

Resolution Lower Bounds for the Weak Pigeonhole Principle

Ran Raz*
Weizmann Institute
ranraz@wisdom.weizmann.ac.il

Abstract

We prove that any Resolution proof for the weak pigeon hole principle, with n holes and any number of pigeons, is of length $\Omega(2^{n^{\epsilon}})$, (for some global constant $\epsilon > 0$). One corollary is that a certain propositional formulation of the statement $NP \not\subset P/poly$ does not have short Resolution proofs.

1 Introduction

The Pigeon Hole Principle (PHP) is one of the most widely studied tautologies in propositional proof theory. The tautology PHP_n is a DNF encoding of the following statement: There is no one to one mapping from n+1 pigeons to n holes. The Weak Pigeon Hole Principle (WPHP) is a version of the pigeon hole principle that allows a larger number of pigeons. The tautology $WPHP_n^m$ (for $m \geq n+1$) is a DNF encoding of the following statement: There is no one to one mapping from m pigeons to n holes. For m > n+1, the weak pigeon hole principle is a weaker statement than the pigeon hole principle. Hence, it may have much shorter proofs in certain proof systems.

The weak pigeon hole principle is one of the most fundamental combinatorial principles. In particular, it is used in most probabilistic counting arguments and hence in many combinatorial proofs. Moreover, as observed by Razborov, there are certain connections between the weak pigeon hole principle and the problem of $P \neq NP$ [Razb3]. Indeed, the weak pigeon hole principle (with a relatively large number of pigeons) can be interpreted as a certain encoding of the following statement: There are no small DNF formulas for SAT. Hence, (in most proof systems, and in particular in Resolution), a short proof for certain formulations of the statement $SAT \notin P/poly$ can be translated into a short proof for the weak pigeon hole principle. That is, a lower bound for the length of proofs for the weak pigeon hole principle

^{*}This work was done while the author was on sabattical year at the Institute for Advanced Study. Research supported by US-Israel BSF grant 98-00349, and NSF grant CCR-9987077.

usually implies a lower bound for the length of proofs for certain formulations of the statement $NP \not\subset P/poly$.

Resolution is one of the most widely studied propositional proof systems. The Resolution rule says that if C and D are two clauses and x_i is a variable then any assignment that satisfies both of the clauses, $C \vee x_i$ and $D \vee \neg x_i$, also satisfies $C \vee D$. The clause $C \vee D$ is called the resolvent of the clauses $C \vee x_i$ and $D \vee \neg x_i$ on the variable x_i . A Resolution refutation for a CNF formula F is a sequence of clauses C_1, C_2, \ldots, C_s , such that: (1) Each clause C_j is either a clause of F or a resolvent of two previous clauses in the sequence. (2) The last clause, C_s , is the empty clause (and hence it has no satisfying assignments). We can represent a Resolution refutation as an acyclic directed graph on vertices C_1, \ldots, C_s , where each clause of F has out-degree 0, and any other clause has two edges pointing to the two clauses that were used to produce it. It is well known that Resolution is a sound and complete propositional proof system, that is, a formula F is unsatisfiable if and only if there exists a Resolution refutation for F. We think of a refutation for an unsatisfiable formula F also as a proof for the tautology $\neg F$. A well-known and widely studied restricted version of Resolution (that is still complete) is called Regular Resolution. In a Regular Resolution refutation, along any path in the directed acyclic graph, each variable is resolved upon at most once.

There are trivial Resolution proofs (and Regular Resolution proofs) of length $2^n \cdot poly(n)$ for the pigeon hole principle and for the weak pigeon hole principle. In a seminal paper, Haken proved that for the pigeon hole principle, the trivial proof is (almost) the best possible [Hak]. More specifically, Haken proved that any Resolution proof for the tautology PHP_n is of length $2^{\Omega(n)}$. Haken's argument was further developed in several other papers (e.g., [Urq, BeP, BSW]). In particular, it was shown that a similar argument gives lower bounds also for the weak pigeon hole principle, but only for small values of m. More specifically, superpolynomial lower bounds were proved for any Resolution proof for the tautology $WPHP_n^m$, for $m < c \cdot n^2/\log n$ (for some constant c) [BT]. The weak pigeon hole principle with larger values of m has attracted a lot of attention in recent years. However, the standard techniques for proving lower bounds for Resolution fail to give lower bounds for the weak pigeon hole principle. In particular, for $m \ge n^2$, no non-trivial lower bound was known.

For the weak pigeon hole principle with large values of m, there do exist Resolution proofs (and Regular Resolution proofs) which are much shorter than the trivial ones. In particular, it was proved by Buss and Pitassi that for $m > c^{\sqrt{n}\log n}$ (for some constant c), there are Resolution (and Regular Resolution) proofs of length poly(m) for the tautology $WPHP_n^m$ [BuP]. Can this upper bound be further improved? Can one prove a matching lower bound? As mentioned above, for $m \ge n^2$, no non-trivial lower bound was known. A partial progress was made by Razborov, Wigderson and Yao, who proved exponential lower bounds for Regular Resolution proofs, but only when the Regular Resolution proof is of a certain restricted form [RWY]. An exponential lower bound for any Regular Resolution proof was proved in [PR]. In this paper, we prove an exponential lower bound for any Resolution proof.

More precisely, we prove that for any m, any Resolution proof for the weak pigeon hole principle, $WPHP_n^m$, is of length $\Omega(2^{n^{\epsilon}})$, (where $\epsilon > 0$ is some global constant).

1.1 Lower Bounds for $NP \not\subset P/poly$

As mentioned above, our result implies that certain propositional formulations of the statement $SAT \notin P/poly$ do not have short Resolution proofs.

Let $f:\{0,1\}^d \to \{0,1\}$ be a Boolean function. For example, we can take f=SAT, where $SAT:\{0,1\}^d \to \{0,1\}$ is the satisfiability function (or we can take any other NP-hard function). We assume that we are given the truth table of f. Let $t \leq 2^d$ be some integer. We think of t as a large polynomial in d, say $t=d^{1000}$.

In [Razb1] (see also [Razb2]), Razborov suggested to study propositional formulations of the following statement (in the variables \vec{Z}):

```
\vec{Z} is (an encoding of) a Boolean circuit of size t \Longrightarrow \vec{Z} does not compute the function f.
```

Note that since the truth table of f is of length 2^d , a propositional formulation of this statement will be of length at least 2^d , and it is not hard to see that there are ways to write this statement as a DNF formula of length $2^{O(d)}$ (and hence, its negation is a CNF formula of that length). The standard way to do that is by including in \vec{Z} both, the (topological) description of the Boolean circuit, as well as the value that each gate in the circuit gets on each input for the circuit. The exact way to give the (topological) description of the circuit may also be important in some cases.

In [Razb3], Razborov presented a lower bound for the degree of *Polynomial Calculus* proofs for the weak pigeon hole principle, and used this result to prove a lower bound for the degree of Polynomial Calculus proofs for a certain version of the above statement. Following this line of research, we show (in a similar way) that if t is a large enough polynomial in d (say $t = d^{1000}$) then any Resolution proof for a certain version of the above statement is of length super-polynomial in 2^d , that is, super-polynomial in the length of the statement.

In particular, this can be interpreted as a super-polynomial lower bound for Resolution proofs for certain formulations of the statement $NP \not\subset P/poly$.

Our version of the above statement is slightly different than the one used in [Razb3]. The main difference is in the way we use the variables \vec{Z} to encode the (topological) description of the Boolean circuit. Here, we use \vec{Z} to encode a Boolean circuit of unbounded fan-in, whereas [Razb3] considered Boolean circuits of fan-in 2. This difference is substantial, that is, our proof works only for the more general case of unbounded fan-in, and not for the weaker case of fan-in 2. Otherwise, our proof seems to be quite robust in the way the Boolean circuit is encoded. Following our result, the same result for the case of Boolean circuits of fan-in 2 was recently proved in [Razb6]. This was done by proving a Resolution lower bound for the so called weak functional onto pigeon hole principle.

1.2 Subsequent work

As mentioned above, our main result is a lower bound of $\Omega(2^{n^{\epsilon}})$ for any Resolution proof for the weak pigeon hole principle. The constant ϵ implicit in this paper is of the order of 1/8 or 1/10. Following our result, Razborov came up with three related results. The first result [Razb4] presents a proof for an improved lower bound of $\Omega(2^{n^{\epsilon}})$ for $\epsilon = 1/3$. The second result [Razb5] extends that proof for the so called weak functional pigeon hole principle, which is an important version of the weak pigeon hole principle. The above mentioned third result [Razb6] extends the proof for the so called weak functional onto pigeon hole principle.

