Electronic Colloguium on Computational Complexity, Report No. 20 (2001) b ray

Lower Bounds for OBDDs and Nisan’s pseudorandom generator

N.S. Narayanaswamy? C.E. Veni Madhavan®

Abstract

We present a new boolean function for which any Ordered Binary Decision Diagram (OBDD)
computing it has an exponential number of nodes. This boolean function is obtained from
Nisan’s pseudorandom generator to derandomize space bounded randomized algorithms. Though
the relation between hardness and randomness for computational models is well known, to the
best of our knowledge, this is the first study relating the problem of proving lower bounds for
OBDDs to the issue of pseudorandom generators for space bounded computation. Using the
same technique to prove the OBDD size lower bound, we place a lower bound on the size of
families of hash functions used in Nisan’s pseudorandom generator. This lower bound rules out
one method of obtaining improved derandomizations of space bounded randomized algorithms.

1 Introduction

OBDDs are a restricted type of branching programs which were introduced by Bryant [2] as a
data structure allowing efficient operations and compact representation for boolean functions. The
interesting lower bound question with respect to OBDDs is regarding the number of nodes in
the smallest OBDD that represents a boolean function. Explicit functions that have exponential
OBDD complexity are known. For a comprehensive reference on specific functions with exponential
OBDD complexity and the current state of research on OBDDs, see the recent book by Wegener
[7]. Another important property of OBDDs is that they model the computation of a randomized
space bounded algorithm in a non-uniform way. By a space S bounded randomized algorithm, we
mean one that uses S bits of workspace, halts in 2° steps, has an input tape, a random tape and
reads every random bit exactly once. See [5] for a survey of the role of randomness to get space
efficient algorithms. This connection between OBDDs and randomized space bounded algorithms
has been used by Nisan [3] to design a pseudorandom generator to derandomize space bounded
randomized algorithms. The design of the pseudorandom generator is based on an algorithm to
approximate the square of stochastic matrices (the measure of approximation is presented below)
It is known from the seminal work by Nisan and Wigderson [4] that pseudorandom generators for
circuits yield hard functions for circuits and vice versa. We explore this connection for OBDDs and
obtain a function with exponential OBDD complexity from Nisan’s algorithm to approximate the
square of a stochastic matrix.

Nisan’s pseudorandom geneartor uses a set of functions called Universal Family of Hash func-
tions (defined below). The size of this set of functions determines the space used by Nisan’s
pseudorandom generator. Consequently, if one could construct a smaller set of functions that can

*Institut Fiir Informatik, Ludwig Maximilians Universitit, Oettingenstrasse 67, 80538, Munich, Germany, Email:
swamy@informatik.uni-muenchen.de. Supported by DFG Grant No. Jo 291/2-1

"Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India, Email:
cevm@csa.iisc.ernet.in.

ISSN 1433-8092



be used by Nisan’s pseudorandom generator to yield a derandomization, then it would be possible
to derandomize randomized space bounded algorithms with lesser space than currently known by
the pseudorandom generator approach. This would also improve the space bounds of algorithms
[1, 6] for undirected connectivity, and approximate powering of stochastic matrices. We deal with
this question in this paper and prove a lower bound on the size of families of functions that can
be used in the algorithm to approximate the square of a stochastic matrix. The proof technique
to obtain this lower bound follows closely the method of obtaining a hard function from Nisan’s
pseudorandom generator.

Our Results: We obtain from Nisan’s pseudorandom generator for space bounded computation
a new boolean function that has exponential OBDD complexity. This boolean function is very
natural as it can be seen as hardness arising from pseudorandomness for OBDDs. The other ques-
tion that we address in this paper is, Does there erist a family of functions that are significantly
smaller than and of the same quality, as the family used in Nisan’s algorithm to approzimate the
square of a stochastic matriz. An affirmative result would imply an improved derandomization of
space bounded randomized algorithms. We show that the answer is negative, thus ruling out one
approach towards getting improved derandomizations of space bounded randomized algorithms.
The paper is organized as follows. Section 2 presents the relevant definitions, notation, and tools
for this paper. Nisan’s algorithm for finding the approximate square of a stochastic matrix is
presented in Section 3. In Section 4 and Section 5 we prove the claimed results. Finally, we
summarize the results in Section 6.

