vertices within each cloud according to
the edges of 
 � . 	� is related to � by the relation 	� .�
 
 � ��� , where 
 
 � is the � � L � � identity matrix.
Let 	� be the permutation matrix corresponding to � 8	� 
 � . The relationship between 	� and � is somewhat
subtle, so we postpone describing it until later. By the definition of 
�� � z 
 � , we have � . 	� 	� 	� . Note
that both 	� and 	� are symmetric matrices, due to the undirectedness of 
�� and 
 � .

Recall that we want to bound
��� � 
/� 
 � � ) � 
/� 
!� . By the symmetry of 	� , we have
� � 
1� 
!�1. � 	��	�
	��
1� 
!�1. � 	�
	��
1��	��
!� � (1)

Now note that 	� 
 � .�
 � , because 
 � . ��
 � ( ��� ) ��� , 	� .�
�
 � � � , and ��( ��� . ( � � . This corresponds
to the fact that if the conditional distribution within each cloud is uniform, then taking a random 
 � -step
does nothing. Hence, 	� 
 .�	����
 � � 
 � ��.�
 � ��	� 
 � . Substituting this into (1), we have

� � 
/� 
!�1. � 	�H��
 � � 	� 
 � ��� 
 � � 	� 
 � � � (2)

Expanding and using the fact that 	� is length-preserving (because it is a permutation matrix), we have
��� � 
1� 
!� � 1 ��� 	� 
 � � 
 � � � �!5 $ 
 � $ � $ 	��
 � $ � $ 	� 
 � $ � � (3)

Now we apply the expansion properties of 
 � and 
 � to bound each of these terms. First, we bound$ 	��
 � $ , which corresponds to the intuition that when the conditional distributions within the clouds are far
from uniform, they become more uniform when we take a random 
 � -step.

Claim 3.5
$ 	��
 � $ 1 � � � $ 
 � $ .

Proof of claim:

	� 
 � . 	��� � � � � � 
 ����
.
�
� � � � ��
 �� �

By the expansion of 
 � ,
$ ��
 �� $ 1 � � �

$ 
 �� $ for all F . Hence,
$ 	��
 � $ 1 � � � $ 
 � $ . �
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Next, we bound
��� 	� 
 � � 
 � � � , which corresponds to the intuition that when the conditional distribution

within each cloud is uniform, the jump between the clouds makes the marginal distribution on clouds them-
selves more uniform.

Claim 3.6
��� 	� 
 � � 
 � � � 1 ����� � 
 � � 
 � � �

Proof of claim: To prove this, we must first relate 	� to � . Recall that, when P is uniformly
distributed, � 8	� 
 � �SF	�6PT� gives a pair �
� � � � where � is a uniformly selected neighbor of F .
Similarly, if � � A�� 
 � is the F ’th standard basis vector, then � � � gives the uniform distribution
over the neighbors of F . This similarity is captured by the formula � 	�[� � � �2( � � ) ��� � . � � �
for all F . (Tensoring � � with ( � � ) ��� corresponds to taking the uniform distribution over P and
applying � corresponds to discarding

�
and looking just at � .) Because the � � ’s form a basis,

this formula extends to all vectors
� A � 
 � : � 	� � � � ( � � ) � � �/. � � . Applying this formula

to 
 � . ��
 �0( � � ) ��� , we have � 	�[��
 � ��. � � 
 . Thus,
� 	� 
 � � 
 � � . � 	� 
 � � � 
��0( ��� �K) ���

. � � 	� 
 � � ��
!�K) ���
. � � ��
/� ��
!�K) ��� �

Recalling that � 
 is orthogonal to ( 
 � , we may apply the expansion of 
 � to obtain:
��� 	� 
 � � 
 � � ��1 ����� � ��
/� ��
!�K) ���

. ����� � ��
��0( � � � ��
 �0( � � �K) � ��
. ����� � 
 � � 
 � ��� �

Substituting the bounds of Claim 3.5 and 3.6 into (3), we have:
��� � 
1� 
!� �71 ����� $ 
 � $ � �!5+� � � $ 
 � $ � $ 
 � $ �#� �� � $ 
 � $ � (4)

If we let � . $ 
 � $ ) $ 
 $ and �D. $ 
 � $ ) $ 
 $ , then � � ���'� . ( , and the above expression can be
rewritten as: ��� � 
/� 
 � �� 
/� 
!�

1 � � � � � �!5+� � � � � �#� �� ��� � 1 � � �#� � �#� �� �
This shows that we can take � �O�"����� � �

1 ���<��� � ��� �� . It remains to show that we can set � �O�"����� � �
� (

as long as ������� �
� ( . We consider two cases, depending on the length of

$ 
 � $ . First, suppose that$ 
 � $ 1 � � � �� � � � $ 
 $ � Then, from (4), we have

��� � 
/� 
!� �71 ����� $ 
 $ � �!5+� � �
� ( � � �
�+� ��� $ 
 $ � �#� �� �

� ( �D� �
�+� ��� � $ 
 $ � �

�
( � ( � � �	 � � $ 
 $ � �

Now suppose that
$ 
 � $ � � � � �� � $ 
 $ . Notice that 	��
 � is orthogonal to 
 � : � 	� 
 � � 
 � ��. � 
 � ��	��
 � ��.� 
 � � 
 � ��. ��� Using this, we can bound (2) as follows:

��� � 
/� 
 � � . ��� 	�H��
 � � 	� 
 � ��� 
 � � 	��
 � � � 1 $ 
 � � 	��
 � $ � . $ 
 � $ � � $ 	� 
 � $ �
1 $ 
 $ � � $ 
 � $ � �#� �� �

$ 
 � $ � 1 $ 
 $ � � �I( �D� �� ���
� ( � ���
�+� �� � � � $ 
 $ � �

Thus, we can take

� �O������� � �
1 ( � ( �D� �	 ����

���B('� ( � � ��� �� � � ( �
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3.4 The Base Graph

In this section, we describe two simple graphs that can be used as the building block $ for our expander
construction. The first is simpler and more intuitive, but the second yields a construction with better param-
eters.

The Affine Plane

The first construction is based on the “projective plane” construction of Alon [Alo86b], but we instead use
the affine plane in order to make � exactly � � and then use the zig-zag product to obtain a graph with
� . ��� . For a prime power �[. � 	 , let ��� be the finite field of size � ; an explicit representation of such a
field can be found deterministically in time 7�8+9;:�� � � ��� [Sho90]. We define a graph ����� with vertex set � �� ,
and edge set � �K���	�
	������ � � � �K� ��� � .�	/� � � . That is, we connect the vertex ���@�
	�� to all points on the line
�� � � . � ���"���T� ����.���� ��	 � . (Note that we have chosen the sign of 	 to make the graph undirected.)

Lemma 3.7 ����� is an � � � � �d��(�) 5 �+� -graph. Moreover, a rotation map for ����� can be computed in time
7�8+9;:���9;8?> �+� given a representation of the field ��� .
Proof: The expansion of ����� will follow from the fact the square of ����� is almost the complete graph,
which in turn is based on the fact that almost all pairs of lines in the plane � �� intersect. Let � be the �?�/L �'�
normalized adjacency matrix of ����� ; we will now calculate the entries of � � . The entry of � � in row
���	�
	 � and column ��� 	 �
	 	 � is exactly the number of common neighbors of ���	�
	 � and ��� 	 �
	 	 � in ��� � divided
by �'� , i.e.,

� 
�� � ��� 
��
 � �  � ) �'� . If �"!.#�
	 , then

�� � � and


��$ � �  intersect in exactly one point. If � .#� 	 and	%!.&	 	 , then their intersection is empty, and if �H.&� 	 and 	 .'	 	 , then their intersection is of size � . Thus, if
we let 
(� denote the �
L � identity matrix and )*� the �
L � all-one’s matrix, we have

� � . (� �
+,,,
-
� 
(� ).� �����/).�).� � 
(� ).�

...
. . . ).�).� ).� ������� 
(�

0(111
2 . 
(� � � 
(� � �3).� � 
(��� �").�� � �

Now we can calculate the eigenvalues explicitly. )4� has eigenvalues � (multiplicity 1) and � (multiplicity� � ( ). So �3).� � 
(��� �5).� has eigenvalues � � � (���� � , � ([� � , and � . Adding 
6� � � 
(� increases all
these eigenvalues by � , and then we divide by � � . Hence the eigenvalues of � � are 1 (multiplicity 1), 0
(multiplicity � � ( ), and (�) � (multiplicity � � � (�� � � ). Therefore, the second largest eigenvalue of � has
absolute value (�) 5 � .