2 Preliminaries

2.1 Resolution as a Search Problem

A literal is either an atom (i.e., a variable x_i) or the negation of an atom (i.e., $\neg x_i$). A clause is a disjunction of literals. If C and D are two clauses and x_i is a variable then any assignment that satisfies both of the clauses, $C \vee x_i$ and $D \vee \neg x_i$, obviously satisfies the clause $C \vee D$ as well. As mentioned in the introduction, the clause $C \vee D$ is called the resolvent of the clauses $C \vee x_i$ and $D \vee \neg x_i$ on the variable x_i . A Resolution refutation for a CNF formula F is a sequence of clauses C_1, C_2, \ldots, C_s , such that, each clause C_j is either a clause of F or a resolvent of two previous clauses in the sequence, and such that, the last clause, C_s , is the empty clause. We think of the empty clause as a clause that has no satisfying assignments. We think of a Resolution refutation for F also as a proof for $\neg F$. Without loss of generality, we assume that no clause in a Resolution proof contains both x_i and $\neg x_i$ (such a clause is always satisfied and hence it can be removed from the proof). The length, or size, of a Resolution proof is the number of clauses in it.

As mentioned in the introduction, we represent a Resolution proof as an acyclic directed graph G on the vertices C_1, \ldots, C_s . In this graph, each clause C_j which is an original clause of F has out-degree 0, and any other clause has two edges pointing to the two clauses that were used to produce it. We call the vertices of out-degree 0 (i.e., the clauses that are original clauses of F) the leaves of the graph. Without loss of generality, we can assume that the only clause with in-degree 0 is the last clause C_s (as we can just remove any other clause with in-degree 0). We call the vertex C_s the root of the graph, and we denote it also by Root.

We label each vertex C_j in the graph by the variable x_i that was used to derive it (i.e., the variable x_i that was resolved upon), unless the clause C_j is an original clause of F (and then C_j is not labelled). If a clause C_j is labelled by a variable x_i we label the two edges going out from C_j by 0 and 1, where the edge pointing to the clause that contains x_i is labelled by 0, and the edge pointing to the clause that contains $\neg x_i$ is labelled by 1. That is, if the clause $C \lor D$ was derived from the two clauses $C \lor x_i$ and $D \lor \neg x_i$ then the vertex $C \lor D$ is labelled by x_i , the edge from the vertex $C \lor D$ to the vertex $C \lor D$ to the vertex $C \lor D$ to the graph

G, define,

 $Label(\mathbf{u}) = the variable labelling u.$

We think of Label(u) as a variable queried at the node u.

Let p be a path on G, starting from the root. Note that along a path p, a variable x_i may appear (as a label of a node u) more than once. We say that the path p evaluates x_i to 0 if $x_i = Label(u)$ for some node u on the path p, and after the last appearance of x_i as Label(u) (of a node u on the path) the path p continues on the edge labelled by 0 (i.e., if u is the last node on p such that $x_i = Label(u)$ then p contains the edge labelled by 0 that goes out from u). In the same way, we say that the path p evaluates x_i to 1 if $x_i = Label(u)$ for some node u on the path p, and after the last appearance of x_i as Label(u) (of a node u on the path) the path p continues on the edge labelled by 1 (i.e., if u is the last node on p such that $x_i = Label(u)$ then p contains the edge labelled by 1 that goes out from u).

For any node u of the graph G, we define Zeros(u) to be the set of variables that the node u "remembers" to be 0, and Ones(u) to be the set of variables that the node u "remembers" to be 1, that is,

 $\mathbf{Zeros}(\mathbf{u}) =$ the set of variables that are evaluated to 0 by every path p from the root to u.

 $\mathbf{Ones}(\mathbf{u}) =$ the set of variables that are evaluated to 1 by every path p from the root to u.

Note that for any u, the two sets Zeros(u) and Ones(u) are disjoint.

The following proposition gives the connection between the sets Zeros(u), Ones(u) and the literals appearing in the clause u. The proposition is particularly interesting when u is a leaf of the graph.

Proposition 2.1 Let F be an unsatisfiable CNF formula and let G be (the graph representation of) a Resolution refutation for F. Then, for any node u of G and for any x_i , if the literal x_i appears in the clause u then $x_i \in Zeros(u)$, and if the literal $\neg x_i$ appears in the clause u then $x_i \in Ones(u)$.

Proof:

Assume that the literal x_i appears in the clause u. (The claim for the literal $\neg x_i$ is proved in the same way). Let p be a path from the root C_s to u. We will show that the path p evaluates x_i to 0. If no node v < u on the path p satisfies $Label(v) = x_i$ then the literal x_i appears in the clause C_s , in contradiction to the fact that C_s is the empty clause. Hence, there exists a node v < u on the path p, such that, $Label(v) = x_i$. Let v be the last (i.e., the largest) such node. Let w be the next node on p (i.e., the successor of v on the path p). Thus, the edge

¹We have learnt that a version of this proposition, presented as a game between two players, has already appeared in [Pud].

(v, w) is contained in the path p. Since v is the last node on p such that $Label(v) = x_i$, no node z on the path p from w to u satisfies $Label(z) = x_i$. Hence, since the literal x_i appears in u, it appears in w as well. Thus, (v, w) is the edge labelled by 0. That is, p evaluates x_i to 0. \square

2.2 The Weak Pigeonhole Principle

The propositional weak pigeon hole principle, $WPHP_n^m$, states that there is no one-to-one mapping from m pigeons to n holes. The underlying Boolean variables, $x_{i,j}$, for $1 \leq i \leq m$ and $1 \leq j \leq n$, represent whether or not pigeon i is mapped to hole j. The negation of the pigeonhole principle, $\neg WPHP_n^m$, is expressed in conjunctive normal form (CNF) as the conjunction of m pigeon clauses and $\binom{m}{2} \cdot n$ hole clauses. For every $1 \leq i \leq m$, we have a pigeon clauses, $(x_{i,1} \vee \ldots \vee x_{i,n})$, stating that pigeon i maps to some hole. For every $1 \leq i_1 < i_2 \leq m$ and every $1 \leq j \leq n$, we have a hole clauses, $(\neg x_{i_1,j} \vee \neg x_{i_2,j})$, stating that pigeons i_1 and i_2 do not both map to hole j. We refer to the pigeon clauses and the hole clauses also as pigeon axioms and hole axioms.

Let G be (the graph representation of) a Resolution refutation for $\neg WPHP_n^m$. Then, by Proposition 2.1, for any leaf u of the graph G, one of the following is satisfied:

- 1. u is a pigeon axiom, and then for some $1 \leq i \leq m$, the variables $x_{i,1}, \ldots, x_{i,n}$ are all contained in Zeros(u).
- 2. u is a hole axiom, and then for some $1 \leq j \leq n$, there exist two different variables $x_{i_1,j}, x_{i_2,j}$ in Ones(u).

2.3 Basic Notations

We denote by n the number of holes, and by m the number of pigeons. We denote by Holes the set of holes, and by Pigeons the set of pigeons. That is,

Holes =
$$\{1, ..., n\}$$
.
Pigeons = $\{1, ..., m\}$.

We will usually denote a hole by j, and a pigeon by i. By $x_{i,j}$ we denote the variable corresponding to pigeon i and hole j. We denote by Variables the set of all these variables, and by $Variables_i$ the set of variables corresponding to the ith pigeon. That is,

Variables =
$$\{x_{i,j}|i \in Pigeons, j \in Holes\}.$$

Variables_i =
$$\{x_{i,j}|j \in Holes\}$$
.

We will consider (the graph representation of) Resolution proofs for the weak pigeon hole principle. We denote such a graph by G. By u we will usually denote a node in the graph. We say that u' < u if there is a path in the graph from u' to u. By p we will usually denote a path in the graph, starting from the root. Note that for any non-leaf node u of the graph, Label(u) is a variable $x_{i,j}$. The sets Zeros(u) and Ones(u) are subsets of Variables.

We denote by ϵ a small fixed constant (say $\epsilon = 1/100$). For simplicity, we assume that n is large enough (say $n^{\epsilon} \geq 1000$). For simplicity, we assume that expressions like n^{ϵ} , $n^{1-\epsilon}$, $n^{1-8\epsilon}/2$, etc', are all integers.

3 The Lower Bound

In this section, we prove our lower bound on the size of Resolution proofs for the weak pigeon hole principle. Fix $\epsilon = 1/100$, and assume for simplicity that $n^{\epsilon} \geq 1000$. (We do not attempt here to optimize the value of ϵ).

Theorem 3.1 For any $m \ge n+1$, any Resolution proof for the tautology $WPHP_n^m$ is of length larger than $2^{n^{\epsilon}/100}$.

In the rest of the section, we give the proof of Theorem 3.1. Let G be the graph representation of a Resolution proof for $WPHP_n^m$, and assume for a contradiction that the size of G (i.e., the number of vertices in G) is at most $2^{n^{\epsilon}/100}$. Note that since the size of G is at most $2^{n^{\epsilon}/100}$, we can assume w.l.o.g. that $m < 2^{n^{\epsilon}/100}$.

3.1 Adding Axioms

First, define for any integer $0 \le k \le n^{\epsilon}$,

$$\mathbf{n_k} = k \cdot n^{1-\epsilon},$$

$$\mathbf{m_k} = 2^{n^{\epsilon} - k}.$$

(Recall that we assume that n^{ϵ} , $n^{1-\epsilon}$ are integers). For any node u of the graph G and for any pigeon i, we define $Zeros_i(u)$ to be the set of variables $x_{i,j}$ that the node u "remembers" to be 0, that is, the set of variables $x_{i,j}$ that are evaluated to 0 by every path from the root to u. In other words,

$$\mathbf{Zeros_i}(\mathbf{u}) = Zeros(u) \cap Variables_i$$
.

