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Abstract

We give the first extension of the result due to Paul, Pippenger, Sze-
meredi and Trotter [24] that deterministic linear time is distinct from
nondeterministic linear time. We show that NTIM E(n+/log*(n)) #
DTIME(n+/log*(n)). We show that if the class of multi-pushdown
graphs has (o(n),o(n/log(n))) segregators, then NTIM E(nlog(n)) #
DTIME(nlog(n)). We also show that atleast one of the following facts
holds - (1) P # L, (2) For all polynomially bounded constructible time
bounds ¢, NTIME(t) # DTIME(%).

We consider the problem of whether NT'ITM E(t) is distinct from NSPACE(t)
for constructible time bounds ¢. A pebble game on graphs is de-

fined such that the existence of a “good” strategy for the pebble

game on multi-pushdown graphs implies a “good” simulation of non-
deterministic time bounded machines by nondeterministic space-bounded
machines. It is shown that there exists a “good” strategy for the pebble

game on multi-pushdown graphs iff the graphs have sublinear separa-

tors.

Finally, we show that nondeterministic time bounded Turing machines
can be simulated by ¥4 machines with an asymptotically smaller time
bound, under the assumption that the class of multi-pushdown graphs
has sublinear separators.

1 Introduction

PL NPand P~ PSPACE are two of the central problems of complexity
theory. As of now, we lack the techniques to solve these problems. Hence,
it is natural to consider restrictions of these problems to specific time and
space bounds, and attempt to solve the restricted versions.
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A natural restriction of P = NP is DTIME(t) L NTIME(t) for poly-
nomially bounded ¢. The major result in this connexion was the separa-
tion of nondeterministic linear time and deterministic linear time by Paul,
Pippenger, Szemeredi and Trotter [24], building on work by [12] and [25].
They show how to simulate deterministic Turing machines with >4 ma-
chines that use less time, and then use a collapse lemma and a hierarchy
theorem to prove their result. Gupta [10] showed that the simulation could
in fact be done by Yo machines. Unfortunately, these proofs, and specifi-
cally the collapse lemma that is common to them, cannot be used to separate
NTIME(t) and DTIME(t) for ¢t superlinear. We show how to refine the
lemma and use a different hierarchy theorem to improve their result. Actu-
ally, we show something more general - a relation between the miminimum
size of segregators for multi-pushdown graphs and the size of bounds ¢ for
which we can prove NTIME(t) # DTIME(t).

Though we cannot prove that P # L or that DTIME(t) # NTIME(t)
for polynomially bounded ¢, we are able to prove that the disjunction of
these two statements holds. Such a result lends support to our intuition
that both of these statements are true. Our technique is similar to that of
Kannan in [15], where he proved that P # L or DTIM E(n) # NTIME(n).
Since we now know that the second of these hypotheses is true, this theo-
rem lacks content for sequential Turing machines. We show how to apply
our new collapse lemma and a standard hierarchy theorem to generalize the
second hypothesis.

A natural restriction of P = PSPACE is DSPACE(t) = DTIME(t).
This problem was solved by Hopcroft, Paul and Valiant [12] who showed that
DTIME(t) C DSPACE(t/logt) for all constructible bounds ¢. The separa-
tion follows from this simulation and the well-known hierarchy theorem for
deterministic space. For the simulation, [12] defined a pebble game on graphs
that models the space requirements of a deterministic time-bounded machine
and showed that there is a “good” strategy for the pebble game on directed
acyclic graphs of bounded degree, and therefore on the computation graphs
of deterministic Turing machines. This pebble game is applicable only to
deterministic computations, and the problem NTIME(t) a8 NSPACE(t)
is still open. We make some progress towards the solution of this problem by
defining a new pebble game such that a “good” strategy for this game im-
plies a fast simulation of non-deterministic time by nondeterministic space



and hence a separation, by the nondeterministic space hierarchy of [14]. Un-
fortunately, we are not able to prove that there exists a “good” strategy for
this game on the class of pushdown graphs. Instead, we show that the ex-
istence of a “good” strategy is equivalent to a longstanding open problem -
the existence of sublinear separators for the class of multi-pushdown graphs.
The best results known for the latter problem are due to [9], and show that
any upper bound on the size of separators has to be very close to linear.
We also show that there exists a fast simulation of nondeterministic time
by ¥4 time under the hypothesis that multi-pushdown graphs have sublin-
ear separators. Thus, if our technique is used to separate NTIM E(t) and
NSPACE(t), it will also separate NTIME(t) and ¥4 — TIME(t).