A rotation map for ����� is given by

� 8	�7� �K���	�
	���� �K�/. � �K���K)8�	� � ��	���� �K� if �9!. � and ��!. � ,
�K����� ��	����$� � if �H. � or ��. � ,

where �	�
	 � �BA:��� .
Now, define the following graphs inductively:

��� �� . ����� �;�������� , � �� . ��� , � � z �����
From Proposition 2.4 and Theorem 3.2, we immediately deduce:
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Proposition 3.8 ��� , � is a � �'� � , � ��� � �'�'� � �S3`) 5 �?�K� -graph.11 Moreover, a rotation map for ��� , � can be com-
puted in time 7�8+9;:��S3���9;8?> �+� given a representation of ��� .
Taking 3M.�� and a sufficiently large � gives a graph suitable for the expander construction in Section 3.2.

Low-Degree Polynomials

The graphs we describe here are derived from constructions of Alon and Roichman [AR94], which are
Cayley graphs derived from the generator matrix of an error-correcting code. In order to give a self-contained
presentation, we specialize the construction to a Reed-Solomon code concatenated with a Hadamard code
(as used in, e.g. [AGHP92]).

For a prime power � and
� A�� , we define a graph ��� � � � on vertex set � � � �� with degree � � . For a vertex�4A:� � � �� and �"���&A � � , the the ��� ��� � ’th neighbor of � is � � ���	��� �"��� � � � � � ����� � � � .

Proposition 3.9 ��� � � � is a � � � � � � � � � � ) �+� -graph. Moreover, a rotation map for ��� � � � can be computed in
time 7�8+9;:���9;8?> �d� � � given a representation of � � .
As above, taking

� .�� and sufficiently large � gives a graph suitable for our expander construction. These
graphs are better than those of Proposition 3.8 because the the eigenvalue-degree relationship is the optimal
��. � �I(�) 5 �&� (as � grows).

Proof: To simplify notation, let � . ��� . Let � be the � � � � L � � � � normalized adjacency matrix of ��� � � � .
We view vectors in 	 ��
�� � as functions � �*� � � � � 	 . We will now explicitly describe the eigenvectors of
� . Let � be the characteristic of � , let 
 . �'��� , ��� be a primitive � ’th root of unity, and let


 ��� � ���
be any full-rank ��� -linear map. (For simplicity, one can think of the special case that � . � and



is the

identity map.)
For every sequence �H. �����'� � � ���$� � �BA:� � � � , define the function � � � � � � � � 	 by � � � 	���.�
�� ���

��� � � � .
Clearly, � � � 	 � � ��.�� � � 	���� � � � � for any 	 � � A5� � � � . Moreover, it can be verified that the � � � � are
orthogonal under the standard inner product

� � ��� ��. � � � � 	 ����� 	 ��� , and thus form a basis for 	 � 
�� � . Hence,
if we show that each � � is an eigenvector of � , then they are all the eigenvectors of � . This can be done
by direct calculation:

� ��� � � � 	 � . (� � � �!#" 
�� � � �  �$� � � � �
. (� � �% � & !#" � � � 	�� ���	��� �"� � � � ����� � �K�
. � � % � & !#" � � ��� ��� �"� � � ����� � � �� � � �$� � � 	�������
. � � �$� � � 	�� �

Thus, � � is an eigenvector of � with eigenvalue � � and all eigenvectors of � are of this form. So we
simply need to show that

� � � � 1 � ) � for all but one �4A:� � � � . To do this, note that

� � . (� � �% � & !'" � � �K���	��� �"� � � � ����� � �K��. (� � �% � & !#" 
 � � & � �$( � % � � �
11The hidden constant in )Bb�* ),+ - f can be reduced to 1 using the improved analysis of the zig-zag product in Theorem 4.3.

16



where � � ����� is the polynomial ��� � �@�$���#������� � � � � . When � is a root of � � , then 
 � � & �$( � % � � . ( for all � ,
and hence � contributes �+) � � . (�) � to � � . When � is not a root of � � ����� , � � � ����� takes on all values in � as� varies, and hence 
 � � & �$( � % � � varies uniformly over all � ’th roots of unity. Since the sum of all � ’th roots of
unity is 0, these � ’s contribute nothing to � � . When �9!. � , � � has at most

�
roots, so

� � � � 1 � ) � .
4 Extensions to the Expander Construction

4.1 Better Eigenvalue-Degree Relation

Recall that the optimal second-largest eigenvalue for an infinite family of � -regular graphs is ���I(�) � ��� � � ,
and families of graphs meeting this bound are referred to as Ramanujan. Starting with a constant-size
Ramanujan graph,12 our basic construction of Theorem 3.3 gives an achieves a second-largest eigenvalue
of

� �I(�) � ��� % � . Here, we define a variant of the zig-zag product which leads to a better dependence of
the eigenvalue on the degree. Specifically, using it in a construction like that of Theorem 3.3 together a
constant-size Ramanujan graph (e.g., as given by Proposition 3.9), we obtain a second-largest eigenvalue of� �I(�) � ����� � . It is an interesting problem to construct families of graphs achieving the optimal eigenvalue� �I(�) � ��� � � using a similar graph product.

Definition 4.1 Let 
H� be a ��� -regular graph on C ���`E with rotation map � 8	��
 � and let 
 � be a � � -regular
graph on C � � E with rotation map � 8	� 
 � . Suppose that for every 3 A C � � E , � 8	� 
 � �`�;�K3`� is a permutation on
C ���KE . Then the modified zig-zag product of 
�� and 
 � is defined to be the � �� -regular graph 
H� � 	z 
 � on
C ���KE"L C ���KE whose rotation map � 8	� 
 ���

 
z 
 � is as follows:

� 8	� 
 � �
 

z 
 � �K�SF@�6PT������� �K3��RQd�K� :
1. Let �GP 	 ��� 	 ��. � 8	� 
 � �GP ���	� .
2. Let �GP 	 	��K3�	 ��. � 8	� 
 � �GP 	��K3`� .
3. Let �
� � � 	 	 � . � 8	� 
 � �SF@�6P 	 	 � .
4. Find the unique

� 	 A C � � E such that � � 	 	 �K3 	 	 � . � 8	� 
 � � � 	 �K3`� for some 3 	 	 . (
� 	 exists by the assumption

on � 8	� 
 � .)
5. Let � � �RQ 	 � . � 8	� 
 � � � 	 �RQd� .
6. Output �K�
� � � �����;Q�	O�K3���� 	 �K� .

So, in this graph product we do two random steps on the small graph in both the zig and the zag parts.
However, to save random bits (namely decrease the degree) we use the same random bits for the second
move of the zig part and the first move of the zag part. Thus the degree of the new graph is � �� . However,
we will show that the bound on the eigenvalue will be as if these moves were independent.

Theorem 4.2 If 
H� is an � ��������������� � -graph and 
 � is a ���&����� � ��� � � -graph, then 
H� � 	z 
 � is a � ��� �
� � ��� �� ��� � �25+� �� � -graph. Moreover, � 8	� 
 � �

 
z 
 � can be computed in time 7�8+9;:���9;8?> ����9;8?>/� � ��� � � with

one oracle query to � 8	��
 � and � � �!5 oracle queries to � 8	� 
 � .
12Analogous to Footnote 9, the notion of a “constant-size Ramanujan graph” is not well-defined. What we mean is that the size

of the Ramanujan graph we need as a building block is a (polynomial) function of only the degree of the graph we are constructing,
and not the number of vertices.
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Proof: We use the same notation as in the proof of Theorem 3.2. Like there, we need to bound
��� � 
/� 
 � � ) � 
/� 
!� ,

where � is the normalized adjacency matrix of 
�� � 	z 
 � and 
 , (�
 � � � . Let � , be the ��� L���� permu-
tation matrix corresponding to � 8	� 
 � �`�;�K3`� , and let 	� , .