We use the size of $Zeros_i(u)$ as a measure for the progress made on pigeon i along paths from the root. We compare this measure with the "mileposts" $\{n_k\}$. We define $Over^k(u)$ to be the set of pigeons that passed the k^{th} milepost (for the node u), and we say that a node u is an axiom of order k if for the node u at least m_k pigeons passed the k^{th} milepost. That is, for any integer $0 \le k \le n^{\epsilon}$ and any node u of G, we define,

 $\mathbf{Over}^{\mathbf{k}}(\mathbf{u}) = \text{the set of pigeons } i \text{ such that } |Zeros_i(u)| \geq n_k.$

For $1 \le k \le n^{\epsilon}$, we say that a node u is a **pigeon-axiom of order k** if $|Over^k(u)| > m_k$.

Note that a pigeon-axiom of order $k = n^{\epsilon}$ is just a standard pigeon-axiom of the weak pigeon hole principle. We say that a node u is a hole-axiom if there exists a hole j and two different pigeons i_1, i_2 , such that $x_{i_1,j}, x_{i_2,j} \in Ones(u)$. Note that this is just a standard hole-axiom of the pigeon hole principle.

In our lower bound proof, we allow the leaves of the graph G to be pigeon-axioms of any order k (and not only pigeon-axioms of order $k = n^{\epsilon}$ as in the usual weak pigeon hole principle). That is, we say that G is a Resolution proof for the weak pigeon hole principle if all its leaves are axioms (i.e., all the leaves of G are either hole-axioms or pigeon-axioms of some order). We assume w.l.o.g. that in G, a non-leaf node u is never an axiom (otherwise, we can just disconnect the two edges going out from u and hence convert u to a leaf). In particular, no non-leaf node is a pigeon-axiom of order k, for any k.

One consequence of the assumption that no non-leaf node is a pigeon-axiom of order k is that if a node u is a pigeon-axiom of order k then $|Over^k(u)| = m_k$. This is true because if for some u we had $|Over^k(u)| > m_k$ then any node v, such that there is an edge from v to u, would satisfy $|Over^k(v)| \ge m_k$, and hence the non-leaf node v would be a pigeon-axiom of order k. Therefore, we can assume that for any node u in the graph,

$$|Over^k(u)| \le m_k.$$

For our lower bound proof, we need to refine the scale $\{n_k\}$. For any two integers $0 \le k < n^{\epsilon}$ and $0 \le l \le n^{\epsilon}$ and any node u, define,

$$\mathbf{n_{k,l}} = k \cdot n^{1-\epsilon} + l \cdot n^{1-2\epsilon}.$$

 $\mathbf{Over}^{\mathbf{k},\mathbf{l}}(\mathbf{u}) = \text{the set of pigeons } i \text{ such that } |Zeros_i(u)| \geq n_{k,l}.$

Note that $n_{k,0} = n_k$, and $n_{k,n^{\epsilon}} = n_{k+1}$.

3.2 The Random Assignment

We will define a probabilistic assignment $A_{i,j}$ to the variables $x_{i,j}$. Unlike in previous lower bound proofs, one should not interpret the assignment $A_{i,j}$ as a "random restriction" of the Resolution proof. The assignment $A_{i,j}$ will be used in a different way. The assignment $A_{i,j}$ is chosen at random according to some specific probability distribution, defined below. First, define,

$$\left\{ \mathbf{Holes^k} \right\}_{k=1}^{n^{\epsilon}} = \text{a random partition of } Holes \text{ into } n^{\epsilon} \text{ sets of size } n^{1-\epsilon} \text{ each.}$$

That is, we partition Holes into n^{ϵ} sets of size $n^{1-\epsilon}$ each. The intuition is that the set of holes $Holes^k$ will be used "against" pigeon-axioms of order k. For each $1 \le k \le n^{\epsilon}$, define,

$$\left\{ \mathbf{Holes^{k,l}} \right\}_{l=1}^{n^{\epsilon}} = \text{a random partition of } Holes^{k} \text{ into } n^{\epsilon} \text{ sets of size } n^{1-2\epsilon} \text{ each.}$$

That is, we further partition each set $Holes^k$ into n^{ϵ} sets of size $n^{1-2\epsilon}$ each. Altogether, the set Holes was partitioned into $n^{2\epsilon}$ sets of size $n^{1-2\epsilon}$ each. We denote by $Variables_i^{k,l}$ the set of variables corresponding to the i^{th} pigeon and holes in $Holes^{k,l}$. That is,

Variables_i^{k,l} =
$$\{x_{i,j}|j \in Holes^{k,l}\}.$$

Next, we would like to define for every $1 \leq k \leq n^{\epsilon}$, a set of pigeons $Pigeons^k$. For $m_k \leq n^{\epsilon}$, we would like the set $Pigeons^k$ to contain all pigeons. For larger values of m_k , we would like each pigeon to be chosen (independently, at random) with a certain probability. For every $1 \leq k \leq n^{\epsilon}$, define,

$$\mathbf{p_k} = \min\left[1, \frac{n^{\epsilon}}{m_k}\right].$$

Pigeons^k = a random subset of Pigeons, such that each pigeon is chosen (independently, at random) with probability p_k .

For every pigeon i, and every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$, define the subset $AOnes_i^{k,l}$ of the set $Variables_i^{k,l}$, in the following way.

$$\mathbf{AOnes_i^{k,l}} = \left\{ \begin{array}{ll} \text{a random subset of size} \ n^{1-6\epsilon} \ \text{of} \ Variables_i^{k,l} & \text{if} \ i \in Pigeons^k \\ \emptyset & \text{if} \ i \notin Pigeons^k \end{array} \right.$$

The set AOnes is now defined to be the union of all the sets $AOnes_i^{k,l}$, and the set AZeros is defined to be the complement of AOnes. The assignment $A_{i,j}$ is defined by, $A_{i,j} = 1$ iff $x_{i,j} \in AOnes$. That is,

$$\mathbf{AOnes} = \bigcup_{i,k,l} AOnes_i^{k,l}.$$

 $AZeros = Variables \setminus AOnes.$

$$\mathbf{A_{i,j}} = \begin{cases} 1 & \text{if } x_{i,j} \in AOnes \\ 0 & \text{if } x_{i,j} \in AZeros \end{cases}$$

3.3 Properties of the Assignment

For our lower bound proof, we do not need the assignment $A_{i,j}$, and the sets that were involved in defining it, to be probabilistic. We just need them to satisfy certain properties. These properties are satisfied (with high probability) by the probabilistic construction that we defined, but we will only need one assignment (and sets) that satisfy the properties. The properties that we will need are summarized in the following claim.

Claim 3.1 With exponentially high probability, all the following are satisfied, for every pigeon i, every hole j, every nodes u, v, and every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$.

1. If $j \in Holes^k$ and $i \notin Pigeons^k$ then

$$A_{i,i} = 0.$$

2. If $i \in Pigeons^k$ and $|Zeros_i(u)| - |Zeros_i(v)| \ge n^{1-2\epsilon}$ then

$$\left| \left[Zeros_i(u) \setminus Zeros_i(v) \right] \cap AOnes_i^{k,l} \right| > n^{1-8\epsilon}/2.$$

3. If i_1 and i_2 are two different pigeons then

$$\left|\left\{j' \in Holes^{k,l} \mid A_{i_1,j'} = 1 \text{ and } A_{i_2,j'} = 1\right\}\right| < 2n^{1-10\epsilon}$$

4. If $|Ones(u)| \ge n^{\epsilon}$ then

$$Ones(u) \cap AZeros \neq \emptyset.$$

5. If u is a pigeon-axiom of order k then

$$Pigeons^k \cap Over^k(u) \neq \emptyset.$$

6. For any u,

$$\left|Pigeons^k\cap Over^{k-1}(u)\right|<10n^\epsilon.$$

Proof:

Recall that the number of pigeons and the number of nodes are both bounded by $2^{n^{\epsilon}/100}$. The number of holes is n. Recall that we assume that $\epsilon = 1/100$, and $n^{\epsilon} \geq 1000$. For the proof of the claim, we just have to verify that (for specific objects, $i, j, k, l, u, v, i_1, i_2$), the requirement in each one of the properties is falsified with exponentially small probability (say, with probability smaller than $2^{-n^{\epsilon}/25}$). This will usually follow by the standard Chernoff-Hoeffding bounds or by other simple probabilistic arguments. Let us analyze the properties one by one.

Property 1:

By the definition of $AOnes_i^{k,l}$, the requirement in this property is always satisfied.