2 Preliminaries

Here we present the preliminaries relating to pseudorandom generators, OBDDs and circuits.
Notation related to Matrices: A stochastic matrix is a matrix of non-negative entries in which
the elements of each row add up to 1. We consider stochastic matrices of dimension 2°, for some
integer S > 0. We let ) denote a stochastic matrix no matter what its subscript or superscript is.
Unless stated otherwise, all the entries of these matrices are of the form 5,t € Z,. With Q we
associate a directed graph Gg in which each vertex has out-degree 2, the edges leaving a vertex
are labeled bijectively with {0, 1}, and the number of edges from i to j in G = @;;2°. It is easy
to see that such a graph exists. We refer to each such graph Gg as a graph associated with ). The
norm of a matrix Q is defined by ||Q|| = max;(3_; |Qi;)-

Universal Hashing: Let H; be a set of functions {h : {0,1}' — {0,1}'}. Hy is called a universal
family of hash functions if for any 1 # xo € {0,1}¢, and y1,y2 € {0,1}* we have that

Pr (h(z1) = y1 A h(z2) = y2) = %

h€EH;

An example for a universal family of functions is the set Hy = {hqp : {0,1}} — {0,1}!|a,b €
{0,1}, hgp(z) = az+b}, where the addition and multiplication operations are the ones defined over
GF(2'). Each function in this set has a 2t bit description. Conversely, each 2t bit string represents
a function from H;. Consequently, for simplicity we will consider {0,1}? as the universal family of
hash functions defined on {0, 1}’

OBDDs: A branching program P for computing a boolean function f : {0,1}" — {0,1} is a layered
directed acyclic multi-graph with a distinguished source node s and two distinguished sink nodes.
One is an accepting sink which is called a 1-sink and, the other is called a 0O-sink. All the edges
leaving a sink are self-loops. The out-degree of each node is exactly 2, and the outgoing edges are
labeled by x; = 0 and z; = 1 for an input variable z; associated uniquely with this node. The label



z; = ¢ indicates that only inputs satisfying z; = § may follow this edge in the computation. The
branching program P computes a function f in the obvious way: for each o € {0,1}" we let the
output of P to be 1 if and only if there is a directed path starting at the source and leading to the
1-sink such that all labels z; = o; along this path are consistent with ¢ = 109 ...0,. A path from
the source to the 1-sink is called an accepting path. A read-once branching program is a branching
program in which no variable appears more than once on any computation path. An OBDD is a
read-once branching program in which, the nodes at the same distance from the source have the
same input variable associated with it. For a branching program P, the size of P is defined as the
number of internal nodes in P. For an OBDD P, the length of P is defined as the number of layers
in the directed acyclic multi-graph that represents P.

OBDDs model randomized space bounded algorithms in a non-uniform way, that is, the com-
putation graph of a randomized algorithm on a fixed input = is an OBDD. In this OBDD the
variables in question corresponds to the random bits used by the algorithm while computing on z.
By definition, the random bits are read only once and in a fixed order from the tape. The set of
accepting paths in this OBDD correspond exactly to the set of strings on the random tape that
accept the input.

With an OBDD P on N-nodes, for 1 <t < N, we associate an N x N-matrix which we refer
to as the ¢-step Transition Probability Matrix @) of the OBDD. @) is defined as follows: Q;; = 1, for

each sink i, Q;; = zeﬁ)rl}t(aro, ...,x4_1 are the edge labels on a walk from ¢ to j),1 < i # j < N.
For the t-step tramsition probability matrix (), of an OBDD P, we fix the directed graph Gg
associated with ). The graph G is obtained from P as follows: The vertex of G is same as the
vertex set of P, and (4,7) is a directed edge in G if and only if there is walk of ¢ edges from 7 to
j in P. The edges in P are labeled by ¢ bit strings. A ¢ bit string is a label on an edge between ¢
and j if and only if it forms a walk from % to j in P.

