Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 21 (2001)

Resolution Lower Bounds for the Weak Pigeonhole
Principle

Ran Raz*
Weizmann Institute
ranraz@wisdom.weizmann.ac.il

Abstract

We prove that any Resolution proof for the weak pigeon hole principle, with n holes
and any number of pigeons, is of length ©(2"™), (for some global constant € > 0). One
corollary is that a certain propositional formulation of the statement NP ¢ P/poly does
not have short Resolution proofs.

1 Introduction

The Pigeon Hole Principle (PHP) is one of the most widely studied tautologies in propositional
proof theory. The tautology PH P, is a DNF encoding of the following statement: There is no
one to one mapping from n + 1 pigeons to n holes. The Weak Pigeon Hole Principle (WPHP)
is a version of the pigeon hole principle that allows a larger number of pigeons. The tautology
WPHP (for m > n+ 1) is a DNF encoding of the following statement: There is no one to
one mapping from m pigeons to n holes. For m > n + 1, the weak pigeon hole principle is a
weaker statement than the pigeon hole principle. Hence, it may have much shorter proofs in
certain proof systems.

The weak pigeon hole principle is one of the most fundamental combinatorial principles.
In particular, it is used in most probabilistic counting arguments and hence in many combi-
natorial proofs. Moreover, as observed by Razborov, there are certain connections between
the weak pigeon hole principle and the problem of P # NP [Razb3]. Indeed, the weak pi-
geon hole principle (with a relatively large number of pigeons) can be interpreted as a certain
encoding of the following statement: There are no small DNF formulas for SAT. Hence, (in
most proof systems, and in particular in Resolution), a short proof for certain formulations of
the statement SAT ¢ P/poly can be translated into a short proof for the weak pigeon hole
principle. That is, a lower bound for the length of proofs for the weak pigeon hole principle
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usually implies a lower bound for the length of proofs for certain formulations of the statement
NP ¢ P/poly.

Resolution is one of the most widely studied propositional proof systems. The Resolution
rule says that if C' and D are two clauses and x; is a variable then any assignment that satisfies
both of the clauses, C' V z; and D V —x;, also satisfies C' vV D. The clause C' VvV D is called
the resolvent of the clauses C'V x; and D V —x; on the variable z;. A Resolution refutation
for a CNF formula F is a sequence of clauses Ci,Cy, ..., C;, such that: (1) Each clause C; is
either a clause of F' or a resolvent of two previous clauses in the sequence. (2) The last clause,
C,, is the empty clause (and hence it has no satisfying assignments). We can represent a
Resolution refutation as an acyclic directed graph on vertices C1, ..., C, where each clause of
F has out-degree 0, and any other clause has two edges pointing to the two clauses that were
used to produce it. It is well known that Resolution is a sound and complete propositional
proof system, that is, a formula F' is unsatisfiable if and only if there exists a Resolution
refutation for F. We think of a refutation for an unsatisfiable formula F' also as a proof for
the tautology —F. A well-known and widely studied restricted version of Resolution (that
is still complete) is called Regular Resolution. In a Regular Resolution refutation, along any
path in the directed acyclic graph, each variable is resolved upon at most once.

There are trivial Resolution proofs (and Regular Resolution proofs) of length 2™ - poly(n)
for the pigeon hole principle and for the weak pigeon hole principle. In a seminal paper,
Haken proved that for the pigeon hole principle, the trivial proof is (almost) the best possible
[Hak]. More specifically, Haken proved that any Resolution proof for the tautology PHP,
is of length 2", Haken’s argument was further developed in several other papers (e.g.,
[Urq, BeP, BSW]). In particular, it was shown that a similar argument gives lower bounds
also for the weak pigeon hole principle, but only for small values of m. More specifically, super-
polynomial lower bounds were proved for any Resolution proof for the tautology WPHP",
for m < c¢-n?/logn (for some constant ¢) [BT]. The weak pigeon hole principle with larger
values of m has attracted a lot of attention in recent years. However, the standard techniques
for proving lower bounds for Resolution fail to give lower bounds for the weak pigeon hole
principle. In particular, for m > n?, no non-trivial lower bound was known.

For the weak pigeon hole principle with large values of m, there do exist Resolution proofs
(and Regular Resolution proofs) which are much shorter than the trivial ones. In particular,
it was proved by Buss and Pitassi that for m > ¢V™1°8" (for some constant c), there are
Resolution (and Regular Resolution) proofs of length poly(m) for the tautology W PHP™
[BuP]. Can this upper bound be further improved ? Can one prove a matching lower bound ?
As mentioned above, for m > n?, no non-trivial lower bound was known. A partial progress
was made by Razborov, Wigderson and Yao, who proved exponential lower bounds for Regular
Resolution proofs, but only when the Regular Resolution proof is of a certain restricted form
[RWY]. An exponential lower bound for any Regular Resolution proof was proved in [PR]. In
this paper, we prove an exponential lower bound for any Resolution proof.

More precisely, we prove that for any m, any Resolution proof for the weak pigeon hole
principle, W PHP™, is of length Q(2™), (where ¢ > 0 is some global constant).
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1.1 Lower Bounds for NP ¢ P/poly

As mentioned above, our result implies that certain propositional formulations of the statement
SAT ¢ P/poly do not have short Resolution proofs.

Let f : {0,1}% — {0,1} be a Boolean function. For example, we can take f = SAT,
where SAT : {0,1}¢ — {0, 1} is the satisfiability function (or we can take any other N P-hard
function). We assume that we are given the truth table of f. Let ¢ < 2 be some integer. We
think of ¢ as a large polynomial in d, say ¢t = d'°%.

In [Razbl] (see also [Razb2]), Razborov suggested to study propositional formulations of
the following statement (in the variables Z):

7 is (an encoding of) a Boolean circuit of size ¢ =>
7 does not compute the function f.

Note that since the truth table of f is of length 2¢, a propositional formulation of this statement
will be of length at least 2¢, and it is not hard to see that there are ways to write this statement
as a DNF formula of length 2°(9) (and hence, its negation is a CNF formula of that length).
The standard way to do that is by including in Z both, the (topological) description of the
Boolean circuit, as well as the value that each gate in the circuit gets on each input for
the circuit. The exact way to give the (topological) description of the circuit may also be
important in some cases.

In [Razb3|, Razborov presented a lower bound for the degree of Polynomial Calculus proofs
for the weak pigeon hole principle, and used this result to prove a lower bound for the degree
of Polynomial Calculus proofs for a certain version of the above statement. Following this
line of research, we show (in a similar way) that if ¢ is a large enough polynomial in d (say
t = d'%%%) then any Resolution proof for a certain version of the above statement is of length
super-polynomial in 2%, that is, super-polynomial in the length of the statement.

In particular, this can be interpreted as a super-polynomial lower bound for Resolution
proofs for certain formulations of the statement NP ¢ P/poly.