�
 � ��� , . Then

	� . (
���

� ��
, � � 	� , �

Note that the normalized adjacency matrix corresponding to Steps 2–4 in the definition of 
/� � 	z 
 � is given
by

� 	 . (
���
�
,
	� , 	�
	� �

, �

where 	� �
, is the transpose (equivalently, inverse) of 	� , . Thus, � . 	�3� 	 	� . The main observation is that

not only does 	� 
 � . 
 � (as we used in the original analysis), but also 	� �
, 
 � . 
 � for every 3 (because � ,

is a permutation matrix). Hence,

� 	 
 � . (
� �
�
,
	� , 	� 	� �

, 
 � . (
� �
�
,
	� , 	� 
 � . 	� 	� 
 � �

Applying this (and the symmetry of 	� and � 	 ), we get

� � 
/� 
 � . � � 
 � � 
 � � �!5 � � 
 � � 
 � � � � � 
 � � 
 � �
. � 	� 
 � � 
 � � �!5 � 
 � � 	� � 
 � � � � � 	 	��
 � � 	� 
 � � �

Being the normalized adjacency matrix of an undirected, regular graph, � 	 has no eigenvalues larger than 1
and hence does not increase the length of any vector. Using this together with Claims 3.5 and 3.6, we have

��� � 
1� 
!� � 1 ��� 	� 
 � � 
 � � � �!5 $ 
 � $ � $ 	� � 
 � $ � $ 	� 
 � $ �1 � � � $ 
 � $ � �!5+� �� � $ 
 � $ � $ 
 � $ �#� �� � $ 
 � $ � �
As in the the proof of Theorem 3.2, using the fact that

$ 
 � $ �T� $ 
 � $ � . $ 
 $ � yields the desired bound.

4.2 Improved Analysis of the Zig-Zag Graph Product

Theorem 4.3 (Thm. 3.2, improved) If 
�� is an � ��������������� � -graph and 
 � is a ���&����� � ��� � � -graph, then

[� � z 
 � is a � ������������� �� � � �O������� � �K� -graph, where

� �O� � ��� � � .
(
5 �I( �D� �� �K� � �

(
5

�
�I( � � �� � � � � � � �d� �� �

Although the function � �O�"����� � � looks ugly, it can be verified that it has the following nice properties:

1. � �O� � � ��. � � � ��� �1. � and � �O����(��1. � �I('���	�1. ( for all ��ANC � ��( E .
2. � �O������� � � is a strictly increasing function of both � � and � � (except when one of them is 1).

3. When ��� � ( and � �
� ( , then � �O������� � �

� ( .
4. � �O������� � �

1 ��� �#� � for all � � ��� � A C � ��( E .
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Proof: The proof proceeds along the same lines as the proof of Theorem 3.2, except that we will use a
geometric argument to directly bound (2) rather than first passing to (3). That is, we we must bound (using
the same notation as in that proof)

� � 
/� 
!�� 
1� 
!� .
� 	�
��
 � � 	� 
 � ��� 
 � � 	� 
 � �$ 
 � � 
 � $ � �

The key observation is:

Claim 4.4 	� is a reflection through a linear subspace 4 of � 
 � � � . Hence, for any any vector F , � ��F@�KF7�1.
��� 8��	5 � � � $ F $ � � where

�
is the angle between F and 4 .

Proof of claim: By the symmetry of 	� , we can decompose � 
 � ��� into the sum of orthogonal
eigenspaces of 	� . Since 	� � . 
 
 �(� � , the only eigenvalues of 	� are �
( . Take 4 to be the
( -eigenspace of 	� . �

Thus, the expression we want to bound is

��� � 
/� 
 � �� 
/� 
 � . � � 8��	5 � � �
$ 
 � � 	� 
 � $ �$ 
 � � 
 � $ � . � � 8���5 � � � � 8������� 8�� � � 	 �

where
�

is the angle between 
 � � 	� 
 � and 4 , � A C � ��(")'5 E is the angle between 
 � and 
 � ��
 � , and
� 	 ANC � ��(")'5 E is the angle between 
 � and 
 � � 	� 
 � . If we also let � be the angle between 
 � and 4 , then
we clearly have

� ANC � �	� 	��
� ��� 	 E .
Now we translate Claims 3.5 and 3.6 into this geometric language. Claim 3.5 constrains the relationship

between � 	 and � by
��� ��� 	
��� �
� . $ 	��
 � $$ 
 � $

1 � � �
Claim 3.6 says

� � 8���5�� � 1 � � . For notational convenience, we will denote the exact values of �
��� ��� 	=�K) �
��� �����
and

� � 8�� 5�� � by � � and � � , respectively. We will work with these values until the end of the proof, at which
point we will upper bound them by � � and � � .

To summarize, we want to maximize

� � 8�� 5 � � � � 8�� � �� 8�� � � 	 � (5)

over the variables
�
, � , � 	 , and � , subject to the following constraints:

1. � ��� 	 �
� A C � ��(")'5 E .
2.
� A C � ��� 	��
� ��� 	 E .13

3. ��� ��� 	 ) ��� ����. � � .
4.

� � 8���5�� � . �M� .
There are two cases, depending on whether

� � 8�� 58� � ever achieves the value 1 in the interval C � ��� 	 �
�H��� 	 E .
13We do not require � Y Z \�]� ) ��_ so that we do not have to worry about “wraparound” in the interval Z �����

 
]�� ���

 
_ . Adding a

multiple of  ) � to � does not change the value of (5).
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Case I: � 	 1 � 
 � � � ��(")'5 � � � . Then

� � 8��	5 � � . �#��� � � � 8�� 5 � � ��� 	 � � � � � 8�� 5 � � ��� 	 � � �
. � � 8��	5�� � � 8�� 5 � 	 � � � � 
 � 5��N� � 
 � 5 � 	 � �

After some trigonometric manipulations, we have

� � 8�� 5 � � � � 8�� � �� 8�� � � 	 .
(
5
�� �I( � � �� � � 8���5�� � �I(/� � �� � � 8��	5�� � 8��	5 � �� � (5 � 5 � � � 
 � 5�� � 
 � 5 � �

The choice of � which maximizes this is to have ��� 8�� 5 � � � 
 � 5 ��� be a unit vector in the direction of � �H�I(��� �� � � 8�� 5����65 � � � 
 � 5�� � , so

� � 8��	5 � � � � 8�� � �� 8�� � � 	
1 (
5 �I( � � �� � � � 8��	5�� � � (5

�
�I( � � �� � � � 8�� � 5�� � � � �� � 
 � � 5��

. (
5 �I( � � �� �(�M� � (5

�
�I(/� � �� � � � � � � � � �� �I( � � � � � �

Case II: � 	 2 ��
 � � ����(")'5 � � � . In this case, we cannot obtain any nontrivial bound on
� � 8�� 5 � � , so, after

some trigonometric manipulations, the problem is reduced to bounding:

� � 8�� 5 � � � � 8������� 8�� � � 	
1 � 8���� �
� 8�� � � 	 . � �� � �I( � � �� � � 8�� � � � (6)

The condition ��	 2 � 
 � � � ��(")'5 � � � implies that � 8��	5 � 	 � � � 8�� 5�� � . �M� . After some trigonometric
manipulations, we have

� 8�� 5 � 	 . �I( � � �� � � 8�� � � � � ���I( � � �� � � 8�� � �H� � �� �
and the condition � 8�� 5 � 	 � � � is equivalent to

� 8�� � � � � �� �I(/� � � ��I( � � � � � � �� �I(/� � � � �
Substituting this into (6) and simplifying, we conclude that

� � 8�� 5 � � � � 8���� �� 8�� � � 	
� 5 � ��( � �M� � � �� �I( � �M� � �

It can be verified that the bound obtained in Case I is an increasing function of � � and � � and is always
greater than or equal to the bound in Case II. Therefore, replacing � � and � � by ��� and � � in the Case I
bound proves the theorem.

5 Extractor Preliminaries

5.1 Definition of Extractors

Extractors are procedures for obtaining “almost” uniformly distributed bits from an arbitrary source that
contains some P bits of “hidden randomness”. The definition of extractors employs a very general measure
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of the randomness in such a “weak” random source: Let
�

and
�

be random variables over a set 4 . The
min-entropy of

�
is defined to be

��� � � �
� � �
. ��9;8?>�� �#���� !�� ��� C � .�� ES���

where here and throughout this paper, all logarithms are base 2.
�

is a P -source if
� � � � � � P . We say

that
�

and
�

are � -close if the statistical difference between
�

and
�

is at most � . That is, if

�������� �
� ��� C � A
	 E � ����C � A�	 E � . (5 �� !�� � ��� C � .��+E � ����C � .�� E � 1 �

Note that the statistical difference is a metric and therefore it obeys the triangle inequality. For any integer

 , denote by � 
 � the set of all 
 -bit strings, � � ��(�� � . Denote by � � the uniform distribution over � 
 � .
Definition 5.1 (extractors) A function E �/� 
 ��L#� � � 
� �	��� is a �GP � �'� -extractor if for any P -source

�
over � 
 � , the distribution E � � �����'� is � -close to �
� .