An important feature of the techniques we use is that they are non-
relativizing. Hence there is a possibility that they can be extended to prove

deeper results. By results of Moran([20]), NTIME(t) L DTIME(t) cannot
be decided by relativizing techniques for time-constructible bounds ¢.

2 Preliminaries

We assume the standard definitions of deterministic and nondeterministic
Turing machines and of time and space bounded complexity classes [13].
We also assume the definitions of alternating Turing machines making a
bounded number of alternations [2]. A computation of an alternating Tur-
ing machine on an input is any correct finite sequence of configurations of
the machine beginning with the initial configuration and ending with an
accepting or rejecting configuration. The time taken by the computation is
the length of the sequence of configurations minus one.

The concept of a computation graph [12] is critical to our investigation.
This is defined for any fixed computation of a deterministic or alternat-
ing Turing machine. The computation is assumed to be block respecting,
without loss of generality, for some block size b (which will depend on the
context), i.e. the tapes of the machine are divided into blocks of size b and
heads cross block boundaries only at times that are integral multiples of b. If
the computation takes time ¢, the computation graph has ¢/b vertices num-
bered 1...t¢/b representing time intervals of size b, during which no block
boundary is crossed. There is an edge from vertex ¢ to vertex jif j =4+ 1
or if the machine scans some block of some tape during time interval j that
was last scanned during time interval ¢. We say a block is associated with a



vertex ¢ of the graph if it is scanned during time interval 1.

We also define the class of multi-pushdown graphs [24], which is relevant
to many of our conjectures. A graph G = (V,E) with | V |=n is in Hi(n)
if V={1...n} and E = SUR where S C {(3,i+ 1) | i < n — 1}, every
vertex in V' has atmost one predecessor in R, and no edges cross in R, i.e if
(41,41), (32, j2) are in R and 41 < ig < j1, then jo < ji. A graph is in H,(n)
if it is the union of r graphs, each of which is in H;(n). A family of graphs
is in the class of multi-pushdown graphs if there is a fixed r such that each
graph in the family of order n is in H,(n). The importance of this class
of graphs is that the family of computation graphs of any alternating Tur-
ing machine with a fixed number of tapes is in the class of multi-pushdown
graphs. Specifically, if the machine has r tapes, all the computation graphs
corresponding to it are in Ho,.

Apart from the standard notation for deterministic and alternating time
classes, we use L to refer to the class of languages accepted by logarithmic
space bounded deterministic Turing machines, SC to denote the class of
languages accpeted by deterministic Turing machines using polylogarithmic
space and deterministic time and DTISP(t,s) to denote the class of lan-
guages accepted by deterministic Turing machines operating in time ¢ and
space s. NTIME(n) is referred to as NLIN at times, and DTIM E(n) as
DLIN.

All time and space bounds used in this paper are assumed to have ap-
propriate constructibility properties. The time bounds are assumed to be

3 Extension of DLIN # NLIN

One of the key problems of complexity theory is to determine the relation-
ship between deterministic and non-deterministic complexity classes with
the same time bound. In their seminal paper [24], Paul, Pippenger, Trotter
and Szemeredi proved that deterministic linear time is strictly contained in
non-deterministic linear time. Unfortunately, their methods suffice to prove
a separation only when the time bound is linear. We extend their techniques
to get the slightly stronger result in Theorem 2.5.

[24] actually proves that DTIME(t) is contained in X4(o(t)). A collapse



lemma is then used to prove that, if DTIME(n) = NTIME(n), then
DTIME(t) = ¥4(t) for any time-constructible ¢t. The simulation and the
collapse lemma together yield a contradiction to the hierarchy theorem for
alternating time classes, on the hypothesis that DTIM E(n) = NTIME(n).
We modify the translation lemma to make the hypothesis stronger and prove
a different hierarchy theorem that yields our result.

