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Approximation Hardness of Bounded Degree

MIN-CSP and MIN-BISECTION

Piotr Berman * Marek Karpinski '

Abstract

We consider bounded occurrence (degree) instances of a minimum
constraint satisfaction problem MIN-LIN2 and a MIN-BISECTION
problem for graphs. MIN-LIN2 is an optimization problem for a given
system of linear equations mod 2 to construct a solution that sat-
isfies the minimum number of them. E3-OCC-MIN-E3-LIN2 is the
bounded occurrence (degree) problem restricted as follows: each equa-
tion has exactly 3 variables and each variable occurs in exactly 3 equa-
tions. Clearly, MIN-LIN2 is equivalent to another well known prob-
lem, the Nearest Codeword problem, and E3-OCC-MIN-E3-LIN2 to
its bounded occurrence version. MIN-BISECTION is a problem of
finding a minimum bisection of a graph, while 3-MIN-BISECTTON is
the MIN-BISECTTON problem restricted to 3-regular graphs only. We
show that, somewhat surprisingly, these two restricted problems are ex-
actly as hard to approximate as their general versions. In particular, an
approximation ratio lower bound for E3-OCC-MIN-E3-LIN2 (bounded
3-occurrence 3-ary Nearest Codeword problem) is equal to MIN-LIN2
(Nearest Codeword problem) lower bound nS(1)/loglogn  Moreover, an
existence of a constant factor approximation ratio (or a PTAS) for 3-
MIN-BISECTION entails existence of a constant approximation ratio
(or a PTAS) for the general MIN-BISECTION.

1 Introduction

In this note we study the approximation hardness of bounded occurence min-
imum constraint satisfaction problem E3-OCC-MIN-E3-LIN2 and 3-MIN-
BISECTION. MIN-LIN2 problem has as its input a system of linear equa-
tions over GI'[2] and the minimized objective function is the number of

*Dept. of Computer Science, University of Bonn, 53117 Bonn, visiting from Pensyl-
vania State University. Partially supported by DFG grant Bo 56/157-1 and NSF grant
CCR-9700053. Email berman@cse.psu.edu

"Dept. of Computer Science, University of Bonn, 53117 Bonn. Research partially done
while visiting Dept. of Computer Science, Yale University. Supported in part by DFG
grants KA 673/4-1 and Bo 56/157, DIMACS, and IST grant 14036 (RAND-APX). Email
marek@cs.uni-bonn.de

ISSN 1433-8092



equations satisfied by a solution; -Ek- denotes its restriction to equations
with exactly k variables, and EA-OCC- denotes another restriction, namely
that each variable occurs exactly k times in a system. (Infix and prefix k
denote more loose restrictions, to equations with at most k variables and to
at most k occurrences of each variable respectively.) The MIN-LIN2 prob-
lem or equivalently Nearest Codeword problem is known to be exceedingly
hard to approximate. It is known to be NP-hard to approximate to within
a factor n(/leglogn (cf [DKSY8], [DKRS00]). Recently, also the first non-
linear approximation ratio O(n/logn) algorithm has been designed for that
problem [BKO01], see also [BFK00]. MIN-BISECTION problem has as its
input an undirected graph, say with 2n nodes, a solution is a subset S of
nodes with n elements, and the size of a cut |[C'ut(S)| (i.e. the number of
edges from S to its complement ) is its minimizing objective function; prefix
k- denotes its restriction to k-regular graphs.

Our results are tight in the following sense: 2-OCC-MIN-LIN2 can be
solved in polynomial time, and MIN-2-LIN2 is much easier to approximate
than MIN-LIN2 (cf. [KST97], [DKS98], [DKRS00]), while E3-OCC-MIN-
E3-LIN2 is as hard to approximate as MIN-LIN-2 itself, i.e. it is NP-hard
to approximate to within nS(1)/loglogn Gimilarly, 2-MIN-BISECTION can
be solved in polynomial time while 3-MIN-BISECTION is as hard to ap-
proximate as the general MIN-BISECTION.

In what follows we assume some basic familiarity with [BK99].