In other words, E “extracts” � (almost) truly random bits from a source with P bits of hidden randomness,
using a random

�
-bit seed as a catalyst. The original definition of extractors in [NZ96] is stronger than the

one above (from [NT99]) in that it requires the seed to be explicitly included in the output. As we discuss
later (in Remark 6.8), our results also apply to such strong extractors.14

As noted in the defining paper of [NZ96], an extractor can be viewed as a bipartite graph with left-hand
side � 
 � and right-hand side �	��� , where we place an edge between � A � 
 � and �JA �	��� for every �HA!� � �
such that � ���"��� � .5� . The definition of extractors can be viewed as an expansion property of this graph,
and our extractor constructions in the following sections can be viewed as a generalization of our expander
construction and intuition (from Section 3) to unbalanced bipartite graphs.

5.2 Previous Constructions

The goal in the design of extractors is, given 
 , P , and � , to simultaneously minimize the seed length
�

and
maximize the output length � . Nisan and Zuckerman [NZ96] proved bounds for both these values which
were later improved by Radhakrishnan and Ta-Shma [RT97]: (1) The seed length

�
is at least 9=8?> � 
 � PT���

5M9;8?> (�) � � � �I(�� . (2) The entropy loss �#. P � � � � is at least 5M9;8?> (�) � � � �I(�� .15 It can also be shown
that (up to an additive constant factor) these bounds can nonconstructively be matched:

Proposition 5.2 ([Sip88, RT97]) For any 
 � P and � there exists a �GP � � � -extractor E � � 
 � L � � � 
�
�GP � � ��� � , where

� .09;8?>�� 
 �NPT���!5M9;8?> (�) � � � �I(�� and �!. 5M9;8?>��I(�) � � � � �I(�� .
Most applications, however, require explicit extractors: That is, a family of extractors (parameterized by

 �6P � � and � ) that are computable in polynomial time (in their input length, 
 � �

). In recent years, a
substantial body of work has provided steady progress towards the goal of constructing explicit extractors
that achieve optimal seed length for all settings of parameters (see, e.g., [Zuc97, NT99, Tre99, ISW00] and
the references therein). However, this goal has not yet been achieved.

In this work, we give explicit extractors for sources of very high min-entropy. For such sources, our
extractors have a substantially shorter seed length than all previous constructions (that do not lose much
entropy). Let

�
be a random variable over � 
 � with min-entropy P . The entropy deficiency � of

�
is

defined to be 
 �!P . Note that the optimal seed length of extractors does not depend on the input length 

of the source but rather on its deficiency � . The only previous explicit extractors with such a dependence
were provided by Goldreich and Wigderson:

14In fact, it was recently shown in [RSW00] that there exists a simple transformation of (standard) extractors to strong extractors.
15These bounds hold whenever ����^ ) � , ������� )Bb�^�f , and ����� � � .
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Theorem 5.3 ([GW97]) For any � 2 � and � � P 1 
 there exists an explicit � 
 ���&� �'� -extractor

GW �	� 
 � L � � � 
� � 
 ���
where

� . � �!5M9;8?> �I(�) �'�"�!5 .
Our extractor composition theorem, described in the next section, gives a method for reducing this linear
dependence of

�
on the deficiency � to the (optimal) logarithmic dependence while preserving the small

entropy loss of
� ��9;8?> �I(�) � �K� . As we will discuss in more detail in the next section, a method to make

�
logarithmic in � was already suggested in [GW97], but resulted in an entropy loss greater than � (which
negates effect of the smaller

�
in all the applications we describe in Section 7).

The extractors of Theorem 5.3 are essentially obtained by using the
�

truly random bits to do a random
walk on an expander graph on �G5 � � vertices. To achieve the parameters listed, one must use a “Ramanujan”
graph, i.e. an expander whose second largest eigenvalue is optimal up to a constant factor. One could use
our expander graphs (which do not have optimal second largest eigenvalue) instead at the price of increasing�

by a constant factor (and thereby incurring an entropy loss of
� ��� � 9;8?>��I(�) � �K� ). These costs are not

troublesome because our composition theorem will give a way to both reduce
�

and the entropy loss to
near-optimal values.

We note that the theorem in [GW97] entitled “Extractors for High Min-Entropy” does not claim the
parameters listed above; rather, both

�
and the entropy loss are only claimed to be

� ��� � 9;8?> �I(�) �'�K� . These
worse parameters are a result of modifications made in order to make their extractors strong (i.e., where the
seed is explicitly part of the output). For ease of exposition in this preliminary version, we do not require
our extractors to be strong, though all our results extend to strong extractors.

5.3 Condensers

Let E �@� 
 �ML�� � �

� �	��� be a �GP � �'� -extractor. As mentioned above, the entropy loss of E (i.e. the quantity
� . 
&� P � � ) is ����9=8?>�(�) � � . This means that even if a random variable

�
has min-entropy exactly P ,

the distribution of the output E � � ���
� � has less min-entropy than that of the input � � ����� � . In case
�

has a
larger min-entropy (e.g.,

�
is uniform over � 
 � ), this entropy loss may be quite significant. In our extractor

composition, it is crucial that we keep track of the entropy lost in intermediate applications of the extractors.
Following Raz and Reingold [RR99], we extend each extractor E used in the composition to an extractor-
condenser pair

�
E � C � such that C � � ���
�'� produces a relatively short buffer “containing” the entropy lost by

the application E � � ����� � . One way to formalize this idea is by requiring
�
E � C � to be a permutation:

Definition 5.4 (permutation extractor) A pair of functions
�
E � C � � � 
 ��L � � � 
� �	��� L0� 	�� with 	�.


4� � � � is a �GP � �'� permutation extractor if E is a �GP � �'� -extractor and E L C is 1-to-1 on � 
4� � � .
Note that if

�
E � C � is permutation extractor, then E must be regular, i.e. for every ��AN�	��� , there are the

same number of pairs � A � 
 � and �4A � � � such that E ��� ���+� . � . Nonconstructive regular extractors with
optimal parameters (i.e. those in Proposition 5.2) can easily be extended to optimal permutation extractors.
This also holds for some explicit extractors. (We say that a permutation extractor

�
E � C � is explicit if both�

E � C � and its inverse are polynomial-time computable.) A natural example is implied by the Leftover Hash

Lemma [HILL99]: Let � 	 be the family of pairwise independent permutations defined by � 	
� � �
. � � 	 � � � � 
 !.

� � � A���� �G5 �T��� , where for every 
 !.�� � � ��� A���� �G5 �T����� 	 � � � ����� . 
 �4� � . Let
� . 5 
 and let � be an

arbitrary extension of � 	 to a family of size 5 � of permutations on ��� �G5 � � . Then one can define a �GP � �'�
permutation extractor

�
E � C � � � 
 � L!� � � 
� � � � ��� L!� 	�� , where � . P �#5M9;8?> (�) � � � �I(�� as follows

(we identify here ��� �G5	� � with � 
 � ):

E ��� ���	� � � �. � ���"����� ��� �	�
� ��� and C ���"��� � �����. �"����� ��� � � �	�
� � �
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(where � is interpreted as a (uniform) permutation in $ and for any string �
.��T��� � ��������� we denote by � � � , �
� � �
the substring � , ������� � ). Another example of an explicit extractor that can be extended into a permutation
extractor is the high min-entropy extractor of Goldreich and Wigderson [GW97] (described in Theorem 5.3).
Recall that those extractors simply take a random walk on an expander graph, so any rotation map (recall
Definition 2.1) for the graph extends it to a permutation. In general, if we view a regular extractor E as
a regular bipartite graph, the definition of a permutation extractor is equivalent to the natural extension of
rotation maps to bipartite graphs.

