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Abstract

A parameterized problem is called fized parameter tractable if it admits a
solving algorithm whose running time on input instance (I, k) is f(k)-|I|%,
where f is an arbitrary function depending only on k. Typically, f is some
exponential function, e.g., f(k) = c* for some constant c¢. We describe
general techniques to obtain then growth of the form f(k) = VF for a
large variety of planar graph problems. The key to this type of algorithm
is what we call the “Layerwise Separation Property” of a planar graph
problem. Problems having this property include PLANAR VERTEX COVER,
PLANAR INDEPENDENT SET, or PLANAR DOMINATING SET. Extensions of
our speed-up technique to basically all fixed parameter tractable planar
graph problems are also exhibited.

Moreover, on our way to design fixed parameter algorithms with sub-
linear exponents, we derive some theoretical results relating, e.g. the dom-
ination number or the vertex cover number, with the treewidth of a plane
graph.

Keywords: Planar graph problems, fixed parameter tractability, parameterized
complexity, tree decomposition, graph separators.

1 Introduction
While many problems of practical interest tend to be intractable from a standard

complexity-theoretic point of view, in many cases such problems have natural
“structural” parameters, and practically relevant instances are often associated
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with “small” values of these parameters. The notion of fixed parameter tractabil-
ity [14] tries to capture this intuition. This is done by taking into account solving
algorithms that are exponential with respect to the parameter, but otherwise
have polynomial time complexity. That is, on input instance (I, k) one terms a
(parameterized) problem fized parameter tractable if it allows for a solving algo-
rithm running in time f(k)n®®), where f is an arbitrary function only depending
on k and n = |I|. The associated complexity class is called FPT. As fixed param-
eter tractability explicitly allows for exponential time complexity concerning the
parameter, the pressing challenge is to keep the related “combinatorial explosion”
as small as possible. In this paper, we provide a general framework for NP-hard
planar graph problems that allows us to go from typically time c*n°®) algorithms
to time ¢V*¥n%M algorithms (subsequently briefly denoted by “cY*-algorithms”),
meaning an exponential speed-up.! The main contributions of our work, thus,
are

to provide new results and a “structural breakthrough” for the parameter-
ized complexity of a large class of problems,

to parallel and complement results for the approximability of planar graph
problems obtained by Baker [6], in this way,

to methodize and extend previous work on concrete graph problems [1], and

to systematically take care of the bases occurring in the (exponential terms
of the) running times.

Fixed parameter tractability. Many hard computational problems have the
general form: given an object I and a positive integer &k, does I have some prop-
erty that depends on k7 For instance, the NP-complete VERTEX COVER problem
is: given an undirected graph G = (V, E) and k, does G have a vertex cover of
size at most k7 In parameterized complexity theory, this positive integer £ is
called the parameter. In many applications, the parameter k£ can be considered
to be “small” in comparison with the size |I| of the given object I. The basic
observation of parameterized complexity is that for many hard problems, the
seemingly inherent “combinatorial explosion” really can be restricted to a “small
part” of the input, the parameter. For instance, VERTEX COVER allows for an
algorithm with running time O(1.3* +kn) [11, 25]. To put it in more complexity-
theoretic terms, consider the class of parameterized problems that can be solved
in deterministic time f(k)n°®"), called FPT. The complexity class FPT is the
set of fized parameter tractable problems. Note that in the definition of FPT the

! Actually, whenever we can construct a so-called problem kernel of polynomial size in poly-
nomial time (which is often the case for parameterized problems), then we can replace the term
VhpO1) by VEROW) 4 nO(),



function f(k) may take unreasonably large values, e.g.,

Thus, showing that a problem is a member of the class FPT does not necessarily
bring along an efficient algorithm (not even for small k). Hence, the question
naturally arises how “small” we can make the function f(k) (see [4]). One direc-
tion in current research on parameterized complexity is to investigate problems
with fixed parameter algorithms of running time ¢#n®®Y and to try to get the
constant c¢ as small as possible. Getting small constant bases in the exponential
factor f(k) is also our concern, but, even more importantly, our primary focus
is on investigations to get functions f (asymptotically) growing as slowly as pos-
sible. Doing so, we provide a general framework for a broad class of problems,
namely planar graph problems. We indicate necessary conditions for planar graph
problems that imply FPT-algorithms with running time ¢V*¥nOW) for constant c.
Moreover, we discuss an extension of our technique which applies to basically all
fixed parameter tractable graph problems.

Planar graph problems. Planar graphs build a natural and practically impor-
tant graph class. Many problems that are NP-complete for general graphs (such
as VERTEX COVER and DOMINATING SET) remain so when restricted to planar
graphs. Whereas many NP-complete graph problems are hard to approximate in
general graphs, Baker, in her well-known work [6], showed that many of them pos-
sess a polynomial time approximation scheme for planar graphs. That is, there
is a polynomial time approximation algorithm with approximation factor 1 + e,
where € is a constant arbitrarily close to 0. However, the degree of the polyno-
mial grows with the quality of the approximation, i.e., with 1/e. Hence, applying
the approximation scheme does not necessarily lead to practical solutions. Al-
ternatively, finding an “efficient” exact solution in “reasonable exponential time”
is an interesting and promising research challenge. In particular, many graph
problems seemingly fixed parameter intractable for general graph classes become
fixed parameter tractable for planar graphs (cf. [14]).

Previous work and methodology. In recent work, algorithms were presented
that constructively produce a solution for PLANAR DOMINATING SET and related
problems in time ¢V*n [1, 2]. To obtain these results, it was proven that the
treewidth of a planar graph with a dominating set of size k is bounded by O(v/k)
and that a corresponding tree decomposition can be found in time O(vkn).
Building on that problem-specific work with its rather tailor-made approach for
dominating sets, here we take a much broader perspective. This comes to light
by the following two main points. First, by introducing the so-called “Layerwise
Separation Property” we provide an abstract, problem-independent tool for a
fairly general design technique for c‘/’E—algorithms. Second, based on this key
notion we give two main ways how to finally obtain these algorithms, one based

3



on tree decompositions and the other one based on a bounded outerplanarity
approach. Both these approaches do have their pros and cons, which will be
discussed later on. (Please refer to Section 2 for a schematic picture of our
methodology.) Note that, even though algorithms based on tree decompositions
are widely considered to be impractical, because finding a tree decomposition, in
general, is much too time-consuming, our approaches seem to provide first results
where such decompositions of small width can be computed relatively quickly,
hence, yielding efficient algorithms. The advantage of both approaches from a
practioner’s point of view clearly is that, since the algorithms developed here can
be stated in a very general framework, only small parts have to be changed to
adapt them to the concrete problem. In this sense, our work differs strongly from
research directions, where running times of algorithms are improved in a very
problem-specific manner (e.g., by extremely sophisticated case-distinctions as in
the case of VERTEX COVER for general graphs). For example, once one can show
that a problem has the so-called “Layerwise Separation Property,” one can run
a general algorithm which quickly computes a tree decomposition of guaranteed
small width (independent of the concrete problem). In summary, the heart of
our approach can roughly be sketched as follows: If...

1. ...one can show that a graph problem carries some nice properties (e.g., the
Layerwise Separation Property) and

2. ...one can determine some corresponding “problem-parameters” for these
properties (e.g., the width and the size-factor of the Layerwise Separation
Property).

Then, one gets an algorithm of running time O(c‘/EnO(l)), where we give con-
crete formulas on how to evaluate the constant ¢ as a function of these problem-
parameters.

Results. The main contribution of this work is to provide a general methodology
for the design of c‘/E-algorithms. A key to this is the notion of select&verify
graph problems and the introduction of the Layerwise Separation Property (see
Section 4) of such problems in connection with the concept of linear problem
kernels (see Subsection 3.1). With these fundamental notions, we can derive our
results. We show that problems that have the Layerwise Separation Property
and admit either a tree decomposition based algorithm (cf., e.g., [28, 29]) or
admit an algorithm based on bounded outerplanarity (cf. [6]), can be solved in
time ¢V*n°1). For instance, these include PLANAR VERTEX COVER, PLANAR
INDEPENDENT SET, PLANAR DOMINATING SET, or PLANAR EDGE DOMINATION
and also variations of these, such as their weighted versions. Moreover, we give
explicit formulas to determine the base ¢ of the exponential term with respect to
the problem specific parameters. For PLANAR VERTEX COVER, e.g., we obtain a
time O(24V%n) ~ 0(122V*) algorithm. The methods can be generalized in a way



that basically all FPT-problems that admit tree-decomposition based algorithms
can be attacked with our approach. A library containing implementations of
various algorithms sketched in this paper is currently under development. It uses
the LEDA package [23] for efficient data types and (graph) algorithms and the
results obtained so far are encouraging.