Property 2:

 $Zeros_i(u) \setminus Zeros_i(v)$ is a fixed subset of $Variables_i$ of size $\geq n^{1-2\epsilon}$. Assume w.l.o.g. that the size of $Zeros_i(u) \setminus Zeros_i(v)$ is exactly $n^{1-2\epsilon}$. Since $i \in Pigeons^k$, the set $AOnes_i^{k,l}$ is a random subset of $Variables_i$ of size exactly $n^{1-6\epsilon}$. Hence, the intersection

$$[Zeros_i(u) \setminus Zeros_i(v)] \cap AOnes_i^{k,l}$$

is of expected size $n^{1-8\epsilon}$, and by the standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to $n^{1-8\epsilon}$, with high probability. In particular, the probability that the size of the intersection is $\leq n^{1-8\epsilon}/2$ is exponentially small (and in particular, smaller than $2^{-n^{\epsilon}/25}$).

Property 3:

Denote,

$$H_{i_1} = \left\{ j' \in Holes^{k,l} \mid A_{i_1,j'} = 1 \right\},$$

and,

$$H_{i_2} = \left\{ j' \in Holes^{k,l} \mid A_{i_2,j'} = 1 \right\}.$$

Then,

$$\left\{j' \in Holes^{k,l} \mid A_{i_1,j'} = 1 \text{ and } A_{i_2,j'} = 1\right\} = H_{i_1} \cap H_{i_2}.$$

If either $i_1 \notin Pigeons^k$ or $i_2 \notin Pigeons^k$ then $H_{i_1} \cap H_{i_2}$ is empty. If both $i_1, i_2 \in Pigeons^k$ then H_{i_1} and H_{i_2} are both random subsets of $Holes^{k,l}$ of size $n^{1-6\epsilon}$ each. Recall that $Holes^{k,l}$ is a set of size $n^{1-2\epsilon}$. Hence, the intersection $H_{i_1} \cap H_{i_2}$ is of expected size $n^{1-10\epsilon}$, and by the standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to $n^{1-10\epsilon}$, with high probability. In particular, the probability that the size of the intersection is $\geq 2n^{1-10\epsilon}$ is exponentially small (and in particular, smaller than $2^{-n^{\epsilon}/25}$).

Property 4:

Denote s = |Ones(u)|, and assume w.l.o.g. that s is exactly n^{ϵ} . Let $x_{i_1,j_1}, x_{i_2,j_2}, ..., x_{i_s,j_s}$ be the s variables in Ones(u). It is easy to verify that for any $1 \leq t \leq s$, the probability for $A_{i_1,j_1} = 1$ is smaller than 1/2, even under the condition that $A_{i_1,j_1}, ..., A_{i_{t-1},j_{t-1}}$ are all 1. Hence, the probability that $A_{i_1,j_1}, ..., A_{i_s,j_s}$ are all 1 is smaller than $2^{-n^{\epsilon}}$.

Property 5:

 $Over^k(u)$ is a set of m_k pigeons. If $m_k \leq n^{\epsilon}$ then each one of these pigeons is in $Pigeons^k$ with probability 1. Otherwise, the probability for each one of these pigeons to be in $Pigeons^k$ is n^{ϵ}/m_k , and hence the probability that none of them is in $Pigeons^k$ is

$$\left(1 - \frac{n^{\epsilon}}{m_k}\right)^{m_k} < 2^{-n^{\epsilon}}.$$

Property 6:

As we have seen, $Over^{k-1}(u)$ is a set of at most $m_{k-1} = 2m_k$ pigeons. Assume w.l.o.g. that $Over^{k-1}(u)$ is a set of exactly $2m_k$ pigeons. If $m_k \le n^{\epsilon}$ then $2m_k \le 2n^{\epsilon}$ and the requirement is obviously satisfied. Otherwise, each one of these $2m_k$ pigeons is in $Pigeons^k$ with probability n^{ϵ}/m_k . Hence, the intersection $Pigeons^k \cap Over^{k-1}(u)$ is of expected size $2n^{\epsilon}$, and by the

standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to $2n^{\epsilon}$, with high probability. In particular, the probability that the size of the intersection is $\geq 10n^{\epsilon}$ is exponentially small (and in particular, smaller than $2^{-n^{\epsilon}/25}$).

3.4 The Adversary Strategy

In this subsection, we give the proof of Theorem 3.1, given one lemma (the main lemma).

With high probability, all the properties in Claim 3.1 are satisfied. Hence, we can fix the assignment $A_{i,j}$ (and all the sets involved in defining it, such as, $Pigeons^k$, $Holes^{k,l}$, etc') to some fixed values that satisfy all these properties. Thus, from now on, we assume that the assignment $A_{i,j}$ (and all the sets involved in defining it) are fixed (and are not probabilistic any more), and that all the properties in Claim 3.1 are satisfied.

For every non-leaf node u of the graph G, we define a value $Answer(u) \in \{0, 1\}$. We think of Answer(u) as an adversary "answer" for the "query" Label(u). The answer Answer(u) depends on the assignment $A_{i,j}$ and the sets $Holes^{k,l}$.

Assume that $Label(u) = x_{i,j}$, and $j \in Holes^{k,l}$. We define Answer(u) in the following way:

1) If $i \notin Over^{k-1,l-1}(u)$ Answer(\mathbf{u}) = $\mathbf{0}$ 2) If $\exists i' \neq i$ s.t. $x_{i',j} \in Ones(u)$ Answer(\mathbf{u}) = $\mathbf{0}$ 3) Otherwise, Answer(\mathbf{u}) = $\mathbf{A}_{\mathbf{i},\mathbf{j}}$

That is, the answer is automatically 0 if $i \notin Over^{k-1,l-1}(u)$, or if there exists $i' \neq i$ such that $x_{i',j} \in Ones(u)$. Otherwise, the answer is the value of $A_{i,j}$. Given the values Answer(u) (for every non-leaf node u), we define a path (called Path) on the graph G. The path starts from the root of G and in each step it follows the edge labelled by Answer(u), where u is the current node. We denote by Leaf the leaf reached by the path Path. That is,

Path = the path that starts from Root, and that satisfies that for every (non-leaf) node u on the path, the path contains the edge that goes out from u and is labelled by Answer(u).

Leaf = the leaf reached by Path.

Lemma 3.1 (Main Lemma) For any $1 \le k \le n^{\epsilon}$, and any node u on the path Path,

$$Pigeons^k \cap Over^k(u) = \emptyset.$$

Lemma 3.1 is proved in the next subsection. Let us show how the proof of Theorem 3.1 follows from Lemma 3.1.

Proof of Theorem 3.1:

By Lemma 3.1 and by Property 5 of Claim 3.1, no node u on Path is a pigeon-axiom (of any order k). By the definition of Answer(u), if there exists $i' \neq i$ such that $x_{i',j} \in Ones(u)$ then Answer(u) = 0. Hence, for no node u on Path we will have that both $x_{i,j}$ and $x_{i',j}$ are in Ones(u). That is, no node u on Path is a hole-axiom. In particular, Leaf is neither a pigeon-axiom (of any order k) nor a hole-axiom, in contradiction to the fact that all leaves of the graph G must be axioms.

3.5 Pigeon-Sections

In this subsection, we give the proof of Lemma 3.1, given one claim (the main claim). For any node u on Path, define,

 $\mathbf{u}^+ = \text{the successor of } u \text{ on } Path.$

 \mathbf{u}^- = the predecessor of u on Path.

(u^+ is undefined for u = Leaf, and u^- is undefined for u = Root). For two nodes $v \le w$ on Path, denote by [v, w] the section of nodes (on Path) between them. That is,

 $[\mathbf{v}, \mathbf{w}] = \text{the set of nodes } u \text{ on } Path, \text{ such that, } v \leq u \leq w.$

For a pigeon $i \in Pigeons^k$, we will be interested in maximal sections on Path, such that, for every node u in the section, $i \in Over^{k-1}(u)$. For $1 \le k \le n^{\epsilon}$, we define a pigeon-section of $type \ k$, and the set $PigSec^k$ (of all these pigeon-sections), in the following way.

(i, [v, w]) is a **pigeon-section of type k** if all the following are satisfied:

- 1. $i \in Pigeons^k$, and v < w are nodes on Path.
- 2. For any node $u \in [v, w]$, we have $i \in Over^{k-1}(u)$.
- 3. The section [v, w] is maximal with this property. That is, if $v \neq Root$ then $i \notin Over^{k-1}(v^-)$ and if $w \neq Leaf$ then $i \notin Over^{k-1}(w^+)$.

 $\mathbf{PigSec^k} = \text{the set of all pigeon-sections of type } k.$

We will further refine the categorization of pigeon-sections into types. We say that a pigeon-section of type k is of type (k,l) if the section [v,w] contains a node u such that $i \in Over^{k-1,l-1}(u)$, and we define the set $PigSec^{k,l}$ to be the set of all these pigeon-sections. That is, for $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon} + 1$,

(i, [v, w]) is a **pigeon-section of type** (k, l) if all the following are satisfied:

- 1. (i, [v, w]) is a pigeon-section of type k.
- 2. For some node $u \in [v, w]$, we have $i \in Over^{k-1, l-1}(u)$.