Our version of the above statement is slightly different than the one used in [Razb3]. The
main difference is in the way we use the variables Z to encode the (topological) description
of the Boolean circuit. Here, we use Z to encode a Boolean circuit of unbounded fan-in,
whereas [Razb3| considered Boolean circuits of fan-in 2. This difference is substantial, that is,
our proof works only for the more general case of unbounded fan-in, and not for the weaker
case of fan-in 2. Otherwise, our proof seems to be quite robust in the way the Boolean circuit
is encoded. Following our result, the same result for the case of Boolean circuits of fan-in 2
was recently proved in [Razb6]. This was done by proving a Resolution lower bound for the
so called weak functional onto pigeon hole principle.



1.2 Subsequent work

As mentioned above, our main result is a lower bound of Q(2"°) for any Resolution proof
for the weak pigeon hole principle. The constant e implicit in this paper is of the order
of 1/8 or 1/10. Following our result, Razborov came up with three related results. The
first result [Razb4] presents a proof for an improved lower bound of Q(2™) for ¢ = 1/3. The
second result [Razb5| extends that proof for the so called weak functional pigeon hole principle,
which is an important version of the weak pigeon hole principle. The above mentioned third
result [Razb6| extends the proof for the so called weak functional onto pigeon hole principle.

2 Preliminaries

2.1 Resolution as a Search Problem

A literal is either an atom (i.e., a variable z;) or the negation of an atom (i.e., =z;). A clause
is a disjunction of literals. If C' and D are two clauses and z; is a variable then any assignment
that satisfies both of the clauses, C' V x; and D V —z;, obviously satisfies the clause C'V D
as well. As mentioned in the introduction, the clause C'V D is called the resolvent of the
clauses C'V z; and D V —z; on the variable z;. A Resolution refutation for a CNF formula
F is a sequence of clauses C,Cy, ..., C;, such that, each clause Cj is either a clause of F' or
a resolvent of two previous clauses in the sequence, and such that, the last clause, C, is the
empty clause. We think of the empty clause as a clause that has no satisfying assignments. We
think of a Resolution refutation for F' also as a proof for =F. Without loss of generality, we
assume that no clause in a Resolution proof contains both z; and —z; (such a clause is always
satisfied and hence it can be removed from the proof). The length, or size, of a Resolution
proof is the number of clauses in it.

As mentioned in the introduction, we represent a Resolution proof as an acyclic directed
graph G on the vertices (', ..., C,. In this graph, each clause C; which is an original clause
of F' has out-degree 0, and any other clause has two edges pointing to the two clauses that
were used to produce it. We call the vertices of out-degree 0 (i.e., the clauses that are original
clauses of F') the leaves of the graph. Without loss of generality, we can assume that the only
clause with in-degree 0 is the last clause C, (as we can just remove any other clause with
in-degree 0). We call the vertex C the root of the graph, and we denote it also by Root.

We label each vertex C; in the graph by the variable z; that was used to derive it (i.e., the
variable z; that was resolved upon), unless the clause C; is an original clause of F' (and then
Cj; is not labelled). If a clause C; is labelled by a variable z; we label the two edges going out
from C; by 0 and 1, where the edge pointing to the clause that contains z; is labelled by 0,
and the edge pointing to the clause that contains —z; is labelled by 1. That is, if the clause
C'V D was derived from the two clauses C'V z; and D V —x; then the vertex C VvV D is labelled
by x;, the edge from the vertex C'V D to the vertex C'V z; is labelled by 0 and the edge from
the vertex C' vV D to the vertex D V —z; is labelled by 1. For a non-leaf node u of the graph



G, define,
Label(u) = the variable labelling .

We think of Label(u) as a variable queried at the node w.

Let p be a path on G, starting from the root. Note that along a path p, a variable z;
may appear (as a label of a node u) more than once. We say that the path p evaluates z;
to 0 if z; = Label(u) for some node u on the path p, and after the last appearance of z; as
Label(u) (of a node u on the path) the path p continues on the edge labelled by 0 (i.e., if u is
the last node on p such that x; = Label(u) then p contains the edge labelled by 0 that goes
out from u). In the same way, we say that the path p evaluates z; to 1 if x; = Label(u) for
some node u on the path p, and after the last appearance of z; as Label(u) (of a node u on
the path) the path p continues on the edge labelled by 1 (i.e., if u is the last node on p such
that x; = Label(u) then p contains the edge labelled by 1 that goes out from ).

For any node u of the graph G, we define Zeros(u) to be the set of variables that the node
u “remembers” to be 0, and Ones(u) to be the set of variables that the node u “remembers”
to be 1, that is,

Zeros(u) = the set of variables that are evaluated to 0 by every path p from the
root to u.

Ones(u) = the set of variables that are evaluated to 1 by every path p from the
root to u.

Note that for any u, the two sets Zeros(u) and Ones(u) are disjoint.

The following proposition gives the connection between the sets Zeros(u), Ones(u) and
the literals appearing in the clause u. The proposition is particularly interesting when u is a
leaf of the graph.

Proposition 2.1 ' Let F be an unsatisfiable CNF formula and let G be (the graph represen-
tation of ) a Resolution refutation for F. Then, for any node u of G and for any z;, if the
literal x; appears in the clause u then z; € Zeros(u), and if the literal —x; appears in the
clause u then x; € Ones(u).

Proof:

Assume that the literal z; appears in the clause u. (The claim for the literal —z; is proved in
the same way). Let p be a path from the root C, to u. We will show that the path p evaluates
x; to 0. If no node v < u on the path p satisfies Label(v) = x; then the literal z; appears in
the clause Cj, in contradiction to the fact that C; is the empty clause. Hence, there exists a
node v < u on the path p, such that, Label(v) = x;. Let v be the last (i.e., the largest) such
node. Let w be the next node on p (i.e., the successor of v on the path p). Thus, the edge

'We have learnt that a version of this proposition, presented as a game between two players, has already
appeared in [Pud].



(v, w) is contained in the path p. Since v is the last node on p such that Label(v) = z;, no
node z on the path p from w to u satisfies Label(z) = x;. Hence, since the literal x; appears in
u, it appears in w as well. Thus, (v, w) is the edge labelled by 0. That is, p evaluates z; to 0. O

2.2 The Weak Pigeonhole Principle

The propositional weak pigeon hole principle, WPHP;", states that there is no one-to-one
mapping from m pigeons to n holes. The underlying Boolean variables, z; ;, for 1 <7 < m
and 1 < j < n, represent whether or not pigeon ¢ is mapped to hole j. The negation of
the pigeonhole principle, =W PH P™, is expressed in conjunctive normal form (CNF) as the
conjunction of m pigeon clauses and (7;) -n hole clauses. For every 1 <1 < m, we have a pigeon
clauses, (z;1V ...V z;,), stating that pigeon ¢ maps to some hole. For every 1 <i; < iy <m
and every 1 < j < n, we have a hole clauses, (—z;, ; V —;, j), stating that pigeons 4; and i,
do not both map to hole j. We refer to the pigeon clauses and the hole clauses also as pigeon

axioms and hole axioms.

