
Resolution Lower Bounds for the Weak Pigeonhole

Principle

Ran Raz∗

Weizmann Institute, and
The Institute for Advanced Study
ranraz@wisdom.weizmann.ac.il

Abstract

We prove that any Resolution proof for the weak pigeon hole principle, with n holes
and any number of pigeons, is of length Ω(2n

ε
), (for some global constant ε > 0).

1 Introduction

The Pigeon Hole Principle (PHP) is one of the most widely studied tautologies in propositional
proof theory. The tautology PHPn is a DNF encoding of the following statement: There is no
one to one mapping from n+1 pigeons to n holes. The Weak Pigeon Hole Principle (WPHP)
is a version of the pigeon hole principle that allows a larger number of pigeons. The tautology
WPHPm

n (for m ≥ n + 1) is a DNF encoding of the following statement: There is no one to
one mapping from m pigeons to n holes. For m > n + 1, the weak pigeon hole principle is a
weaker statement than the pigeon hole principle. Hence, it may have much shorter proofs in
certain proof systems.

The weak pigeon hole principle is one of the most fundamental combinatorial principles.
In particular, it is used in most probabilistic counting arguments and hence in many combi-
natorial proofs. Moreover, as observed by Razborov, there are certain connections between
the weak pigeon hole principle and the problem of P 6= NP [Razb]. Indeed, the weak pigeon
hole principle (with a relatively large number of pigeons) can be interpreted as an encoding
of the following statement: There are no small DNF formulas for SAT. Hence, (in most proof
systems), a short proof for a certain formulation of the statement NP 6⊂ P/poly can be trans-
lated into a short proof for the weak pigeon hole principle. That is, a lower bound for the
length of proofs for the weak pigeon hole principle implies a lower bound for the length of
proofs for a certain formulation of the statement NP 6⊂ P/poly.

∗Research supported by US-Israel BSF grant 98-00349, and NSF grant CCR-9987077.

Electronic Colloquium on Computational Complexity, Report No. 21 (2001)

ISSN 1433-8092

Resolution is one of the most widely studied propositional proof systems. The Resolution
rule says that if C and D are two clauses and xi is a variable then any assignment that satisfies
both of the clauses, C ∨ xi and D ∨ ¬xi, also satisfies C ∨ D. The clause C ∨ D is called
the resolvent of the clauses C ∨ xi and D ∨ ¬xi on the variable xi. A Resolution refutation
for a CNF formula F is a sequence of clauses C1, C2, . . . , Cs, such that: (1) Each clause Cj is
either a clause of F or a resolvent of two previous clauses in the sequence. (2) The last clause,
Cs, is the empty clause (and hence it has no satisfying assignments). We can represent a
Resolution refutation as an acyclic directed graph on vertices C1, . . . , Cs, where each clause of
F has out-degree 0, and any other clause has two edges pointing to the two clauses that were
used to produce it. It is well known that Resolution is a sound and complete propositional
proof system, that is, a formula F is unsatisfiable if and only if there exists a Resolution
refutation for F . We think of a refutation for an unsatisfiable formula F also as a proof for
the tautology ¬F . A well-known and widely studied restricted version of Resolution (that
is still complete) is called Regular Resolution. In a Regular Resolution refutation, along any
path in the directed acyclic graph, each variable is resolved upon at most once.

There are trivial Resolution proofs (and Regular Resolution proofs) of length 2n · poly(n)
for the pigeon hole principle and for the weak pigeon hole principle. In a seminal paper,
Haken proved that for the pigeon hole principle, the trivial proof is (almost) the best possible
[Hak]. More specifically, Haken proved that any Resolution proof for the tautology PHPn

is of length 2Ω(n). Haken’s argument was further developed in several other papers (e.g.,
[Urq, BeP, BSW]). In particular, it was shown that a similar argument gives lower bounds
also for the weak pigeon hole principle, but only for small values of m. More specifically, super-
polynomial lower bounds were proved for any Resolution proof for the tautology WPHP m

n ,
for m < c · n2/ log n (for some constant c) [BT]. The weak pigeon hole principle with larger
values of m has attracted a lot of attention in recent years. However, the standard techniques
for proving lower bounds for Resolution fail to give lower bounds for the weak pigeon hole
principle. In particular, for m ≥ n2, no non-trivial lower bound was known.

For the weak pigeon hole principle with large values of m, there do exist Resolution proofs
(and Regular Resolution proofs) which are much shorter than the trivial ones. In particular,
it was proved by Buss and Pitassi that for m > c

√
n log n (for some constant c), there are

Resolution (and Regular Resolution) proofs of length poly(m) for the tautology WPHP m
n

[BuP]. Can this upper bound be further improved ? Can one prove a matching lower bound ?
As mentioned above, for m ≥ n2, no non-trivial lower bound was known. A partial progress
was made by Razborov, Wigderson and Yao, who proved exponential lower bounds for Regular
Resolution proofs, but only when the Regular Resolution proof is of a certain restricted form
[RWY]. An exponential lower bound for any Regular Resolution proof was proved in [PR]. In
this paper, we prove an exponential lower bound for any Resolution proof.

More precisely, we prove that for any m, any Resolution proof for the weak pigeon hole
principle, WPHPm

n , is of length Ω(2nε

), (where ε > 0 is some global constant).

2

2 Preliminaries

2.1 Resolution as a Search Problem

A literal is either an atom (i.e., a variable xi) or the negation of an atom (i.e., ¬xi). A clause
is a disjunction of literals. If C and D are two clauses and xi is a variable then any assignment
that satisfies both of the clauses, C ∨ xi and D ∨ ¬xi, obviously satisfies the clause C ∨ D
as well. As mentioned in the introduction, the clause C ∨ D is called the resolvent of the
clauses C ∨ xi and D ∨ ¬xi on the variable xi. A Resolution refutation for a CNF formula
F is a sequence of clauses C1, C2, . . . , Cs, such that, each clause Cj is either a clause of F or
a resolvent of two previous clauses in the sequence, and such that, the last clause, Cs, is the
empty clause. We think of the empty clause as a clause that has no satisfying assignments. We
think of a Resolution refutation for F also as a proof for ¬F . Without loss of generality, we
assume that no clause in a Resolution proof contains both xi and ¬xi (such a clause is always
satisfied and hence it can be removed from the proof). The length, or size, of a Resolution
proof is the number of clauses in it.