However, not every extractor implies an efficient permutation extractor (e.g., if E is not regular). For-
tunately, our composition theorem is still applicable even if we weaken Definition 5.4 in two ways: (1) By
allowing a larger buffer size 	 , and (2) By requiring

�
E � C � to be 1-to-1 only on most inputs (rather then

on all inputs). This suggests the following definition (which is still less general than that of [RR99] but is
sufficiently general for our needs):

Definition 5.5 (extractor-condenser pairs) A pair of functions
�
E � C � ��� 
 �
L � � � 
� �	���
L2� 	�� is a

�GP � � � -ECP if E is a �GP � � � -extractor and for any P -source
�

over � 
 � , there exists a “bad” set of inputs
B ��� � 
4� � � such that the following holds:

1. ��� C � � ��� ���/A B � E 1 �
2. E L C is 1-to-1 on � 
4� � �	� B � .

It turns out that given any extractor one can (easily) define an extractor-condenser pair (ECP) with
comparable parameters:

Lemma 5.6 (a corollary of [RR99]) Let E 	 �
� 
 � L � � 	 � 
� �	��� be an explicit �GP � �') �+� -extractor. Let	 	 . 
4� � 	 � � ( 	 	 is a lower bound on the buffer size). Then there exist two integers 	 . � � 	 	 �D9;8?> (�) �'�
and

� . � ��9;8?>	� 
4� � 	 ���D9;8?> (�) � � and an explicit �GP � � � -ECP
�
E � C � �@� 
 �BLN� � 	 � � ��
� �	� � � � L � 	��

The definition of
�
E � C � in the proof of Lemma 5.6 is essentially given by


 ��A � 
 �����[A � � 	 ������A � � ��� E ��� ��� � � ��. E 	 ��� ��� � � � and C ��� ��� � �	�
�����
. � ��� ��� ���

where � is an almost 5 -universal function of the right parameters and � stands for concatenation of strings
(for more details see [RR99]).

6 High Min-Entropy Extractors

In this section, we extend our new zig-zag product to extractors (which can be viewed as directed unbalanced
graphs) and show how to obtain improved high min-entropy extractors using this product. As we will
describe in a subsequent paper, the same product is helpful in the design of expanders whose expansion is
measured in terms of min-entropy.

6.1 Block Sources

The starting point for our extractor composition is the construction of Goldreich and Wigderson [GW97]
(not the one referred to in Theorem 5.3, but rather their method of modifying it to make the extractor strong
and reduce

�
). Their basic observation is that any high min-entropy source is also a “block source” (as

defined by Chor and Goldreich [CG88]): when the source is divided into a prefix and suffix (of arbitrary
lengths), each one of these values contains a lot of “independent” randomness. (A formal statement will
shortly follow.) It turns out that this simple observation along with the standard extractor composition for
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block sources, already has nontrivial implications. For example, for any constant error � , there exist explicit
�GP � � � -extractors with seed length

� ��9;8?>���� that extract P � � ���4� bits (recall that � is the deficiency of the
source). Unfortunately, this entropy loss of

� ����� is significant in the applications we have in mind. Our
main contribution is a new extractor composition which, using condensers, can achieve an almost optimal
entropy loss. In order to motivate our construction, we begin by describing the method of [GW97].

Definition 6.1 ([CG88]) Two random variables � � ��� � � � form a �GP ���6P � � block source if
� � is a P � -source,

and for every possible value � � of
� � the distribution of

�
� , conditioned on

� � . � � , is a P � -source.

Lemma 6.2 (implicit in [GW97]) Let
�

be any � 
 � ��� -source over � 
 � Then for any integers 
 � and 
 �
such that 
 . 
 � � 
 � and any � 2 � ,

�
is � -close to some � 
�� ���&� 
 � � � � 9;8?>�(�) � � block source

� � ��� � � � , where
� , is a random variable over � 
 , � for 3M. ('�65 .

The task of extraction is usually much easier for block sources. Let � � ��� � � � be a �GP ���6P � � block source,
then it is possible to extract a few (up to P � ) random bits out of

�
� and use this randomness as a seed for the

extraction of many additional bits (up to P	� ) out of
� � (this appealing strategy does not work for a general

source):

Lemma 6.3 ([NZ96]) Let E � �@� 
M��� L�� � � �

� �	� ��� be a �GP ��� �?� � -extractor and let E � �	� 
 � � L��
�
� ��
� �

� � �
be a �GP � � � � � -extractor. Let � � � � � � � be a �GP � �6P � � block source on � 
 � � L0� 
 � � . Then the distribution
E � � � ��� E � �

�
� ��� � � �K� is � �?��� � � � -close to ��� � .

Lemma 6.3 combined with Lemma 6.2 immediately implies a simple composition of high min-entropy
extractors:

Lemma 6.4 (implicit in [GW97]) Let E � ��� 
M�6� L � � � � 
� �	� ��� be an � 
M�
� �&� � � -extractor with entropy
loss � � and let E � ��� 
 � � LD�

�
� � 
� �

� � � be an � 
 � � � �D9;8?> (�) �+� � � -extractor with entropy loss � � . Set

�. 
M� � 
 � and define E �@� 
 � L � � � ��
� �	� �6� such that for any � � A � 
M�6� , � � A � 
 � � and � � AN�

�
� � ,

E ��� � � � � ��� � � �����. E �����"��� E � ��� � ��� � �K�
Then E is an � 
 ���&� � �'� -extractor with entropy loss � ��� � � � �2�D9=8?>	�I(�) � � .

As suggested in [GW97], applying Lemma 6.4 with the high min-entropy extractors of Theorem 5.3 as
E � gives a way to obtain new high min-entropy extractors with a much shorter seed.

Proposition 6.5 If E � �	� 
 � � L��
�
� ��
� �

� ��� is an � 
 � � � ��9=8?> (�) �+� � � -extractor for
� � . ���
5M9;8?>@�I(�) �'� �
5

with entropy loss � � then for any 
 . 
 ��� 
 � there exist an � 
 ���J� � � � -extractor E �	� 
 �BL � � � � 
� � 
M� �
with entropy loss � � � �D� �M9=8?> �I(�) � �d�

� �I(�� such that E is computable in polynomial time with one oracle
query to E � .

One can even get an almost optimal seed length using this composition since the seed length of E equals
the seed length of E � , whose input length 
 � may be as small as

� ��� � 9=8?> �I(�) � �K� . Unfortunately, this
composition always produces extractors of entropy loss at least � . Our aim in the next section is to remedy
this.
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6.2 Using Condensers

The reason the composition described in Lemma 6.4 must lose at least � bits is that when we divide our high
min-entropy source into a prefix and suffix, either one of these parts may be missing � bits of entropy. Since
we do not know how the source behaves, we must take a pessimistic approach and view our source as a block
source where each of the blocks has deficiency � (for a total deficiency of 5 � instead of � ).16 One approach
for reducing the entropy loss of this composition is to apply a third extractor E � with fresh randomness to our
source in order to extract the remaining entropy. However, conditioned on the randomness already extracted,
the source now has a rather large deficiency. Therefore, the seed length of E� is at least 9=8?> 
 , which defeats
the entire goal of the construction. The solution is rather simple: when applying E � and E � on the two parts
of the source, also collect two relatively short buffers � � and � � with the remaining entropy. Now, E � can be
applied to these buffers (instead of the source) in order to extract the missing entropy.

The result of the composition just sketched can be viewed as an extension of the zig-zag product to
unbalanced bipartite graphs, where the application of E � corresponds to the “zig” step on the “small” graph

 � and E � to the “zag” step. More formally, we have:

Definition 6.6 (zig-zag product for extractors) Let
�
E � � C � � � � 
 � � L � � � � 
� �	� � ��L � 	 � � , � E � � C � � �� 
 � � L#�

�
� � 
� �

� � � L!� 	 � � , and
�
E �'� C � � �/� 	�����	 � ��L#� � ��� 
� �	� ��� L#� 	 ��� be three functions. Set the

parameters


 . 
 � � 
 � �� . �
� �

� �'�
� . � ��� � � �	 . 	 �

and define the zig-zag product �
E � C � �@� 
 �BLN� � �

� �	��� L � 	��

of these functions as follows: For any �M� AN� 
M��� , � � A � 
 � � , � � AN� � � � and � � AN� � ��� define

�
E � C � ���"� � � � ��� � � � ��� �����. � � � � � � � � ���

where

�
� � � � � � �����

. �
E � � C � � ��� � ��� � �� � ��� � � � �����

. �
E ��� C � � ���"�����?� ��� and� � � � � � �����

. �
E � � C ��� ���+� � � � ��� ��� �

Theorem 6.7 Let
�
E � � C ��� , � E � � C � � ,

�
E � � C ��� and

�
E � C � be as in Definition 6.6. Let P . 
 � � , P@� .