Let G be (the graph representation of) a Resolution refutation for =W PH P. Then, by
Proposition 2.1, for any leaf u of the graph G, one of the following is satisfied:

1. u is a pigeon axiom, and then for some 1 < 7 < m, the variables z;1,...,z;, are all
contained in Zeros(u).

2. u is a hole axiom, and then for some 1 < j < n, there exist two different variables
Ty j, Tip.j 10 Ones(u).

2.3 Basic Notations

We denote by n the number of holes, and by m the number of pigeons. We denote by Holes
the set of holes, and by Pigeons the set of pigeons. That is,

Holes = {1, ..., n}.
Pigeons = {1, ..., m}.

We will usually denote a hole by j, and a pigeon by i. By z;; we denote the variable corre-
sponding to pigeon ¢ and hole j. We denote by Variables the set of all these variables, and
by Variables; the set of variables corresponding to the i** pigeon. That is,

Variables = {z; ;|i € Pigeons,j € Holes}.

Variables; = {x; ;|j € Holes}.



We will consider (the graph representation of) Resolution proofs for the weak pigeon hole
principle. We denote such a graph by G. By u we will usually denote a node in the graph.
We say that u' < w if there is a path in the graph from «' to u. By p we will usually denote
a path in the graph, starting from the root. Note that for any non-leaf node u of the graph,
Label(u) is a variable z; ;. The sets Zeros(u) and Ones(u) are subsets of Variables.

We denote by € a small fixed constant (say e = 1/100). For simplicity, we assume that 7 is
large enough (say n¢ > 1000). For simplicity, we assume that expressions like n¢, n' =€, n'=8¢/2,
etc’, are all integers.

3 The Lower Bound

In this section, we prove our lower bound on the size of Resolution proofs for the weak pigeon
hole principle. Fix e = 1/100, and assume for simplicity that n > 1000. (We do not attempt
here to optimize the value of ¢).

Theorem 3.1 For any m > n + 1, any Resolution proof for the tautology WPHP)" is of
length larger than 27/100,

In the rest of the section, we give the proof of Theorem 3.1. Let G be the graph represen-
tation of a Resolution proof for W PHP", and assume for a contradiction that the size of G
(i.e., the number of vertices in G) is at most 27/1%0. Note that since the size of G is at most

27°/100 e can assume w.l.o.g. that m < 27/100,

3.1 Adding Axioms

First, define for any integer 0 < k < n°¢,

ng =k - ’fl,lfe,

my = on—k,

(Recall that we assume that n¢, n'~¢ are integers). For any node u of the graph G and for any
pigeon i, we define Zeros;(u) to be the set of variables z; ; that the node v “remembers” to
be 0, that is, the set of variables z; ; that are evaluated to 0 by every path from the root to
u. In other words,

Zeros;(u) = Zeros(u) N Variables;.

We use the size of Zeros;(u) as a measure for the progress made on pigeon ¢ along paths from
the root. We compare this measure with the “mileposts” {n;}. We define Over*(u) to be the
set of pigeons that passed the k™ milepost (for the node u), and we say that a node u is an
axiom of order k if for the node u at least m; pigeons passed the k* milepost. That is, for
any integer 0 < k£ < n° and any node u of G, we define,
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Overk(u) = the set of pigeons i such that |Zeros;(u)| > n.

For 1 < k < nf we say that a node u is a pigeon-axiom of order k if
|Overk(u)| > my,.

Note that a pigeon-axiom of order k£ = n¢ is just a standard pigeon-axiom of the weak pigeon
hole principle. We say that a node u is a hole-axiom if there exists a hole 7 and two different
pigeons i1, %2, such that z;, j, i, ; € Ones(u). Note that this is just a standard hole-axiom of
the pigeon hole principle.

In our lower bound proof, we allow the leaves of the graph G to be pigeon-axioms of
any order k£ (and not only pigeon-axioms of order & = n¢ as in the usual weak pigeon hole
principle). That is, we say that G is a Resolution proof for the weak pigeon hole principle if
all its leaves are axioms (i.e., all the leaves of G are either hole-axioms or pigeon-axioms of
some order). We assume w.l.o.g. that in G, a non-leaf node u is never an axiom (otherwise,
we can just disconnect the two edges going out from u and hence convert u to a leaf). In
particular, no non-leaf node is a pigeon-axiom of order k, for any k.

One consequence of the assumption that no non-leaf node is a pigeon-axiom of order k is
that if a node u is a pigeon-axiom of order k then |Over®(u)| = my. This is true because if
for some u we had |Over®(u)| > m;, then any node v, such that there is an edge from v to
u, would satisfy |Over®(v)| > my, and hence the non-leaf node v would be a pigeon-axiom of
order k. Therefore, we can assume that for any node u in the graph,

|Over®(u)| < my.

For our lower bound proof, we need to refine the scale {n;}. For any two integers 0 < k < n¢
and 0 <[ < n® and any node u, define,

ngy=k-n'c+1-n2
Over®!(u) = the set of pigeons i such that |Zeros;(u)| > ny.

Note that nyo = ng, and ng pe = ng41.

3.2 The Random Assignment

We will define a probabilistic assignment A; ; to the variables z; ;. Unlike in previous lower
bound proofs, one should not interpret the assignment A;; as a “random restriction” of the
Resolution proof. The assignment A;; will be used in a different way. The assignment A, ;
is chosen at random according to some specific probability distribution, defined below. First,
define,

ne¢

{Holesk}k = a random partition of Holes into n¢ sets of size n'~¢ each.



That is, we partition Holes into n€ sets of size n' ¢ each. The intuition is that the set of holes
Holes* will be used “against” pigeon-axioms of order k. For each 1 < k < n¢, define,

1—2¢

nf
{Holesk’l}l_l = a random partition of Holes* into n¢ sets of size n'~2¢ each.

That is, we further partition each set Holes* into n¢ sets of size n'!~2¢ each. Altogether, the
set Holes was partitioned into n%¢ sets of size n*=2¢ each. We denote by Variables™ the set
of variables corresponding to the i pigeon and holes in Holes*!. That is,

Variables;{’l = {zi |7 € Holes"'}.

Next, we would like to define for every 1 < k < n¢, a set of pigeons Pigeons®. For m; < n*,
we would like the set Pigeons® to contain all pigeons. For larger values of my, we would like
each pigeon to be chosen (independently, at random) with a certain probability. For every
1 <k < nf, define,

Px = min [1, :Tllk]

Pigeons¥ = a random subset of Pigeons, such that each pigeon is chosen (inde-

pendently, at random) with probability py.

For every pigeon ¢, and every 1 < k < nf and 1 <[ < n®, define the subset AOnesi-c b of the
set Variables™, in the following way.

. _ . k.l . . .
a random subset of size n'~% of Variables;’ if i € Pigeonst

AOnesi! =
Ones; { 0 if i ¢& Pigeons®

The set AOnes is now defined to be the union of all the sets AOnes’, and the set AZeros
is defined to be the complement of AOnes. The assignment A;; is defined by, A;; = 1 iff
z;; € AOnes. That is,

AOnes = |J AOnes.

ikl
AZeros = Variables \ AOmnes.