For the purposes of this section, we assume that the state set of alternat-
ing Turing machines is divided into existential, universal and deterministic
states. Any computation of an ATM is considered to be divided into disjoint
“phases”, which are maximal time intervals during which either the machine
is in an existential or deterministic state throughout (existential phase) or
it is in an universal or deterministic state throughout(universal phase). We
define classes of languages accepted by ATMs that make a bounded number
of guesses in all but the last phase.

Definition: A language L is in X (IIx) — TIGU(t(n), g(n)) if there is a
Y (IIx) machine M accepting L that, given an input of length n, operates
in time #(n) and makes atmost g(n) guesses in any computation path, ex-
cepting the last phase. We will be interested in the classes corresponding to
g(n) = O(n), which are called ¥y (Ily) — TIGU(t(n), LIN)

We now prove a hierarchy theorem for guess-bounded machines. The tech-
nique used is diagonalization, but first we need a tape reduction theorem,
which is stated in Lemma 2.1. We use the superscript r in our notation for
a complexity class if the machines defining the class are restricted to have
atmost r tapes apart from the read-only input tape.

Lemma 2.1 For any k, £y — TIGU(t(n), LIN) C % — TIGU(t(n), LIN).

Proof Our simulation of r tapes by 2 tapes is analogous to the standard
simulation [3]. Given an r-tape guess-bounded machine M that makes k—1
alternations, we build a machine M’ to simulate it. M’ first guesses a com-
putation of M on one tape. It then verifies the computation by using its
second tape to simulate each of the r tapes of M, in turn. The verification
is deterministic, so M’ doesn’t waste any guesses on it. Also, any guesses of
deterministic steps of M are made existentially if the last phase of M is ex-
istential and universally if the last phase of M is universal, with acceptance
criteria being modified accordingly. It is easy to see that M  makes only a
linear number of guesses in all but its last phase, makes k — 1 alternations



and accepts the same language as M.
Lemma 2.2 IIy, — TIGU (t(n), LIN) € ¥ — TIGU (o(t(n)), o(n))

Proof By diagonalization. The proof in [25] goes through with the addi-
tional observation that the number of guesses is preserved by the simulating
machine.

Lemma 2.3 If ¢(n) is polynomially bounded and NTIM E(t(n)) = DTIM E(t(n)),
then Il — TIGU (t(n), LIN) C co — NTIME(t(n)

Proof Let L be a language in IIy — TIGU(t(n),LIN). Let M be a Il ma-
chine accepting L and making only a linear number of guesses in all but its
last phase. We shall show the existence of a co-nondeterministic machine
M, under the given hypothesis, such that M operates in time #(n) and
accepts L.

Corresponding to M, there is a predicate R(z,y,z) computable in deter-
ministic time ¢(n) such that

rel = vO(le)yHO(t(IwI))ZR(m, Y, 2)
Clearly, the predicate Q(z,y) = 3°t(#D)2R(x, y, z) is computable in nonde-
terministic time ¢(| z |) and therefore in nondeterministic time ¢(| z | + | y |).
By the hypothesis, there is a predicate @ (y, z) that is computable in deter-
mistic time ¢(| z | + | y |) such that

z € L=Y0DyQ' (z,y)
The co-nondetermistic machine M  works as follows: it universally guesses a
string y of length ¢ | | (where the constant ¢ depends on M) and computes
the predicate Q' (x,y). This only takes time O(¢(| = |)) as we are dealing
only with polynomially bounded time bounds ¢. Clearly, M accepts an in-
put iff M does, and M’ runs in time O(t(n)).

Proposition 2.4([10],[24]) For every time-constructible function t with
t(n) > n, DTIME(t(n)) C X2 — TIGU (n,t(n)/(log* (t(n)))).

Theorem 2.5 For all functions ¢ such that ¢(n) = o(nlog*(n)), DTIM E(t(n)) #
NTIME(t(n))

Proof Assume the contrary. Then, DTIME(t(n)) = co — NTIME(t(n))
and by Lemma 2.3, we have

I, — TIGU (¢(n), LIN) C DTIME(t(n))



Also, by Proposition 2.4, since t(n) = o(nlog*(n))

DTIME(t(n)) C g — TIGU (n,0(n))
Thus Iy — TIGU (nlog*(n), LIN) C Y9 — TIGU(n,o0(n)), which is a con-
tradiction to Lemma 2.2. [

Corollary 2.6 DTIM E(ny/log*(n)) # NTIM E(ny/log*(n)) Our result is

more interesting for the technique used to prove it than for the truth it states,

since we do not even know if there any languages in DTIM E(n+/log*(n)) —
DTIME(n). On the other hand, a proof that DT IM E(nlog(n)) # NTIM E(nlog(n))
would indeed be interesting. We sketch a graph-theoretic hypothesis below

that would lead to this result.