M�
� � , P � . 
 � � � �D9;8?>	�I(�) � � and P ��. P � � � ��� ��� ( . If for 3/. ('�65<� � , � E , � C , � is a �GP , � � � -ECP
with entropy loss � , then

�
E � C � is a �GP � � � �'�K� -ECP with entropy loss � �1� ( .

The key improvement over Lemma 6.4 is that the entropy loss of E no longer depends on � , but only on the
entropy loss of E � .

16There is a simpler solution to this problem if we only want to construct a disperser (cf., Definition 7.8): Following Ta-
Shma [Ta-98], we can simply “guess” how the entropy is divided between the two blocks. Since there are only

�
bits of entropy

whose location we are unsure of, the guessing only requires �����
�

additional random bits.
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Remark 6.8 Theorem 6.7 implies a similar composition theorem of strong extractors (as originally defined

in [NZ96]). Loosely speaking, E 	 is a strong extractor if E, defined by E ���"��� � �����. E 	 ��� ��� � � � , is an
extractor in the sense of Definition 5.1. To deduce the composition theorem of strong extractors, consider
three ECPs,

�
E 	, � C , � for 3H. ('�65<� � , such that E 	, is a strong extractor. Let E , be the standard extractor

that corresponds to E 	, . If the three pairs
�
E , � C , � satisfy the conditions of Theorem 6.7 we can apply the

composition of extractors and get the resultant ECP,
�
E � C � . By Definition 6.6 and the definition of the

extractors E , it is easy to verify that for every � ��� the seed � is part of the output E ���"��� � . This naturally
implies the corresponding strong ECP,

�
E 	 � C � .

We now sketch the proof of Theorem 6.7.

Proof Sketch: For all possible values � A � 
 � , � � A � � � � and � � A � � ��� , the computation of
�
E � C � ���"��� � �

� � � produces the following intermediate values: � � ��� � ��� � � � � ��� � � � � ��� � and � . Let
� � � � � ��� � ��� � �

� � ��� � �
�
�

and � be the corresponding random variables in the computation
�
E � C � � � ��� � � � ��� , where

�
is some P -

source over � 
 � , � � is uniformly distributed in � � � � and � � is uniformly distributed in � � ��� .
Lemma 6.3 directly implies that:

Claim 6.9
� � is

� � � � -close to �
� � .
It is also not hard to verify that the definitions of ECPs and

�
E � C � imply:

Claim 6.10 � � � ���B����� � � is a 1-to-1 function of all but an
� � �'� -fraction of

� � ��� � � .
By Claims 6.9 and 6.10, plus the facts that � � ��� � � has min-entropy P � � � and P � . P � � � � � � � ( ,

it follows that:

Claim 6.11
� � � ���B����� � � is

� � �'� -close to some
� � 	� ��� 	� ��� 	� � , where

� 	� is uniform over �	� ��� and for every
possible value � 	 � of

� 	� the distribution of
�
� 	� ��� 	� � , conditioned on

� 	� . � 	 � is a P � -source.

By the definition of
�
E�'� C � � it is now immediate that

� � ��� � � � is
� � �'� -close to ��� � � � � . It is also not

hard to verify that � is a 1-to-1 function of all but an
� � � � -fraction of

� � ��� � ��� � � . �
6.3 Applying the New Composition

A natural candidate for
�
E ��� C � � in Theorem 6.7 is again the high min-entropy extractors of Theorem 5.3

when extended into a permutation extractor (which can be achieved using a rotation map for the underlying
expander, as described in Section 5). Using this permutation extractor one gets the following transformation
from two “fixed”-sized ECPs to an arbitrary-sized, high min-entropy ECP:

Theorem 6.12 For any � 2 � and � , let
� � . � � 5M9;8?> �I(�) �'� � 5 . Let

�
E � � C � � �[� 
 � �[L �

�
� � 
�� � � � LN� 	 � � be some � 
 � � � �D9;8?> (�) � � � � -ECP. Let

�
E � � C ��� ��� � � �"	 � � L � � ��� 
� �	� ��� L � 	 ��� be some

� 
 � �
�
� � � ��('� �'� -ECP with entropy loss ��� . Then for any 
�. 
 �'� 
 � there exists an � 
 � �&� � � � �K� -ECP

�
E � C � �	� 
 � L � � � �

� ���

� � 
M����� ��� L � 	 ���
with entropy loss ��� � ( such that E is computable in polynomial time with one oracle query to E � and one
oracle query to E � .

As opposed to Proposition 6.5, this result can imply ECPs that simultaneously obtain a short seed
(provided that

�
E � C � � and

�
E � C � � have short seeds) and a small entropy-loss (provided that E � has a small

entropy-loss). One way to apply Theorem 6.12 is by exhaustively searching for
�
E � � C � � and

�
E �'� C � � of

optimal parameters (i.e. those in Proposition 5.2). This method is applicable as long as � and 9;8?>�(�) � are
sufficiently small. In fact, when 9;8?>�(�) � is larger than � then Theorem 5.3 already gives good ECPs. We
therefore have:
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Corollary 6.13 For any � 1 � � 
 and �32 � , there exists a � 
 ���J� � � permutation extractor�
E � C � �	� 
 � L � � � 
� �	��� L � 	����

with seed length
� . 5M9;8?>�� � ��9=8?> �I(�) � �"� � �I(�� and entropy loss �#.&	�� � . 5M9;8?>��I(�) � � � � �I(�� , such

that
�
E � C � is computable in time 5 �

�������

��7�8+9;:�� 
 � .
In case exhaustive search is too expensive, one can still use “off the shelf” explicit extractors and get

significant improvements. In order to do this, we need to extend these existing extractors to ECP’s. It turns
out that Lemma 5.6 is too expensive in terms of seed length for us, but a more trivial conversion suffices —
simply let the buffer be the entire input and seed! This does not cost anything in the seed length, and the
buffers are not too large since E � and E � have short inputs in Theorem 6.12. Taking E � and E � to be the
extractors of Zuckerman [Zuc97] extended to ECP’s in this way, we get:

Corollary 6.14 Let 
 2 � be an arbitrarily small constant. For any � 1 � � �I( � 
 ��
 and �02
� � 7 � � ��)'5 � � ����� �
	 � � ,17 there exists an explicit � 
 ���J� � � -ECP�

E � C � �	� 
 � L � � � 
� �	��� L � 	����
with seed length

� . � ��9;8?>��2�D9;8?> �I(�) � �K� , buffer size 	B. � ���2�D9=8?>	�I(�) � �K� , and entropy loss �
1 
 � .

Similarly, using the extractors of Reingold, Shaltiel, and Wigderson [RSW00], we get:

Corollary 6.15 For any � 1 � � 
 and � 2 � �<7�� � ��) ��9;8?> � ��� � � ����� � 	 � � , there exists an explicit � 
��
�&� �'� -ECP �

E � C � �	� 
 � L � � � 
� �	��� L � 	����
with seed length

� . � ��9;8?> � � �R7�8+9;: 9;8?>+9;8?> �D��9=8?> �#�`9;8?> �I(�) �'�K� , and entropy loss �
1 5M9;8?> �I(�) �'� � � �I(�� .

Extractors from Elementary Building Blocks. Section 3 gives a simple construction of a family of
constant-degree expanders out of a single fixed-sized expander. In this section, we have seen a similar
construction of extractors. However, this construction also uses the extractors of [GW97] described in The-
orem 5.3. Still, since these extractors are essentially a walk on an expander, and we already have expanders
out of elementary building blocks one may argue that we also obtain high min-entropy extractors out of
elementary building blocks. We also note that, using recursive applications of Theorem 6.7, one can also
construct good high min-entropy extractors that are only based on two fixed-sized extractors (i.e. of input
length

� ���2�D9;8?>��I(�) � �K� and pairwise independent permutations. We find some aesthetic value in this con-
struction given the fundamental role of pairwise independent permutations in the development of extractors.