A 1 if z;; € AOnes
W0 if z,; € AZeros



3.3 Properties of the Assignment

For our lower bound proof, we do not need the assignment A;;, and the sets that were
involved in defining it, to be probabilistic. We just need them to satisfy certain properties.
These properties are satisfied (with high probability) by the probabilistic construction that
we defined, but we will only need one assignment (and sets) that satisfy the properties. The
properties that we will need are summarized in the following claim.

Claim 3.1 With exponentially high probability, all the following are satisfied, for every pigeon
1, every hole j, every nodes u,v, and every 1 <k <n‘ and 1 <[ < n-.

1. If j € Holes* and i g Pigeons® then
Ai,j - 0
2. If i € Pigeons® and |Zeros;(u)| — |Zeros;(v)| > n'=% then

“ZeTOSi(U) \ Zeros;(v)] N AOnes| > n'=8 /2.

3. If i1 and iy are two different pigeons then

Hj/ € Holes™ | A,y =1 and A, ;i = 1}‘ < opl-10e

11,7
4. If |Ones(u)| > n then
Ones(u) N AZeros # ().

5. If u is a pigeon-azxiom of order k then

Pigeons® N Over®(u) # 0.

6. For any u,
Pigeons® N Overkil(u)‘ < 10nf.

Proof:

Recall that the number of pigeons and the number of nodes are both bounded by 2™
The number of holes is n. Recall that we assume that ¢ = 1/100, and n¢ > 1000. For the
proof of the claim, we just have to verify that (for specific objects, 7,7, k, [, u,v,i1,13), the
requirement in each one of the properties is falsified with exponentially small probability (say,
with probability smaller than 27"/25). This will usually follow by the standard Chernoff-
Hoeffding bounds or by other simple probabilistic arguments. Let us analyze the properties
one by one.

/100

Property 1:
By the definition of AOnesic ! the requirement in this property is always satisfied.

10



Property 2:
Zeros;(u) \ Zeros;(v) is a fixed subset of Variables; of size > n'~
the size of Zeros;(u) \ Zeros;(v) is exactly n'=2¢
random subset of Variables; of size exactly n

2¢. Assume w.lo.g. that

. Since i € Pigeons®, the set AOnesf’l is a

1=6¢ Hence, the intersection

[Zerosi(u) \ Zeros;(v)] N AOnes:

is of expected size n' 7%, and by the standard Chernoff-Hoeffding bounds the actual size of
the intersection is very close to n'=%, with high probability. In particular, the probability
that the size of the intersection is < n'~8¢/2 is exponentially small (and in particular, smaller
than 27"/29),

Property 3:
Denote,
I{i1 = {]I € HOl@Sk’l | Ah,j’ = 1},
and,
I’Ii2 = {]I € HOl@Sk’l | A’iz,j’ = ]_} .
Then,

{j, € HOZ@Sk’l | Ail,j’ =1 and Aiz,j’ = 1} = Hi1 N Hig-

If either i, & Pigeons® or iy ¢ Pigeons® then H; N H;, is empty. If both i;,4, € Pigeons®
then H;, and H;, are both random subsets of Holes*! of size n'=5¢ each. Recall that Holes*!
is a set of size n'=?°. Hence, the intersection H;, N H;, is of expected size n'=!% and by
the standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to
n'=1% with high probability. In particular, the probability that the size of the intersection is

> 2p!'~10¢ is exponentially small (and in particular, smaller than 2-"7/2%).

Property 4:
Denote s = |Ones(u)|, and assume w.l.o.g. that s is exactly n°. Let x;, j,, T, jp, ---, Ti, j, D€
the s variables in Ones(u). It is easy to verify that for any 1 < t < s, the probability for
A, j, = lis smaler than 1/2, even under the condition that A4;, ;,,..., A are all 1. Hence,
the probability that A;, j,, ..., A, j, are all 1 is smaller than 2™,

Tt—1,Jt—1

Property 5:
Owver*(u) is a set of my, pigeons. If my < n then each one of these pigeons is in Pigeons
with probability 1. Otherwise, the probability for each one of these pigeons to be in Pigeons*
is n¢/my,, and hence the probability that none of them is in Pigeons* is

ne\ "k ¢
(1 — ) <27
my
Property 6:

As we have seen, Over* !(u) is a set of at most my_; = 2m;, pigeons. Assume w.l.o.g. that
Ower®~1(u) is a set of exactly 2my, pigeons. If my < n¢ then 2m;, < 2n¢ and the requirement is
obviously satisfied. Otherwise, each one of these 2m;, pigeons is in Pigeons® with probability
n¢/my. Hence, the intersection Pigeons® N Over*=!(u) is of expected size 2n¢, and by the

k
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standard Chernoff-Hoeffding bounds the actual size of the intersection is very close to 2n¢,
with high probability. In particular, the probability that the size of the intersection is > 10n¢
is exponentially small (and in particular, smaller than 27"/2%),

O

3.4 The Adversary Strategy

In this subsection, we give the proof of Theorem 3.1, given one lemma (the main lemma).

With high probability, all the properties in Claim 3.1 are satisfied. Hence, we can fix the
assignment A, ; (and all the sets involved in defining it, such as, Pigeons®, Holes®!, etc’) to
some fixed values that satisfy all these properties. Thus, from now on, we assume that the
assignment A;; (and all the sets involved in defining it) are fixed (and are not probabilistic
any more), and that all the properties in Claim 3.1 are satisfied.

For every non-leaf node u of the graph G, we define a value Answer(u) € {0,1}. We think
of Answer(u) as an adversary “answer” for the “query” Label(u). The answer Answer(u)
depends on the assignment A; ; and the sets Holes*".

Assume that Label(u) = z;, and j € Holes®!. We define Answer(u) in the fol-

lowing way:
1) If i¢g OverF~1i=1(u) Answer(u) = 0
2) If 3'#4 st zy; € Ones(u) Answer(u)= 0
3) Otherwise, Answer(u) = Ajj

That is, the answer is automatically 0 if i € Over*~1'=1(u), or if there exists 7 # 7 such
that zy ; € Ones(u). Otherwise, the answer is the value of A; ;. Given the values Answer(u)
(for every non-leaf node u), we define a path (called Path) on the graph G. The path starts
from the root of G' and in each step it follows the edge labelled by Answer(u), where u is the
current node. We denote by Leaf the leaf reached by the path Path. That is,

Path = the path that starts from Root, and that satisfies that for every (non-leaf)
node u on the path, the path contains the edge that goes out from u and is labelled
by Answer(u).

Leaf = the leaf reached by Path.
Lemma 3.1 (Main Lemma) For any 1 < k < nf, and any node u on the path Path,

Pigeons® N Over*(u) = 0.