As mentioned in the introduction, we represent a Resolution proof as an acyclic directed
graph G on the vertices C1, . . . , Cs. In this graph, each clause Cj which is an original clause
of F has out-degree 0, and any other clause has two edges pointing to the two clauses that
were used to produce it. We call the vertices of out-degree 0 (i.e., the clauses that are original
clauses of F) the leaves of the graph. Without loss of generality, we can assume that the only
clause with in-degree 0 is the last clause Cs (as we can just remove any other clause with
in-degree 0). We call the vertex Cs the root of the graph, and we denote it also by Root.

We label each vertex Cj in the graph by the variable xi that was used to derive it (i.e., the
variable xi that was resolved upon), unless the clause Cj is an original clause of F (and then
Cj is not labelled). If a clause Cj is labelled by a variable xi we label the two edges going out
from Cj by 0 and 1, where the edge pointing to the clause that contains xi is labelled by 0,
and the edge pointing to the clause that contains ¬xi is labelled by 1. That is, if the clause
C ∨D was derived from the two clauses C ∨ xi and D ∨¬xi then the vertex C ∨D is labelled
by xi, the edge from the vertex C ∨D to the vertex C ∨ xi is labelled by 0 and the edge from
the vertex C ∨D to the vertex D ∨ ¬xi is labelled by 1. For a non-leaf node u of the graph
G, define,

Label(u) = the variable labelling u.

We think of Label(u) as a variable queried at the node u.

Let p be a path on G, starting from the root. Note that along a path p, a variable xi

may appear (as a label of a node u) more than once. We say that the path p evaluates xi

to 0 if xi = Label(u) for some node u on the path p, and after the last appearance of xi as
Label(u) (of a node u on the path) the path p continues on the edge labelled by 0 (i.e., if u is
the last node on p such that xi = Label(u) then p contains the edge labelled by 0 that goes
out from u). In the same way, we say that the path p evaluates xi to 1 if xi = Label(u) for
some node u on the path p, and after the last appearance of xi as Label(u) (of a node u on

3

the path) the path p continues on the edge labelled by 1 (i.e., if u is the last node on p such
that xi = Label(u) then p contains the edge labelled by 1 that goes out from u).

For any node u of the graph G, we define Zeros(u) to be the set of variables that the node
u “remembers” to be 0, and Ones(u) to be the set of variables that the node u “remembers”
to be 1, that is,

Zeros(u) = the set of variables that are evaluated to 0 by every path p from the
root to u.

Ones(u) = the set of variables that are evaluated to 1 by every path p from the
root to u.

Note that for any u, the two sets Zeros(u) and Ones(u) are disjoint.

The following proposition gives the connection between the sets Zeros(u), Ones(u) and
the literals appearing in the clause u. The proposition is particularly interesting when u is a
leaf of the graph.

Proposition 2.1 Let F be an unsatisfiable CNF formula and let G be (the graph representa-
tion of) a Resolution refutation for F . Then, for any node u of G and for any xi, if the literal
xi appears in the clause u then xi ∈ Zeros(u), and if the literal ¬xi appears in the clause u
then xi ∈ Ones(u).

Proof:
Assume that the literal xi appears in the clause u. (The claim for the literal ¬xi is proved in
the same way). Let p be a path from the root Cs to u. We will show that the path p evaluates
xi to 0. If no node v < u on the path p satisfies Label(v) = xi then the literal xi appears in
the clause Cs, in contradiction to the fact that Cs is the empty clause. Hence, there exists a
node v < u on the path p, such that, Label(v) = xi. Let v be the last (i.e., the largest) such
node. Let w be the next node on p (i.e., the successor of v on the path p). Thus, the edge
(v, w) is contained in the path p. Since v is the last node on p such that Label(v) = xi, no
node z on the path p from w to u satisfies Label(z) = xi. Hence, since the literal xi appears in
u, it appears in w as well. Thus, (v, w) is the edge labelled by 0. That is, p evaluates xi to 0. 2

2.2 The Weak Pigeonhole Principle

The propositional weak pigeon hole principle, WPHPm
n , states that there is no one-to-one

mapping from m pigeons to n holes. The underlying Boolean variables, xi,j , for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, represent whether or not pigeon i is mapped to hole j. The negation of
the pigeonhole principle, ¬WPHPm

n , is expressed in conjunctive normal form (CNF) as the

conjunction of m pigeon clauses and
(

m
2

)

·n hole clauses. For every 1 ≤ i ≤ m, we have a pigeon

clauses, (xi,1 ∨ . . .∨ xi,n), stating that pigeon i maps to some hole. For every 1 ≤ i1 < i2 ≤ m
and every 1 ≤ j ≤ n, we have a hole clauses, (¬xi1,j ∨ ¬xi2,j), stating that pigeons i1 and i2

4

do not both map to hole j. We refer to the pigeon clauses and the hole clauses also as pigeon
axioms and hole axioms.

Let G be (the graph representation of) a Resolution refutation for ¬WPHPm
n . Then, by

Proposition 2.1, for any leaf u of the graph G, one of the following is satisfied:

1. u is a pigeon axiom, and then for some 1 ≤ i ≤ m, the variables xi,1, . . . , xi,n are all
contained in Zeros(u).

2. u is a hole axiom, and then for some 1 ≤ j ≤ n, there exist two different variables
xi1,j, xi2,j in Ones(u).

2.3 Basic Notations

We denote by n the number of holes, and by m the number of pigeons. We denote by Holes
the set of holes, and by Pigeons the set of pigeons. That is,

Holes = {1, ..., n}.

Pigeons = {1, ...,m}.

We will usually denote a hole by j, and a pigeon by i. By xi,j we denote the variable corre-
sponding to pigeon i and hole j. We denote by V ariables the set of all these variables, and
by V ariablesi the set of variables corresponding to the ith pigeon. That is,

Variables = {xi,j|i ∈ Pigeons, j ∈ Holes}.

Variablesi = {xi,j|j ∈ Holes}.