3 Nisan’s pseudorandom generator

Nisan’s pseudorandom generator is a function that takes as input £(2k+1) bits and outputs #2* bits

for t,k € Z,. We denote the pseudorandom generator by Ry (z,h1,...,hx) where, z is a t bit seed,
and h; € {0,1}?,1 <4 < k are functions that map ¢ bit strings to ¢ bit strings. It is defined recur-
sively as follows: Ry(z) = x, Rg(x,h1,...,hg) = Rg—1(z,h1 ..., hxg—1) o Rg—_1(hx(x),h1,..., hg_1)-
Here o denotes the concatenation operation. Ry(x,h,...,h;) can be seen as a vector (St,...,Sox)
where each entry is from {0, 1}!. This sequence naturally defines a walk in a directed graph in which
each vertex has out-degree 2! and the edges leaving a vertex are labeled bijectively with {0,1}.
This walk visits 2F vertices, not necessarily distinct, and the i 4+ 1st vertex in this walk is the end
point of that edge labeled S; which leaves ith vertex of the walk. Therefore, Ry(x,h1,...,hg) is
defined to take p to ¢ if the above mentioned walk starting at p has q as its final vertex. The main
application of the pseudorandom generator is the following theorem proved in [3]:

Theorem 1. Let Q be a 25 x 25 stochastic matriz, and Gq be a directed graph associated with Q).
Let Hy be a universal family of hash functions on {0,1}'. For k>0 and ¢ > 0,

Pr ([|Qn,..py, — Q%[ > (2F = 1)2%5¢) < 2k
hi,....hpy€Hy Loeeofth - 622t '

Where, for hi,...,hg, Qn,,..n, (35) = meﬁ)r1}t(Rk($’h1"”’hk) takes i to j in Gq).



For e = 0<k<S,t=1485, the above theorem guarantees that

1
(2k _1)245’ ?

ok 1 23Sk (2k —1)2285 2185 1

In particular, for & = 1, the theorem gives a randomized algorithm to approximate Q? for any
stochastic matrix (). The algorithm is: pick a h uniformly at randomly from H; and compute Q.
The theorem guarantees that with probability at least 1 — 2%9, Qp, approximates Q? to within a

9285

distance of 22% in the matrix norm we have defined. Since H; has elements in it, the theorem

says that at most 2279 will yield a matrix whose distance from Q? is more than 22%9

3.1 Application to OBDDs and related questions

Here we present an application of the theorem, which we use to explicitly define a boolean function
of exponential OBDD complexity. The application is that, Ry can be used to find accepting paths
in OBDDs of size 2° in which, the probability that a randomly chosen path is an accepting path is
more than 22% We state this formally in the following theorem:

Theorem 2. Let P be an OBDD on 2° nodes and of length L such that, the probability that a
randomly chosen path in P is an accepting path is more than 22% Let QQ be the t-step transition
probability matriz of P, and G¢ the graph associated with Q). Let H; be a universal family of
functions on {0,1}t. For t = 145,10g(%) < k < S, the set {Ry(z,h1,...,hg)|lz € {0,1},h; €
H;,1 <i <k} has non-empty intersection with the set of strings accepted by P.

Proof. Let s be the source node of P, and A the 1-sink. For k£ > 0, Qg’; is exactly the probability
that a randomly chosen string of length ¢2* is accepted by P. Also, the strings obtained from the
edge labels of s to A walks in Gg are exactly the set of strings accepted by P. From theorem 1
it follows that for ¢ = 145 and 0 < k < S, there is a choice of hy,..., kg such that |Qp,,..n, —
Q2k|| < 22% This is because the probability that for a randomly chosen hi,...,hg, ||Qh,y, .1, —

QY| < 2%5, is at least 1 — 2% Let gi,...,gx be such that ||Qg,, . g, — QY| < 22% By the

definition of the matrix norm, it follows that for all 1 < i,5 < 25 [(Qgy,...0)ij — Q?ﬂ < 2%5
. k k

In particular, |(Qq,,....g.)sA — Q§A| < 22% Therefore, (Qq,,...g.)s4 > QgA — 22% We know that

sz is exactly the probability that a randomly chosen string of length #2* is accepted by P.