Lemma 3.1 is proved in the next subsection. Let us show how the proof of Theorem 3.1 follows
from Lemma 3.1.
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Proof of Theorem 3.1:

By Lemma 3.1 and by Property 5 of Claim 3.1, no node u on Path is a pigeon-axiom (of
any order k). By the definition of Answer(u), if there exists ¢ # ¢ such that z; ; € Ones(u)
then Answer(u) = 0. Hence, for no node u on Path we will have that both z;; and z; ; are
in Ones(u). That is, no node u on Path is a hole-axiom. In particular, Leaf is neither a
pigeon-axiom (of any order k) nor a hole-axiom, in contradiction to the fact that all leaves of
the graph G must be axioms. O

3.5 Pigeon-Sections

In this subsection, we give the proof of Lemma 3.1, given one claim (the main claim). For any
node u on Path, define,

uT = the successor of u on Path.
u~ = the predecessor of u on Path.

(u™ is undefined for u = Leaf, and u~ is undefined for v = Root). For two nodes v < w on
Path, denote by [v,w| the section of nodes (on Path) between them. That is,

[v, w] = the set of nodes u on Path, such that, v < u < w.

For a pigeon i € Pigeons”®, we will be interested in maximal sections on Path, such that, for
every node u in the section, i € Over*~!(u). For 1 < k < nf, we define a pigeon-section of
type k, and the set PigSec® (of all these pigeon-sections), in the following way.

(i, [v,w]) is a pigeon-section of type k if all the following are satisfied:

1. i € Pigeons®, and v < w are nodes on Path.
2. For any node u € [v, w], we have i € Over* !(u).

3. The section [v,w] is maximal with this property. That is, if v # Root then
i & Over* 1(v™) and if w # Leaf then i &€ Over® (w™).

PigSeck = the set of all pigeon-sections of type k.

We will further refine the categorization of pigeon-sections into types. We say that a pigeon-
section of type k is of type (k,l) if the section [v,w] contains a node u such that ¢ €
Overt b-1(y), and we define the set PigSect! to be the set of all these pigeon-sections.
That is, for 1 < k<nand 1 <l <n‘+1,

(i, [v,w]) is a pigeon-section of type (k,1) if all the following are satisfied:
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1. (i, [v,w]) is a pigeon-section of type k.

2. For some node u € [v, w], we have i € Over®*=1'=1(u).
PigSec®! = the set of all pigeon-sections of type (k,1).
Note the asymmetric role of k£ and [ in the definition of pigeon-section of type (k,1). Note also

that PigSeck! = PigSeck.
Claim 3.2 (Main Claim) For every 1 <k <n® and 1 <1 <nf,

‘PigSeck’l“‘ < % . ‘PigSeck’l‘ .

Claim 3.2 is proved in the next subsections. Let us show how the proof of Lemma 3.1 follows
from Claim 3.2.

Proof of Lemma 3.1:
Since the number of pigeons and the number of nodes in the graph are both bounded by
27°/100 the number of pigeon-sections of type k is bounded by 27/5°. That is,

‘PigSeck’1

= ‘PigSeck‘ < m/30,
Hence, by n° applications of Claim 3.2,

‘PigSeck’"”’l‘ <27 ‘PigSeck’1 <27 L gn/50

k,'ne—l—l‘

and since |PigS ec is integer,

‘PigSeck’"E“‘ —0.
That is, there are no pigeon-sections of type (k,n + 1).
Assume for a contradiction to the statement of the lemma that for some node v on Path,
Pigeons® N Over®(u) # 0.

Then, since
Over®(u) = Over*™ 1" (u),

there exists 7 € Pigeons”, such that,
i € Over™ 1™ (u).

Denote by [v,w] the largest section (on Path) that contains u, and such that for every
u' € [v,w] we have i € Over®~1(u') (such a section exists because i € Over*~!(u)). Then,
(4, [v,w]) is a pigeon-section of type (k,n¢+ 1), in contradiction to the fact that there are no
such pigeon-sections. O
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3.6 Forcing

Let u be a node such that Label(u) = x; ;, and such that i € Pigeons® and j € Holes"! (for
some 1 <k <nfand1<1[<n. Recall that Answer(u) is 0 if there exists ¢’ # ¢ such that
zy; € Ones(u). If, in addition, i € Over* 1~1(u) and A;; = 1 we say that z; ; is forced to 0
at the node u by z; ;. (Recall that if ¢ ¢ Over* 1" 1(u) or A, ; = 0 then Answer(u) would
be 0 anyways, so we do not consider it as “forcing”). That is,

Assume that Label(u) = z; j, and j € Holes®. We say that x;; is forced to 0
at the node u by x; ; if all the following are satisfied:

1. i € Pigeons® and A;; = 1.
2. i € OverF~Li=1(y).
3. zy; € Ones(u).

Assume that x; ; is forced to 0 by z; ; at a node u on Path. Then, since i € Pigeons® and
i € Over*~L!1=1(u), there exists a (unique) pigeon-section (i, [v,w]) of type (k,l) such that
u € [v,w]. (To see this, just denote by [v,w] the largest section on Path that contains u,
and such that for every 4 € [v,w] we have i € Overf~1(@), such a section exists because
i € Over* (u). Then, (7, [v,w]) is a pigeon-section of type (k,1)).

Consider the nodes on Path from the root to u, that is, the nodes in [Root, u]. Denote by
u' the last node in [Root, u], such that, Label(u') = zs ;. Since z; ; € Ones(u), we know that
Answer(u') is 1. Therefore, by the definition of Answer(u'), we know that i’ € Over*=b=1(u/),
and by Property 1 of Claim 3.1 we know that i’ € Pigeons® (otherwise, Ay j would be 0, and
hence Answer(u') would be 0 as well). By the same argument as before, there exists a (unique)
pigeon-section (7', [v, w']) of type (k,1) such that u' € [v/,w']. We categorize the “forcing” to
types according to the relations between the nodes ', v, w,w’, as follows.

Let u be a node on Path. Assume that Label(u) = z; ;, and j € Holes®'. Assume
that x; ; is forced to 0 by z; ; at the node u. Let u’ be the last node in [Root, u],
such that Label(u') = x; ;. Let (i, [v, w]) be the pigeon-section of type (k,!) such
that u € [v,w], and let (¢, [v',w']) be the pigeon-section of type (k,) such that
u' € v, ).

1. We say that the forcing is a forcing of type 1 if v’ < v.

2. We say that the forcing is a forcing of type 2 if v’ € [v,w]| and v’ > w.
3. We say that the forcing is a forcing of type 3 if v’ € [v,w] and w' < w.

Note that since v’ < u and u € [v, w], any forcing is a forcing of one of these three types. For
every k, [, we would like to count the number of variables forced to 0 at pigeon-sections of type
(k,1). In our counting, we would like to count a variable more than once if it is forced to 0 at
more than one pigeon-section. However, we would like to count a variable only once for each
pigeon-section, that is, if the variable is forced to 0 many times at the same pigeon-section we
count it only once. For every, 1 < k < n‘ and 1 <[ < nf, define,
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Forced®! = the set of all pairs (z; j, [v, w]), such that all the following are satisfied:

1. (i, [v,w]) is a pigeon-section of type (k,1).
2. j € Holes*!.