Definition An M-segregator for an acyclic directed graph G is a set J
of vertices of G such that every vertex in G — J has atmost M predecessors
in G —J. A family F of graphs is said to have (p(n),q(n)) segregators if
every graph G € F with n vertices has a p(n) segregator of size g(n).

[24] shows that the class H,(n) of multi-pushdown graphs has (n/(log*(n)),n/(log*(n)))
segregators, using path-compression techniques due to [6] and [28]. This re-

sult is the cornerstone of their proof that deterministic linear time is distinct

from nondeterministic linear time. Their speed-up of deterministic time by

Y9 time, and hence our result also, by the dependence through Proposition

2.4, will be improved if it can be proved that there are smaller segregators

for the class of multi-pushdown graph.

Theorem 2.7 If, for each r, the class H,(n) of graphs has (o(n), o(n/log(n)))
segregators, then DTTM E(nlog(n)) # NTIM E(nlog(n))
Proof Analogous to proof of Theorem 2.5.

It is known [24] that there are families of pushdown graphs that do not
have (o(n/log(n),o(n/log(n))) segregators. We are interested in the extent
to which the current upper bound can be improved.

We now describe another application of our technique. In [15], Kannan
proved that atleast one of the two statements P = L, DLIN # N LIN must
hold. We show how to generalize the second hypothesis to DTIM E(t(n)) #
NTIME(t(n)), for any t.

Proposition 2.8 (Kannan) DTISP(n, (logn)¥) C Yop — TIM E(n)



Theorem 2.9 P = L = For all polynomially bounded t, NTIM E(t) #
DTIME(t)

Proof Suppose, on the contrary that for some polynomially bounded ¢,
NTIME(t) = DTIME(t). By a simple generalization of Lemma 2.3, for
any k, X — TIGU(t(n), LIN) = NTIME(t(n)) = DTIME(t(n)). By
Proposition 2.8, a given language in L is in ¥y — TIM E(n) for some k.
Hence it is in ¥y — TIGU (t(n), LIN) and in DTIM E(t(n), by Lemma 2.3.
Thus L C DTIME(t(n)), which implies L # P by the time hierarchy theo-
rem for deterministic time. [

Note that essentially the same proof shows that we can replace the hy-
pothesis P # L by P # SC.

4 Time vs space

Another core problem of complexity theory is whether space is more power-
ful than time. This question was answered in the affirmative by Hopcroft,
Paul and Valiant in their seminal paper [12], where they proved that, for
constructible t, DTIME(t(n)) € DSPACE(t(n)/log(t(n))). By the de-
terministic space hierarchy theorem, it follows that space is more powerful
than time for deterministic Turing machines. The main theorem of [12] was
extended to RAMs by [26] and to pointer machines by [11]. But the related
question for nondeterministic machines remains open.

The proof in [12] proceeds by defining a pebble game on graphs, such that
a good strategy for the pebble game implies a good simulation of determin-
istic time-bounded machines by space-bounded machines. Unfortunately,
this game cannot be used to model nondeterministic computations. In this
paper, we define a different pebble game that models the simulation of non-
deterministic time-bounded machines by space-bounded machines. We are
not able to prove that a good strategy exists for this game on the class of
graphs(multi-pushdown graphs) we are interested in; we show instead that
the existence of a good strategy is equivalent to a graph-theoretic property,
i.e the property of having good “separators”.

We first define the game. The BWR pebble game is played with three kinds
of pebbles(black, white and red) on directed acyclic graphs and is defined
by the following rules-



1. A white pebble may be placed on a vertex of the graph at any time.

2. A white pebble on a vertex may be replaced by a red pebble if the
immediate predecessors of the vertex all have white or red pebbles
placed on them.

3. A red pebble on a vertex may be replaced by a black pebble if all the
immediate successors of the vertex have red pebbles placed on them.