From the hypothesis, for k& > log(%), 32 is more than 2%5 Consequently, 0 < (Qg,,....g,)s4 =

Fr }t(Rk(x,gl, ..., gk) takes s to A in Gg). Since s to A paths in G¢ correspond exactly to the
re{0,1

set of strings accepted by P, it follows that there is an x € {0, 1} such that Ry(z,g1,.-.,gk) is
accepted by P. Therefore,the set {Ry(z, h1,...,ht)|z € {0,1}t, h; € H;,1 < i < k} has non-empty
intersection with the set of strings accepted by P. Hence the theorem. O

One application of this theorem is to derandomize space S bounded randomized algorithms which
accept languages with one-sided error. As we have said before, these algorithms are modeled non-
uniformly by OBDDs of 2% nodes. To derandomize we are faced with the problem of deciding if
an OBDD of size 27 identically evaluates to 0 or evaluates to 1 on more than half of its input set.
This problem is solved by checking if an entry from the set {Rg(z,hy, ..., hg)La: € {0,1}'*% h; €
Hyss,1 <4 < S} evaluates to 1. The time taken to perform this check is O(22%5") as there are only
2285% glements in this set. The space taken is 2852 4 155 which is consumed to store z, h1,...,hg
and one node of the OBDD. This is a significant reduction in time and space used by the naive

4



approach of performing the check on all possible inputs to the OBDD. Observe that the space and
time complexity of the algorithm based on Nisan’s pseudorandom generator is dependent on the
size of the universal family of hash functions used. Consequently, if one could design a smaller
family of functions that guarantees theorem 1 then we will be able to derandomize with smaller
space and time complexity. This motivation leads to the following questions that have lead to the
results in this paper:

Question 1: For a stochastic matrix () and an associated directed graph G, define the boolean
function fg on H as follows: fg(h) = 1if ||Qn— Q?| < 2%5 Otherwise fg(h) = 0. The question is:
Is there a () for which the OBDD complexity of fg is exponential in the input size? The reason to
ask this question is, if the OBDD complexity of fg is small for each @, then we can apply Nisan’s
pseudorandom generator to a small OBDD computing fg and construct a smaller family of hash
functions that guarantees the consequences of Theorem 1 for k = 1.

Question 2: How small can a family of functions get and yet guarantee Theorem 1 for k = 17

4 A Hard Boolean Function for OBDDs

Using the features of the Nisan’s pseudorandom generator, we define in this section a boolean func-
148
tion that has exponential OBDD complexity. Let X = {Ry(z,h1,...,hy)|z € {0,1}322, each h; €
148
{0,1}322 }. k is set to be 11 so that the generator outputs 285 bits. As we have proved in theorem 2,

S
as Ry is a pseudorandom generator, X will intersect the accepting set of any OBDD of size 2322
and of length 285 which accepts more than 22% fraction of its inputs. Now we define the boolean

function f on {0,1}285:
1 ifh¢gX,
f(h) = .
0 otherwise

The number of distinct elements in X is at most the number of possible inputs to Rj. The number

of bits in a input to Ry is (2k + 1)323 and, for k = 11, it follows that |X| < 23 . Therefore, the
| S

probability that for a randomly chosen h, f(h) = 0 is 42% which is at most 222%. Therefore, f

evaluates to 1 on more than —iz of its inputs. In fact, it evaluates to 1 on almost all the inputs. In
2322

the following theorem, we claim that every OBDD computing this boolean function has exponential

size.

S
Theorem 3. Any OBDD computing f has size more than 2322,

S
Proof. The proof is by contradiction. Let us assume that there is an OBDD P of size 2322 that
computes f. If this were the case, then X would have a non empty intersection with the set of
points that evaluate to 1 under f. This is because the probability that for a randomly chosen h,
S

f(h) =11isat least 1 — 222%. As P computes f, it follows that P evaluates to 1 on more than 22% of
its inputs. Therefore, by theorem 2 X should have non-empty intersection with the set of strings
accepted by P, that is there is a point in X that evaluates to 1 under f. But we know from our
construction that every h € X evaluates to 0 under f. Hence we have arrived at a contradiction.

S
Therefore, our assumption is wrong: Every OBDD computing f has size more than 2322. O

f can be evaluated at an input h by a deterministic algorithm using space S§. The algorithm is just
to check membership in X, which is done by cycling through all inputs to Nisan’s pseudorandom
generator and checking for equality with h. Based on this observation we state the following
theorem.