We will consider (the graph representation of) Resolution proofs for the weak pigeon hole
principle. We denote such a graph by G. By u we will usually denote a node in the graph.
We say that u′ < u if there is a path in the graph from u′ to u. By p we will usually denote
a path in the graph, starting from the root. Note that for any non-leaf node u of the graph,
Label(u) is a variable xi,j . The sets Zeros(u) and Ones(u) are subsets of V ariables.

We denote by ε a small fixed constant (say ε = 1/100). For simplicity, we assume that n is
large enough (say nε ≥ 1000). For simplicity, we assume that expressions like nε, n1−ε, n1−8ε/2,
etc’, are all integers.

3 The Lower Bound

In this section, we prove our lower bound on the size of Resolution proofs for the weak pigeon
hole principle. Fix ε = 1/100, and assume for simplicity that nε ≥ 1000. (We do not attempt
here to optimize the value of ε).

5

Theorem 3.1 For any m ≥ n + 1, any Resolution proof for the tautology WPHPm
n is of

length larger than 2nε/100.

In the rest of the section, we give the proof of Theorem 3.1. Let G be the graph represen-
tation of a Resolution proof for WPHPm

n , and assume for a contradiction that the size of G
(i.e., the number of vertices in G) is at most 2nε/100. Note that since the size of G is at most
2nε/100, we can assume w.l.o.g. that m < 2nε/100.

3.1 Adding Axioms

First, define for any integer 0 ≤ k ≤ nε,

nk = k · n1−ε,

mk = 2nε−k.

(Recall that we assume that nε, n1−ε are integers). For any node u of the graph G and for any
pigeon i, we define Zerosi(u) to be the set of variables xi,j that the node u “remembers” to
be 0, that is, the set of variables xi,j that are evaluated to 0 by every path from the root to
u. In other words,

Zerosi(u) = Zeros(u) ∩ V ariablesi.

We use the size of Zerosi(u) as a measure for the progress made on pigeon i along paths from
the root. We compare this measure with the “mileposts” {nk}. We define Overk(u) to be the
set of pigeons that passed the kth milepost (for the node u), and we say that a node u is an
axiom of order k if for the node u at least mk pigeons passed the kth milepost. That is, for
any integer 0 ≤ k ≤ nε and any node u of G, we define,

Overk(u) = the set of pigeons i such that |Zerosi(u)| ≥ nk.

For 1 ≤ k ≤ nε, we say that a node u is a pigeon-axiom of order k if
|Overk(u)| ≥ mk.

Note that a pigeon-axiom of order k = nε is just a standard pigeon-axiom of the weak pigeon
hole principle. We say that a node u is a hole-axiom if there exists a hole j and two different
pigeons i1, i2, such that xi1,j, xi2,j ∈ Ones(u). Note that this is just a standard hole-axiom of
the pigeon hole principle.

In our lower bound proof, we allow the leaves of the graph G to be pigeon-axioms of
any order k (and not only pigeon-axioms of order k = nε as in the usual weak pigeon hole
principle). That is, we say that G is a Resolution proof for the weak pigeon hole principle if
all its leaves are axioms (i.e., all the leaves of G are either hole-axioms or pigeon-axioms of
some order). We assume w.l.o.g. that in G, a non-leaf node u is never an axiom (otherwise,

6

we can just disconnect the two edges going out from u and hence convert u to a leaf). In
particular, no non-leaf node is a pigeon-axiom of order k, for any k.

One consequence of the assumption that no non-leaf node is a pigeon-axiom of order k is
that if a node u is a pigeon-axiom of order k then |Overk(u)| = mk. This is true because if
for some u we had |Overk(u)| > mk then any node v, such that there is an edge from v to
u, would satisfy |Overk(v)| ≥ mk, and hence the non-leaf node v would be a pigeon-axiom of
order k. Therefore, we can assume that for any node u in the graph,

|Overk(u)| ≤ mk.

For our lower bound proof, we need to refine the scale {nk}. For any two integers 0 ≤ k < nε

and 0 ≤ l ≤ nε and any node u, define,

nk,l = k · n1−ε + l · n1−2ε.

Overk,l(u) = the set of pigeons i such that |Zerosi(u)| ≥ nk,l.

Note that nk,0 = nk, and nk,nε = nk+1.

3.2 The Random Assignment

We will define a probabilistic assignment Ai,j to the variables xi,j . Unlike in previous lower
bound proofs, one should not interpret the assignment Ai,j as a “random restriction” of the
Resolution proof. The assignment Ai,j will be used in a different way. The assignment Ai,j

is chosen at random according to some specific probability distribution, defined below. First,
define,

{

Holesk
}nε

k=1
= a random partition of Holes into nε sets of size n1−ε each.

That is, we partition Holes into nε sets of size n1−ε each. The intuition is that the set of holes
Holesk will be used “against” pigeon-axioms of order k. For each 1 ≤ k ≤ nε, define,

{

Holesk,l
}nε

l=1
= a random partition of Holesk into nε sets of size n1−2ε each.

That is, we further partition each set Holesk into nε sets of size n1−2ε each. Altogether, the
set Holes was partitioned into n2ε sets of size n1−2ε each. We denote by V ariablesk,l

i the set
of variables corresponding to the ith pigeon and holes in Holesk,l. That is,

Variablesk,l
i = {xi,j|j ∈ Holesk,l}.

Next, we would like to define for every 1 ≤ k ≤ nε, a set of pigeons Pigeonsk. For mk ≤ nε,
we would like the set Pigeonsk to contain all pigeons. For larger values of mk, we would like
each pigeon to be chosen (independently, at random) with a certain probability. For every
1 ≤ k ≤ nε, define,

7

pk = min
[

1, nε

mk

]

.

Pigeonsk = a random subset of Pigeons, such that each pigeon is chosen (inde-
pendently, at random) with probability pk.

For every pigeon i, and every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε, define the subset AOnesk,l
i of the

set V ariablesk,l
i , in the following way.

AOnesk,l
i =

{

a random subset of size n1−6ε of V ariablesk,l
i if i ∈ Pigeonsk

∅ if i 6∈ Pigeonsk

The set AOnes is now defined to be the union of all the sets AOnesk,l
i , and the set AZeros

is defined to be the complement of AOnes. The assignment Ai,j is defined by, Ai,j = 1 iff
xi,j ∈ AOnes. That is,

AOnes =
⋃

i,k,l
AOnesk,l

i .