7 Applications of the Extractors

7.1 Averaging Samplers

In this section, we describe how our high min-entropy extractors yield improved sampling algorithms, as
pointed out to us by Ronen Shaltiel. The reader is referred to the survey of Goldreich [Gol97] and the
references therein for a detailed description of previous work on samplers.

A sampler is a randomized algorithm which, given any function � �	�	��� � C � ��( E as an oracle, estimates
(with high probability) the average value of � up to some desired accuracy � . It is desirable to minimize
both the number of random bits and the number of queries to � made by such a procedure. Bellare and
Rompel [BR94] noted that, in some applications, it is important to have samplers of the following (natural)
form (called oblivious samplers in [BR94]):

17This restriction on � is inherited from an analogous restriction on the relationship between � and the input length in [Zuc97].
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Definition 7.1 (averaging samplers [BR94]) A function S �@� 
 � � �	��� 	 is a � 
�� � � -averaging sampler if,
for every function � �	�	��� � C � ��( E ,

������ � � �
�
� � � � ��� S ����� �
� ����� ( � 	�
, � � � ��� , � � �1��� � ����� 1 �
	 �2( � 
 �

where �1��� � is the average of � over �	��� . S is said to explicit if it can be evaluated in time 7�8+9;:�� 
 � � � ��� .
Nonconstructively, there are averaging samplers using only �[. � ��9;8?> �I(�)�
��K) � � � samples and 
 . � �
9;8?>	�I(�)�
 � � � �I(�� random bits [CEG95, Zuc97], and these bounds are essentially tight [CEG95]. (See
[Gol97] for precise statements.)

Zuckerman [Zuc97] has shown that averaging samplers are essentially equivalent to extractors. We will
only use the transformation from extractors to samplers: From an extractor E � � 
 � L � � � � �	��� , define an
averaging sampler SE �	� 
 � � �	��� 	 with ��. 5 � by

SE ������. � E ���"��� � ��� � � ��� E ���"��� 	 �K���
where � ��� � � ����� 	 are all the strings of length

�
. The parameters of SE are related to those of E as follows.

Lemma 7.2 ([Zuc97]) If E is a � 
 ���J� � � -extractor, then SE is �I(�)'5
	 � � � � � -averaging sampler.

Applying this lemma to his extractor construction, Zuckerman [Zuc97] obtained an explicit sampler which
uses 
�. �I( � 
M� �	� ��9;8?>��I(�)�
��K� truly random bits and ��. 7�8+9;:��	� ��(�) �+��9;8?>��I(�)�
��K� samples for an arbitrarily
small constant 
�2 � .

Observe that the confidence of the averaging sampler in the above lemma corresponds to the extractor’s
entropy deficiency, and the number of samples used by the sampler corresponds to the number of truly
random bits used by the extractor. Hence, our high min-entropy extractors in which the number of truly
random bits depends only on the entropy deficiency of the source translate to samplers in which the number
of samples depends only on the confidence. In particular, applying Lemma 7.2 to Corollary 6.14 we obtain
the following improvement to Zuckerman’s samplers:

Corollary 7.3 Let 
 2 � be an arbitrarily small constant. For any � , 
 , and � 2 � � 7 ��9;8?> � 
 �K)'5 � � ����� ��� � � � � ,
there exists an explicit � 
 � � � -averaging sampler S �/� 
 � � �	��� 	 with 
0. � � �I( ��
M�/�+9=8?>	�I(�)�
�� and
��. 7�8+9;:��I(�) � ��9;8?> �I(�)�
��K� .

Our other extractor constructions given in Corollaries 6.13 and 6.15 similarly yield averaging samplers
(with different parameters), but we omit the exact statements for sake of brevity.

7.2 Expanders that Beat the Eigenvalue Bound

There are many different measures for the expansion properties of a graph. In Sections 2 and 3, we worked
with an eigenvalue measure, which is convenient for many purposes. Another measure which is appropriate
in other settings is the following one, due to Pippenger.

Definition 7.4 ([Pip87]) Let 
 be an undirected graph on C ��E . 
 is � -expanding,18 if every two subsets
of at least ��)�� vertices each are joined by an edge.

18Actually, Pippenger’s definition refers to such graphs as * )�
 -expanding, but this version is more convenient for our purposes.
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The goal, of course, is to minimize the degree (as a function of the other parameters) as a function of � and
� . A standard nonconstructive probabilistic argument shows that degree � . � ��� �?9;8?> � � suffices, but,
as usual, we seek explicit constructions. Ideally, given F A C ��E and 3�A C ��E , we would like to be able to
compute the 3 ’th neighbor of F (or even evaluate � 8	� 
B�SF@�K3I� in case 
 is regular) efficiently (e.g., in time
7�8+9;: 9;8?> � ), but such constructions are still useful (and nontrivial) even if they work in time 7 8+9=: � � � .

Explicit constructions have not yet matched the optimal
� ���0� 9=8?>�� � degree bound. The � -expanding

property does follow from bounds on the second largest eigenvalue [Tan84, AM85], but best degree that can
be obtained via this relationship is �H������� (cf., discussion in [WZ99]). Wigderson and Zuckerman [WZ99]
proposed to beat this barrier using extractors as follows, and thereby obtained degree � � � �

� ��� , which
is very close to optimal when � is a constant power of � . Later extractors reduced the dependence on
� , with Ta-Shma [NT99] achieving degree � �?5�� ��� � ����� ����� 
 (with reductions in the degree of the polylog
in [RRV99b, RSW00]). Here we show how our high min-entropy extractors can completely remove the
dependence in these results, and hence obtain “constant-degree” expanders that beat the eigenvalue bound.

We recall the Wigderson–Zuckerman [WZ99] method for constructing � -expanding graphs from ex-
tractors. First, suppose we have a regular extractor E � � 
 � L!� � � � �	��� (as some of our extractors are).
Define a graph 
 E on � . 5 � vertices by placing one edge between �M����� � AN� 
 � for each pair �+����� � AN�

� �
such that � ���"��� � ��. � ��� ��� � � .
Lemma 7.5 ([WZ99]) If E is a regular � 
 � �J��(�) �d� -extractor with entropy loss �#. � 
 � ��� � � ��� , then

 E is an � -expanding graph for � . 5

	

, and is of degree � . �0� 5
�
� � . Moreover, if E can be extended

to a permutation extractor
�
E � C � , then a rotation map for 
 E can be computed in time 7�8+9;:���9;8?> ����9;8?>/�J�

with oracle access to
�
E � C � and its inverse.

Proof: Let 4 and
�

be any subsets of C ��E of size � ��)�� . 5 � � 	 . Since E is a � 
 � �&��(�) �d� -extractor,
E � 4���� � � and E � � ��� � � are each (�) � -close to uniform (where 4 and

�
denote the uniform distributions over

the corresponding sets). In particular, the supports of E � 4���� � � and E � � ��� � � intersect, which implies that
there is an edge between 4 and

�
in 
 E.

By the regularity of E, the degree of every vertex in 
 E is 5 � �d5 � � � � � . 5 � � 5 	 � 5 � � � 	 � � � � � .
5 � � �N�65 � . Now suppose that E can be extended to a permutation extractor

�
E � C � �@� 
 ��L�� � � � �	����L�� 	�� .

Then we can obtain a rotation map for 
 E as follows: For � A � 
 � , �HA � � � , � AD� 	 � , set � 8	��
B���"��� � ��� �K� .
��� 	���� � 	S����	 �K� where ��� ��� 	;�1. �

E � C � ���"��� � and ��� 	S��� 	;��. �
E � C � � � ���	���'� .

Observe that, if the seed length
�

and entropy loss � of the extractor depend only on � (rather than 
 ),
then the degree of the graph depends only on � , as desired. Using our high min-entropy extractors from
Corollary 6.13 in this construction, we obtain:

Corollary 7.6 For every � and � , there is a (regular) � -expanding graph 
 
 � � of degree
� ��� � 9;8?> % � �

such that the rotation map for 
 
 � � can be computed in time 7�8+9;:���9;8?> ���65 � � .