Theorem 4. For every S € Z,, the boolean function f : {0,1}?%5 — {0,1} defined above can be
computed deterministically using space O(S), and every OBDD computing f has size more than

_S_
2322,
Proof. The proof follows from Theorem 3, and the properties of f described above. O

In the construction of functions above, we have ensured that the boolean function evaluates to
0 on the elements in the range of the pseudorandom generator. In the next section, we use the same
approach to prove a lower bound on the size of a family of functions that can be used in Nisan’s
pseudorandom generator.

5 A lower bound on the size of the family of functions

Nisan’s pseudorandom generator based approach, has given us an O(S?) space algorithm to approx-
imate the higher powers of a stochastic matrix. The basic idea behind the design of the algorithm
is to repeatedly approximate the square of a matrix using a function picked from a universal family
of functions. We have seen that the major component of the space usage is in storing S hash
functions, each with a 28S bit description. Clearly, if we can construct space efficiently a family of
functions that is smaller than the universal family of hash function, and is useful for approximate
matrix squaring, then we will be able to run Nisan’s algorithm with space lesser than O(S?). We
show that this approach cannot work. The reason is that the size of the family of functions is
related to the order of the matrix whose square we want to approximate. In particular, for a family
of functions H with N elements, we construct a graph G with 4N —1 vertices such that, no function
in the family can be used to approximate the square of the transition probability matrix @ of G.

1
— 02 —) =
In other words, we show that hlZ%(HQh Q7 < 4) 0.

Let H be the given family of functions with N elements such that each function in the family
maps ¢ bit strings to ¢ bit strings. We construct a graph L with the following properties:

e Graph The graph is a labeled directed multi-graph with 4N — 1 vertices, and each vertex
has out-degree 2!. It is composed of gadgets denoted by Dj,h € H, each of which has
three vertices. The gadgets are arranged into a chain according to an arbitrary order of the
elements of H, and two consecutive gadgets are connected through an intermediate vertex.
Let hi,...,hny be an ordering of the functions in H and let ¢1,...,tx5_1 be the intermediate
vertices.

o Gadget Let h = h,,1 < r < N, be the rth element in the ordering. D}, is a graph on three
vertices. Let us call these vertices 'u,lz,'u,%,v,?;. v,ll, and 'U,?; are the end points of the gadget and
v% is the mid point of the gadget. All edges leaving the midpoint go to one of the end points,
and the number of edges are equally distributed among the two end points. Of the 2¢ edges
leaving the left(resp. right) endpoint, half of them go to the midpoint and remaining half
goes to t,_1 (resp. t;). For the case when r = 1 (resp. r = N), all the edges from the left
(resp. right) end point go to the mid point. For 1 <7 < N — 1, half the edges leaving ¢; go
to the right end point of Dy, and the rest go to the left end point of Dy, ,.

e Edge labels The edges leaving t;,1 < i < N —1 are labeled bijectively with {0, 1}!. Similarly,
the edges leaving the midpoint of every gadget are labeled bijectively with {0,1}!. Now we
have to define the labels on the edges leaving the end points of a gadget. Let us consider the
gadget corresponding to h. h(z) is the label on an edge from the left (resp. right) endpoint



to the mid point if and only if z is the label on an edge from the midpoint to the left (resp.
right) end point. The elements not in the range of h are assigned bijectively to the remaining
edges leaving the left (resp. right) endpoint.

Let @ be the transition probability matrix associated with the graph that we have constructed.
For each h € H, ||Q — Q|| > %. This follows from the following lemma where, for each h € H we
exhibit a pair of vertices such that |(Qp)i; — ij| = i. For every pair of vertices 7,/ in the graph,
let B;; be the set of labels on the edges from ¢ to [ in the graph.