Initially, there are no pebbles on any of the vertices. The game ends when all
vertices have black pebbles placed on them. A strategy is a correct sequence
of moves from the initial configuration to the final configuration. The space
used by a strategy is the maximum number of red and white pebbles placed
on vertices of the graph after any move. An optimal strategy for a graph is
a strategy that uses the minimum space. A graph is said to require space s
in the BWR game if an optimal strategy for this graph uses space s.

Intuitively, the red and white pebbles represent guesses of configurations
during a computation. The white pebbles represent unverified guesses, the
red pebbles represent guesses that have been verified in the sense that the
configuration associated with such a guess is compatible with the guesses
of previous configurations on which this configuration is directly dependent.
Black pebbles represent guesses that do not have to be stored any longer.

Theorem 4.1 Let f be a function on the positive integers. If, for each r
and n, no graph in H,(n) requires more than f(n) space in the BWR game,
then NTIME(t(n)) C NSPACE(t(n)Y/3 f(t(n)?/3)) for time-constructible
functions t¢.

Proof Deferred to Appendix.

Definition An acyclic directed graph G on n vertices has an S-separator if
there is a set of vertices C of the graph of size S, such that G — C' is not
weakly connected and each component of G — C has size < 2n/3. A graph
G on n vertices has a (f(n),g(n))-separator if G has a f(n)-separator C
such that each component of G — C has atmost g(n) vertices. The above
definitions extend in the natural way to a family F' of graphs.

Proposition 4.2 If a family F of graphs, closed under subgraphs, has o(n)-
separators, it has (o(n), o(n))-separators.



Proof Refer to [22]

Lemma 4.3 If a graph G = (V, E) with | V |= n has a strategy for the
BWR game that uses space f(n), then G has an f(n)-separator.

Proof Deferred to Appendix.

Lemma 4.4 If a graph G = (V,E) with | V |= n has a ((f(n),g(n))-
separator, then there is a strategy for G for the BWR, game that uses space
O(f(n) + g(n)).

Proof Deferred to Appendix.

Theorem 4.5 A family of graphs, closed under subgraphs, has o(n) sepa-
rators iff for each graph in the family, there is a strategy for the BWR game
that uses o(n) space.

Proof Immediate from Proposition 4.2, Lemma 4.3 and Lemma 4.4.

It is mentioned in [22] that the existence of sublinear separators for multi-
pushdown graphs implies that nondeterministic space is more powerful than
nondeterministic time. 2-pushdown graphs are planar and these have sub-
linear(in fact, O(y/n)) separators [18]. The question of existence of sublinear
separators for 3-pushdown graphs is equivalent to the question for general
r-pushdown graphs, by a result of Kannan [16]. The question is still open,
the most recent attack on it being the [9] paper in which they prove nearly
linear lower bounds on the sizes of separators of certain pushdown graphs.
It might have been hoped that a weaker hypothesis than the existence of
sublinear separators for multi-pushdown graphs would imply the separation
of nondeterministic time and nondeterministic space. Theorems 4.1 and 4.5
show that proof techniques analogous to those of [12] need the hypothesis of
existence of sublinear separators to work in the nondeterministic domain.

5 Separators and Simulation

In the previous section,we saw that the existence of sublinear separators for
multi-pushdown graphs implies that nondeterministic time is distinct from
nondeterministic space. In this section, we prove that it implies something
stronger - that NTIM E(t) is strictly contained in ¥4 — TIM E(t), for con-

10



structible . Thus, by the remarks at the end of the previous section, any
“simulation” proof analogous to that of [12] showing nondeterministic time
is distinct from nondeterministic space would also show that nondetermin-
istic time is distinct from Y4-time.

Our proof technique is similar to that of [10] and [24]. We simulate a compu-
tation of a nondeterministic machine by one of a ¥4 machine. The existence
of sublinear separators in the computation graph enables us to break up
the computation into a number of independent subcomputations, each of
which takes time asymptotically less than the time required for the entire
computation. Since each of these subcomputations can be performed in par-
allel, the X4 machine can save time over the nondeterministic machine. The
hypothesis of existence of sublinear separators is essential here, since if we
had only sublinear segregators as in [24], the subcomputations would not be
independent and we cannot ensure that the various guesses we make in the
simulation are consistent.