This construction is significantly closer to the optimal degree bound of
� ��� 9;8?> � � than previous con-

structions, and is quite efficient when � is small (e.g. a constant independent of � ). In order to reduce
the dependence of the computation time on � , we use our high min-entropy extractors from Corollary 6.15.
However, these extractors are not regular and hence the above construction can result in graphs whose de-
gree is much higher than stated in Lemma 7.5. The method Wigderson and Zuckerman [WZ99] suggest to
overcome this is to “throw out” extractor outputs which have more than twice the average indegree 5 � � � � �
(when E is viewed as a bipartite graph). That is, 
 E is defined by connecting ������� � A0� 
 � if there exists
a �!A �	��� and �+����� � A �

� � such that E ���"���+� � . �N. E ���"��� � � and the number of pairs ��� ��� � such that
E ��� ��� �1. � is at most 5 � � � � � � � . Wigderson and Zuckerman show that this still results in an � -expanding
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graph of degree � � 5
�
� � � � . We must also analyze the computational complexity of the construction. A

straightforward upper bound on the time of the construction, as given in [WZ99], is 7�8+9;:�� � � . However,
using the fact that our extractors were constructed using an explicit permutation extractor (the one extending
Theorem 5.3) as the large graph in a the zig-zag product, we can show that the complexity is actually only
7�8+9;:���� � . We thereby obtain the following graphs:

Corollary 7.7 For every � and � 1
� , there is an � -expanding graph 
 
 � � of degree

� � ��9;8?> � � ����������� � � � ��� � ����������������� �
such that all the neighbors of a vertex in 
 
 � � can be enumerated in time 7 8+9=:���9;8?> ��� � � .

More details for these constructions will be given in a subsequent paper.

7.3 Error Reduction for Dispersers

Dispersers, defined by Sipser [Sip88], are the one-sided analogue of extractors. Rather than inducing the
uniform distribution on their output, they are only guaranteed to hit most points with nonzero probability.

Definition 7.8 A function D �"� 
 � L � � � � �	��� is a �GP � � � -disperser if for every distribution
�

on � 
 � of
min-entropy P , at most a � fraction of points in �	��� have zero probability under D � � ��� � � .

Clearly, every �GP � � � -extractor is also a �GP � �'� -disperser. However, the parameters of dispersers can be
somewhat better than those of extractors, specifically with respect to the error � . In optimal (nonconstructive)
dispersers, the number of truly random bits need only be

� .09;8?> � 
 ��PT�<��9=8?>	�I(�) � �<� � �I(�� and the entropy
loss need only be � . P4� � � � . 9;8?>+9;8?> �I(�) �'�B� � �I(�� , whereas for extractors,

� � 9;8?> � 
 �0PT�/�
5M9;8?>��I(�) � � � � �I(�� and � � 5M9;8?>��I(�) � � � � �I(�� [RT97]. However, none of the existing explicit constructions
of dispersers have managed to achieve the parameters that are impossible for extractors.

Here, we show how a generalization of the Wigderson–Zuckerman construction described in the previ-
ous section yields a general error-reduction technique for dispersers — we can compose two constant-error
dispersers and obtain a disperser with a small error � . Taking one of the initial dispersers to be one of our
high min-entropy extractors, we are (in some cases) able to get a dispersers whose seed length and entropy
loss have a better dependence on � than is possible for extractors. Previously, an error-reduction proce-
dure was given for extractors in [RRV99a]. An error-reduction technique for dispersers related to ours was
independently discovered by Ta-Shma and Zuckerman.

To see the connection between dispersers and � -expanding graphs, note that a regular 5
�
-expanding

graph on 5 � vertices is exactly the same as a regular � 
 � �	��(�)'5 � � -disperser D ��� 
 ��L � � � � � 
 � (when
viewed as a bipartite graph). Hence, dispersers are simply a generalization of the � -expanding property to
unbalanced, bipartite graphs.

The first observation in our error reduction is that to reduce the error of a constant-error disperser D� to
� , it suffices to compose it with � -error disperser D� with constant entropy deficiency.

Lemma 7.9 Suppose D � � � 
 � � L � � � � � �	� � � is a �GP � ��(�) �d� -disperser with entropy loss � � and D � ��	� � �@L
� � � � � �	� � � is a �	� ���&('� � � � -disperser with entropy loss � � . Define D ���@� 
M���@L
� � �d� � � � � �	� � �
by D ��� ��� �?����� � �K��. D � � D � ���"���+� �����?� � . Then D � is a �GP ��� � � � -disperser with entropy loss � � � � � �0( .

Thus, to reduce the error of any arbitrary disperser D � , we only need good dispersers for entropy defi-
ciency 1. Using the extractor of Goldreich and Wigderson in Theorem 5.3 as D � , yields a transformation
which, in going from D � to D � , increases both the seed length and entropy loss of by 5M9;8?> �I(�) �'��� � �I(�� ,
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which is quite good (but not optimal for dispersers). This is the error-reduction approach suggested by
Ta-Shma and Zuckerman.

We improve on this by using our high min-entropy extractors. The key observation is that if we “flip”
a disperser (viewing it is a bipartite graph), the roles of the entropy deficiency and error are switched. For
simplicity, we focus on permutation dispersers (defined analogously to permutation extractors).

Lemma 7.10 Let D �"� 
 � L � � � � �	��� LD� 	 � be a � 
 � �J� � � permutation disperser with entropy loss � .
Then D � � is a �	� �D9;8?>	�I(�) �'����(�)'5 	 � permutation disperser with seed length 	 . � � � and entropy loss� � 9;8?> �I(�) �'� .

Applying this to our extractor in Corollary 6.13, we get:

Lemma 7.11 For any � 1 � � 
 and � 2 � , there exists a � 
 ���&� �'� permutation extractor�
E � C � �	� 
 � L � � � 
� �	��� L � 	����

with seed length
� . 5 � �#9;8?> �I(�) �'� � � �I(�� and entropy loss �0. 5'9;8?>+9;8?>��I(�) � �M� � � � � �I(�� , such that�

E � C � is computable in time 7�8+9;:�� 
 �65 ����� � .
Thus, we already see the dependence on � in both the seed length and entropy loss beating what is possible
for extractors. Using this extractor as D � in Lemma 7.9, we get

Corollary 7.12 Suppose D ��� 
 � L � � � � �	��� is a �GP ��(�) �d� -disperser with entropy loss � . Then, for any
� 2 � , there exists a �GP � � � -disperser D 	 ��� 
 � L!� � 	 � � �	� 	 � with seed length

� 	 . � � 9;8?>	�I(�) �'� � � �I(��
and entropy loss � � 5'9;8?>+9;8?>��I(�) � � � � �I(�� . Moreover, D 	 is computable in time 7�8+9;:�� 
 � � �65 ����� � with one
oracle query to D.

Note that the complete transformation taking D and the extractor of Corollary 6.13 and applying Lem-
mas 7.10 and 7.9 to yield D 	 is simply the Wigderson–Zuckerman construction we used in the previous
section, generalized to using two different dispersers with the same output length.

Corollary 7.12 is essentially an optimal error-reduction for dispersers, except for the exponential com-
putation time as a function of � . As in the previous section, to overcome this we can use our extractors from
Corollaries 6.14 and 6.15, and we need to do similar tricks to deal with the fact that they are not regular. We
defer the details of the proof to the final version of the paper, but the results obtained are as follows:

Corollary 7.13 Let 
 2�� be an arbitrarily small constant. Suppose D � � 
 � L � � � � �	��� is a �GP ��(�) �d� -
disperser with entropy loss � . Then, for any � 2 � � 7 �K�I( � 
 ��
 � , there exists a �GP � � � -disperser D 	 �
� 
 � L � � 	 � � �	� 	 � with seed length

� 	 . � � �I( � 
M�<9=8?>��I(�) �'� and entropy loss � � � ��9;8?>+9=8?> �I(�) � �K� .
Moreover, D 	 is computable in time 7�8+9;:�� 
 � � ��(�) � � with one oracle query to D.

Corollary 7.14 Suppose D ��� 
 � L � � � � �	��� is a �GP ��(�) �d� -disperser with entropy loss � . Then, for any
� 2 � , there exists a �GP � � � -disperser D 	 ��� 
 � L!� � 	 � � �	� 	 � with seed length

� 	 . � � 9;8?>	�I(�) �'� � � �I(��
and entropy loss � � 7�8+9;: 9;8?>+9;8?>@�I(�) �'� . Moreover, D 	 is computable in time 7�8+9;:�� 
 � � ��(�) � � with one oracle
query to D.
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