AZeros = V ariables \ AOnes.

Ai,j =

{

1 if xi,j ∈ AOnes
0 if xi,j ∈ AZeros

3.3 Properties of the Assignment

For our lower bound proof, we do not need the assignment Ai,j , and the sets that were
involved in defining it, to be probabilistic. We just need them to satisfy certain properties.
These properties are satisfied (with high probability) by the probabilistic construction that
we defined, but we will only need one assignment (and sets) that satisfy the properties. The
properties that we will need are summarized in the following claim.

Claim 3.1 With exponentially high probability, all the following are satisfied, for every pigeon
i, every hole j, every nodes u, v, and every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε.

1. If j ∈ Holesk and i 6∈ Pigeonsk then

Ai,j = 0.

2. If i ∈ Pigeonsk and |Zerosi(u)| − |Zerosi(v)| ≥ n1−2ε then
∣

∣

∣[Zerosi(u) \ Zerosi(v)] ∩ AOnesk,l
i

∣

∣

∣ > n1−8ε/2.

3. If i1 and i2 are two different pigeons then
∣

∣

∣

{

j′ ∈ Holesk,l | Ai1,j′ = 1 and Ai2,j′ = 1
}
∣

∣

∣ < 2n1−10ε.

8

4. If |Ones(u)| ≥ nε then
Ones(u) ∩ AZeros 6= ∅.

5. If u is a pigeon-axiom of order k then

Pigeonsk ∩Overk(u) 6= ∅.

6. For any u,
∣

∣

∣Pigeonsk ∩Overk−1(u)
∣

∣

∣ < 10nε.

Proof:
Recall that the number of pigeons and the number of nodes are both bounded by 2nε/100.
The number of holes is n. Recall that we assume that ε = 1/100, and nε ≥ 1000. For the
proof of the claim, we just have to verify that (for specific objects, i, j, k, l, u, v, i1, i2), the
requirement in each one of the properties is falsified with exponentially small probability (say,
with probability smaller than 2−nε/25). This will usually follow by the standard Chernoff-
Hoeffding bounds or by other simple probabilistic arguments. Let us analyze the properties
one by one.

Property 1:
By the definition of AOnesk,l

i , the requirement in this property is always satisfied.

Property 2:
Zerosi(u) \ Zerosi(v) is a fixed subset of V ariablesi of size ≥ n1−2ε. Assume w.l.o.g. that
the size of Zerosi(u) \ Zerosi(v) is exactly n1−2ε. Since i ∈ Pigeonsk, the set AOnesk,l

i is a
random subset of V ariablesi of size exactly n1−6ε. Hence, the intersection

[Zerosi(u) \ Zerosi(v)] ∩ AOnesk,l
i

is of expected size n1−8ε, and by the standard Chernoff-Hoeffding bounds the actual size of
the intersection is very close to n1−8ε, with high probability. In particular, the probability
that the size of the intersection is ≤ n1−8ε/2 is exponentially small (and in particular, smaller
than 2−nε/25).

Property 3:
Denote,

Hi1 =
{

j′ ∈ Holesk,l | Ai1,j′ = 1
}

,

and,
Hi2 =

{

j′ ∈ Holesk,l | Ai2,j′ = 1
}

.

Then,
{

j′ ∈ Holesk,l | Ai1,j′ = 1 and Ai2,j′ = 1
}

= Hi1 ∩Hi2 .

If either i1 6∈ Pigeonsk or i2 6∈ Pigeonsk then Hi1 ∩ Hi2 is empty. If both i1, i2 ∈ Pigeonsk

then Hi1 and Hi2 are both random subsets of Holesk,l of size n1−6ε each. Recall that Holesk,l

is a set of size n1−2ε. Hence, the intersection Hi1 ∩ Hi2 is of expected size n1−10ε, and by
the standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to

9

n1−10ε, with high probability. In particular, the probability that the size of the intersection is
≥ 2n1−10ε is exponentially small (and in particular, smaller than 2−nε/25).

Property 4:
Denote s = |Ones(u)|, and assume w.l.o.g. that s is exactly nε. Let xi1,j1 , xi2,j2 , ..., xis,js be
the s variables in Ones(u). It is easy to verify that for any 1 ≤ t ≤ s, the probability for
Ait,jt = 1 is smaler than 1/2, even under the condition that Ai1,j1 , ..., Ait−1,jt−1

are all 1. Hence,
the probability that Ai1,j1 , ..., Ais,js are all 1 is smaller than 2−nε

.

Property 5:
Overk(u) is a set of mk pigeons. If mk ≤ nε then each one of these pigeons is in Pigeonsk

with probability 1. Otherwise, the probability for each one of these pigeons to be in Pigeonsk

is nε/mk, and hence the probability that none of them is in Pigeonsk is

(

1−
nε

mk

)mk

< 2−nε

.

Property 6:
As we have seen, Overk−1(u) is a set of at most mk−1 = 2mk pigeons. Assume w.l.o.g. that
Overk−1(u) is a set of exactly 2mk pigeons. If mk ≤ nε then 2mk ≤ 2nε and the requirement is
obviously satisfied. Otherwise, each one of these 2mk pigeons is in Pigeonsk with probability
nε/mk. Hence, the intersection Pigeonsk ∩ Overk−1(u) is of expected size 2nε, and by the
standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to 2nε,
with high probability. In particular, the probability that the size of the intersection is ≥ 10nε

is exponentially small (and in particular, smaller than 2−nε/25).

2

3.4 The Adversary Strategy

In this subsection, we give the proof of Theorem 3.1, given one lemma (the main lemma).

With high probability, all the properties in Claim 3.1 are satisfied. Hence, we can fix the
assignment Ai,j (and all the sets involved in defining it, such as, Pigeonsk, Holesk,l, etc’) to
some fixed values that satisfy all these properties. Thus, from now on, we assume that the
assignment Ai,j (and all the sets involved in defining it) are fixed (and are not probabilistic
any more), and that all the properties in Claim 3.1 are satisfied.