2 MIN-LIN2 Problem

2.1 Our terminology

For a system of linear equations S over GF'[2], we denote the set of variables
with V(S), the total number of occurrences of variables in S (equivalently,
the number of non-zero coefficients) with size(S), the set of assignments of
values to variables of S with AV (S). For a € AV (S) the number of equations
of S that a satisfies is denoted with sat(a,S). As mentioned before, sat(a,S)
is the minimized objective function.

A reduction of MIN-LIN-2 to 3-OCC-MIN-E3-LIN-2 will be described
via the following triple of functions:

e an instance transformation f such that f() is a system in which each
variable occurs exactly 3 times and size(f(S5)) = O(size(S));

e a solution normalization ¢ such that for a € AV (S) we have g(a) €

AV(S) and [sat(g(a), f(5))| < [sat(a, f(S5))],

e a bijection A between AV (S) and g(AV(f(S))) such that |sat(a, S)| =
|sat(h(a), f(5))]-



The above description of a reduction directly relates to the standard def-
inition of aproximation preserving reductions. The implied solution trans-
formation is A=' og, its desired properties follow immediately from the prop-
erties of a normalization and “equivalence bijection”.

2.2 Consistency gadgets

In approximation preserving reductions there exist a number of ways to
replace a variable with a set of variables and auxiliary equations so that
each element of the set occurs exactly three times. We have explored one
of such constructions in [BK99] in a context of the maximization problems.
In the reductions described in that paper the objective function is diluted,
because part of the score assures that we can normalize each solution in
such a way that the new set of variables correctly replaces a single variable.
The same construction yields no such dilution in our minimization problems,
because a normalized solution satisfies none of the auxiliary equations.

However, we describe here a different construction, which can be com-
puted determinististically and the size of the new formula is a linear function
of the size of the original formula. The construction of our reduction depends
on the existence of special graphs which we call consistency gadgets.

In an undirected graph (V, F), we define Cut(U) ={e € K: enU #
O and en(V —U) # 0O}. A consistency gadget CG(K) is a graph with the

following properties:
e K C Vi where Vi is the set of nodes of CG(K);
o if AC Vi and |[AN K| <|K|/2, then |Cut(A) > |ANK|;

e cach node in K has 2 neighbors and each node in Vg — K has 3
neighbors. of size k = | K]|.

As described in Arora and Lund [AL95] (cf. also [PY91]), we could use
a family of graphs that we may call strong expanders. The graph (V, E) is
a strong expander if |U| < |V|/2 implies |Cut(U) > |U| for each U C V.
Lubotzky et al. [LPS88] showed that a family of 14-regular strong expanders
is constructible in polynomial time.

Arora and Lund suggest that one can obtain CG(K) by constructing
a 14-regular strong expander with node set K, and then by replacing each
node with a cycle of 15 nodes: one node being the element of K and the
other node being the terminal of the 14 connections to the other cycles.

One can see that this construction is not quite sufficient for our purposes,
because it is conceivable that the new graph contains a set that contradicts
the CG(K) property, and which properly intersects some of the cycles. Au-
rora and Lund use a weaker notion of consistency, but in this paper we wish
to establish an exact relationship between the tresholds of approximability.



Figure 1: An example of C'G(Sy5); element of Sy5 are black.

To remedy this problem, we can modify the construction slightly. In
particular, let Si5 be a set of 15 elements, we will replace each node of the
14-regular strong expander with a copy of a CG(S15) which is shown in Fig.
1.

2.3 Reduction to E3-OCC-MIN-3-LIN2

Recall that in E3-OCC-MIN-3-LIN2 we also allow equations in which exactly
2 variables appear.

Consider a system of equations S. Without loss of generality, we assume
that each variable of S occurs at least 2 times, otherwise we reduce the
problem by removing the equations in which a variable has its sole occurence.

Suppose that S contains an equation with more than 3 variables, £ +( =
b, where £ is a sum of 2 variables and ( is a sum of at least 2 variables. We
obtain f(S) by replacing in S this equation with two equations, £ + 2 = 1
and z + ( = b, where z is a new variable. We define the normalizing
transformation ¢(a) as follows: g¢(a)(y) = a(y) for every variable y other
than 2z, and g(a)(z) = a(§) where a(§) is the value of the linear expression
& under assignment of values a. This assures that g(a) does not satisfy
equation £ + z = 1. In turn, g(a) satisfies £ + = b if and only if a satisfies
&+ ¢ = b. The bijection h is defined by the same formula as g.