 $\mathbf{PigSec^{k,l}} = \mathbf{the} \ \mathbf{set} \ \mathbf{of} \ \mathbf{all} \ \mathbf{pigeon\text{-}sections} \ \mathbf{of} \ \mathbf{type} \ (k, l).$

Note the asymmetric role of k and l in the definition of pigeon-section of type (k, l). Note also that $PigSec^{k,1} = PigSec^k$.

Claim 3.2 (Main Claim) For every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$,

$$\left|PigSec^{k,l+1}\right| \leq \frac{1}{2} \cdot \left|PigSec^{k,l}\right|.$$

Claim 3.2 is proved in the next subsections. Let us show how the proof of Lemma 3.1 follows from Claim 3.2.

Proof of Lemma 3.1:

Since the number of pigeons and the number of nodes in the graph are both bounded by $2^{n^{\epsilon}/100}$, the number of pigeon-sections of type k is bounded by $2^{n^{\epsilon}/50}$. That is,

$$\left| PigSec^{k,1} \right| = \left| PigSec^k \right| \le 2^{n^{\epsilon}/50}.$$

Hence, by n^{ϵ} applications of Claim 3.2,

$$\left|PigSec^{k,n^{\epsilon}+1}\right| \leq 2^{-n^{\epsilon}} \cdot \left|PigSec^{k,1}\right| \leq 2^{-n^{\epsilon}} \cdot 2^{n^{\epsilon}/50} < 1,$$

and since $|PigSec^{k,n^{\epsilon}+1}|$ is integer,

$$\left| PigSec^{k,n^{\epsilon}+1} \right| = 0.$$

That is, there are no pigeon-sections of type $(k, n^{\epsilon} + 1)$.

Assume for a contradiction to the statement of the lemma that for some node u on Path,

$$Pigeons^k \cap Over^k(u) \neq \emptyset.$$

Then, since

$$Over^k(u) = Over^{k-1,n^{\epsilon}}(u),$$

there exists $i \in Pigeons^k$, such that,

$$i \in Over^{k-1,n^{\epsilon}}(u).$$

Denote by [v,w] the largest section (on Path) that contains u, and such that for every $u' \in [v,w]$ we have $i \in Over^{k-1}(u')$ (such a section exists because $i \in Over^{k-1}(u)$). Then, (i,[v,w]) is a pigeon-section of type $(k,n^{\epsilon}+1)$, in contradiction to the fact that there are no such pigeon-sections.

3.6 Forcing

Let u be a node such that $Label(u) = x_{i,j}$, and such that $i \in Pigeons^k$ and $j \in Holes^{k,l}$ (for some $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$). Recall that Answer(u) is 0 if there exists $i' \ne i$ such that $x_{i',j} \in Ones(u)$. If, in addition, $i \in Over^{k-1,l-1}(u)$ and $A_{i,j} = 1$ we say that $x_{i,j}$ is forced to 0 at the node u by $x_{i',j}$. (Recall that if $i \notin Over^{k-1,l-1}(u)$ or $A_{i,j} = 0$ then Answer(u) would be 0 anyways, so we do not consider it as "forcing"). That is,

Assume that $Label(u) = x_{i,j}$, and $j \in Holes^{k,l}$. We say that $\mathbf{x_{i,j}}$ is forced to 0 at the node u by $\mathbf{x_{i',j}}$ if all the following are satisfied:

- 1. $i \in Pigeons^k$ and $A_{i,j} = 1$.
- 2. $i \in Over^{k-1,l-1}(u)$.
- 3. $x_{i',j} \in Ones(u)$.

Assume that $x_{i,j}$ is forced to 0 by $x_{i',j}$ at a node u on Path. Then, since $i \in Pigeons^k$ and $i \in Over^{k-1,l-1}(u)$, there exists a (unique) pigeon-section (i,[v,w]) of type (k,l) such that $u \in [v,w]$. (To see this, just denote by [v,w] the largest section on Path that contains u, and such that for every $\hat{u} \in [v,w]$ we have $i \in Over^{k-1}(\hat{u})$, such a section exists because $i \in Over^{k-1}(u)$. Then, (i,[v,w]) is a pigeon-section of type (k,l)).

Consider the nodes on Path from the root to u, that is, the nodes in [Root, u]. Denote by u' the last node in [Root, u], such that, $Label(u') = x_{i',j}$. Since $x_{i',j} \in Ones(u)$, we know that Answer(u') is 1. Therefore, by the definition of Answer(u'), we know that $i' \in Over^{k-1,l-1}(u')$, and by Property 1 of Claim 3.1 we know that $i' \in Pigeons^k$ (otherwise, $A_{i',j}$ would be 0, and hence Answer(u') would be 0 as well). By the same argument as before, there exists a (unique) pigeon-section (i', [v', w']) of type (k, l) such that $u' \in [v', w']$. We categorize the "forcing" to types according to the relations between the nodes u', v, w, w', as follows.

Let u be a node on Path. Assume that $Label(u) = x_{i,j}$, and $j \in Holes^{k,l}$. Assume that $x_{i,j}$ is forced to 0 by $x_{i',j}$ at the node u. Let u' be the last node in [Root, u], such that $Label(u') = x_{i',j}$. Let (i, [v, w]) be the pigeon-section of type (k, l) such that $u \in [v, w]$, and let (i', [v', w']) be the pigeon-section of type (k, l) such that $u' \in [v', w']$.

- 1. We say that the forcing is a forcing of type 1 if u' < v.
- 2. We say that the forcing is a forcing of type 2 if $u' \in [v, w]$ and $w' \ge w$.
- 3. We say that the forcing is a forcing of type 3 if $u' \in [v, w]$ and w' < w.

Note that since u' < u and $u \in [v, w]$, any forcing is a forcing of one of these three types. For every k, l, we would like to count the number of variables forced to 0 at pigeon-sections of type (k, l). In our counting, we would like to count a variable more than once if it is forced to 0 at more than one pigeon-section. However, we would like to count a variable only once for each pigeon-section, that is, if the variable is forced to 0 many times at the same pigeon-section we count it only once. For every, $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$, define,

 $\mathbf{Forced}^{\mathbf{k},\mathbf{l}} = \mathbf{the} \text{ set of all pairs } (x_{i,j},[v,w]), \text{ such that all the following are satisfied:}$

- 1. (i, [v, w]) is a pigeon-section of type (k, l).
- 2. $j \in Holes^{k,l}$.
- 3. $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$.

Forced₁^{k,l} = the set of all pairs $(x_{i,j}, [v, w])$, such that all the following are satisfied:

- 1. (i, [v, w]) is a pigeon-section of type (k, l).
- 2. $j \in Holes^{k,l}$.
- 3. $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$, and the forcing is type 1.

 $\mathbf{Forced_2^{k,l}} = \mathbf{the} \ \mathbf{set} \ \mathbf{of} \ \mathbf{all} \ \mathbf{pairs} \ (x_{i,j},[v,w]), \ \mathbf{such} \ \mathbf{that} \ \mathbf{all} \ \mathbf{the} \ \mathbf{following} \ \mathbf{are} \ \mathbf{satisfied} :$

- 1. (i, [v, w]) is a pigeon-section of type (k, l).
- 2. $j \in Holes^{k,l}$.
- 3. $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$, and the forcing is type 2.

Forced₃^{k,1} = the set of all pairs $(x_{i,j}, [v, w])$, such that all the following are satisfied:

- 1. (i, [v, w]) is a pigeon-section of type (k, l).
- 2. $j \in Holes^{k,l}$.
- 3. $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$, and the forcing is type 3.

3.7 Bounding the Number of Forced Variables

In this subsection, we give the proof of Claim 3.2. The proof will follow easily by the following four claims.

Claim 3.3 For every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$,

$$\left|Forced_1^{k,l}\right| \leq \left|PigSec^{k,l}\right| \cdot n^{\epsilon}.$$

Claim 3.4 For every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$,

$$\left|Forced_2^{k,l}\right| \leq \left|PigSec^{k,l}\right| \cdot 20n^{1-9\epsilon}.$$

Claim 3.5 For every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$,

$$\left|Forced_3^{k,l}\right| \le \left|PigSec^{k,l}\right| \cdot 20n^{1-9\epsilon}.$$

Claim 3.6 For every $1 \le k \le n^{\epsilon}$ and $1 \le l \le n^{\epsilon}$,

$$\left| Forced^{k,l} \right| \ge \left| PigSec^{k,l+1} \right| \cdot n^{1-8\epsilon}/2.$$

Proof of Claim 3.2:

Since any forcing is a forcing of type 1 or type 2 or type 3,

$$\left| Forced^{k,l}_{1} \right| \leq \left| Forced^{k,l}_{1} \right| + \left| Forced^{k,l}_{2} \right| + \left| Forced^{k,l}_{3} \right|.$$

Hence, the proof follows immediately from Claims 3.3, 3.4, 3.5, 3.6, using the assumptions that $\epsilon = 1/100$ and $n^{\epsilon} \ge 1000$.