For every non-leaf node u of the graph G, we define a value Answer(u) ∈ {0, 1}. We think
of Answer(u) as an adversary “answer” for the “query” Label(u). The answer Answer(u)
depends on the assignment Ai,j and the sets Holesk,l.

Assume that Label(u) = xi,j , and j ∈ Holesk,l. We define Answer(u) in the fol-
lowing way:

10

1) If i 6∈ Overk−1,l−1(u) Answer(u) = 0
2) If ∃i′ 6= i s.t. xi′,j ∈ Ones(u) Answer(u) = 0
3) Otherwise, Answer(u) = Ai,j

That is, the answer is automatically 0 if i 6∈ Overk−1,l−1(u), or if there exists i′ 6= i such
that xi′,j ∈ Ones(u). Otherwise, the answer is the value of Ai,j . Given the values Answer(u)
(for every non-leaf node u), we define a path (called Path) on the graph G. The path starts
from the root of G and in each step it follows the edge labelled by Answer(u), where u is the
current node. We denote by Leaf the leaf reached by the path Path. That is,

Path = the path that starts from Root, and that satisfies that for every (non-leaf)
node u on the path, the path contains the edge that goes out from u and is labelled
by Answer(u).

Leaf = the leaf reached by Path.

Lemma 3.1 (Main Lemma) For any 1 ≤ k ≤ nε, and any node u on the path Path,

Pigeonsk ∩Overk(u) = ∅.

Lemma 3.1 is proved in the next subsection. Let us show how the proof of Theorem 3.1 follows
from Lemma 3.1.

Proof of Theorem 3.1:
By Lemma 3.1 and by Property 5 of Claim 3.1, no node u on Path is a pigeon-axiom (of
any order k). By the definition of Answer(u), if there exists i′ 6= i such that xi′,j ∈ Ones(u)
then Answer(u) = 0. Hence, for no node u on Path we will have that both xi,j and xi′,j are
in Ones(u). That is, no node u on Path is a hole-axiom. In particular, Leaf is neither a
pigeon-axiom (of any order k) nor a hole-axiom, in contradiction to the fact that all leaves of
the graph G must be axioms. 2

3.5 Pigeon-Sections

In this subsection, we give the proof of Lemma 3.1, given one claim (the main claim). For any
node u on Path, define,

u+ = the successor of u on Path.

u− = the predecessor of u on Path.

(u+ is undefined for u = Leaf , and u− is undefined for u = Root). For two nodes v ≤ w on
Path, denote by [v, w] the section of nodes (on Path) between them. That is,

11

[v,w] = the set of nodes u on Path, such that, v ≤ u ≤ w.

For a pigeon i ∈ Pigeonsk, we will be interested in maximal sections on Path, such that, for
every node u in the section, i ∈ Overk−1(u). For 1 ≤ k ≤ nε, we define a pigeon-section of
type k, and the set PigSeck (of all these pigeon-sections), in the following way.

(i, [v,w]) is a pigeon-section of type k if all the following are satisfied:

1. i ∈ Pigeonsk, and v ≤ w are nodes on Path.

2. For any node u ∈ [v, w], we have i ∈ Overk−1(u).

3. The section [v, w] is maximal with this property. That is, if v 6= Root then
i 6∈ Overk−1(v−) and if w 6= Leaf then i 6∈ Overk−1(w+).

PigSeck = the set of all pigeon-sections of type k.

We will further refine the categorization of pigeon-sections into types. We say that a pigeon-
section of type k is of type (k, l) if the section [v, w] contains a node u such that i ∈
Overk−1,l−1(u), and we define the set PigSeck,l to be the set of all these pigeon-sections.
That is, for 1 ≤ k ≤ nε and 1 ≤ l ≤ nε + 1,

(i, [v,w]) is a pigeon-section of type (k, l) if all the following are satisfied:

1. (i, [v, w]) is a pigeon-section of type k.

2. For some node u ∈ [v, w], we have i ∈ Overk−1,l−1(u).

PigSeck,l = the set of all pigeon-sections of type (k, l).

Note the asymmetric role of k and l in the definition of pigeon-section of type (k, l). Note also
that PigSeck,1 = PigSeck.

Claim 3.2 (Main Claim) For every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε,

∣

∣

∣PigSeck,l+1
∣

∣

∣ ≤
1

2
·
∣

∣

∣PigSeck,l
∣

∣

∣ .

Claim 3.2 is proved in the next subsections. Let us show how the proof of Lemma 3.1 follows
from Claim 3.2.

Proof of Lemma 3.1:
Since the number of pigeons and the number of nodes in the graph are both bounded by
2nε/100, the number of pigeon-sections of type k is bounded by 2nε/50. That is,

∣

∣

∣PigSeck,1
∣

∣

∣ =
∣

∣

∣PigSeck
∣

∣

∣ ≤ 2nε/50.

12

Hence, by nε applications of Claim 3.2,
∣

∣

∣PigSeck,n
ε+1

∣

∣

∣ ≤ 2−nε

·
∣

∣

∣PigSeck,1
∣

∣

∣ ≤ 2−nε

· 2nε/50 < 1,

and since
∣

∣

∣PigSeck,n
ε+1

∣

∣

∣ is integer,

∣

∣

∣PigSeck,n
ε+1

∣

∣

∣ = 0.

That is, there are no pigeon-sections of type (k, nε + 1).

Assume for a contradiction to the statement of the lemma that for some node u on Path,

Pigeonsk ∩Overk(u) 6= ∅.

Then, since
Overk(u) = Overk−1,nε

(u),

there exists i ∈ Pigeonsk, such that,

i ∈ Overk−1,nε

(u).