Lemma 5. For every h € H, let i denote the mid point of Dy, | the right end point of Dy, and j

the only point outside the gadget that | is adjacent to. Then, [(Qp)ij — Q%| =1

Proof. Let h € H. We know that (Qn)ij = Forl}t(Rl(x,h) takes 7 to 7). Ri(xz,h) = z o h(z) and
€0,

all walks of length 2 from i to j have [ as their intermediate vertex. Therefore, (Q4)i; = u(z €

By A h(z) € Byj). Similarly, Q?J = QuQij = p(Biy)p(Byj). Furthermore,

1

lu(z € By A h(z) € Byy) — pu(By)u(Byj)| = "

This is because, for every ordered triple of vertices (4,7,j) that is a walk of length two in L,
pu(Bi)pu(Byj) = 1, and by construction pu(z € By A h(z) € Byj) = 0. Therefore, |(Qp)ij — Q121| =1
Hence the lemma. O

From the above construction we then have for a family of size N, a graph of size 4N — 1, such
that no function in the family can be used in Nisan’s approximate squaring algorithm to get a
matrix which is within an error lesser than %. In the matrix powering algorithm, we work with
stochastic matrices whose dimension is 2°. Consequently, if H is a family of functions such that,
for every stochastic matrix @ of order 2°, there is a function h € H such that ||Q, — Q?|| < I then
2% < 4|H| — 1. This gives the lower bound on the size of the family of functions. The lower bound
is |H| > 2572. We summarize the above as the following theorem.

Theorem 6. If H is a family of functions such that for every stochastic matriz Q of size 25 there
is a h € H such ||Qn, — Q%| < %, then |H| > 252

Proof. The discussion preceding the statement proves the theorem. O

6 Conclusion

One contribution of this paper is that we have explored and ruled out one way of getting im-
provements in the space used by Nisan’s algorithm to derandomize space bounded randomized
algorithms. In particular, we have answered the second question posed in Section 3 by showing
that there do not exist significantly smaller families of hash functions that can be used in place
of the one used in Nisan’s algorithm. This observation provides useful insights into one of the
many stumbling blocks in the way of designing pseudorandom generators to derandomize space S
bounded randomized algorithms in o(S?) space.

Using the same technique to prove a lower bound on the size of hash families, we obtain an
explicit boolean function that has exponential OBDD complexity. While functions with exponential
lower bounds for OBDDs are known, our result is the first that obtains a hard function from a
derandomization for this computation model. An open question that is of interest is whether



it is possible to obtain from pseudorandom generators, functions of exponential complexity for
generalizations of OBDDs like Randomized OBDDs and Nondeterministic OBDDs. Apart from
proving a lower bound for OBDDs, the function we have constructed answers the first question
we have asked in Section 3 in the affirmative. One natural interesting question in this line of
research is whether a hard function for OBDDs can be used to generate pseudorandom bits that
cannot be distinguished by space bounded randomized algorithms. Such results are well known
in the circuit setting, where hard functions (with varying degrees of hardness) are used to design
pseudorandom generators whose output cannot be distinguished from random by polynomial-time
randomized algorithms.

Acknowledgements The first author would like to thank Jan Johannsen for his encouragement
and criticisms of earlier versions of this report, Vinay and Ramesh for commenting on many ideas
and, Avi Wigderson for answering questions regarding the issue of Hardness vs Randomness.

References

[1] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, Shiyu Shou, SL C L%, Proc. 29th ACM
Symposium on Theory of Computing, 1997,pp. 230-239.

[2] R.E. Bryant, On the Complexity of VLSI implementation and Graph Representations of
Boolean functions with application to Integer multiplication, IEEE Trans. Computers, C-
40(2):205-213, Feb 1991.

[3] N. Nisan, Pseudorandom generators for space bounded computation, Proc. 22nd ACM Sym-
posium on Theory of Computing, 1990,pp. 204-212.

[4] N. Nisan, A. Wigderson, Hardness vs. Randomness, Journal of Computer and System Sciences,
October 1994, 49(2), pp. 149-167.

[6] M. Saks, Randomization and Derandomization in Space-bounded Computation, Computa-
tional Complexity, 1996, pp. 128-149.

3
2

[6] M. Saks and S. Zhou, RSPACE(S) C DSPACE(S
of Computer Science, 1995,pp. 344-353.

), Proc. 36th Symposium on Foundations

[7] 1. Wegener, Branching Programs and Binary Decision Diagrams. Theory and Applications,
SIAM Momnographs on Discrete Mathematics and Applications, 2000

ECCC ISSN 1433-8092
8 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/publ/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