3. x;; is forced to 0 at some node u € [v, w].

Forcedli:’l = the set of all pairs (z; ;, [v, w]), such that all the following are satisfied:
1. (7, [v,w]) is a pigeon-section of type (k,1).
2. j € Holes*!.
3. z;; is forced to 0 at some node u € [v,w|, and the forcing is type 1.
Forcedlz“’l = the set of all pairs (z; ;, [v, w]), such that all the following are satisfied:

1. (i, [v,w]) is a pigeon-section of type (k,1).
2. j € Holes*!.

3. z;; is forced to 0 at some node v € [v, w|, and the forcing is type 2.

Forcedlg’l = the set of all pairs (z; j, [v, w]), such that all the following are satisfied:

1. (i, [v,w]) is a pigeon-section of type (k,1).
2. j € Holes*!.

3. z;; is forced to 0 at some node u € [v,w], and the forcing is type 3.

3.7 Bounding the Number of Forced Variables

In this subsection, we give the proof of Claim 3.2. The proof will follow easily by the following
four claims.

Claim 3.3 Foreveryl1 <k <n®andl1 <[ <nf
‘Fov"ced’f’l‘ < ‘Pz’gSeck’l‘ -nf.
Claim 3.4 Foreveryl <k <n®andl1l <[l <nf
‘Forcedg’l‘ < ‘PigSeck’l‘ - 20m* %,
Claim 3.5 Forevery1 <k <n®andl1 <[l <nf

‘Forced’?f’l‘ < ‘PigSeck’l‘ - 20m %,
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Claim 3.6 For every1 <k <n®andl1 <[l <nf

‘Forcedk’l‘ > ‘PigSeck’lH‘ -nl8/2.

Proof of Claim 3.2:
Since any forcing is a forcing of type 1 or type 2 or type 3,

‘Fm‘cedk’l‘ < ‘Fm‘ced’f’l‘ + ‘Forced’;’l‘ + ‘Forced’?f’l‘ .

Hence, the proof follows immediately from Claims 3.3, 3.4, 3.5, 3.6, using the assumptions
that e = 1/100 and n > 1000. O

Proof of Claim 3.3:
Let (i, [v, w]) be a pigeon-section of type (k,[). Denote,

kI
Fé,[u,w}) = {(%ja [v, w]) € Forced; } :

We will show that for every such (4, [v, w]),

(and hence the claim follows).

Fix (4, [v, w]) to be a pigeon-section of type (k,l). For every (z;;,[v,w]) € F(i[, ., We
know that z; ; is forced to 0 at some node u € [v,w] by some z; ;, and the forcing is type 1.
Hence, the last node «’ € [Root, u], such that Label(u') = x; ;, satisfies v’ < v. That is, z ;
does not appear as Label(@) for any @ € [v,u], and since z; ; € Ones(u) we conclude that
zy ; € Ones(v). Thus, for every (z;;, [v,w]) € F(li )» there is (at least one) corresponding
zy j € Ones(v). Hence,

:[Uyw

B jyup| < [Ones(w)].

To finish the proof of the claim, it is enough to show that for every node v on Path,

|Ones(v)| < nf.

Let v be a node such that |Ones(v)| > nc. We will show that v is not on Path. By
Property 4 of Claim 3.1,
Ones(v) N AZeros # 0.

Hence, there exists z;; € Omes(v), such that A;= = 0. Hence, for any node @ such that
Label(a) = x;3, we have Answer(u) = 0. Since Path always follows the edge Answer ()

1,57
(when @ is the current node), it will never evaluate x;; to 1. Since every path to v evaluates
z;; to 1, we conclude that v is not on Path. a

Proof of Claim 3.4:
Let (i, [v,w]) be a pigeon-section of type (k,[). Denote,

F(Zi’[v’w}) = {(xm-, [v,w]) € Forced];’l} .

17



We will show that for every such (i, [v, w]),
2 1-9¢
FE | < 200175,

(and hence the claim follows).

Fix (4, [v, w]) to be a pigeon-section of type (k, ). We will count the number of possibilities
for (2, [v, w]) € F{p, 1) For every (i, [v,w]) € Fj, ), We know that z; ; is forced to 0 at
some node u € [v,w] by some z; ;, and the forcing is type 2. Therefore, there exists a pigeon-
section (7', [v', w']) of type (k,[) such that v' < v and w' > w. Thus, w € [v', w']. Hence, since
(i, [v',w']) is a pigeon-section of type k, we know that i’ € Pigeons® and i € Over*~!(w).
Thus, for every (i, [v, w]) € F{; | each corresponding x; ; satisfies that ¢’ is in

v,w])
Pigeons® N Over® ! (w).
By Property 6 of Claim 3.1,

‘Pigeonsk N Overk_l(w)| < 10nf,

and hence for the pigeon-section (i, [v, w]), the number of possibilities for i’ is bounded by
10ns.

Since z; ; is forced to 0 at u by zy ;, we know that A;; = 1 (by the definition of forcing),
and Ay ; =1 (since zy ; € Ones(u) and u is on Path, and as in the proof of Claim 3.3 Path
cannot evaluate z; ; to 1 if Ay ; = 0). Hence, j is in

{j € Holes*! | A;; =1 and Ay ; = 1}.
By Property 3 of Claim 3.1,
Hj € Holes™ | A;; =1 and Ay ; = 1}‘ < 2n'71%,
1-10¢

and hence for every ¢/, the number of possibilities for j is bounded by 2n

Altogether, for the pigeon-section (i, [v, w]), the number of possibilities for 7’ is bounded
by 10n¢, and for every ¢’ the number of possibilities for j is bounded by 2n'~!%. Hence,

|2 | < 1007 - 201710 = 20p1

Proof of Claim 3.5:

For every (z; ;, [v, w]) € Forcedy', we know that z; ; is forced to 0 at some node u € [v, w] by
some zy ;, and the forcing is type 3. Let u’ be the last node in [Root, u], such that Label(u') =
Ty ;, and let (7', [/, w']) be the pigeon-section of type (k,[) such that «’ € [v/, w']. We will say,
in this case, that the pigeon-section (i, [/, w']) is responsible for (z;;, v, w]) € Forcedy'.
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Thus, for every (z;;, [v,w]) € Forcedy', there is (at least one) pigeon-section (i, [v',w']) of
type (k, 1) responsible for it.
Let (¢, [v',w']) be a pigeon-section of type (k,l). Denote by F(3i, ) the set of all

(2, [v,w]) € Forcedy" that (7, [v',w']) is responsible for. We will show that for every such
(7, [v', w]),

[ ']

S 20”1_96,

3
b o)
and hence, obviously,
‘Forcedlg’l‘ < ‘PigSeck’l‘ - 20m* %,

The bound for |F}
in Claim 3.4.