Structure of the paper. In the next section, we sketch the overall structure of
our methodology and point out how different parts fit together. Thus, in a sense,
the figure provided there can also be seen as a road map of the whole paper. In
Section 3, some fundamental, old and new definitions for our methods are pro-
vided. Our approach consists of two main phases. In Section 4, we describe the
first phase, which deals with layerwise separation. In Section 5, then we give (dy-
namic programming) algorithms for layerwisely separated graphs. In Section 6,
we describe further extensions and implications of our approach, deviating from
the “c‘/E—Viewpoint.” Finally, in Section 7, we compare and evaluate the different
strategies offered by our methodology and discuss prospects for future research.

2 Outline and overview

The approach of this paper is based on the so-called layer-model of a planar graph
as introduced in Subsection 3.2. Using this model, one proceeds in two phases.

In a first phase, one separates the graph in a particular way (“layerwise”).
The key property of a graph problem to allow such an approach will be the so-
called “Layerwise Separation Property.” The details herefore are presented in
Section 4. It will be shown that such a property holds for quite a large class
of graph problems including those which admit a linear problem kernel. This
property assures that the planar graph can be separated nicely.

In a second phase, the problem is solved on the layerwisely separated graph.
We present two independent ways to achieve this in Section 5. Either, using the
separators to set up a tree decomposition of width O(\/E) and solving the problem
using this tree decomposition; or using a combination of a trivial approach on
the separators and some algorithms working on graphs of bounded outerplanarity
(see [6]) for the partitioned rest graphs. Figure 1 gives a general overview of our
methodology presented in the following two sections.

As noted before, in the second phase (Section 5) we will describe two inde-
pendent ways to solve the underlying graph problem on the layerwisely separated
graph. Both the tree decomposition as well as the bounded outerplanarity ap-
proach do have their pros and cons, which is why we present both of them. As
to the tree decomposition approach, its advantage is its greater generality (up
to the tree decomposition it is the same for all graph problems). In particular,
it is definitely easier to implement in practice, also due to its universality and
mathematical elegance. We also like to mention in passing that our approach to
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Figure 1: Road map of our methodology for planar graph problems.

tree decompositions results in a really practicable method, which usually is not
to be expected when talking about algorithms using tree decompositions.

By way of contrast, as to the bounded outerplanarity approach, in some cases
we obtain better (theoretical worst case) time complexity bounds for our al-
gorithms in comparison with the tree decomposition approach. Moreover, the
space consumption is significantly smaller, because the tree decomposition ap-
proach works in its dynamic programming part with possibly large tables. To
achieve this, however, we need more complicated formalism and more constraints
concerning the underlying graph problems.

3 Basic definitions and preliminaries

We start with some basic notation used throughout the paper. We assume famil-
iarity with elementary concepts of algorithms, complexity, and graph theory. We
consider undirected graphs G = (V, E), V denoting the vertex set and E denoting
the edge set. For clarity, sometimes we refer to V' by V(G). Let G[D] denote the
subgraph induced by a vertex set D C V. We only consider simple (no double
edges) graphs without self-loops. We study planar graphs, i.e., graphs that can
be drawn in the plane without edge crossings. Let (G, ¢) denote a plane graph,
i.e., a planar graph G together with an embedding ¢. A face of a plane graph is
any topologically connected region surrounded by edges of the plane graph. The
one unbounded face of a plane graph is called the exterior face.

A parameterized graph problem is a language consisting of tuples (G, k), where



G is a graph and k is an integer. A parameterized graph problem on planar graphs
is a parameterized graph problem, where the graph G of an instance (G, k) is
assumed to be a planar graph.? Among others, we study the following “graph
numbers”:

e A wertex cover C of a graph G is a set of vertices such that every edge
of G has at least one endpoint in C; the size of a vertex cover set with a
minimum number of vertices is denoted by ve(G).

e An independent set of a graph G is a set of pairwise nonadjacent vertices;
the size of an independent set with a maximum number of vertices is denoted

by is(G).

e A dominating set D of a graph G is a set of vertices such that each of
the rest of the vertices in G has at least one neighbor in D; the size of a
dominating set with a minimum number of vertices is denoted by ds(G).

The corresponding problems are denoted by (PLANAR) VERTEX COVER, (PLA-
NAR) INDEPENDENT SET, and (PLANAR) DOMINATING SET.

3.1 Linear problem kernels

Reduction to problem kernel is a core technique for the development of fixed
parameter algorithms. In a sense, the idea behind is to cut off the “easy parts” of
a given problem instance such that only the “hard kernel” of the problem remains
where, then, e.g., exhaustive search can be applied (with reduced costs). To get
a problem kernel as small as possible is, therefore, a central goal from a practical
as well as from a theoretical point of view.

More formally, reduction to problem kernel here is defined as follows.

Definition 1 Let £ be a parameterized problem, i.e., £ consists of pairs (I, k),
where problem instance I has a solution of size k (the parameter).® Reduction
to problem kernel then means to replace problem (7, k) by a “reduced” problem
(I', k") (which we call the problem kernel) such that

K<d-k |I'|<qk)

21f the instances of a parameterized graph problem on planar graphs were of the form
((G, @), k), where ¢ is an embedding of G, we would speak of a parameterized graph problem on
plane graphs. However, in our setting, the planar graph G need not be given with an embedding.

3In this paper, we assume the parameter to be a positive integer, although, in general, it
might also be from an arbitrary language (e.g., being a subgraph).



with constant d,* polynomial ¢, and
(I,k) e Liff (I')K') € L.

Furthermore, we require that the reduction from (I,k) to (I, k') (that we call
kernelization) is computable in time Tk (|I|, k) which is polynomial.®

Clearly, concerning the development of efficient algorithms, it is highly desir-
able to have a fast reduction algorithm as well as a small size of the problem
kernel I'. Usually, having constructed a size k°() problem kernel in time n%W,
one can improve the time complexity f(k)n®® of a fixed parameter algorithm
to f(k)k®®) 4+ n9W). Subsequently, our focus is on decreasing f(k), and we do
not always refer to this simple fact. Often (cf. the subsequent example VERTEX
COVER), the best one can hope for the problem kernel is size linear in k, a so-
called linear problem kernel. For instance, using a theorem of Nemhauser and
Trotter [24], (also cf. [7, 26]), Chen et al. [11] recently derived a problem kernel of
size 2k for VERTEX COVER on general (not necessarily planar) graphs. According
to the current state of knowledge, this is the best one could hope for because a
problem kernel of size (2 —€)k with constant € > 0 would probably imply a factor
2 — e polynomial time approximation algorithm for VERTEX COVER, which would
mean a major breakthrough in approximation algorithms for VERTEX COVER [16].
As regards PLANAR VERTEX COVER, however, a problem kernel as small as 3k /2
might be achievable, since there is a factor 3/2 approximation algorithm for PLA-
NAR VERTEX COVER [7], as well as a polynomial time approximation scheme [6].
As a further example, note that due to the four color theorem for planar graphs
and the corresponding algorithm generating a four coloring [27], it is easy to
show that PLANAR INDEPENDENT SET has a problem kernel of size 4k. If we
are looking for an independent set of size k < n/4, then the four coloring algo-
rithm basically does the job. Otherwise, we know that & > n/4, i.e., n < 4k,
which gives a linear problem kernel.® In general, however, it is a reasonable and
challenging task to try to construct a linear problem kernel. Ongoing work does
this for PLANAR DOMINATING SET and it seems to require a rather complicated
analysis.

4Usually, d < 1. In general, however, it would even be allowed that ¥’ = g(k) for some
arbitrary function g. For our purposes, however, we need that k and k' are linearly related. We
are not aware of a concrete, natural parameterized problem with problem kernel where this is
not the case.

5Again, one could allow for a more general definition here (i.e., allowing even an FPT
reduction algorithm), but this would not fit our approach and we are not aware of a non-
polynomial time problem kernelization.

60f course, to some extent this is kind of cheating, because in fact that means that the
parameter is rather large, contradicting the very basic assumption of parameterized complexity.
Hence, it would be more reasonable to look at the parameterized problem that asks for a

independent set of size n/4 + k in the spirit of “parameterizing above guaranteed values”
(cf. [22]).



Besides the positive effect of reducing the input size significantly by having
small problem kernels, and all the already obvious consequences of that, this
paper gives further justification, in particular, for the importance of linear prob-
lem kernels. The point is that once we have such a problem kernel, e.g., for
PLANAR VERTEX COVER or PLANAR INDEPENDENT SET, it is fairly easy to get
c‘/E—algorithms for these problems based upon the famous planar separator the-
orem [20, 21]. The constant factor in the problem kernel size directly influences
the value of the exponential base and hence, lowering the kernel size means im-
proved efficiency (see [3] for a detailed exposition). We will show alternative,
more efficient ways (without using the planar separator theorem) of how to make
use of linear problem kernels in a generic way in order to obtain c‘/’;—algorithms
for planar graph problems.