Let us assume, without loss of generality, that g(n) > f(n) and g(n) > /n
for all n.

Theorem 5.1 If the class of multi-pushdown graphs has (f(n), g(n))-separators,
then NTIME(t) C ¥4y — TIME(t'/3¢(t?/3)), for time-constructible ¢.

Proof Deferred to Appendix.
Proposition 5.2([25]) For any k, ¥ — TIME(t) Z Il — TIME(o(t)).

Corollary 5.3 If the class of pushdown graphs has sublinear separators,
for all t, NTIME(t) # ¥4 — TIME(t)

Proof By Theorem 5.1, under the given hypothesis, NTIME(t) C ¥4 —
TIME(o(t)). Assume, contrary to the statement of the corollary, that
NTIME(t) = $4 — TIME(t). Then £y — TIME(t) = £4 — TIME(o(t)).
Hence, also Iy — TIME(t) = Iy — TIME(o(t)). But NTIME(t) C
11, — TIME(t), which implies $4 — TIME(t) C Il; — TIME(o(t)), a con-
tradiction to Proposition 5.2.

11
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6 Appendix

Proof of Lemma 4.3 Consider a strategy for the pebble game on G that
uses space f(n). Since atmost one pebble is placed on a vertex of the graph
in any move, there is some stage after which exactly n/2 vertices have been
pebbled black. Let A be the set of vertices pebbled black at this stage, B
the set of vertices on which no pebbles have been placed and C the set of
vertices pebbled red or white. We claim that C is a f(n)-separator for G.
Clearly, | A|< 2n/3, | B |<2n/3 and | C |= f(n). Also, there are no edges
joining a vertex in A to a vertex in B since all the immediate successors
and predecessors of a vertex pebbled black must be pebbled (an easy con-
sequence of the rules of the BWR game).

Proof of Lemma 4.4 Let S be an (f(n),g(n)) separator of G. We show
that there is a strategy for the BWR game on G that uses space O(f(n) +

g(n)).

The strategy is as follows: First place white pebbles on all the vertices
of S. Place white pebbles on all the immediate predecessors of vertices in
S. Replace all the white pebbles placed on vertices in S with red pebbles.
Then pebble each component of G — S, in some order. Since the vertices in
any component of G— S have their neighbours either in S or the component,
all the vertices in the component can be pebbled black using atmost g(n)
pebbles. When all the vertices in G — S have been pebbled, replace the red
pebbles on vertices in S with black pebbles, thus completing the pebbling
of G. The space used by the strategy is upper bounded by df(n) + g(n),
where d is the maximum degree of a vertex in S. Since we are considering

bounded-degree graphs, this is O(f(n) + g(n)).

Proof of Theorem 4.1 Let L be a language in NTIME(t(n)) and M
a block-respecting nondeterministic Turing machine with block size t(n)?/3
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accepting it. We show how to simulate M by a nondeterministic space-
bounded Turing machine M, under the given hypothesis.

Fix an input z of length n and let ¢ = #(n). Given this input, M  first guesses
a computation graph G of size t1/3 corresponding to a block-respecting com-
putation of M on z. This can be done in space t2/3. Then M  simulates
an optimal strategy (i.e a strategy using f(¢t'/3) space) for the BWR game
on the graph G. Note that, since there are atmost 4/ (#'7%) possible con-
figurations of pebbles on G, the next move in an optimal strategy can be
computed in deterministic space t2/3 by an application of Savitch’s theorem

as in [12].

Corresponding to a move in an optimal strategy for the BWR game on G,
M’ acts as follows - When a white pebble is placed on a vertex i of the graph,
M’ guesses and stores the ending configurations of all blocks associated with
1, i.e it guesses the state, tape head positions and block inscriptions at the
end of the time interval 7. If i is the last vertex of the graph and M’ guesses
that M rejects, then M’ rejects. Since the size of each block is t2/% and the
number of blocks associated with a vertex is bounded above by a constant
(the number of tapes of M), the additional space used is O(t%/3).