Denote by [v, w] the largest section (on Path) that contains u, and such that for every
u′ ∈ [v, w] we have i ∈ Overk−1(u′) (such a section exists because i ∈ Overk−1(u)). Then,
(i, [v, w]) is a pigeon-section of type (k, nε + 1), in contradiction to the fact that there are no
such pigeon-sections. 2

3.6 Forcing

Let u be a node such that Label(u) = xi,j , and such that i ∈ Pigeonsk and j ∈ Holesk,l (for
some 1 ≤ k ≤ nε and 1 ≤ l ≤ nε). Recall that Answer(u) is 0 if there exists i′ 6= i such that
xi′,j ∈ Ones(u). If, in addition, i ∈ Overk−1,l−1(u) and Ai,j = 1 we say that xi,j is forced to 0
at the node u by xi′,j. (Recall that if i 6∈ Overk−1,l−1(u) or Ai,j = 0 then Answer(u) would
be 0 anyways, so we do not consider it as “forcing”). That is,

Assume that Label(u) = xi,j , and j ∈ Holesk,l. We say that xi,j is forced to 0
at the node u by xi′,j if all the following are satisfied:

1. i ∈ Pigeonsk and Ai,j = 1.

2. i ∈ Overk−1,l−1(u).

3. xi′,j ∈ Ones(u).

Assume that xi,j is forced to 0 by xi′,j at a node u on Path. Then, since i ∈ Pigeonsk and
i ∈ Overk−1,l−1(u), there exists a (unique) pigeon-section (i, [v, w]) of type (k, l) such that
u ∈ [v, w]. (To see this, just denote by [v, w] the largest section on Path that contains u,

13

and such that for every û ∈ [v, w] we have i ∈ Overk−1(û), such a section exists because
i ∈ Overk−1(u). Then, (i, [v, w]) is a pigeon-section of type (k, l)).

Consider the nodes on Path from the root to u, that is, the nodes in [Root, u]. Denote by
u′ the last node in [Root, u], such that, Label(u′) = xi′,j. Since xi′,j ∈ Ones(u), we know that
Answer(u′) is 1. Therefore, by the definition of Answer(u′), we know that i′ ∈ Overk−1,l−1(u′),
and by Property 1 of Claim 3.1 we know that i′ ∈ Pigeonsk (otherwise, Ai′,j would be 0, and
hence Answer(u′) would be 0 as well). By the same argument as before, there exists a (unique)
pigeon-section (i′, [v′, w′]) of type (k, l) such that u′ ∈ [v′, w′]. We categorize the “forcing” to
types according to the relations between the nodes u′, v, w, w′, as follows.

Let u be a node on Path. Assume that Label(u) = xi,j , and j ∈ Holesk,l. Assume
that xi,j is forced to 0 by xi′,j at the node u. Let u′ be the last node in [Root, u],
such that Label(u′) = xi′,j. Let (i, [v, w]) be the pigeon-section of type (k, l) such
that u ∈ [v, w], and let (i′, [v′, w′]) be the pigeon-section of type (k, l) such that
u′ ∈ [v′, w′].

1. We say that the forcing is a forcing of type 1 if u′ < v.

2. We say that the forcing is a forcing of type 2 if u′ ∈ [v, w] and w′ ≥ w.

3. We say that the forcing is a forcing of type 3 if u′ ∈ [v, w] and w′ < w.

Note that since u′ < u and u ∈ [v, w], any forcing is a forcing of one of these three types. For
every k, l, we would like to count the number of variables forced to 0 at pigeon-sections of type
(k, l). In our counting, we would like to count a variable more than once if it is forced to 0 at
more than one pigeon-section. However, we would like to count a variable only once for each
pigeon-section, that is, if the variable is forced to 0 many times at the same pigeon-section we
count it only once. For every, 1 ≤ k ≤ nε and 1 ≤ l ≤ nε, define,

Forcedk,l = the set of all pairs (xi,j, [v, w]), such that all the following are satisfied:

1. (i, [v, w]) is a pigeon-section of type (k, l).

2. j ∈ Holesk,l.

3. xi,j is forced to 0 at some node u ∈ [v, w].

Forcedk,l
1 = the set of all pairs (xi,j, [v, w]), such that all the following are satisfied:

1. (i, [v, w]) is a pigeon-section of type (k, l).

2. j ∈ Holesk,l.

3. xi,j is forced to 0 at some node u ∈ [v, w], and the forcing is type 1.

Forcedk,l
2 = the set of all pairs (xi,j, [v, w]), such that all the following are satisfied:

1. (i, [v, w]) is a pigeon-section of type (k, l).

14

2. j ∈ Holesk,l.

3. xi,j is forced to 0 at some node u ∈ [v, w], and the forcing is type 2.

Forcedk,l
3 = the set of all pairs (xi,j, [v, w]), such that all the following are satisfied:

1. (i, [v, w]) is a pigeon-section of type (k, l).

2. j ∈ Holesk,l.

3. xi,j is forced to 0 at some node u ∈ [v, w], and the forcing is type 3.

3.7 Bounding the Number of Forced Variables

In this subsection, we give the proof of Claim 3.2. The proof will follow easily by the following
four claims.

Claim 3.3 For every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε,
∣

∣

∣Forcedk,l
1

∣

∣

∣ ≤
∣

∣

∣PigSeck,l
∣

∣

∣ · nε.

Claim 3.4 For every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε,
∣

∣

∣Forcedk,l
2

∣

∣

∣ ≤
∣

∣

∣PigSeck,l
∣

∣

∣ · 20n1−9ε.

Claim 3.5 For every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε,
∣

∣

∣Forcedk,l
3

∣

∣

∣ ≤
∣

∣

∣PigSeck,l
∣

∣

∣ · 20n1−9ε.

Claim 3.6 For every 1 ≤ k ≤ nε and 1 ≤ l ≤ nε,
∣

∣

∣Forcedk,l
∣

∣

∣ ≥
∣

∣

∣PigSeck,l+1
∣

∣

∣ · n1−8ε/2.

Proof of Claim 3.2:
Since any forcing is a forcing of type 1 or type 2 or type 3,

∣

∣

∣Forcedk,l
∣

∣

∣ ≤
∣

∣

∣Forcedk,l
1

∣

∣

∣+
∣

∣

∣Forcedk,l
2

∣

∣

∣+
∣

∣

∣Forcedk,l
3

∣

∣

∣ .

Hence, the proof follows immediately from Claims 3.3, 3.4, 3.5, 3.6, using the assumptions
that ε = 1/100 and nε ≥ 1000. 2

Proof of Claim 3.3:
Let (i, [v, w]) be a pigeon-section of type (k, l). Denote,

F 1
(i,[v,w]) =

{

(xi,j, [v, w]) ∈ Forcedk,l
1

}

.