Proof of Claim 3.3:

Let (i, [v, w]) be a pigeon-section of type (k, l). Denote,

$$F^1_{(i,[v,w])} = \left\{ (x_{i,j},[v,w]) \in Forced_1^{k,l} \right\}.$$

We will show that for every such (i, [v, w]),

$$\left|F^1_{(i,[v,w])}\right| \le n^{\epsilon},$$

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l). For every $(x_{i,j}, [v, w]) \in F^1_{(i,[v,w])}$, we know that $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$ by some $x_{i',j}$, and the forcing is type 1. Hence, the last node $u' \in [Root, u]$, such that $Label(u') = x_{i',j}$, satisfies u' < v. That is, $x_{i',j}$ does not appear as $Label(\hat{u})$ for any $\hat{u} \in [v, u]$, and since $x_{i',j} \in Ones(u)$ we conclude that $x_{i',j} \in Ones(v)$. Thus, for every $(x_{i,j}, [v, w]) \in F^1_{(i,[v,w])}$, there is (at least one) corresponding $x_{i',j} \in Ones(v)$. Hence,

$$\left| F_{(i,[v,w])}^1 \right| \le |Ones(v)|.$$

To finish the proof of the claim, it is enough to show that for every node v on Path,

$$|Ones(v)| \le n^{\epsilon}.$$

Let v be a node such that $|Ones(v)| > n^{\epsilon}$. We will show that v is not on Path. By Property 4 of Claim 3.1,

$$Ones(v) \cap AZeros \neq \emptyset.$$

Hence, there exists $x_{\tilde{i},\tilde{j}} \in Ones(v)$, such that $A_{\tilde{i},\tilde{j}} = 0$. Hence, for any node \tilde{u} such that $Label(\tilde{u}) = x_{\tilde{i},\tilde{j}}$, we have $Answer(\tilde{u}) = 0$. Since Path always follows the edge $Answer(\tilde{u})$ (when \tilde{u} is the current node), it will never evaluate $x_{\tilde{i},\tilde{j}}$ to 1. Since every path to v evaluates $x_{\tilde{i},\tilde{j}}$ to 1, we conclude that v is not on Path.

Proof of Claim 3.4:

Let (i, [v, w]) be a pigeon-section of type (k, l). Denote,

$$F_{(i,[v,w])}^2 = \left\{ (x_{i,j},[v,w]) \in Forced_2^{k,l} \right\}.$$

We will show that for every such (i, [v, w]),

$$\left| F_{(i,[v,w])}^2 \right| \le 20n^{1-9\epsilon},$$

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l). We will count the number of possibilities for $(x_{i,j}, [v, w]) \in F^2_{(i,[v,w])}$. For every $(x_{i,j}, [v, w]) \in F^2_{(i,[v,w])}$, we know that $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$ by some $x_{i',j}$, and the forcing is type 2. Therefore, there exists a pigeon-section (i', [v', w']) of type (k, l) such that v' < u and $w' \ge w$. Thus, $w \in [v', w']$. Hence, since (i', [v', w']) is a pigeon-section of type k, we know that $i' \in Pigeons^k$ and $i' \in Over^{k-1}(w)$. Thus, for every $(x_{i,j}, [v, w]) \in F^2_{(i,[v,w])}$, each corresponding $x_{i',j}$ satisfies that i' is in

$$Pigeons^k \cap Over^{k-1}(w)$$
.

By Property 6 of Claim 3.1,

$$\left| Pigeons^k \cap Over^{k-1}(w) \right| < 10n^{\epsilon},$$

and hence for the pigeon-section (i, [v, w]), the number of possibilities for i' is bounded by $10n^{\epsilon}$.

Since $x_{i,j}$ is forced to 0 at u by $x_{i',j}$, we know that $A_{i,j} = 1$ (by the definition of forcing), and $A_{i',j} = 1$ (since $x_{i',j} \in Ones(u)$ and u is on Path, and as in the proof of Claim 3.3 Path cannot evaluate $x_{i',j}$ to 1 if $A_{i',j} = 0$). Hence, j is in

$$\left\{j \in Holes^{k,l} \mid A_{i,j} = 1 \text{ and } A_{i',j} = 1\right\}.$$

By Property 3 of Claim 3.1,

$$\left|\left\{j \in Holes^{k,l} \mid A_{i,j} = 1 \text{ and } A_{i',j} = 1\right\}\right| < 2n^{1-10\epsilon},$$

and hence for every i', the number of possibilities for j is bounded by $2n^{1-10\epsilon}$.

Altogether, for the pigeon-section (i, [v, w]), the number of possibilities for i' is bounded by $10n^{\epsilon}$, and for every i' the number of possibilities for j is bounded by $2n^{1-10\epsilon}$. Hence,

$$\left| F_{(i,[v,w])}^2 \right| \le 10n^{\epsilon} \cdot 2n^{1-10\epsilon} = 20n^{1-9\epsilon}$$

Proof of Claim 3.5:

For every $(x_{i,j}, [v, w]) \in Forced_3^{k,l}$, we know that $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$ by some $x_{i',j}$, and the forcing is type 3. Let u' be the last node in [Root, u], such that $Label(u') = x_{i',j}$, and let (i', [v', w']) be the pigeon-section of type (k, l) such that $u' \in [v', w']$. We will say, in this case, that the pigeon-section (i', [v', w']) is **responsible** for $(x_{i,j}, [v, w]) \in Forced_3^{k,l}$.

Thus, for every $(x_{i,j}, [v, w]) \in Forced_3^{k,l}$, there is (at least one) pigeon-section (i', [v', w']) of type (k, l) responsible for it.

Let (i', [v', w']) be a pigeon-section of type (k, l). Denote by $F^3_{(i', [v', w'])}$ the set of all $(x_{i,j}, [v, w]) \in Forced_3^{k,l}$ that (i', [v', w']) is responsible for. We will show that for every such (i', [v', w']),

$$\left| F^3_{(i',[v',w'])} \right| \leq 20 n^{1-9\epsilon},$$

and hence, obviously,

$$\left|Forced_3^{k,l}\right| \leq \left|PigSec^{k,l}\right| \cdot 20n^{1-9\epsilon}.$$

The bound for $|F_{(i',[v',w'])}^3|$ is proved in a similar way to the proof of the bound for $|F_{(i,[v,w])}^2|$, in Claim 3.4.

Fix (i', [v', w']) to be a pigeon-section of type (k, l). We will count the number of possibilities for $(x_{i,j}, [v, w]) \in F^3_{(i', [v', w'])}$. For every $(x_{i,j}, [v, w]) \in F^3_{(i', [v', w'])}$, we know that $x_{i,j}$ is forced to 0 at some node $u \in [v, w]$ by $x_{i',j}$, and the forcing is type 3. We also know that if u' is the last node in [Root, u] such that $Label(u') = x_{i',j}$ then $u' \in [v', w']$ (by the definition of $F^3_{(i', [v', w'])}$). Since the forcing is type 3, we know that $u' \in [v, w]$ and w' < w. Thus, $w' \in [v, w]$. Hence, since (i, [v, w]) is a pigeon-section of type k, we know that $i \in Pigeons^k$ and $i \in Over^{k-1}(w')$. Thus, for every $(x_{i,j}, [v, w]) \in F^3_{(i', [v', w'])}$, we know that i is in

$$Pigeons^k \cap Over^{k-1}(w').$$

By Property 6 of Claim 3.1,

$$\left| Pigeons^k \cap Over^{k-1}(w') \right| < 10n^{\epsilon},$$

and hence for the pigeon-section (i', [v', w']), the number of possibilities for i is bounded by $10n^{\epsilon}$.

Since $x_{i,j}$ is forced to 0 at u by $x_{i',j}$, we know that $A_{i,j} = 1$ (by the definition of forcing), and $A_{i',j} = 1$ (as in the proof of Claim 3.4). Hence, j is in

$$\left\{j \in Holes^{k,l} \mid A_{i,j} = 1 \text{ and } A_{i',j} = 1\right\}.$$

By Property 3 of Claim 3.1,

$$\left|\left\{j \in Holes^{k,l} \mid A_{i,j} = 1 \text{ and } A_{i',j} = 1\right\}\right| < 2n^{1-10\epsilon},$$

and hence for every i, the number of possibilities for j is bounded by $2n^{1-10\epsilon}$.

Altogether, for the pigeon-section (i', [v', w']), the number of possibilities for i is bounded by $10n^{\epsilon}$, and for every i the number of possibilities for j is bounded by $2n^{1-10\epsilon}$. For every i, the number of possibilities for [v, w] is (at most) one, because there is (at most) one pigeon-section (i, [v, w]) of type (k, l) such that $w' \in [v, w]$. Hence,

$$\left| F_{(i',[v',w'])}^3 \right| \le 10n^{\epsilon} \cdot 2n^{1-10\epsilon} = 20n^{1-9\epsilon}.$$

Proof of Claim 3.6:

Let (i, [v, w]) be a pigeon-section of type (k, l + 1). Then, obviously, (i, [v, w]) is a pigeon-section of type (k, l) as well. Denote,

$$F_{(i,[v,w])} = \{(x_{i,j},[v,w]) \in Forced^{k,l}\}.$$

We will show that for every such (i, [v, w]),

$$\left| F_{(i,[v,w])} \right| \ge n^{1-8\epsilon}/2,$$

(and hence the claim follows).