3.2 Tree decomposition and layer decomposition of graphs

In this subsection, we briefly want to introduce two sorts of decompositions for
a graph (G, which are a fundamental basis for our approaches. Their use will
become clear later on.

Definition 2 A tree decomposition of a graph G = (V, E) is a pair ({X; | i €
I},T), where X; C V is called a bag and T is a tree with the elements of I as
nodes, such that the following hold:

L. UieI Xi=V;
2. for every edge {u,v} € E, there is an ¢ € I such that {u,v} C X;;

3. for all 7, j, k € I, if j lies on the path between ¢ and &k in 7', then X; N X C

X;.
The width of ({X; |4 € I},T)is max{|X;| | i € I} —1. The treewidth tw(G) of G
is the minimum /¢ such that GG has a tree decomposition of width £.

Details on tree decompositions can be found in [9, 10, 18].

Let G = (V, E) be a planar graph. The vertices of G can be decomposed
according to the level of the “layer” in which they appear in an embedding ¢, see
[1, 6].

Definition 3 Let (G = (V, E), ¢) be a plane graph.

a) The layer decomposition of (G, ¢) is a disjoint partition of the vertex set V'
into sets L1, ..., L,, which are recursively defined as follows:

e [ is the set of vertices on the exterior face of G.

e [; is the set of vertices on the exterior face of G[V — U;;ll L;] for all
1=2,...7T.



We will denote the layer decomposition of (G, ¢) by L(G, @) := (L1, ..., L,).
b) The set L; is called the ith layer of (G, ).

¢) The (uniquely defined) number r of different layers is called the outerpla-
narity of (G, ¢), denoted by out(G, ¢) := r.

d) We define out(G) to be the smallest outerplanarity possible among all plane
embeddings, i.e., minimizing over all plane embeddings ¢ of G' we set

out(Q) = m(gn out(G, ¢).

Due to technical reasons, for a layer-decomposition £(G, ¢) := (L1,...,L,), we
set L; := () for all indices 7 < 1 and 7 > r.

Computing the layers of a plane graph can be done efficiently. For a detailed
description of the algorithm see [2, Section 2.3]:

Proposition 4 Let (G = (V, E), ¢) be a plane graph. The layer decomposition
L(G,¢) = (Lq,...,L,) can be computed in time O(|V).

3.3 Algorithms based on separators in graphs

One of the most useful algorithmic techniques for solving computational problems
is divide and conquer. To apply this method to planar graphs, we need graph
separators and related notions.

To simplify notation, we use the notion A+ B for the disjoint union of two
sets A and B. Graph separators are defined as follows.

Definition 5 Let G = (V, F) be an undirected graph. A separator S CV of G
partitions V into two sets A; and A, such that

e V=A,+5+ A, and
e 1o edge joins vertices in A; and Aj.

The triple (A, S, Ay) is called a separation of G, and the graphs G[A4;] are called
the graph chunks of the separation. Given a separation (A;, S, Ay), we use the
shorthands dA4; := A; + S fori =1, 2.

In general, of course, A;, A, and S will be non-empty. In order to cover boundary
cases in some considerations below, we did not put this into the separator defini-
tion. In particular, we will also consider u-v-separators with u,v € V', where we
demand that such a separator cuts every path from u to v in G.

Already Lipton and Tarjan [20, 21] used their famous separator theorem in or-
der to design algorithms with running time of O(cY™) for certain planar graph
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problems, e.g., for glueable graph problems (for a formal definition see [3]). This
naturally implies that, in the case of parameterized planar graph problems for
which a linear kernel is known, algorithms with running time

O(cV* + Tx(n, k))

can be derived, where T (n, k) is the time to construct the problem kernel of an
n-vertex input graph. As worked out in [3], it is possible to get an

0(21.97\/%/(1_%) + TK (TL, k))

algorithm for glueable planar graph problems with problem kernel of size dk,
where € € (0,1/3) can be chosen freely.” Unfortunately, the derived upper bound
on the running time is only valid if & > (1.97)?/(de?). This means that, for
“small” parameter values—as usually supposed for fixed parameter algorithms—,
the involved constants in this algorithm get very bad. Even if we can assume
e = 0 (this is feasible due to the nice properties of VERTEX COVER) we obtain an
exponential growth of ¢V* with ¢ = 21972 & 37181 for PLANAR VERTEX COVER,
where d = 2 is known from [11, 24]. As worked out in [3], we can obtain divide
and conquer algorithms with an exponential growth of 8564VF by using separator
theorems in a more clever way.

We will see algorithms with much better constants in this paper. For example,
in the case of PLANAR VERTEX COVER, we obtain an algorithm with an expo-
nential growth of 24V3k ~y 122V In addition, the advantages of the approach
pursued in this paper also lies in weaker assumptions. Thus, in some cases we
may drop requirements such as linear problem kernels by replacing it with the
so-called “Layerwise Separation Property,” a seemingly less restrictive demand.

4 Phase 1: Layerwise separation

In this section, we will exploit the layer-structure of a plane graph in order to
gain a “nice” separation of the graph. It is important that a “yes”-instance (G, k)
(where G is a plane graph) of the graph problem G admits a so-called “layerwise
separation” of small size. By this, we mean, roughly speaking, a separation of
the plane graph G (i.e., a collection of separators for G), such that each separator
is contained in the union of constantly many subsequent layers (see conditions 1
and 2 of the following definition). For (fixed parameter) algorithmic purposes, it
will be important that the corresponding separators are “small” (see condition 3
of the definition).

"The constants 1.97 and 2/3 appearing in the exponent of the running time result from the
best known 4/--separator theorem due to Djidjev and Venkatesan [13].
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Definition 6 Let (G = (V,E),$) be a plane graph of outerplanarity r :=
out(G, ¢), and let L(G,¢) = (L1,...,L,) be its layer decomposition. A lay-
erwise separation of width w and size s of (G, ¢) is a sequence (Si,...,S;) of
subsets of V, with the property that, fori =1,... 738

1. G C |t p

=i 7

2. S; separates layers L; 1 and L;,,,

3. Z;:l |S]‘ S S.

The crucial property that makes the algorithms developed in this paper work is
what we call the “Layerwise Separation Property.”

Definition 7 A parameterized problem G for planar graphs is said to have the
Layerwise Separation Property of width w and size-factor d if for each (G, k) € G
and every planar embedding ¢ of G, the plane graph (G, ¢) admits a layerwise
separation of width w and size dk.

4.1 How can layerwise separations be obtained?

The Layerwise Separation Property can be shown directly for many parameterized
graph problems.

Example 8 1. As an example, consider PLANAR VERTEX COVER. Here, we
get constants w = 2 and d = 2. In fact, for (G, k) € VERTEX COVER (and
any planar embedding ¢ of G) with a “witnessing” vertex cover V' of size k,
the sets S; := (L; U Liy1) NV’ form a layerwise separation, given the layer
decomposition L(G, ¢) = (L1,...,L,).

2. In [1], the non-trivial fact is proved that for PLANAR DOMINATING SET,
this property holds, yielding constants w = 3 and d = 51.°

A large class of parameterized graph problems for which the layerwise separa-
tion property holds is given whenever there exists a reduction to a linear problem
kernel.

Lemma 9 Let G be a parameterized problem for planar graphs that admits a
problem kernel of size dk. Then, the parameterized problem G', consisting of all
corresponding problem kernels, has the Layerwise Separation Property of width 1
and size-factor d.

8By default, we let S; := ) for all i < 1 and i > r.

9Note that in the case of PLANAR DOMINATING SET a construction of this form (i.e., obtaining
the separators S; by intersecting a “witnessing” dominating set V' of G with a sequence of
subsequent layers, e.g, S; := (L;—1 U L; U Lj11) N'V'), does not fulfill the conditions of a
layerwise separation, since, in general, S; need not be a separator.
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Proof. Let (G',k') € G' with k' < dk be the problem kernel of (G,k) € G,
and let L(G',¢') = (L}, ..., L) be the layer decomposition of (G', ¢') (where ¢’
is any embedding). Let 7' = out(G’,¢'). Observe that r’ < % since each layer
has to consist of at least 3 vertices. Then, clearly, the sequence S; := L] for
i=1,...,r" is a layerwise separation of width 1 and size dk of (G', ¢'). O

Example 10 1. With Lemma 9 and the size 2k problem kernel for VERTEX
COVER (see Subsection 3.1), we derive that PLANAR VERTEX COVER has
the Layerwise Separation Property of width 1 and size-factor 2 (which is
even better than what was shown in Example 8).

2. Using the 4k problem kernel for PLANAR INDEPENDENT SET, we see that
this problem has the Layerwise Separation Property of width 1 and size-
factor 4 on the set of reduced instances.