We will show that for every such (i, [v, w]),
∣

∣

∣F 1
(i,[v,w])

∣

∣

∣ ≤ nε,

15

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l). For every (xi,j, [v, w]) ∈ F 1
(i,[v,w]), we

know that xi,j is forced to 0 at some node u ∈ [v, w] by some xi′,j, and the forcing is type 1.
Hence, the last node u′ ∈ [Root, u], such that Label(u′) = xi′,j, satisfies u′ < v. That is, xi′,j

does not appear as Label(û) for any û ∈ [v, u], and since xi′,j ∈ Ones(u) we conclude that
xi′,j ∈ Ones(v). Thus, for every (xi,j, [v, w]) ∈ F 1

(i,[v,w]), there is (at least one) corresponding
xi′,j ∈ Ones(v). Hence,

∣

∣

∣F 1
(i,[v,w])

∣

∣

∣ ≤ |Ones(v)|.

To finish the proof of the claim, it is enough to show that for every node v on Path,

|Ones(v)| ≤ nε.

Let v be a node such that |Ones(v)| > nε. We will show that v is not on Path. By
Property 4 of Claim 3.1,

Ones(v) ∩ AZeros 6= ∅.

Hence, there exists xĩ,j̃ ∈ Ones(v), such that Aĩ,j̃ = 0. Hence, for any node ũ such that
Label(ũ) = xĩ,j̃, we have Answer(ũ) = 0. Since Path always follows the edge Answer(ũ)
(when ũ is the current node), it will never evaluate xĩ,j̃ to 1. Since every path to v evaluates
xĩ,j̃ to 1, we conclude that v is not on Path. 2

Proof of Claim 3.4:
Let (i, [v, w]) be a pigeon-section of type (k, l). Denote,

F 2
(i,[v,w]) =

{

(xi,j, [v, w]) ∈ Forcedk,l
2

}

.

We will show that for every such (i, [v, w]),

∣

∣

∣F 2
(i,[v,w])

∣

∣

∣ ≤ 20n1−9ε,

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l). We will count the number of possibilities
for (xi,j, [v, w]) ∈ F 2

(i,[v,w]). For every (xi,j, [v, w]) ∈ F 2
(i,[v,w]), we know that xi,j is forced to 0 at

some node u ∈ [v, w] by some xi′,j, and the forcing is type 2. Therefore, there exists a pigeon-
section (i′, [v′, w′]) of type (k, l) such that v′ < u and w′ ≥ w. Thus, w ∈ [v′, w′]. Hence, since
(i′, [v′, w′]) is a pigeon-section of type k, we know that i′ ∈ Pigeonsk and i′ ∈ Overk−1(w).
Thus, for every (xi,j, [v, w]) ∈ F 2

(i,[v,w]), each corresponding xi′,j satisfies that i′ is in

Pigeonsk ∩Overk−1(w).

By Property 6 of Claim 3.1,
∣

∣

∣Pigeonsk ∩Overk−1(w)
∣

∣

∣ < 10nε,

16

and hence for the pigeon-section (i, [v, w]), the number of possibilities for i′ is bounded by
10nε.

Since xi,j is forced to 0 at u by xi′,j, we know that Ai,j = 1 (by the definition of forcing),
and Ai′,j = 1 (since xi′,j ∈ Ones(u) and u is on Path, and as in the proof of Claim 3.3 Path
cannot evaluate xi′,j to 1 if Ai′,j = 0). Hence, j is in

{

j ∈ Holesk,l | Ai,j = 1 and Ai′,j = 1
}

.

By Property 3 of Claim 3.1,
∣

∣

∣

{

j ∈ Holesk,l | Ai,j = 1 and Ai′,j = 1
}∣

∣

∣ < 2n1−10ε,

and hence for every i′, the number of possibilities for j is bounded by 2n1−10ε.

Altogether, for the pigeon-section (i, [v, w]), the number of possibilities for i′ is bounded
by 10nε, and for every i′ the number of possibilities for j is bounded by 2n1−10ε. Hence,

∣

∣

∣F 2
(i,[v,w])

∣

∣

∣ ≤ 10nε · 2n1−10ε = 20n1−9ε.

2

Proof of Claim 3.5:
For every (xi,j, [v, w]) ∈ Forcedk,l

3 , we know that xi,j is forced to 0 at some node u ∈ [v, w] by
some xi′,j, and the forcing is type 3. Let u′ be the last node in [Root, u], such that Label(u′) =
xi′,j, and let (i′, [v′, w′]) be the pigeon-section of type (k, l) such that u′ ∈ [v′, w′]. We will say,

in this case, that the pigeon-section (i′, [v′, w′]) is responsible for (xi,j , [v, w]) ∈ Forcedk,l
3 .

Thus, for every (xi,j, [v, w]) ∈ Forcedk,l
3 , there is (at least one) pigeon-section (i′, [v′, w′]) of

type (k, l) responsible for it.

Let (i′, [v′, w′]) be a pigeon-section of type (k, l). Denote by F 3
(i′,[v′,w′]) the set of all

(xi,j , [v, w]) ∈ Forcedk,l
3 that (i′, [v′, w′]) is responsible for. We will show that for every such

(i′, [v′, w′]),
∣

∣

∣F 3
(i′,[v′,w′])

∣

∣

∣ ≤ 20n1−9ε,

and hence, obviously,
∣

∣

∣Forcedk,l
3

∣

∣

∣ ≤
∣

∣

∣PigSeck,l
∣

∣

∣ · 20n1−9ε.

The bound for |F 3
(i′,[v′,w′])| is proved in a similar way to the proof of the bound for |F 2

(i,[v,w])|,
in Claim 3.4.

