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Approximating Minimum
Unsatisfiability of Linear Equations

Piotr Berman * Marek Karpinski f

Abstract

We consider the following optimization problem: given a system
of m linear equations in n variables over a certain field, a feasible so-
lution is any assignment of values to the variables, and the minimized
objective function is the number of equations that are not satisfied
by a solution. For the case of the finite field GF[2], this problem is
also known as the Nearest Codeword problem. In this note we show
that for any constant c¢ there exists a randomized polynomial time
algorithm that approximates the above problem, called the Minimum
Unsatisfiability of Linear Equations (MIN-UNSATISFY for short), with
n/(clogn) approximation ratio. Our results hold for any field in which
systems of linear equations can be solved in polynomial time.

1 Introduction

The lower approximation bounds for the MIN-UNSATISFY problem over fi-
nite fields and Q were studied intensively in a number of papers, cf., e.g.
[ABSS93], [KST97], [DKS98], [DKRS00] and [BFK00]. The papers [DKS98]
and [DKRS00] yield an approximation lower bound of n®1)/10glos” for finite
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fields. However, no good approximation algorithms other that of order n
were known up to now for any field. Kannan [KO01] has designed a poly-
nomial time approximation algorithm for MIN-UNSATISFY over Q within a
factor of n + 1 using Helly’s theorem.

In this paper we present the first sublinear approximation ratio algorithm
for MIN-UNSATISFY problem working for any field in which systems of linear
equations can be solved in polynomial time.

Our method depends on incremental randomized selection of the equa-
tions from the input system with the new choices being linearly independent
from the previous ones. Once the set of selected equations forms a base of the
input system, it determines a solution. We run such a procedure a number
of times and select the best solution. Surprisingly, a polynomial number of
runs of this procedure suffices to find a good approximate solution.

2 Preliminaries

We consider a certain fixed field K, and assume that we can solve a system
of n linear equations in n variables over K in polynomial time.

An instance of MIN-UNSATISFY is a set F of equations in n variables
and the objective is to find a solution that minimizes the number of unsat-
isfied equations in F. Below we give some notations and definitions used in
formulation and analysis of our algorithms.

e An equation ax = b in n variables is represented by a pair (a,b) where
a€ K" and be K.

e For a set of equations S and an z € K™, SAT(S,2) = {(a,b) € S: ax =
b}, UNSAT(S,z) = S — SAT(S, ) and u(S,z) = |[UNSAT(S, z)|.

o F denotes a set of equations that forms the MIN-UNSATISFY instance
we consider, u(F,z) is the objective function and z* is an optimal

solution.

¢ A set of equations S is independent if the set of vectors V = {a : (a,b) €
S for some b} is linearly independent and |V| = |S5].

¢ A maximal independent subset of S is a base of S.



In this note we use several times the following lemma.
Lemma 1 A base of SAT(E,z*) is also a base of E.

Proof. Let B be a base of SAT(E,z*). Suppose that B is not a base of E.
Because B is an independent set, we can find a base C' of I such that C' O B.
Let = be the solution of system of equations C'. Clearly, UNSAT(B,z) = [;
moreover, UNSAT(SAT(F, z*),z) = 0 because every equation in SAT(E, z*)
is a linear combination of equations of B. We got a contradiction, because

UNSAT(C,z) = 0 and thus u(E,z) <u(F,2*) — |C — B| < u(E,z*). O

3 A Randomized Approximation Algorithm

We first discuss the main subroutine GUESS(F) of our algorithm that uses
a good extension function GExT1(B). This function returns the set of good
extensions of independent set B, i.e. GEx1(B) ={e€ F— B: BU{e} is
independent }. We note that a membership of an equation to GEX1(B) can
be verified by solving a linear system.

Guess(F)
B+ U
while GExT1(B) # O
B + B U {random element of GEXT(B)}

return a solution of system of equations B

Lemma 2 If x is the oulpul of Guess(F), then u(F,z) < Zu(F,z*) with
probability at least e=* for any d > 0.

Proof. In consecutive iterations of Guess set B changes from [ to B; =
{b,}, then to By, = {by,b;} etc. We say that b; is a good selection if either
b; € SAT(FE, z*) or we have

n—d
d

If all selections are good, then u(F,z) < Zu(F,z*). Indeed, if all se-
lections belong to SAT(F, z*), then UNSAT(FE, z) = UNSAT(FE, z*) and thus
u(FE,z) = u(FE,z*). Otherwise let b; be the first selection such that () holds.

|GEXT(Bi—1)| <

u(E,z"). (%)



Because B;_; C SAT(E,z*), if all equations in B;_; are satisfied and
B;_1 U{e} is dependent, then e is satisfied if and only if e € SAT(FE, z*). For
this reason