Fix (7, [v',w']) to be a pigeon-section of type (k,l). We will count the number of possi-
bilities for (z;j, [v,w]) € F} ). For every (i, [v,w]) € F} 1,0, we know that z;; is
forced to 0 at some node u € [v,w] by z; ;, and the forcing is type 3. We also know that
if v’ is the last node in [Root, u] such that Label(u') = x; ; then u' € [v/,w'] (by the defini-

tion of F (). Since the forcing is type 3, we know that «’ € [v,w] and w' < w. Thus,
k

»l is proved in a similar way to the proof of the bound for |F7, 11,

v w'!

w' € [v,w]. Hence, since (i, [v,w]) is a pigeon-section of type k, we know that ¢ € Pigeons
and i € Over*~(w'). Thus, for every (24, [v, w]) € F{} 11 ), We know that  is in

Pigeons® N Over®*(w').
By Property 6 of Claim 3.1,
‘Pigeonsk N Overkfl(w')‘ < 10n¢,

and hence for the pigeon-section (7', [v', w']), the number of possibilities for ¢ is bounded by
10ne.

Since x; ; is forced to 0 at u by zy ;, we know that A;; = 1 (by the definition of forcing),
and Ay ; =1 (as in the proof of Claim 3.4). Hence, j is in

{j€Holes" | A;;=1 and Ay; =1}.
By Property 3 of Claim 3.1,

|{] € HOlesk’l | Ai,j =1 and Ai’,j = 1}‘ < 2n1—105,

and hence for every i, the number of possibilities for j is bounded by 2n' 1%,

Altogether, for the pigeon-section (', [v, w']), the number of possibilities for i is bounded
by 10n¢, and for every i the number of possibilities for j is bounded by 2n'~!%. For every 1, the
number of possibilities for [v, w] is (at most) one, because there is (at most) one pigeon-section
(1, [v, w]) of type (k,1) such that w’ € [v, w]. Hence,

F s my| < 10m° - 201710 = 200! =%
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Proof of Claim 3.6:
Let (i, [v,w]) be a pigeon-section of type (k,l + 1). Then, obviously, (i, [v,w]) is a pigeon-
section of type (k,l) as well. Denote,

Fliow) = {(Cﬁi,j, [v,w]) € Forcedk’l} )
We will show that for every such (i, [v, w]),
Flifou)| > n' /2,

(and hence the claim follows).

Fix (i, [v,w]) to be a pigeon-section of type (k,! + 1). Then, for some node u € [v, w|, we
have
|Zerosi(u)| > ng_1,-

For simplicity of the notations, assume that v is not the root, and hence v~ exists. Let
s be the last node in [v—,u], such that, i ¢ Over® 1!"1(s) (such an s exists because i ¢
Overt=H1=1(y7)). Denote t = s*. Then,

|Zerosi(t)| = ng—1,-1.

(This is true because by the definition of s we know that i € Over*5=1(¢), and if we had
|Zeros;(t)| > ng_1,-1 then we would have had |Zeros;(s)| > ng_1,-1, in contradiction to the
definition of s). Thus,

|Zeros;(u)| — | Zeros(t)| > n' 2,

and hence, by Property 2 of Claim 3.1,

[Zerosi(u) \ Zerosi(t)] N AOnest| > n! =5 /2.

To finish the proof of the claim, it is enough to show that

z;; € [Zeros;(u) \ Zeros;(t)] N AOnes;” = (2}, [v,w]) € Fijouw))-

Let 2;; € [Zerosi(u) \ Zeros;(t)] N AOnes;'. First note that since z;; € AOnes;”, we
know that i € Pigeons® and j € Holes"'. Since z; ; € [Zeros;(u) \ Zeros;(t)], there is a node
z € [t,u], such that, Label(z) = z;; and Answer(z) = 0. Since z;; € AOnes", we know that
A; ; =1, and since z € [t,u], we know that ¢ € Over*~1=!(z). Hence, Answer(z) is 0 only if
z; j is forced to 0 at the node z. Thus, z; ; is forced to 0 at the node z, and since (3, [v, w]) is
a pigeon-section of type (k,l), we conclude that (z;;, [v, w]) € Fi; v w])- O
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4 Lower Bounds for NP ¢ P/poly

In this section, we will show that a certain propositional formulation of the statement SAT &
P/poly does not have polynomial size Resolution proofs. Our proof is a version of the one
given in [Razb3| and is included here for completeness and since this version of the argument
has never appeared before. For the proof, we will need a lower bound for Resolution proofs
for the, so called, weak onto pigeon hole principle.

4.1 The Weak Onto Pigeonhole Principle

The propositional weak onto pigeon hole principle, WOPH P;", is a version of the weak pigeon
hole principle that requires (in addition) that in each hole there is at least one pigeon. The
underlying variables are, as before, z; ;, where 1 <7 < m and 1 < j < n. The unsatisfiable
formula -WOPHP™ is expressed in conjunctive normal form (CNF) as the conjunction of
the m pigeon clauses and the (72”) -n hole clauses of the original weak pigeon hole principle,
and n additional clauses that we call onto clauses. For every 1 < j < n, we have an onto
clauses, (1 V...V Ty, ), stating that some pigeon is mapped to hole j. We refer to the onto

clauses also as onto axioms.

The weak onto pigeon hole principle is a weaker principle than the weak pigeon hole
principle. Hence, in some proof systems it may have shorter proofs. Nevertheless, it is
well known that in Resolution the two principles are equivalent up to a factor polynomial
in m [BuP]. That is, any Resolution proof of length s for WOPH P! can be converted into
a Resolution proof of length s - poly(m) for WPH P (where poly(m) is a small polynomial
in m, say, smaller than 100 - m!?).

Corollary 4.1 For any m > n+ 1, any Resolution proof for the tautology WOPHP" is of
length 2°4™) (where e = 1/100).

4.2 Propositional Formulation of SAT ¢ P/poly

Let f:{0,1}¢ — {0,1} be a Boolean function. For example, we can take f = SAT, where
SAT : {0,1}% — {0,1} is the satisfiability function. We assume that we are given the truth
table of f. Let t < 2¢ be some integer. We think of ¢ as a large polynomial in d, say ¢t = d*0%.

As mentioned in the introduction, we would like to formulate the following statement (in
the variables Z):

7 is (an encoding of) a Boolean circuit of size t —>
7 does not compute the function f.

Our propositional formulation of the statement will be a DNF formula of length 299 (i.e.,
its negation is a CNF formula of that length). The variables Z will include the (topological)
description of an unbounded fan-in Boolean circuit, as well as the value that each gate in the
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circuit gets on each input for the circuit. As mentioned in the introduction, our argument
seems to be robust and the exact encoding of the circuit seems to be unimportant (as long
as the circuit is of unbounded fan-in). For simplicity of the notations, our circuit will not
have negation gates, and all negations will appear only on the input variables (note that any
circuit can be converted into such a circuit with only a constant factor increase in the size
of the circuit). This is done here only for simplicity, and doesn’t change the argument in a
substantial way.