3. Since we are (not yet) aware of a linear problem kernel for the PLANAR
DOMINATING SET problem, there seems, at the current state of research,
to be not yet a way of proving the Layerwise Separation Property for this
problem simply by using the Lemma 9. Instead, we still rely on a direct
proof as mentioned in Example 8.

4.2 What are layerwise separations good for?

The idea of the following is that, from a layerwise separation of small size (say
bounded by O(k)), we are able to choose a set of separators such that their size
is bounded by O(\/E) and—at the same time—the subgraphs into which these
separators cut the original graph have outerplanarity bounded by O(\/%) In
order to formalize such a choice of separators from a layerwise separation, we
give the following definition.

Definition 11 Let (G = (V, E), ¢) be a plane graph with layer decomposition
L(G,¢) = (L1,...,L.). A partial layerwise separation of width w is a sequence
S = (51,...,8;) such that there exist ip =1 < 43 < ... < iy < r = igy1 such
that fori =1,...,¢:!°

ij+(w—1)
2. 4;+w <441 (so, the sets in S are pairwise disjoint) and

3. S; separates layers L;, 1 and L;; 1.

10 Again, by default, we set S; := () for i < 1 and i > q.
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The sequence Cs = (Gy, . .. ,G,) with

ij+1+(w—1)

Gi=Gl( |J L)-(SuSin), i=0,....q,
£=1i;

is called the sequence of graph chunks obtained by S.

With this definition at hand, we can state the key result needed to establish the
algorithms that will be presented in Subsection 5.

Proposition 12 Let (G = (V, E), ¢) be a plane graph that admits a layerwise
separation of width w and size dk. Then, for every v € R, , there exists a partial
layerwise separation S() of width w such that

1. maxgesey) | S| < YVdk and
2. out(H) < % +w for each graph chunk H in Cs(y).
Moreover, there is an algorithm with running time O(\/En) which, for a given 1,

e recognizes whether (G, @) admits a layerwise separation of width w and size
dk and, if so, computes S(1);

e computes a partial layerwise separation of width w that fulfills the conditions

above.
Proof. For m = 1,...,w, consider the sequences I,, = (m + jw)wwJ ' and
the corresponding sequences of separators S,, = (S;)ier,,. Note that each Sm
is a sequence of pairwise disjoint separators. Since (Si,...,S,) is a layerwise

separation of size dk, this implies that there exists a 1 < m' < w with

Z|S\<ﬁ (1)

i€l

For a given 1, let s := ¥v/dk. Define S(1) to be the subsequence of S, such
that |S| < s for all S € S(¢), and |S| > s for all S € S,y — S(¢). This
yields condition 1. As to condition 2, suppose that S(v) = (S;;,...,S;,). How
many layers are two separators S;; and S; ., apart? Herefore, note that the
number of separators in S, that appear between S;; and S;,, is (ij41 —%;)/w.
Since all of these separators have size greater than s, their number has to be
bounded by dk/ws see Equation (1). Therefore, we get i;11 — i; < Vdk/v

for all j = 1,...,¢ — 1. Hence, the chunks G[(|J, ”J““Lw L) — (Sij;, U S;;)] have
outerplanarity at most vdk /vy + w.
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The algorithm that computes a partial layerwise separation S proceeds as
follows: For given 1, compute s := v/dk. Then, for j = 1,...,r — w, one
checks whether the graph éj(vs, v;) admits a vs-vi—separator Sj of size at most s.
Here, éj(vs,vt) is the graph G| i;(-w_l) L] with two further vertices v; and v,
and edges from v, to all vertices in L; and from v, to all vertices in L; .
The separator S; can be computed in time O(s - n) using techniques based on
maximum flow (see [17] for details).

Let S = (51,...,5,) be the sequence of all separators of size at most s
found in this manner.'"" Suppose that S; C |J; J;J(_w_l) L, for some indices 1 <
11 < ... < iy < r. Note that, by the arguments given above, no two such

separators can be more than v/dk/vy layers apart. Hence, if there was a jg such
that i;,41 — ¢, > Vdk/v, the algorithms exits and returns “no.” Otherwise, S is
a partial layerwise separation of width w. O

In what follows, the positive real number v of Proposition 12 is also called
trade-off parameter. This is because it allows us to optimize the trade-off between
outerplanarity and separator size.

On the one hand, Proposition 12 will help to construct a tree decomposition of
treewidth tw(G) = O(Vk), assuming that a layerwise separation of some constant
width and size dk exists. Hence, for graph problems fulfilling this assumption and,
moreover, allowing a time o*(%)n, algorithm when the graph is given together with
a tree decomposition, we obtain a solving algorithm with running time ¢*n. This
aspect will be outlined in Subsection 5.1.

On the other hand, similar running times can be achieved for and, moreover,
can be solved in time 7°")n, for planar graphs of bounded outerplanarity. Such
type of problems can be found in [6].

Both approaches will be dealt with in detail in Section 5.

5 Phase 2: Algorithms on layerwisely separated
graphs

After Phase 1, we are left with a set of disjoint (layerwise) separators of size
O(Vk) separating the graph in components, each of which having outerplanarity
bounded by O(vk). We now present two different ways how to obtain, in a second
phase, a c‘/E—algorithm that makes use of this separation. In both cases, there is
the trade-off parameter 1) from Proposition 12 that can be used to optimize the
running time of the resulting algorithms.

U Possibly, the separators S; in S found by the algorithm may differ from the separators in

S(¥).
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5.1 Using tree decompositions

We use the concept of tree decompositions as, e.g., described in [9, 18] (also cf.
Subsection 3.2). We will show how the existence of a layerwise separation of
small size helps to constructively obtain a tree decomposition of small width.
The following result can be found in [19, Table 2, page 550] or [10, Theorem 83|.
The corresponding algorithm is outlined in [2, Theorem 12].

Proposition 13 For a plane graph (G, ¢), we have tw(G) < 3-out(G)—1. Such
a tree decomposition can be found in O(out(G) - n) time.

With this proposition at hand, we can prove our central result in this context.

Theorem 14 Let (G, ¢) be a plane graph that admits a layerwise separation of
width w and size dk. Then, we have tw(G) < 2v6dk + (3w — 1).
Such a tree decomposition can be computed in time O(k3/%n).

Proof. By Proposition 12, for each ¢ € R, there exists a partial layerwise
separation S(¢) = (Si,...,S5,;) of width w with corresponding graph chunks

Csw) = (Go, ... ,Gy), such that maxges(y) S| < ¥V dk and out(G;) < % +w
for all 7 = 0,...,q. The algorithm that constructs a tree decomposition X, is
given as follows:

e Construct a tree decomposition X; of width at most 3 out(G;) — 1 for each
of the graphs G; (using the algorithm from Proposition 13).

e Add S; and S;y; to every bagin &; (1 =0,... ,q).

e Let T; be the tree of A;. Then, successively add an arbitrary connection
between the trees T; and T;,; in order to obtain a tree 7'.

It is easy to show (see [1, Proposition 4]) that the tree 7', together with the
constructed bags, gives a tree decomposition of G. Clearly, its width tw(X,) is
upperbounded by

tw(Xy)

IN

2 max [S|+ max tw(G;)
Se8(¥) i=0,..0 5

2 max [S|+ 3( max out(G;)) — 1
Ses(y)

1=0,...,q

IN

< (20 + 3/Y)Vdk + (3w — 1).
This upper bound is minimized for ¢ = 1/3/2. Therefore, tw(X,) < 2V6dk +
(3w —1). O

By [5, Proposition 4.5], a graph G that has no K} minor has treewidth
bounded by h*?2\/n. In particular, this implies that a planar graph has treewidth
bounded by 11.2y/n. In the case of the existence of linear problem kernels for
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a given graph problem G, this method might be used in order to obtain vk

algorithms. From our results, we can derive upper bounds of the treewidth of
a planar graph in terms of several graph specific numbers. As the reader may
verify, these problem-specific treewidth bounds tend to outperform the numbers
obtainable via [5, Proposition 4.5]. For example, Theorem 14 and Example 8
imply the following inequalities for a planar graph G, relating the treewidth with
the vertex cover and dominating set number:

tw(G@) < 44/3ve(G)+5, and
tw(G) < 64/34ds(G) + 8.

Note that for general graphs, no relation of the form
tw(G) < f(ds(@))

(for some function f) holds; consider, e.g. the clique K, with n vertices, where
tw(K,) =n — 1, but ds(K,) = 1. For VERTEX COVER, only the linear relation

tw(G) < ve(Q)

can be easily shown. This estimate is sharp (which becomes clear by, again,
considering the graph K,,, where vc(K,) =n —1).

In addition, Theorem 14 yields a c‘/’E-algorithm for certain graph problems.

Theorem 15 Let G be a parameterized problem for planar graphs. Suppose that
1. G has the Layerwise Separation Property of width w and size-factor d, and

2. there erists a time o'n algorithm that decides (G, k) € G, if G is given
together with a tree decomposition of width £.