Now we assume that each equation consists of at most 3 variables. Con-
sider a variable 2 that occurs in £ > 3 equations. Let K be the set of these
equations. We form the graph C'G3(K) with node set Vi, for each node in
Vi we introduce a new variable with the same name (so now Vi becomes a
set of variables) and for each edge {u, g} we introduce an equation u4v = 1.
Then we replace an occurrence of z in equation e with the variable that re-
placed e (as a node of V). This is the instance transformation (obviously,
we may need a sequence of such transformations to achieve our goal).

To define h(a) for an assignment of values a of the new instance, we
find value b that is assumed by at least half of the variables in K; then
for every z € Vi we set h(a)(z) = b. Suppose that this normalization
changed the values of [ variables from K . Then up to [ “old” equations



may become satisfied. However, none of the equations that replaced the
edges of CG3(K) is satisfied now. Because 2/ < |K|, we have [ edge disjoint
paths from the [ variable/nodes that change the value to nodes that did
not, in turn, on each path we have at least one edge corresponding to an
equation that ceased to be satisfied, thus at least [ “new” equations ceased
to be satisfied. consequently, sat(a, f(S5)) did not increase.

The bijection transformation simply h(a) assigns a(z) to each variable
in V.

To summarize the reasoning of this section we introduce the following
definition.

We call an approximation algorithm A for an optimization problem P,
an (r(n),t(n))-approximation algorithm if A approximates P within an ap-
proximation ratio r(n) and A works in O(¢(n)) time with n the size of the
problem instance.

We can formulate the following lemma.

Lemma 1 There exists a constant ¢ such that if there exists an (r(n),t(n))-
approrimation algorithm for E3-OCC-MIN-3-LIN2 then there exists an
(r(en), t(en))-approximation algorithm for MIN-LIN2.

2.4 Reducing MIN-LIN2 to E3-OCC-MIN-E3-LIN2

An existing method of converting equations with 2 variables into equations
with 3 equations, described by Khanna, Sudan and Trevisan [KST97] cannot
be applied here because it increases the number of occurences of variables.
Therefore we need to provide a different technique.

Instead, we will modify the reduction of the previous sections. First, we
can make sure that the variables in a resulting instance of E3-OCC-MIN-
3-LIN2 can be colored with two colors blue and red, so that the following
holds true: in an equation of three variables all three must be blue, in an
equation with two variables, one must be blue and the other must be red.
If we accomplish that, we can replace each red variable with a sum of two
new variables.

This simple idea has some minor complications, so we describe it in
more detail. The reduction again consists of functions f, g and h — trans-
formation, normalization and bijection — except that now [sat(a,S)| =
3|sat(h(a), f(9)|, i.e. the normalized solutions for a transformed instance
will satisfy 3 times as many equations as the equivalent solutions of the
original instance.

We first color occurences of variables as described above: in an equation
with 3 variables all occurences are blue, in an equation with 2 variables, one
is blue, the other is red. Then we replicate the occurences 3 times, and each
replicated occurence is a new variable. Kach original equation is replaced
with 3 new equations in an obvious manner.



Now, let K be the set of occurences of a variable. Note that the num-
bers of blue and red elements of K are divisible by 3. We create a gadget
CG(K) very similarly as before, so we will only mention the differences in
a construction:

e we double the lenth of all cycles that replace nodes of a strong ex-
pander, the colors on the cycle alternate, if a contact belongs to such
a cycle, it keeps its original color;

e an edge of the strong expander is replaced by two edges between the
respective cycles, one being {blue, red} and the other {red, blue};

e at the moment, each cycle that contains a node that is connected only
to its neighbors on the cycle and that has a color different than the
color of the K element of this cycle, within CG(K) we contact, we
connect each 3 such blue nodes with a new red node, and each 3 reds
with a new blue.