UNSAT(FE,z) — GEXT(B;—1) C UNSAT(F,2") and
UNSAT(FE,z)N GEX1(B;i-1) C GEXT(Bi-1),

and thus u(F,z) < %u(E,x*) + ”d;du(E,:L‘*) = Zu(E, z").
Now it remains to show that the probability that all selections are good

is at least e~?. First we will estimate from below the conditional prob-

ability that selection b; is good if all previous selections were good. If

|GEXT(Bi—1)| < 25%u(E,2%), then b; is good with probability 1. Other-

wise, we choose b; in |GEXT(B;_1)| many possible ways, of which at most
u( K, z*) many do not belong to SAT(FE,z*), thus the probability that b; is
good is at least
u(E, x*) d
- > 1- .
|GEXT(Bi—1)| — n—d

Probability that all selections are good is the product of the conditional

probabilities estimated above, thus it can be estimated from below as

n (n—d)/d\ *
1— d ~ 1— d ~ e,
n—d n—d

Actually, this estimate is a bit inaccurate, but our application of this in-
equality does not rely too much on precision, e.g., the estimate %e“d is good
enough; importantly, we consider only very small values of d as compared
with n. U

We are going to formulate now our approximation algorithm.

Rand_App(F, N)
Thegt ¢ 0
repeat N times
z + Guess(F)
if u(F,z) < u(E,z} )
Thest < ¢
output zp, ¢



The algorithm works by running N times the subroutine Guess(£) and
then choosing the best solution. If a run of Guess delivers approximation
ratio r with probability at least N~!, then a run of Rand_App delivers
ratio r with probability at least e='. If we choose N = n°, then we need
Guess to deliver ratio r with probability at least n~°. Lemma 2 says that
Guess obtains ratio n/d with probability e~?. Thus we have e~

equivalently, d = ¢In n.

[
bl

=n"", or,

Summarizing, for every ¢ we obtain an algorithm with approximation
ratio n/(clnn). Note that if Lemma 2 is inaccurate by a factor of 2 (and it
is much more accurate), we just need to double N. This proves the following

theorem:

Theorem 1 For every ¢ > 0 there exists a randomized polynomial time ap-
prozimation algorithm thalt approzimates MIN-UNSATISFY within ratio
n/(clnn).

For the sake of completeness we present in the next section a simple
deterministic algorithm with n/c approximation ratio for any constant c.

4 A Deterministic Approximation Algorithm
We start with formulating the following lemma.

Lemma 3 For every positive integer ¢ there exists a polynomial time algo-
rithm for the following subproblem:

Input: An equation system F and a base B of F;

Output: A solution x of E that minimizes u(F, z) under restriction u(B, z) <
c.

Proof. We sketch the algorithm.

EasyCase(F, B, ¢)
Thest ¢ 0
for every S C B such that |S| < ¢
for every T'C F — B such that |T| = |S]
B' <~ B-S5SUT
if B’ is independent
x ¢+ a solution of system B’



if u(E, ) < u(E, vy06)
Thegt < 7
output x},q¢

It is easy to see that EasyCase runs in polynomial time, because the search-
ing space of each of the for loops is polynomial in size (for a fixed ¢!).
To see the correctness, note first that the outer for loop inspects every
UNSAT(B, z) that is allowed under our restriction. Under assumptions that
SAT(B,z) = B—S, B— S is an independent subset of SAT(F, z); thus B— S
is contained in some base B’ of SAT(F, ). By Lemma 1 we may assume that
B’ is a base of E, hence the inner for loop inspects all possible B’. Once we
make our assumption concerning B’, the value of z is determined.

Note that it is possible that B has fewer elements than n, and thus a
system of equations formed by a base of ' may have more than one solution.
Therefore we introduce an assignment x <— a solution of system B’. U

Theorem 2 There exists a polynomial time algorithm that for any equation
set B it returns a solution x such that u(FE,z) < 2u(k,z*).

Proof. We describe the algorithm Det_App recursively.

Det_App(FE,c¢)
if £ =0
output 0
B + a base of F.
zy < EasyCase(F, B, ¢)
zy < Det_App(E — B, ¢)
ifu(E,zq) <u(E,zs)
output xy
else
output z,

To see that Det_App runs in polynomial time for a fixed ¢, note that it
invokes EasyCase only once, and then it makes a recursive call for a smaller
problem instance.

The approximation property of Det_App can be proven by induction.
The claim is trivial if £ = 0. If u(B,z*) < ¢, then z1 found by EasyCase



is optimal, hence u(F,z1) < u(F,z*). Otherwise we have, by induction:

cu(FE,xy) = c(u(B,z2) + u(E — B,x3)) < ¢(n + u(FE — B, x3))
cn + (,u(E B .,LQ) cn + rLu(E B x*)

n(c+u(E — B,z")) <n(u(B,z") + u(E — B,z"))

nu(E, ")

<
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