Then, there is an algorithm to decide (G, k) € G in time O(c®*~! - 20(@dVkp)
where 6, (o, d) = 2(log 0)V/6d.

Proof. Given an instance (G, k), in linear time we can compute some planar
embedding ¢ of G (for details see [12]). In time O(v/kn) (see Proposition 12), we
can check whether the plane graph (G, ¢) admits a layerwise separation of width
w and size dk.

If so, the algorithm of Theorem 14 computes a tree decomposition of width
at most 2v/6dk 4 (3w — 1), and we can decide (G, k) € G by using the given tree
decomposition algorithm in time O(g2V8dk+@uw=1)p),

If (G, ¢) does not admit such a layerwise separation, we know that (G, k) ¢ G,
by definition of the Layerwise Separation Property. O
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Example 16 Going back to our running examples, it is well-known that VERTEX
COVER and INDEPENDENT SET admit such a tree decomposition based algorithm
with ¢ = 2 and, in the case of DOMINATING SET, with ¢ = 3.

1. For PLANAR VERTEX COVER, by Example 8.1 we have seen that the Lay-
erwise Separation Property of width 1 and size-factor d = 2 holds. Hence,
Theorem 15 guarantees an O(24V3n) algorithm for this problem.

2. For PLANAR INDEPENDENT SET, we have a linear problem kernel of size 4k,

hence, the Layerwise Separation Property of width 1 and size-factor d = 4
holds, which yields an O(24V®7) algorithm.

3. By Example 8.2 we obtain the result from [1], namely, an O(35V3%n) algo-
rithm for PLANAR DOMINATING SET.

In this subsection, we have seen that, for plane graphs, the notion of the
Layerwise Separation Property gives us a sufficient condition to upperbound the
treewidth of the “yes”-instance graphs of a problem. Moreover, this property
led to fast computations of the corresponding tree decompositions. All in all, we
came up with algorithms of running time O(c‘/’;n) for a wide class of problems.

The next subsection aims to show similar results in a different context.

5.2 Using bounded outerplanarity

We now turn our attention to certain parameterized graph problems for which
we know that a solving algorithm of linear running time on the class of graphs
of bounded outerplanarity exists. This issue was addressed in [6]; several ex-
amples can be found therein. In this subsection, we introduce the so-called
“select&verify” problems and examine how, in this context, the notion of the
Layerwise Separation Property will lead to c‘/E—algorithms. Since this will be a
purely separator based approach, we will restrict ourselves to parameterized graph
problems that can be solved easily on separated graphs. We will introduce the
notion of weakly glueable select&verify problems in a first paragraph and present
the design of c‘/E-algorithms for these problems afterwards (see Paragraph 5.2.2).

5.2.1 Select&verify problems and weak glueability

For the approach outlined in this section, we want to describe necessary prop-
erties for graph problems that allow for separator based algorithms. The key
property will be what we call “weak glueability” for select&verify problems. The
notion of select&verify graph problems as introduced in the next paragraph is
exactly the same as in [3]. There, one also finds the more restrictive concept
of “glueability,” which is a property tailored for divide and conquer algorithms
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using graph separators. In our setting, however, we are interested in an itera-
tive dynamic programming approach for which a weaker form of “glueability” is
sufficient.

Select&verify graph problems

Definition 17 A set G of tuples (G, k), G an undirected graph with vertex set
V ={vy,...,v,} and k a positive real number, is called a selectéverify (graph)
problem if there exists a pair (P, opt) with opt € {min, max}, such that P. is a
function that assigns to G a polynomial time computable function of the form
Pg = P+ Py, where PE: {0,1}" — Ry, P& : {0,1}" — {0, +00}, and

OPtzeqoyn Po(¥) <k if opt = min
(G; k) €eg & { Optfe{o 1 PG( ) k if opt = max.

For Z = (z1,... ,2,) € {0,1}" with Pg(%) < k if opt = min and with Pg(%) > k
if opt = max, the vertex set selected by T and verified by Pg is {v; € V | z; =
1,1 <i<n}. A vector 7 is called admissible if P (Z) = 0.

The intuition behind the term P. = P!+ P is that the “selecting function”
P! counts the size of the selected set of vertices and the “verifying function”
PY¢* verifies whether this choice of vertices is an admissible solution.

It is an easy observation that every select&verify graph problem that addition-
ally admits a problem kernel of size p(k) is solvable in time O (2P®)p(k)+Tx (n, k)).

Example 18 We now give some examples for select&verify problems by speci-
fying the function Pg = P + P¥". In all cases below, the “selecting function”
Pg for a graph G = (V, E) will be

Psel Z ;.
v;eV
Also, we use the convention that 0 - (o00) = 0.
1. In the case of VERTEX COVER, we have opt = min and choose
PE(@) = ) oo-(1—a)(1—ug),
{vi,’l)j}EE

where this sum brings Pg(Z) to infinity whenever there is an uncovered
edge. In addition, Pg(#) < k then guarantees a vertex cover set of size at
most k. Clearly, Pg is polynomial time computable.

2. Similarly, in the case of INDEPENDENT SET, we let opt = max and choose

ver
P E 00 - T * Tj.

{viv; }EE
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3. DOMINATING SET is another example for a select&verify graph problem.
Here, for G = (V, E), we have

PEr@) =) (co-(I—z)- J[ (-=)),

v; €V {vi,v;}EE

where this sum brings Pg(%) to infinity whenever there is a non-dominated
vertex which is not in the selected dominating set. In addition, Pg(Z) < k
then guarantees a dominating set of size at most k.

4. Similar observations as for VERTEX COVER, INDEPENDENT SET, and DOM-
INATING SET do hold for many other graph problems and, in particular,
weighted variants of these.!? As a source of problems, consider the variants
of DOMINATING SET listed in [29]. In particular, the TOTAL DOMINATING
SET problem is defined by

P (@) =) (co- [ (1—ay).

v eV {vi,v;}€E

Moreover, graph problems where a small (or large) edge set is sought for can
often be reformulated into vertex set optimization problems by introducing
an additional artificial vertex on each edge of the original graph. In this
way, the EDGE DOMINATING SET [30] problem can be handled. Similarly,
planar graph problems where a small (or large) face set is looked for are
expressible as select&verify problems of the dual graphs.

We will also need a notion of select&verify problems where the “selecting
function” and the “verifying function” operate on a subgraph of the given graph.

Definition 19 Let P. = P! 4+ PY** be the function of a select&verify problem.
For an n-vertex graph G and subgraphs GV = (V¥er, EVer), G5! = (Vs¢l gl C
G, we let

Pgver (T | G*) 1= PEE (yer () + PSS (mysen (),

where 7y is the projection of the vector Z € {0, 1}™ to the variables corresponding
to the vertices in V.

Weakly glueable graph problems

We are going to solve graph problems, slicing the given graph into small pieces
with the help of small separators. Within these separators, the basic strategy
will be to test all possible assignments of the vertices. The separators will serve
as boundaries between the different graph chunks into which the graph is split.

12In the weighted case, one typically chooses a “selecting function” of the form Pgel =
Zv,-ev a; i, where o is the weight of the vertex v;.
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For each possible assignment of the vertices in the separators, we want to—
independently—solve the corresponding problems on the graph chunks and then
reconstruct a solution for the whole graph by “gluing” together the solutions
for the graph chunks. In order to do so, all additional information necessary
for solving the subproblems correctly has to be transported and coded within the
separators. It turns out that the information to be passed on is pretty clear in the
case of the VERTEX COVER problem, but it is much more involved in the case of
the DOMINATING SET problem and many others. This is the basic motivation for
the formal framework we develop here. We need to assign colors to the separator
vertices in the course of the algorithm. Hence, our algorithm has to be designed
in such a manner that it can also cope with colored graphs, even though the
original problem may have been a problem on non-colored graphs. In general
(e.g., in the case of the DOMINATING SET problem), it is not sufficient to simply
use the two colors 1 (for encoding “in the selected set”) and 0 (for “not in the
selected set”).

Definition 20 Let G = (V, E) be an undirected graph and let Cy, C; be finite,
disjoint sets. A Cy-C-coloring of G is a function x : V — Cy + C; + {#}."* A
Cy-Ci-coloring with Cy = {0} and C; = {1} is called a 0-1-coloring.

For a Cy-C'i-coloring x, the corresponding 0-1-coloring x is given by

o (i ifx(G) e, i=0,1,
X(w) = { # otherwise.

For V' C V, a function x : V! — Cy + C; can naturally be extended to a Cy-C'-
coloring of G by setting x(v) = # for allv € V' \ V'.

Definition 21 For two 0-1-colorings X1, x2 : V — {0,1,#} with x7'({0,1}) N
x5 '({0,1}) = 0, the sum x1 + X is defined by

x1(v) if x1(v) # #,
(x1+x2)(v) = xa2(v) if xa(v) # #,
# otherwise.