Now, each equation with 2 variables has one blue and one red variable, so
we can replace each red variable with a sum of two new variables, and as a
result each equation has 3 variables.

Because we increase the size of the transformed instance only by a con-
stant factor, we can restate our lemma as the following theorem:

Theorem 1 There exists a constant ¢ such that if there exists an (r(n),t(n))-
approximation algorithm for E3-OCC-MIN-FE3-LIN2 then there exists an
(r(cn),t(cn))-approzimation algorithm for MIN-LINZ.

3 MIN-BISECTION

3.1 Notation

For a graph G, V(G) is a set of nodes, E(G) is a set of edges, S =V — 5,
B(G) is the set of bisections, e.g. sets S C V(@) such that |S| = |S] and
Cut(S)={e€ E(V): enS#0and enS # 0} for S C V(G).

The MIN-BISECTION problem is to find S € B(G) such that|Cut(S)|
is minimum.

Our reduction is described using the following three functions:

e an instance transformation f such that if G is a graph with n nodes

then f(G) is a graph of degree 3 with O(n?) nodes;

e a solution normalization g such that for S € B(f(G)) we have g(5) €
B(f(G)) and [ Cut(g(5))] < |Cut(5)];

e a bijection h : B(G) — ¢(B(f(G))) such that |Cut(S)| = | Cut(h(S5))].



Figure 2: Gadget for d = 8; black circles are the contact nodes.

3.2 The reduction

We assume that the maximum node degree in (G is bounded by some even
d. Our instance transformation replaces every node v with a gadget A4, in
which d nodes are the contacts (black circles in the Fig. 2). The diagram
depicts a gadget for d = 8. The gadget is a cylindrical hexagonal mesh
that can be alternatively decomposed into d/2 horizontal cycles and into
d diagonal paths. Each diagonal path contains d nodes, for the total of d?
nodes. Every other diagonal path has two contact nodes at its ends.

An edge {u,v} is replaced with an edge between the contacts of A, and
A,, these replacement edges are disjoint.

Solution normalization will assure that for each u either A4, C ¢(S) or

Ay, C g(5). We will compute g(S) in two stages. In the first stage we decide

whether to place A, within ¢(9) or within g(S) based solely on SN A,. As
a result, k, nodes that belong to S will become members of ¢(S), or —k,

nodes that belong to S will become members of ¢(5).

After the first stage, [g(S)| = |S| = X ev(s(q)) fu = 5- s #0, g(5) is
not a bisection. Therefore in the second stage we remove s/d? gadgets from
g(S) (if s < 0, we insert —s/d?* gadgets).

The normalization causes some edges that did not belong to Cut(S) to
become members of Cut(g(S)). In the first stage we move some contacts from
S to g(S), or from S to g(S); for each such contact the incident replacement
edge may become a member of Cut(g(S)). In the second stage, we move
s/d?* gadgets, thus s/d contacts, and again, the replacement edges incident
to the contacts that moved may become members of Cut(g(S)). This allows
us to estimate the consequences of the decision made during the first stage
about each gadget A,,.

Let F, be the set of edges inside A,. A decision moves k = |k,| nodes,
among them, 7 contacts. To offset the increases of Cut(g(5)) it suffices to
gain 7 + k/d edges, and this happens if |Cut(S) N F,| > i+ k/d.

Suppose first that |Cut(S)N Fy| > d. Let j be the number of contacts in
SNAyand k=[SNA,| If j+k/d <d, wecan place A, in g(95); otherwise
(d—3j)+ (d* = k)/d < d and we can place A, in g(5).

Now we can assume that | Cut(S)NFE,| < d. We will make an observation.




Our gadget contains d/2 vertical cycles, if one of them contains an edge of
Cut(S), it must contain two such edges; we can conclude that at least one of
the vertical vertical cycles has no edges in Cut(S), and thus is contained in
S orin S. For similar reasons, one of the diagonal paths must be contained
in Because every horizontal cycle overlaps every diagonal path, it is true for
exactly one S € {S,S} that S contains a horizontal cycle and a diagonal
path. We place A, is S.