Fix (i, [v, w]) to be a pigeon-section of type (k, l + 1). Then, for some node $u \in [v, w]$, we have

$$|Zeros_i(u)| \ge n_{k-1,l}$$
.

For simplicity of the notations, assume that v is not the root, and hence v^- exists. Let s be the last node in $[v^-, u]$, such that, $i \notin Over^{k-1, l-1}(s)$ (such an s exists because $i \notin Over^{k-1, l-1}(v^-)$). Denote $t = s^+$. Then,

$$|Zeros_i(t)| = n_{k-1,l-1}.$$

(This is true because by the definition of s we know that $i \in Over^{k-1,l-1}(t)$, and if we had $|Zeros_i(t)| > n_{k-1,l-1}$ then we would have had $|Zeros_i(s)| \ge n_{k-1,l-1}$, in contradiction to the definition of s). Thus,

$$|Zeros_i(u)| - |Zeros_i(t)| \ge n^{1-2\epsilon},$$

and hence, by Property 2 of Claim 3.1,

$$|[Zeros_i(u) \setminus Zeros_i(t)] \cap AOnes_i^{k,l}| > n^{1-8\epsilon}/2.$$

To finish the proof of the claim, it is enough to show that

$$x_{i,j} \in [Zeros_i(u) \setminus Zeros_i(t)] \cap AOnes_i^{k,l} \implies (x_{i,j}, [v, w]) \in F_{(i, [v, w])}.$$

Let $x_{i,j} \in [Zeros_i(u) \setminus Zeros_i(t)] \cap AOnes_i^{k,l}$. First note that since $x_{i,j} \in AOnes_i^{k,l}$, we know that $i \in Pigeons^k$ and $j \in Holes^{k,l}$. Since $x_{i,j} \in [Zeros_i(u) \setminus Zeros_i(t)]$, there is a node $z \in [t, u]$, such that, $Label(z) = x_{i,j}$ and Answer(z) = 0. Since $x_{i,j} \in AOnes_i^{k,l}$, we know that $A_{i,j} = 1$, and since $z \in [t, u]$, we know that $i \in Over^{k-1,l-1}(z)$. Hence, Answer(z) is 0 only if $x_{i,j}$ is forced to 0 at the node z, and since (i, [v, w]) is a pigeon-section of type (k, l), we conclude that $(x_{i,j}, [v, w]) \in F_{(i, [v, w])}$.

4 Lower Bounds for $NP \not\subset P/poly$

In this section, we will show that a certain propositional formulation of the statement $SAT \notin P/poly$ does not have polynomial size Resolution proofs. Our proof is a version of the one given in [Razb3] and is included here for completeness and since this version of the argument has never appeared before. For the proof, we will need a lower bound for Resolution proofs for the, so called, weak onto pigeon hole principle.

4.1 The Weak Onto Pigeonhole Principle

The propositional weak onto pigeon hole principle, $WOPHP_n^m$, is a version of the weak pigeon hole principle that requires (in addition) that in each hole there is at least one pigeon. The underlying variables are, as before, $x_{i,j}$, where $1 \le i \le m$ and $1 \le j \le n$. The unsatisfiable formula $\neg WOPHP_n^m$ is expressed in conjunctive normal form (CNF) as the conjunction of the m pigeon clauses and the $\binom{m}{2} \cdot n$ hole clauses of the original weak pigeon hole principle, and n additional clauses that we call *onto clauses*. For every $1 \le j \le n$, we have an onto clauses, $(x_{1,j} \lor \ldots \lor x_{m,j})$, stating that some pigeon is mapped to hole j. We refer to the onto clauses also as onto axioms.

The weak onto pigeon hole principle is a weaker principle than the weak pigeon hole principle. Hence, in some proof systems it may have shorter proofs. Nevertheless, it is well known that in Resolution the two principles are equivalent up to a factor polynomial in m [BuP]. That is, any Resolution proof of length s for $WOPHP_n^m$ can be converted into a Resolution proof of length $s \cdot poly(m)$ for $WPHP_n^m$ (where poly(m) is a small polynomial in m, say, smaller than $100 \cdot m^{10}$).

Corollary 4.1 For any $m \ge n + 1$, any Resolution proof for the tautology $WOPHP_n^m$ is of length $2^{\Omega(n^{\epsilon})}$ (where $\epsilon = 1/100$).

4.2 Propositional Formulation of $SAT \notin P/poly$

Let $f: \{0,1\}^d \to \{0,1\}$ be a Boolean function. For example, we can take f = SAT, where $SAT: \{0,1\}^d \to \{0,1\}$ is the satisfiability function. We assume that we are given the truth table of f. Let $t \leq 2^d$ be some integer. We think of t as a large polynomial in d, say $t = d^{1000}$.

As mentioned in the introduction, we would like to formulate the following statement (in the variables \vec{Z}):

 \vec{Z} is (an encoding of) a Boolean circuit of size $t \Longrightarrow \vec{Z}$ does not compute the function f.

Our propositional formulation of the statement will be a DNF formula of length $2^{O(d)}$ (i.e., its negation is a CNF formula of that length). The variables \vec{Z} will include the (topological) description of an unbounded fan-in Boolean circuit, as well as the value that each gate in the

circuit gets on each input for the circuit. As mentioned in the introduction, our argument seems to be robust and the exact encoding of the circuit seems to be unimportant (as long as the circuit is of unbounded fan-in). For simplicity of the notations, our circuit will not have negation gates, and all negations will appear only on the input variables (note that any circuit can be converted into such a circuit with only a constant factor increase in the size of the circuit). This is done here only for simplicity, and doesn't change the argument in a substantial way.

For simplicity of the notations, we partition the variables \vec{Z} into groups, and give them new names as follows:

- 1. For every $1 \le r \le t$, we have a variable **GATE**[\mathbf{r}], saying whether the r^{th} gate of the circuit is and AND gate or an OR gate. We will use r = 0 to represent an AND gate and r = 1 to represent an OR gate.
- 2. For every $1 \le r \le t$ and every $1 \le q < r$, we have a variable **WIRE**[\mathbf{r} , \mathbf{q}], saying whether or not the q^{th} gate of the circuit is wired to the r^{th} gate of the circuit.
- 3. For every $1 \le r \le t$ and every $1 \le k \le d$, we have a variable **VAR.WIRE**[$\mathbf{r}, \mathbf{k}, \mathbf{1}$], saying whether or not the k^{th} input variable is wired to the r^{th} gate of the circuit.
- 4. For every $1 \leq r \leq t$ and every $1 \leq k \leq d$, we have a variable **VAR**.**WIRE**[$\mathbf{r}, \mathbf{k}, \mathbf{0}$], saying whether or not the negation of the k^{th} input variable is wired to the r^{th} gate of the circuit.
- 5. For every $1 \le r \le t$ and every $w \in \{0, 1\}^d$, we have a variable **VALUE**[\mathbf{r}, \mathbf{w}], giving the value that the r^{th} gate of the circuit gets on the input $w \in \{0, 1\}^d$.

For every such d, t, f, we will have a CNF formula $CIRCUIT_{d,t,f}[\vec{Z}]$ that formulates the statement:

 \vec{Z} is (an encoding of) a Boolean circuit of size t, and \vec{Z} computes the function f.

The formula $CIRCUIT_{d,t,f}[\vec{Z}]$ will be the conjunction of the following clauses:

- 1. For every $1 \le r \le t$ and every $1 \le q < r$ and every $w \in \{0, 1\}^d$, we will have a clauses, $\mathbf{GATE}[\mathbf{r}] \wedge \mathbf{WIRE}[\mathbf{r}, \mathbf{q}] \wedge \mathbf{VALUE}[\mathbf{q}, \mathbf{w}] \to \mathbf{VALUE}[\mathbf{r}, \mathbf{w}].$
- 2. For every $1 \le r \le t$ and every $1 \le k \le d$ and every $w \in \{0, 1\}^d$, we will have a clauses, $\mathbf{GATE}[\mathbf{r}] \wedge \mathbf{VAR.WIRE}[\mathbf{r}, \mathbf{k}, \mathbf{w_k}] \to \mathbf{VALUE}[\mathbf{r}, \mathbf{w}].$
- 3. For every $1 \le r \le t$ and every $w \in \{0,1\}^d$, we will have a clauses,

$$\begin{array}{l} \mathbf{GATE}[\mathbf{r}] \wedge \mathbf{VALUE}[\mathbf{r}, \mathbf{w}] \rightarrow \\ \bigcup_{k=1}^{d} \mathbf{VAR}.\mathbf{WIRE}[\mathbf{r}, k, \mathbf{w}_{k}] \vee \bigcup_{q=1}^{\mathbf{r}-1} (\mathbf{WIRE}[\mathbf{r}, \mathbf{q}] \wedge \mathbf{VALUE}[\mathbf{q}, \mathbf{w}]). \end{array}$$

4. For every $1 \le r \le t$ and every $1 \le q < r$ and every $w \in \{0,1\}^d$, we will have a clauses,

$$\neg GATE[r] \land WIRE[r,q] \land \neg VALUE[q,w] \rightarrow \neg VALUE[r,w].$$

5. For every $1 \le r \le t$ and every $1 \le k \le d$ and every $w \in \{0,1\}^d$, we will have a clauses,

$$\neg \mathbf{GATE}[\mathbf{r}] \wedge \mathbf{VAR}.\mathbf{WIRE}[\mathbf{r},\mathbf{k},(1-\mathbf{w_k})] \rightarrow \neg \mathbf{VALUE}[\mathbf{r},\mathbf{w}].$$

6. For every $1 \le r \le t$ and every $w \in \{0,1\}^d$, we will have a clauses,

7. For every $w \in \{0,1\}^d$, we will have a clauses,

$$VALUE[t, w] = f(w).$$

4.3 Reduction to the Weak Onto Pigeonhole Principle

We will now show that for any d, f, if t is a large enough polynomial in d (say, $t > d^{1000}$) then there are no short Resolution refutations for the formula $CIRCUIT_{d,t,f}[\vec{Z}]$. This will be done by a reduction to the weak onto pigeon hole principle.