Definition 22 Consider an instance (G, k) of a select&verify problem G and a
vector Z € {0,1}" with n = |[V(G)|. Let x be a 0-1-coloring of G. Then, 7 is
consistent with x, written Z ~ v, if

x(vj)=i = x; =4, fori=0,1,j=1,...,n

We now provide the central notion of “weakly glueable” select&verify prob-
lems, a weaker form of the glueability concept as introduced in [3]. We apply this
rather abstract notion to concrete graph problems afterwards.

13The symbol # will be used for the undefined (i.e., not yet defined) color.
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Definition 23 A select&verify problem G given by (P, opt) is weakly glueable
with A colors if there exist

e a color set C := Cy + Cy + {#} with |Cy + Cy| = A, and
e a polynomial time computable function A : (R, U {#o00})® — R, U {Zo0};

and, for every n-vertex graph G = (V, E) and subgraphs G, G'* C G with a
separation (A;, S, Ay) of GV, we find, for each coloring x : S — Cy + C4,

e subgraphs G(A4;, x) of GV with G¥*'[A4;] C G(4;,x) C G¥'[dA;] fori = 1,2,
e subgraphs G(S, x) of G¥** with G(S, x) C G¥*[S]

such that, for each 0-1-coloring p: V' — {0, 1, #} with pu |s= #, we can write

Optiemiﬂ’i}n Pgrer (T | G*) = 0Pby.g_,c, 1.0, M(Evala, (x), Evals(x), Evala, (x)).
(2)
Here, Evalx(-) for X € {41, S, Ay} is of the form

Evalx(x) = Optfe{o,n)Pg(X,X)(f|G[X]ﬂGsel).

T (ptx

Example 24 We give some examples of weakly glueable problems, where —
for the time being—we restrict ourselves to the case where G' = G = G.
The subtlety of allowing different subgraphs GV, G* in the definition above is
due to technical reasons that become clear later. All examples generalize in a
straight-forward way to this case.

1. VERTEX COVER is weakly glueable with A = 2 colors. We use the color
sets C; := {i} for i = 0,1. The function h is h(z,y,2) = x +y + z. The
subgraphs G(X, x) for X € {4, 5, A2} and x : S — Cy+ C are

G(A,x) == GA;Ux '(0)] for i=1,2, and

G(S,x) = GIS].
In this way, the subroutine Evalg(x) checks whether the coloring x yields a
vertex cover on G[S] and the subroutines Evaly, (x) compute the minimum
size vertex cover on (G[A;] under the constraint that all neighbors in A; of

a vertex in x (0) are covered. The reader may verify that—with these
settings— equation (2) is satisfied.

2. INDEPENDENT SET is weakly glueable with 2 colors by a similar argument.
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3. DOMINATING SET is weakly glueable with A = 4 colors. We use the color
sets Cy := {04,,04,,05} and C; := {1}. The semantics of these colors
is as follows. Assigning the color Ox, for X € {A;, S, A}, to vertices in
a separation (Aj, S, As) means that the vertex is not in the dominating
set and will be dominated by a vertex from X. Clearly, 1 means that the
vertex belongs to the dominating set. The function h simply is addition, i.e.,
h(z,y,z) = x + y + 2. When passing the information to the subproblems,
for a given coloring x : S — Cy + C4, we define

G(Ai,x) = GIAUXT({1,04})]
G(S,x) = GIx '({1,0s})].

In this way, Evalg(x) checks whether the assignments of the color 0g are
correct (i.e., whether all vertices assigned 0s are dominated by a vertex
from S). Also, Evaly, returns the size of a minimum dominating set in A,
under the constraint that some vertices in §A; still need to be dominated
(namely, the vertices in x7'(04,)) and some vertices in §A; can already be
assumed to be in the dominating set (namely, the vertices in x~*(1)).

It is not hard to check that—with these settings— equation (2) is satisfied.

4. We want to mention in passing that—besides the problems given here—
many more select&verify problems are weakly glueable. In particular this
is true for the weighted versions and variations of the above mentioned
problems. Note that, e.g., TOTAL DOMINATING SET is an example of a
graph problem where a color set C'; of more than one color is needed.

5.2.2 The algorithm

Similar to Theorem 15, which is based on tree decompositions, we construct a
partial layerwise separation S(v)) with optimally adapted trade-off parameter v
to guarantee an efficient dynamic programming algorithm. However, for our
purposes here, we need to be able to deal with “precolored” graphs.

Definition 25 Let G be a select&verify graph problem defined by (P, opt). The
problem CONSTRAINT G then is to determine, for an n-vertex graph G = (V, E),
two subgraphs G, G**" C G, and a given 0-1-coloring x : V — {0, 1,4}, the
value

Optaefo1yn Pger (f | Gsel).

Trox
Theorem 26 Let G be a selectéverify problem for planar graphs. Suppose that
1. G has the Layerwise Separation Property of width w and size-factor d,

2. G 1s weakly glueable with X\ colors, and
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Figure 2: Dynamic programming on layerwisely separated graph.

3. there exists an algorithm that solves the problem CONSTRAINT G for a given

graph G in time T°"%%)p,

Then, there is an algorithm to decide (G,k) € G in time O(rv - 20ATdVkp)
where Ox(\, 7,d) = 24/2dlog()) log(7).

Proof. Let us first sketch the overall structure of the algorithm.

1. Compute some planar embedding ¢ of (G, and find a “suitable” partial
layerwise separation (S, ..., S,) for the plane graph (G, ¢). A coarse sketch
of the such obtained graph structure is depicted in Figure 2.

2. By using dynamic programming techniques, an optimal solution is found
by sweeping over the graph from left to right, as illustrated in Figure 2.
More detailed, we do the following:

(a) For all possible “colorings” of Sj, find an optimal solution of CON-
STRAINT G on Gy (plus suitably chosen precolored vertices from Si);
store the obtained optima in a (large) table belonging to S.

(b) For j := 2 to ¢ do:

e For all possible “colorings” of S; ; and of S}, find an optimal so-
lution of CONSTRAINT G on Gj_; (plus suitably chosen precolored
vertices from S;_; as well as of S;).

e Store the obtained optima (for the subgraph of G with vertices
from Gy through G;_; and S; through S;) in a table belonging
to Sj.

e (For reasons of space efficiency, you might now forget about the
table belonging to S;_1.)

(c) For all possible “colorings” of S,, find an optimal solution of CON-
STRAINT G on G, (plus suitably chosen precolored vertices from S,);
store the obtained optima in a (large) table belonging to S,.
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(d) From the table pertaining to S,, the desired optimum can now be
found.

We are now giving formal details of the sketched algorithms, thereby proving its
correctness. Suppose G is defined by (P, opt).

Step 1: Given an instance (G, k), in linear time we can compute some planar
embedding ¢ of G (see [12]). Compute a partial layerwise separation S(¢) (¢
will be determined later) for (G, ¢), using Proposition 12 and the assumption 1
(Layerwise Separation Property). Suppose S(¢) = (S,...,S,) and let Cs(y) =
(G, ... ,G,) denote the corresponding graph-chunks cut out by S(¢).
For every separator S;, we get a separation of the form
(Aouh S A(Z )

where A(()ut, and Ai(fl), respectively, are the vertices of the graph chunks of lower or-
der layers, and higher order layers, respectively. By default, we let Sp = Sy41 =0
such that the corresponding separations are (0, Sy, V) and (V, S4+1,0), respec-
tively. The layerwise separation and the separations ( Out, Sis A( )) are illustrated
in Figure 2.

Step 2: Determine the value

oPtzeqo,13 Pa(T)-

This can be done by a dynamic programming approach that makes use of the
weak glueability of G as follows.
We successively compute, for : = 1,... ,¢g + 1, the values

M(Z) (/,L(z)) = Op “(7,) PHver(M(z))(./,U | H el) (3)
for all Cy-Ci-colorings pu : S; — Cy + C,, where
H"(u?) = G(Agl, u¥) and H := G[Aq)].

Note that we have
oPtzeq0,13 Pa(Z) = MO (1),

for the empty map 1 : Sg41 =0 — Co + C1, because H| = G[AYT = GV =

out
G and H)$ (p) = G (since HZ, C HY%\ ().