When a white pebble on a vertex ¢ is replaced by a red pebble, M " ver-
ifies its guesses for that vertex by running M during time interval i. A red
pebble can be placed on a vertex only when all immediate predecessors have
white pebbles on them, so M’ knows the inscriptions of all associated blocks
as well as the state and tape head positions at the beginning of time interval
i. M’ checks if the configurations it has guessed for i can be accessed in
exactly t2/3 steps. If this check fails, it rejects. The space required for the
entire procedure is O(t%/3) since this is the total size of configurations at
any point of tiem in the check.

When a red pebble on a vertex 7 is replaced with a black pebble, M’ simply
deletes all information associated with that vertex.

At the end of the simulation of the BWR game, when all vertices have
been pebbled black, M accepts. The amount of space required by M’ is
O(f(t'/3t%/3) since there can be atmost f('/3) red or white pebbles on G
at any time and each pebble costs space t2/3. The space used for computing
the next move in an optimal strategy or simulating M is specific to each
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move and can be reused. We now need to prove that M accepts z if and
only if M " does.

The ’only if’ part is easy. If there is some accepting computation of M
on z, M accepts by guessing the computation graph for this computation
correctly and guessing each configuration in this computation correctly. In
this case, all checks go through and, by the assumption of a “good” strategy
on the computation graph, M " accepts while using the stated amount of
space.

We shall only give a sketch of the proof for the ‘if’ part. The idea is that
M’ only accepts if all its guesses are ‘consistent’, in some sense. Note that
there is exactly one set of guesses of configurations made for each vertex
in the computation graph- we need to prove that, if M " accepts, there is a
computation of M in which each of these configurations actually occurs at
the specified times. Since every vertex has a red pebble placed on it at some
stage, consistency within a time interval(local consistency) is guaranteed.
Global consistency is guaranteed by the consistency of all local checks and
the correctness of the computation graph, which is verified implicitly during
each local consistency check. The key point is that each local consistency
check involves only a vertex and its immediate predessors. Therefore, once
all the immediate successors of a vertex have been checked, the information
associated with that vertex need no longer be stored, since it will not be
accessed in further checks. This enables us to save on the space used.

Proof of Theorem 5.1 Let L be a language in NTIME(t). Let M be a
block-respecting nondeterministic machine that accepts L and operates in
time ¢ and block size t'/3. We shall construct a ¥4 machine M’ that accepts
L in time ¢t'/3¢(t?/3). On an input z of length n, M first computes ¢(n),
a(n) = t(n)?/3, b(n) = t(n)"/? and e(n) = g(t(n)*?). It then proceeds as
follows.

Phase 1(existential): M ' guesses the computation graph G of a computation
of M on z. It does this implicitly by guessing the tape head movement at the
end of each time interval. It then guesses a (f(n), g(n))-separator C of the
computation graph. It also guesses the components of the graph formed by
removing the separator from the computation graph (these guesses are veri-
fied in Phase 2.1). It then guesses the starting and ending configurations of
each block associated with the time segments corresponding to the guessed
separator vertices. For each vertex, it verifies that there is a computation
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leading from the starting to the final configuration by simulating M. It also
guesses the starting and ending configurations of the blocks associated with
the last vertex of the computation graph and verifies that they are consis-
tent. It also verifies that the ending configuration associated with the last
vertex is an accepting configuration of M. If any of the above verifications
fails, it rejects. It proceeds to Phase 2.1.

Phase 2.1(universal): M’ checks that the size of the guessed separator C
is atmost f(n) and the size of each guessed component of G — C' is atmost
g(n). It universally guesses a vertex of G and verifies that it belongs either
to C or to exactly one guessed component. It universally guesses an edge
of G and verifies that either its endpoints belong to the same component or
one of the endpoints is in S. It proceeds to Phase 2.2.

Phase 2.2(universal): M  universally guesses the index of a component of
G — C'. Tt then proceeds to Phase 3.

Phase 3(existential): M ' guesses the starting and ending configurations of
blocks associated with the vertices in the component whose index has been
guessed in Phase 2.2. It checks consistency within blocks. If some check
fails, it rejects. Otherwise, it proceeds to Phase 4.

Phase 4(universal): M universally guesses a vertex in the component guessed
in Phase 2.2. It checks that the guesses for the vertex in Phase 3 are con-
sistent with the guesses for its immediate predecessors by comparing the
starting configurations of the vertex with the ending configurations of its
immediate predecessors. If all the checks succeed, it accepts, otherwise it
rejects.
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