For simplicity of the notations, we partition the variables Z into groups, and give them
new names as follows:

1. For every 1 < r < t, we have a variable GATE[r], saying whether the r™* gate of the
circuit is and AND gate or an OR gate. We will use » = 0 to represent an AND gate
and r =1 to represent an OR gate.

2. For every 1 < r < ¢ and every 1 < ¢ < 7, we have a variable WIRE[r, q|, saying
whether or not the ¢ gate of the circuit is wired to the 7™ gate of the circuit.

3. For every 1 < r < t and every 1 < k£ < d, we have a variable VAR.WIRE]|r, k, 1],
saying whether or not the & input variable is wired to the 7** gate of the circuit.

4. For every 1 < r < t and every 1 < k < d, we have a variable VAR.WIRE]r, k, 0],
saying whether or not the negation of the £* input variable is wired to the r™* gate of
the circuit.

5. For every 1 < r < t and every w € {0, 1}¢, we have a variable VALUE][r, w], giving the
value that the r** gate of the circuit gets on the input w € {0, 1}¢.

For every such d,t, f, we will have a CNF formula CIRCUITd’t’f[Z] that formulates the
statement:

7 is (an encoding of) a Boolean circuit of size ¢, and
7 computes the function f.

The formula CIRCUIT, ¢ [Z] will be the conjunction of the following clauses:

1. For every 1 <7 <t and every 1 < ¢ < r and every w € {0,1}%, we will have a clauses,
GATE[r] A WIRE]r, ) A VALUE|q, w] — VALUE][r, w|.

2. For every 1 <7 <t and every 1 < k < d and every w € {0,1}¢, we will have a clauses,
GATE[r] A VAR.WIRE]r, k, wy| — VALUE[r, w].

3. For every 1 <r <t and every w € {0,1}¢, we will have a clauses,
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GATE[r] A VALUE[r, w] —
UL, VAR.WIRE[r, k, wi] V UL (WIRE[r, q] A VALUE|[q, w)).

4. For every 1 <r <t and every 1 < ¢ < r and every w € {0, 1}¢, we will have a clauses,
-~GATE[r] A WIRE]|r, q] A “-VALUE|q, w] — “VALUE[r, w|.

5. For every 1 <7 <t and every 1 < k < d and every w € {0,1}¢, we will have a clauses,
-GATE[r] A VAR.WIRE[r, k, (1 — wi)] - “VALUE[r, w|.

6. For every 1 < r <t and every w € {0, 1}¢, we will have a clauses,

-GATE[r] A “-VALUE|r, w] —
UL, VAR WIRE[r, k, (1 — wy)] V Ufl_:ll (WIRE][r,q] A “VALUE|q, w]).

7. For every w € {0,1}¢, we will have a clauses,

VALUE[t, w]| = f(w).

4.3 Reduction to the Weak Onto Pigeonhole Principle

We will now show that for any d, f, if ¢ is a large enough polynomial in d (say, ¢ > d'%°) then
there are no short Resolution refutations for the formula CIRCUITy; s[Z]. This will be done
by a reduction to the weak onto pigeon hole principle.

Theorem 4.1 For any d,f and any t < 2¢, any Resolution refutation for the formula
CIRCUITy,¢[Z] is of length larger than 2X) (where € = 1/100 is the constant from Corol-
lary 4.1).

(Hence, for (say) t > d'%%° the length of the refutation is at least 2%%°) | which is super-
polynomial in 2°(9)).

Proof:

Let T be the set of all w € {0,1}¢ such that f(w) = 1, and denote m = |T|. Let REF
be any Resolution refutation for the formula CIRCUITqy, ;[Z]. We will convert REF' into a
Resolution refutation for the formula -WOPHP[",.

Let us first fix some of the variables in Z , as follows: We fix our Boolean circuit to be a
DNF. That is, the top gate of the circuit is an OR gate and all the other ¢t — 1 gates are AND
gates and are connected to the top gate. We fix each term in the DNF to be a “full-term”,
that is, it is a conjunction of d literals, where each one of the d input variables appears exactly
once in each term (with or without negation). We fix the output of the circuit to be f. We
fix the output of every gate to be 0 on every input not in 7. For simplicity of the notations,
we will also rename some of the variables by (the new notations) y,, and z,,. Formally, we
fix (and rename) as follows:

1. GATE[t] = 1.
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2. For every 1 < ¢ < t,
WIRE(t,q] = 1.
3. For every 1 < k < d,
VARWIRE[t,k,0) = VARWIRE]t, k,1] = 0.
4. For every 1 < r <,
GATE[r] =0.
5. Forevery 1 <r <tandevery 1 <g¢g<r,
WIRE]|r,q| = 0.
6. Forevery 1 <r <tandevery 1 <k <d,

VARWIRE|[r,k,1] = "“VARWIRE][r, k,0] = y,
(where y, ;. is a new notation, introduced for simplicity).

7. For every w € {0,1}4,
VALUE[t,w] = f(w).

8. For every 1 <7 <t and every w € {0,1}¢\ T,
VALUE[r,w] = 0.

9. Forevery 1 <r <t and every w € T,

VALUE[r,w| = Ty,
(where z,,, is a new notation, introduced for simplicity).

The remained variables in REF are the variables z,,, (for every 1 < r < t and w € T),
and the variables y, ) (for every 1 < r < ¢t and 1 < k < d). We will replace in REF each

(positive) appearance of v, by
U  zws

wel wi=1

U

weT,w=0

and each appearance of -y, by

Our goal is to convert REF' into a Resolution refutation for the formula -WOPHP", in
the variables {z,,,}. Let us first check what happened to the axioms of the original refutation

REF (i.e., the clauses of CIRCUIT,, ([Z]). We say that an axiom (i.e., a clauses) became
trivial if one of its literals was fixed to 1 or if it contains a variable and its negation.

All clauses of type 7 are now trivial.
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For r = t, all clauses of types 1,2,4,5,6 are now trivial, as well as clauses of type 3 for
w € {0,1}¢\ T. Clauses of type 3 for r =t and w € T turned into the clauses,

t—1
U Zw.e
g=1

which are just the pigeon axioms of WOPH P",.

For 1 <r < t, all clauses of types 1,2,3,4,5 are now trivial. Clauses of type 6 for 1 <r <t
(and any w) turned into the clauses,
U 2w

weT
which are just the onto axioms of WOPHP/",.

Let us now check what happened to the inferences of the original refutation REF. Each
time that a variable other than y, », was resolved upon, the inference is clearly still valid. Each
time that a variable y, , was resolved upon, we now have an inference of the form

U Twr | VA U Twr | VB — AVB.
weT wi=1 wET,w,=0

This is not a valid Resolution inference. Nevertheless, it is well known and easy to show (see
for example [BuP], Section 3) that such an inference can be obtained as a sequence of poly(m)
valid Resolution inferences, using the hole axioms of WOPH P/, (where poly(m) is a small
polynomial in m, say smaller than 5m?).

Altogether, we obtained a Resolution refutation for ~-WOPH P™,, of length at most 5m°
times the original length of REF'. The proof of the theorem hence follows by Corollary 4.1. O
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