The computation of M® (1)) as defined in (3) can be done iteratively. To
do so, note that Hy*"(u?) is separated by S; ; in
(B(i—l) Sz'_l B(z—l))

out
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where BE Y = AUV and BV = AU A v(Hyer(u®)). Hence, by definition

out out
of weak glueability we have

M(Z) (/’[’(Z)) = Optu(i_l):sifl—)C(]—l—Cﬁ
h(EvalB(()zl) (u 1), Evalg, , (u 1), Eval 1) (1)), (4)

where
Bvalx (1Y) = vt 5 ) Pooous-n)(@ | GIX] N H). (5)
for X € {Bofltl) Si_ 1)}. Here, recall that ,J(?) denotes the 0-1-coloring

corresponding to ,u(z). In particular, for the different choices of X, we get the
following.

e For X = B' Y equation (5) becomes

out

E"alBg;;) (u7Y) = opt F (D 1 0) Ppyer (-0 (T | H N H

= MED(E), ©)
where the last equation holds, since H®, C H? and since /;(?) = # re-
stricted to G( A ,u( D) = Hyer (uti-1).
Hence, the value of EvalB("‘”(/‘(i_l)) is given by the previous step of the
iteration. o

e For X = S;_4, equation (5) becomes

EV&IS¢-1 (N(iil)) = OpJD ) PG(Sl 1, 1))('r ‘ G[ i— 1])

=)
= Posiyui-n) (@5 | GlSial), (M)
where 7— & € {0,1}" is an arbitrary vector such that a: — ~ plh.

The ﬁrst equation above holds, since G(S;_1, u®=Y) C G[S ] C Hp and
pu® = 4 restricted to G(S;_1, ,u(i_l)). The second equation is true since the

0-1- coloring /N 1) assigns color 0 or color 1 to all vertices in S;_;, and since
G(Si—1, ut™Y) € G[Si-u].

Hence, the value Evalg,_, (1(~Y) can be computed by a simple evaluation

of the function P for the given vector ¥—— g

e For X = Bi(;_l), equation (5) becomes
Eval oo (V) = opt Ppti i) (@ | GBIV n Hp

Pauo -0y (T | Giz1), (8)

Fn(u-D @) * G

= 0Pt Hiam)
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Si1 Si

[L(iil) S = Co+ O M(z) 0S5 = Co+ Cy

Figure 3: The graph G(u®, u0-1).

where G(u®, p@=1) 1= G(AL Y, 1=y G(AY,, D). This graph is illus-
trated in Figure 3. In the evaluation above we used that G [Bi(ﬁ_l)] NH® =
Gi_1 and that G(BY Y, p=1) = G(pu®, p6-D),

Hence, the value EvalBi(:;—l)(/L(i_l)) can be computed using the 7
algorithm for CONSTRAINT G.

out(G) time

Hence, plugging formulas (6), (7), and (8) in expression (4), we obtain

MG (M(ifl))

M(Z) (IU‘(Z)) = Optu(i_l):51—1—>00+01 h PG(Si_l’M(i_l))(flﬁ_\l) | G[Sz_l])

0 t —_— P . i1 j‘ G_l
pz_ﬁwu(i—l)+u(i) G(p®,ul ))( | 7 )

(9)

This evaluation is done successively for all ¢ = 1,... ,¢+ 1. By induction, one
sees that
OPbze 0,1y Pa(T) = M@ (p)

can be computed in this way.

Computation time: For fixed coloring p¥, computing M@ () according to
equation (9) costs time

A|S1’_1‘ . TOUt(G[Si—IUVGi,I UsS;]) )

The first factor reflects the cost of computing the opt over all u0~bY : §;_; —
Cy+Cy. The second factor arises by the evaluations on the graphs G(S;_1, u®=9),
G(u=V, ™) C G[S; UV (G; 1)US;], where we use assumption 3 of the theorem.
Thus, the running time for evaluating M® (u®) for all p® : S; — Cy + O is

bounded by
ASil L )[Sical | pout(GlSi-1UVe,_; USi])
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Hence, the total running time of the algorithm is bounded by 2/¥)n, where

0(v) < 2log(A) max |S;] + log(7) max out(G|[S; U Vi, U Sit1])

geee 9

< 2log\yvVdk + log(T)(%—i-w)

Wk +  log(T)w

=1,...,

log T
(4

This upper bound is minimized for ¢ = /log(7)/2log(\), which gives us the
claimed value 65(), 7,d) = 24/2dlog(\) log(7) and the constant 7 for the running
time. 0

= (2log(MN)y +

It remains to say for which problems there exists a solving algorithm of the
problem CONSTRAINT G for a given graph G in time 7°"(%)n_. Baker [6] presented
several such problems G, however, the algorithms as stated there do not cope with
the constraint version of G. Often, we can adapt them quite easily. In the case
of PLANAR VERTEX COVER, as well as in the case of PLANAR INDEPENDENT
SET, it is quite simple to handle a “precoloring” p : V' — {0, 1,#} for a graph
G = (V,E).

More formally, given an admissible!* coloring 1, one likes to transform an
instance (G, k) to an instance (G, k'), such that (G, k) € G for some witnessing
vector & with & ~ p iff (G', k') € G for some witnessing vector z' (without any
constraint).

For PLANAR VERTEX COVER, this can, e.g., be achieved by the following
transformation:

G' = GV - (CUN(uY(0)))] and
o= k=l ') -H{veV-C|3uepu(0)n N},

here C := p~'({0, 1}) denotes the set of vertices that are already assigned a color.
Herefore, observe that a vertex v € C, which is—by the coloring pu— assigned
not to be in the vertex cover, i.e. u(v) = 0, forces its neighbors to be in a vertex
cover. Hence, the set N(x71(0)) needs to be in any vertex cover (represented
by Z) that fulfills the constraint & ~ p. This justifies the definition of G’. It is
clear that the parameter £ becomes smaller by the number of vertices which are
already assigned to be in the vertex cover, i.e., u=1(1), and the number of vertices
that are forced to be in the vertex cover by u, i.e., by the number of vertices in
V —C that have a neighbor in ;' (0). We can apply the non-constraint algorithm
to (G', k'). Note that, clearly, out(G') < out(G).

A similar observation helps to deal with PLANAR INDEPENDENT SET. How-
ever, it is not clear to us how to transform instances for PLANAR DOMINATING

4Here, admissible means that there exists a vector ¥ € {0,1}" with & ~ u, such that
Pxer(%) = 0.
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SET, such that the non-constraint problem can be solved instead and—at the
same time—the outerplanarity number is maintained.!®

Example 27 1. For PLANAR VERTEX COVER, we have d = 2, w = 1 (see
Example 10.1), A = 2 (see Example 24.1), and 7 = 8 (see the result of
Baker [6] which can be adapted to the constraint case by the considerations
above) and, hence, the approach in Theorem 26 yields an O(Q‘Lmn) time
algorithm.

2. Similarly, for the problem kernel of the PLANAR INDEPENDENT SET prob-
lem, we can set d = 4, w = 1 (see Example 10.2), A = 2 (see Example 24.2),
and 7 = 8 (see [6] and our considerations for the constraint case), hence,
we obtain a time O(2*V%%n) algorithm.

3. As already discussed above, we do not know whether the 8"(%)n time
algorithm in [6] extends to the constraint case for PLANAR DOMINATING
SET.

5.3 Comparing the benefits of the different approaches

Which of the two approaches (presented in Subsections 5.1 and 5.2, respectively)
for the algorithms on layerwisely separated graphs should be preferred? For that
purpose, let us compare the results obtained in Theorems 15 and 26.

Clearly, both results rely on the Layerwise Separation Property. Besides
that, Theorem 15 requires the existence of a linear time algorithm for bounded
treewidth graphs, whereas in Theorem 26 one needs (besides the weak glueabil-
ity assumption) the existence of a linear time algorithm for graphs with bounded
outerplanarity.! The interrelation inbetween these assumptions is given by the
following observation, which is based on Proposition 13.

Lemma 28 Let G be a parameterized problem for planar graphs. Suppose that
there exists a time o‘n algorithm that solves CONSTRAINT G, when graph G is
given together with a tree decomposition of width £. Then, there is an algorithm
that solves CONSTRAINT G in time 7°"(G)p for T = o3.

Proof. Applying the algorithm of Proposition 13 to input instance (G, k), we
obtain a tree decomposition of width at most 3out(G). Then CONSTRAINT G

15Clearly, we can transform G into a graph G’ where we attach to each vertex v € u=1(1)
a degree-1 vertex v’ and, hence, force v to be contained in any optimal dominating set of the
non-constraint case. But it is not clear what gadget is needed to replace vertices v € u~1(0).

16Clearly, for both results, Theorem 15 and Theorem 26, respectively, we do not rely on a
linear time algorithm for bounded treewidth graphs, and graphs with bounded outerplanarity,
respectively. Assuming a polynomial time algorithms is sufficient to get a cﬁ—algorithm. The
results are formulated for linear time algorithm since we always do have linear time algorithms.
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can be solved using this tree decomposition by our assumption. O

With this lemma at hand, we can derive an easy corollary from Theorem 26.

Corollary 29 Let G be a selectéverify problem for planar graphs. Suppose that
1. G has the Layerwise Separation Property of width w and size-factor d,
2. G 1s weakly glueable with A\ colors, and

3. there exists a time o'n algorithm that solves CONSTRAINT G for a graph G,
if G is given together with a tree decomposition of width £.