Let U be a connected component of A, —S, and let C(U) = Cut(U)NE,.
Assume that U contains 77y contacts. To finish the proof of correctness of our
normalization, it suffices to show that i 4 |U|/d < |C'(U)|, or, equivalently,
that B(U) = |C(U)| - iv - [U]/d > 0.

Suppose, by the way of contradiction, that for some U that is disjoint
with a horizontal cycle and with a diagonal path we have 3(U) < 0. We
choose such U with the smallest possible |C(U)|, and, with this constraint,
the smallest possible 5(U).

Observation 1. A node v € U cannot have two neighbors in A4, — U.
Otherwise if v has no neighbors in U, then U = {v} and (U) > 2—-1-1/d.
If v has a neighbor in U, we could remove v from U and decrease both C'(U)
and 3(U).

Observation 2. A node v € A, — U must have at least two neighbors in
A, — U. otherwise we could insert v to U and decrease both |C'(U) and
B(U).

Our gadget A, can be covered with a collection of cycles of length 6 that
we will call hexagons.

Observation 3. Set U cannot contain exactly 1,4, or 5 nodes of a hexagon.
If U contains 1 or 5 nodes, it contradicts Observation 1 or Observation 2.
If U contains 4 nodes, then the other two nodes, if they do not contradict
Observation 2, form an edge with exactly two neighbors in U and two neigh-
bors in A, — U, thus we can insert this pair to U without increaseing |C/|
while increasing 3(U).

Observation 4. Assume that Dy, D; are two adjacent diagonal paths,
UNDg=0and B=UND; # 0. Then B forms a path that has a contact
node at one of its ends.

To show it, consider Dy, the other diagonal path adjacent to Dq, and
A’, a connected component of A. A brief and easy case analysis shows that
A’ has more neighbors in Do U (Dy — U) than in D,. Because at least one
horizontal cycle is disjoint with U, |A| < d. Therefore removing A’ from
U decreases |C| and |C(U)| — |U|/d. Because 3(U) cannot be decreased in
this fashion, A’ must contain a contact node. Because U is disjoint with a
horizontal cycle, there is only one contact node for which it is possible.

Another brief and easy case analysis shows that U/ must form a “trape-
soid”, with one basis being a fragment of a horizontal cycle that forms a
path between two contact nodes, the other basis being a path that is a frag-
ment of another horizontal cycle and the sides are the initial fragments of



two diagonal paths.

Assume that such a set U contains a contact nodes and overlaps b hori-
zontal cycles. U contains 4a — 3 nodes in the basis that contains the contact
nodes, then it the consecutive horizontal cycles it contains 4a —5, 4a -7, . ..
down to4a — 3 —2(b— 1) = 4a — 2b — 1 nodes. Thus

4a —34+4a—-2b—-1

U = b : = b(4a—b—2).

In turn, C'(U) contains 2 edges in each of the b horizontal cycles, plus the
edges extending to the horizontal cycle that is disjoint with U and adjacent
to its smaller basis. This basis has 4a¢ — 2b — 1 nodes and the nodes with
such edges alternate with the nodes without them, so we have

IC(U)|=2b+ |(4a—2b—1)/2] =2b+2a—b—1=2a+b— 1.

Thus B(U) = (2a+b—1)—a—b(da—b—2)/d = a+b—1-b(4da—b—-2)/d,
while we have the following constraint: |C| < d, i.e. 2a+b—1 < d. If we
decrease d, S(U) will also decrease, so we assume d = 2a¢ + b and thus
b=4d — 2a. Then we have

d(U)=d(a+d—-2a—-1) - (d—2a)(da—d+2a-2) =
did—a—1) - (d —2a)(6a—d—2) =

d*> —da —d — 6da+ d*>+ 2d + 12a* — 2da — 4a =

2d* +12¢* — 9da + d — 2a =

2(d — 2.25a)? + 1.875a* + d — 2a.

This concludes the proof of the following

Theorem 2 If there exists an (r(n),t(n))-approzrimation algorithm for 3-
MIN-BISECTION then there exists an (r(n®),t(n®))-approzimation algo-
rithm for MIN-BISECTION.
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