Theorem 4.1 For any d, f and any $t \leq 2^d$, any Resolution refutation for the formula $CIRCUIT_{d,t,f}[\vec{Z}]$ is of length larger than $2^{\Omega(t^{\epsilon})}$ (where $\epsilon = 1/100$ is the constant from Corollary 4.1).

(Hence, for (say) $t > d^{1000}$, the length of the refutation is at least $2^{\Omega(d^{10})}$, which is superpolynomial in $2^{O(d)}$).

Proof:

Let T be the set of all $w \in \{0,1\}^d$ such that f(w) = 1, and denote m = |T|. Let REF be any Resolution refutation for the formula $CIRCUIT_{d,t,f}[\vec{Z}]$. We will convert REF into a Resolution refutation for the formula $\neg WOPHP_{t-1}^m$.

Let us first fix some of the variables in \vec{Z} , as follows: We fix our Boolean circuit to be a DNF. That is, the top gate of the circuit is an OR gate and all the other t-1 gates are AND gates and are connected to the top gate. We fix each term in the DNF to be a "full-term", that is, it is a conjunction of d literals, where each one of the d input variables appears exactly once in each term (with or without negation). We fix the output of the circuit to be f. We fix the output of every gate to be 0 on every input not in T. For simplicity of the notations, we will also rename some of the variables by (the new notations) $y_{r,k}$ and $x_{r,w}$. Formally, we fix (and rename) as follows:

1.
$$GATE[t] = 1$$
.

2. For every $1 \le q < t$,

$$WIRE[t, q] = 1.$$

3. For every $1 \le k \le d$,

$$VAR.WIRE[t, k, 0] = VAR.WIRE[t, k, 1] = 0.$$

4. For every $1 \le r < t$,

$$GATE[r] = 0.$$

5. For every $1 \le r < t$ and every $1 \le q < r$,

$$WIRE[r, q] = 0.$$

6. For every $1 \le r < t$ and every $1 \le k \le d$,

$$VAR.WIRE[r, k, 1] = \neg VAR.WIRE[r, k, 0] = y_{r,k}$$
 (where $y_{r,k}$ is a new notation, introduced for simplicity).

7. For every $w \in \{0, 1\}^d$,

$$VALUE[t, w] = f(w).$$

8. For every $1 \le r < t$ and every $w \in \{0,1\}^d \setminus T$,

$$VALUE[r, w] = 0.$$

9. For every $1 \le r < t$ and every $w \in T$,

$$VALUE[r, w] = x_{w,r}$$
 (where $x_{w,r}$ is a new notation, introduced for simplicity).

The remained variables in REF are the variables $x_{w,r}$ (for every $1 \le r < t$ and $w \in T$), and the variables $y_{r,k}$ (for every $1 \le r < t$ and $1 \le k \le d$). We will replace in REF each (positive) appearance of $y_{r,k}$ by

$$\bigcup_{w \in T, w_k = 1} x_{w,r}$$

and each appearance of $\neg y_{r,k}$ by

$$\bigcup_{w \in T, w_k = 0} x_{w,r}.$$

Our goal is to convert REF into a Resolution refutation for the formula $\neg WOPHP_{t-1}^m$ in the variables $\{x_{w,r}\}$. Let us first check what happened to the axioms of the original refutation REF (i.e., the clauses of $CIRCUIT_{d,t,f}[\vec{Z}]$). We say that an axiom (i.e., a clauses) became trivial if one of its literals was fixed to 1 or if it contains a variable and its negation.

All clauses of type 7 are now trivial.

For r = t, all clauses of types 1,2,4,5,6 are now trivial, as well as clauses of type 3 for $w \in \{0,1\}^d \setminus T$. Clauses of type 3 for r = t and $w \in T$ turned into the clauses,

$$\bigcup_{q=1}^{t-1} x_{w,q},$$

which are just the pigeon axioms of $WOPHP_{t-1}^m$.

For $1 \le r < t$, all clauses of types 1,2,3,4,5 are now trivial. Clauses of type 6 for $1 \le r < t$ (and any w) turned into the clauses,

$$\bigcup_{w \in T} x_{w,r},$$

which are just the onto axioms of $WOPHP_{t-1}^m$.

Let us now check what happened to the inferences of the original refutation REF. Each time that a variable other than $y_{r,k}$ was resolved upon, the inference is clearly still valid. Each time that a variable $y_{r,k}$ was resolved upon, we now have an inference of the form

$$\left(\bigcup_{w \in T, w_k = 1} x_{w,r}\right) \vee A \quad , \quad \left(\bigcup_{w \in T, w_k = 0} x_{w,r}\right) \vee B \quad \longrightarrow \quad A \vee B.$$

This is not a valid Resolution inference. Nevertheless, it is well known and easy to show (see for example [BuP], Section 3) that such an inference can be obtained as a sequence of poly(m) valid Resolution inferences, using the hole axioms of $WOPHP_{t-1}^m$ (where poly(m) is a small polynomial in m, say smaller than $5m^5$).

Altogether, we obtained a Resolution refutation for $\neg WOPHP^m_{t-1}$, of length at most $5m^5$ times the original length of REF. The proof of the theorem hence follows by Corollary 4.1. \square

Acknowledgment

I would like to thank Toni Pitassi for years of collaboration that led to this work, and Toni Pitassi and Sasha Razborov for helpful conversations about the content of Section 4. I would like to thank Avi Wigderson and the other organizers and participants of the special complexity year at the Institute for Advanced Study (2000-2001) for the great (and very special) year that we all had there. Finally, I would like to thank the Small World Café, where most of this research was done. Sometimes, the small things make the difference.

References

[BeP] Beame, P., and Pitassi, T., "Simplified and improved resolution lower bounds," Foundations of Computer Science, 1996, pp. 274-282.

- [BuP] Buss, S., and Pitassi, T., "Resolution and the weak pigeonhole principle," Springer-Verlag Lecture Notes in Computer Science, Publications of selected papers presented at Proceedings from Computer Science Logic 1997.
- [BSW] Ben-Sasson, E., and Wigderson, A., "Short proofs are narrow-resolution made simple," Symposium on Theory of Computing, 1999, pp. 517-526.
- [BT] Buss, S., and Turan, G., "Resolution proofs of generalized pigeonhole principles," *Theoretical Computer Science*, vol. 62, 1988, pp. 311-317.
- [Hak] Haken, A. "The intractability of resolution," *Theoretical Computer Science*, vol. 39, 1985, pp. 297-308.
- [Pud] Pudlak, P. "Proofs as games," American Math. Monthly, June-July 2000, pp. 541-550.
- [PR] Pitassi, T., and Raz, R., "Regular resolution lower bounds for the weak pigeonhole principle," Symposium on Theory of Computing, 2001.
- [Razb1] Razborov, A., "Bounded arithmetic and lower bounds in Boolean complexity", Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13, 1995, pp. 344-386.
- [Razb2] Razborov, A., "Lower bounds for propositional proofs and independence results in Bounded Arithmetic", *Proceedings of the 23rd ICALP*, *Lecture Notes in Computer Science*, vol. 1099, 1996, pp. 48-62.
- [Razb3] Razborov, A., "Lower bounds for the polynomial calculus," Computational Complexity, vol. 7, 1998, pp. 291-324.
- [Razb4] Razborov, A., "Improved resolution lower bounds for the weak pigeonhole principle", manuscript 2001.
- [Razb5] Razborov, A., "Resolution lower bounds for the weak functional pigeonhole principle", manuscript 2001.
- [Razb6] Razborov, A., "Resolution Lower Bounds for Perfect Matching Principles", manuscript 2001, to appear in *Proc. of the 17th IEEE Conference on Computational Complexity*.
- [RWY] Razborov, A., Wigderson, A., and Yao, A., "Read-once branching programs, rectangular proofs of the pigeonhole principle, and the transversal calculus," *Symposium on Theory of Computing*, 1997, pp. 739-748.
- [Urq] Urquhart, A., "Hard examples for resolution," *Journal of ACM*, vol. 34, 1987, pp. 209-219.