Then, there is an algorithm to decide (G,k) € G in time O(o3” - 20X odVkp)
where 05(), 0, d) = 2./6dlog()) log(o).

We conclude with comparing the two distinct approaches of Subsections 5.1
and 5.2: The exponential factor of the algorithm in Corollary 29, i.e., 05(A, 0, d), is
related to the corresponding exponent of Theorem 15, i.e., 6; (o, d) in the following

way:
ViogA-0,(0,d) = /logo - 03()\, 0,d).

From this we derive that

e if A > o, the algorithm in Theorem 15 outperforms the result of Corol-
lary 29,

e if A < o, the algorithm in Corollary 29 outperforms the result of Theo-
rem 15.

However, in order to apply Corollary 29, we need the three extra assumptions
that we have a select&verify problem which is weakly glueable and that we can
deal with the problem CONSTRAINT G in the treewidth algorithm.

Example 30 Since the tree decomposition based algorithms for VERTEX COVER,
INDEPENDENT SET, and DOMINATING SET can deal with CONSTRAINT G, we
derive:

1. For PLANAR VERTEX COVER, we have A = ¢ = 2 which yields the same
result as in Example 27.1.

2. Similarly, for PLANAR INDEPENDENT SET the fact that A = o = 2 gives us
the result obtained in Example 27.2.

3. In contrast to our considerations in Example 27.3, by Lemma 28 we con-
clude that CONSTRAINT DOMINATING SET (where d = 51,w = 3 by Ex-
ample 8.2) can be solved in time o®°"(%n with ¢ = 3. As to the constant
A = 4 (see Example 24.3) we remark that—for algorithmic purposes—it
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can be dropped to A = 3 by following argument: Recall the color sets
Cy = {1} and Cy = {04,,0s,04,} and their semantics from Example 24.3.
Instead of evaluating M@ (u®) in the algorithm of Theorem 26 (see Equa-
tion 9) for all u® : S; — Cy + Cy, we use only colorings of the form
p@ Sy — {1,04,,04,}. For each such coloring we “overwrite” the set

C:={ves| ,u(i)(v) € {04,,04,} and Jw € N(v) : u(i)(w) =1}

with the color Og, since the vertices in C are the ones that are already
dominated by vertices in S;. This means that, instead of dealing with the
color set Cy+ C4, we can restrict ourselves to the 3 colors {1,04,,04,}-

All in all, Corollary 29 gives us an 0(36mn) time algorithm for PLANAR
DOMINATING SET.

We give a last remark on the space consumption of the two different ap-
proaches of Theorem 15, and Theorem 26, respectively. The tables that need
to be maintained in order to realize a treewidth based algorithm of Theorem 15
(i.e., the tables corresponding to the bags of the underlying tree decomposition)

have size bounded by
0_2\/@+(3w71)'

In contrast, the analysis of the proof of Theorem 26 gives an upper bound on
the size of the tables for the dynamic programming therein. The upper bound is
given by

log(7)dk
max NSl < AV 21000 |

i=1,...,q -

Since all our examples have the property that ¢ = A, in terms of space consump-
tion, the approach of Theorem 26 clearly outperforms the algorithm in Theo-
rem 15.

6 Further extensions

6.1 Beyond linear kernels

This short section sketches an extension of the methods presented so far.

As already mentioned after Definition 17, every select&verify problem G that
admits a linear problem kernel is solvable in time 2001 Also, the existence
of a linear problem kernel implies the Layerwise Separation Property. Assuming
certain further properties of G, we have seen results, which improve the running
time of a solving algorithm to 20(Vk)p0M).

The techniques can be extended to the case where G admits a problem kernel
of size p(k). We briefly outline how, by a straightforward generalization of our
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methods, the running time for solving G can be sped up from 2°0®*)pOM) (a5

can be obtained trivially) to 20(/P(E)pOM) The key tool for that purpose is the
extension of Proposition 12, which now becomes:

Proposition 31 Let (G = (V, E), ¢) be a plane graph that admits a layerwise
separation of width w and size p(k). Then, for every ¢ € Ry, there exists a
partial layerwise separation S(¢) of width w such that

1. maxges(y) |S| < /p(k) and

2. out(H) < # +w for each graph chunk H in Cs(y).

Moreover, there is an algorithm with running time O(y/p(k)n) which, for a

given 1,

e recognizes whether (G, @) admits a layerwise separation of width w and size
p(k) and, if so, computes S(¢);

e computes a partial layerwise separation of width w that fulfills the conditions
above.

As in Section 5, the above result can be used to show similar results as those
given in Subsection 5.1 (see Theorem 15) and in Subsection 5.2 (see Theorem 26).
Again, one uses the trade-off parameter i) to optimize the running time of the
different approaches. The corresponding results obtained in this manner are the
following.

Theorem 32 Let G be a parameterized problem for planar graphs. Suppose that
1. G admits a problem kernel of size p(k), and

2. there erists a time o'n algorithm that decides (G, k) € G, if G is given
together with a tree decomposition of width £.

Then, there is an algorithm to decide (G, k) € G in time O(o®*~1.201@DVP(k)p),
where 9, (o, d) = 2log(c)V6d.

Theorem 33 Let G be a selectéverify problem for planar graphs. Suppose that
1. G admits a problem kernel of size p(k),
2. G 1s weakly glueable with X\ colors, and

3. there exists an algorithm that solves the problem CONSTRAINT G for a given

graph G in time T°""%)p,
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Then, there is an algorithm to decide (G, k) € G in time O(r® - 22207 IVP(E)p)
where 92 (A, 7,d) = 24/2dlog(A) log(7).

Note that in both theorems it would be sufficient to replace condition 1 by a
modified version of the Layerwise Separation Property:

1°. for every (G, k) € G the graph G has a layerwise separation of width w and
size p(k).

Clearly, using similar arguments as in the proof of Lemma 9, the existence of
a problem kernel of size p(k) implies this condition on the set of all problem
kernels G'.

6.2 Refining FPT

We finish this section with a more philosophical observation concerning the world
of fixed parameter tractability. Since the typical running times we obtain by the
approach of this paper have sublinear exponents in the exponential parts, it might
be challenging to develop a more structural complexity theory yielding more fine
grained subclasses of FPT. Due to [15], a parameterized language L obeys

L e FPT iff L admits a kernelization.

This means that a fine-grained structure can be obtained by either relying on the
asymptotic behavior of the exponential term in the running time or on the size of
the kernels. As complexity classes, we hence propose: This leads to a refinement

FPT(f) := {L CYx N‘ 3 an algorithm to decide (z, k) € L in time } or

g(k) - n*, for some o € Ry and g € O(f)

FPTg(f) == {L CYxN

L admits a reduction to a problem kernel
of size g(k) for some g € O(f)

This issue is discussed more thoroughly in [3].

7 Conclusion

This paper presents new, improved results for the fixed parameter complexity
of planar graph problems. To some extent, this paper can be seen as the “pa-
rameterized complexity counterpart” to what was developed by Baker [6] in the
context of approximation algorithms. We describe two main ways (namely linear
problem kernels and problem-specific approaches) to achieve the novel concept of
Layerwise Separation Property, from which again, two approaches (tree decom-
position and bounded outerplanarity) lead to c‘/’z—algorithms for planar graph
problems (see Figure 1 for an overview). A slight modification of our presented
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techniques can be used to extend our results to parameterized problems that
admit a problem kernel of size p(k) (not necessarily linear!). In this case, the

running time can be sped up from 20@*)p00) 1o 20(VPE) ROM) - Ag a matter of

fact, basically all FPT-problems that admit treewidth based algorithms can be

handled by our methods. Refer to [8, 9, 28, 29| for a list of such problems.
Future research topics raised by our work include

e to further improve the (“exponential”) constants, e.g., by a further refined
and more sophisticated “layer decomposition tree”;

e to investigate and extend the availability of linear problem kernels for all
kinds of planar graph problems;

e to find out in a systematic, methodological way which planar graph prob-
lems do not fit in our setting and why;

e to provide implementations of our approach (where we favor the tree decom-
position approach in comparison with the bounded outerplanarity approach
due to the greater elegance, clearness, and universality of the first) accom-
panied by sound experimental studies, thus taking into account that all our
analysis is worst case and often overly pessimistic.

Finally, a more general question is whether there are other “problem classes”
that allow for ¢v* fixed parameter algorithms. What the (asymptotically) best
f(k) achievable for an NP-hard parameterized problem can be, will remain a
major challenge for the parameterized complexity world. Our paper is meant as
one first step in this direction.
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cussed at the first international Workshop on Parameterized Complexity (orga-

nized by Michael Fellows and Venkatesh Raman) in Chennai, India, December
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