Fix (i′, [v′, w′]) to be a pigeon-section of type (k, l). We will count the number of possi-
bilities for (xi,j , [v, w]) ∈ F 3

(i′,[v′,w′]). For every (xi,j , [v, w]) ∈ F 3
(i′,[v′,w′]), we know that xi,j is

forced to 0 at some node u ∈ [v, w] by xi′,j, and the forcing is type 3. We also know that
if u′ is the last node in [Root, u] such that Label(u′) = xi′,j then u′ ∈ [v′, w′] (by the defini-
tion of F 3

(i′,[v′,w′])). Since the forcing is type 3, we know that u′ ∈ [v, w] and w′ < w. Thus,

17

w′ ∈ [v, w]. Hence, since (i, [v, w]) is a pigeon-section of type k, we know that i ∈ Pigeonsk

and i ∈ Overk−1(w′). Thus, for every (xi,j , [v, w]) ∈ F 3
(i′,[v′,w′]), we know that i is in

Pigeonsk ∩Overk−1(w′).

By Property 6 of Claim 3.1,
∣

∣

∣Pigeonsk ∩Overk−1(w′)
∣

∣

∣ < 10nε,

and hence for the pigeon-section (i′, [v′, w′]), the number of possibilities for i is bounded by
10nε.

Since xi,j is forced to 0 at u by xi′,j, we know that Ai,j = 1 (by the definition of forcing),
and Ai′,j = 1 (as in the proof of Claim 3.4). Hence, j is in

{

j ∈ Holesk,l | Ai,j = 1 and Ai′,j = 1
}

.

By Property 3 of Claim 3.1,
∣

∣

∣

{

j ∈ Holesk,l | Ai,j = 1 and Ai′,j = 1
}∣

∣

∣ < 2n1−10ε,

and hence for every i, the number of possibilities for j is bounded by 2n1−10ε.

Altogether, for the pigeon-section (i′, [v′, w′]), the number of possibilities for i is bounded
by 10nε, and for every i the number of possibilities for j is bounded by 2n1−10ε. For every i, the
number of possibilities for [v, w] is (at most) one, because there is (at most) one pigeon-section
(i, [v, w]) of type (k, l) such that w′ ∈ [v, w]. Hence,

∣

∣

∣F 3
(i′,[v′,w′])

∣

∣

∣ ≤ 10nε · 2n1−10ε = 20n1−9ε.

2

Proof of Claim 3.6:
Let (i, [v, w]) be a pigeon-section of type (k, l + 1). Then, obviously, (i, [v, w]) is a pigeon-
section of type (k, l) as well. Denote,

F(i,[v,w]) =
{

(xi,j, [v, w]) ∈ Forcedk,l
}

.

We will show that for every such (i, [v, w]),

∣

∣

∣F(i,[v,w])
∣

∣

∣ ≥ n1−8ε/2,

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l + 1). Then, for some node u ∈ [v, w], we
have

|Zerosi(u)| ≥ nk−1,l.

18

For simplicity of the notations, assume that v is not the root, and hence v− exists. Let
s be the last node in [v−, u], such that, i 6∈ Overk−1,l−1(s) (such an s exists because i 6∈
Overk−1,l−1(v−)). Denote t = s+. Then,

|Zerosi(t)| = nk−1,l−1.

(This is true because by the definition of s we know that i ∈ Overk−1,l−1(t), and if we had
|Zerosi(t)| > nk−1,l−1 then we would have had |Zerosi(s)| ≥ nk−1,l−1, in contradiction to the
definition of s). Thus,

|Zerosi(u)| − |Zerosi(t)| ≥ n1−2ε,

and hence, by Property 2 of Claim 3.1,
∣

∣

∣[Zerosi(u) \ Zerosi(t)] ∩ AOnesk,l
i

∣

∣

∣ > n1−8ε/2.

To finish the proof of the claim, it is enough to show that

xi,j ∈ [Zerosi(u) \ Zerosi(t)] ∩ AOnesk,l
i =⇒ (xi,j, [v, w]) ∈ F(i,[v,w]).

Let xi,j ∈ [Zerosi(u) \ Zerosi(t)] ∩ AOnesk,l
i . First note that since xi,j ∈ AOnesk,l

i , we
know that i ∈ Pigeonsk and j ∈ Holesk,l. Since xi,j ∈ [Zerosi(u) \Zerosi(t)], there is a node

z ∈ [t, u], such that, Label(z) = xi,j and Answer(z) = 0. Since xi,j ∈ AOnesk,l
i , we know that

Ai,j = 1, and since z ∈ [t, u], we know that i ∈ Overk−1,l−1(z). Hence, Answer(z) is 0 only if
xi,j is forced to 0 at the node z. Thus, xi,j is forced to 0 at the node z, and since (i, [v, w]) is
a pigeon-section of type (k, l), we conclude that (xi,j , [v, w]) ∈ F(i,[v,w]). 2

Acknowledgment

I would like to thank Toni Pitassi for many helpful conversations and for years of collaboration
that led to this work. I would also like to thank the Small World Café, where most of this
research was done. Sometimes, the small things make the difference.

References

[BeP] Beame, P., and Pitassi, T., “Simplified and improved resolution lower bounds,” Foun-
dations of Computer Science, 1996, pp. 274-282.

[BuP] Buss, S., and Pitassi, T., “Resolution and the weak pigeonhole principle,” Springer-
Verlag Lecture Notes in Computer Science, Publications of selected papers presented
at Proceedings from Computer Science Logic 1997.

[BSW] Ben-Sasson, E., andWigderson, A., “Short proofs are narrow–resolution made simple,”
Symposium on Theory of Computing, 1999, pp. 517-526.

19

[BT] Buss, S., and Turan, G., “Resolution proofs of generalized pigeonhole principles,” The-
oretical Computer Science, 62, 1988, pp. 311-317.

[Hak] Haken, A. “The intractability of resolution,” Theoretical Computer Science, 39, 1985,
pp. 297-308.

[PR] Pitassi, T., and Raz, R., “Regular resolution lower bounds for the weak pigeonhole
principle,” to appear in Symposium on Theory of Computing, 2001.

[Razb] Razborov, A., “Lower bounds for the polynomial calculus,” Computational Complexity,
7, 1998, pp. 291-324.

[RWY] Razborov, A., Wigderson, A., and Yao, A., “Read-once branching programs, rectan-
gular proofs of the pigeonhole principle, and the transversal calculus,” Symposium on
Theory of Computing, 1997, pp. 739-748.

[Urq] Urquhart, A., “Hard examples for resolution,” Journal of ACM, 34, 1987, pp. 209-219.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

