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A NOTE ON THE SUBGROUP MEMBERSHIP PROBLEM FOR PSL(2,p)

DENIS XAVIER CHARLES

ABSTRACT. We show that there are infinitely many primes p such that the Subgroup Membership Problem
for PSL(2, p) belongs to NP N coNP.

1. INTRODUCTION

One of the simplest computational question we can pose in group theory is the subgroup membership
problem: Given a set of generators for a subgroup H C G, and an element g € G is g € H? For arbitrary
groups, this problem is already undecidable. So we can restrict our study to the case when G is a finite group.

Even in the finite case things apparently are not too easy (see [BS84|, and [BB97] for a survey of results).
Currently the best known result for subgroup membership in arbitrary finite groups is still from [BS84],
where it is proved that the problem can be solved in NP N coAM. In the same paper a conjecture is framed
for finite groups called the Short Presentation Conjecture, then it is shown that under this conjecture
the subgroup membership problem can be solved in NP N coNP. There is a lot of evidence in favor of the
conjecture, in particular in [BGKLP97] it is shown that if the conjecture holds for finite simple groups then
it holds for all finite groups. Further the conjecture has been verified for all finite simple groups except
for three families of groups namely, the unitary groups PSU(3, q), the Suzuki group Sz(q), and the Ree
groups R(q) (see [BGKLP97]). It follows from the results in that paper that if none of these exceptional
families of groups occur as factor groups of composition series of subgroups of a group G, then the subgroup
membership problem for G can be solved in NPNcoNP. In this article we show that there are infinitely many
primes p for which these exceptional families of groups do not occur as factor groups of the composition
series of PSL(2,p), thus proving the result.

If one were to look at the problem for PSL(2,IF), where F is a field of characteristic 0, then even ZPP
algorithms are known [BB93]. The problem with the characteristic p case has to do with abelian obstacles.
For example PSL(2,p) contains a subgroup isomorphic to the multiplicative group (Z/pZ)*, and the mem-
bership problem for this subgroup is not that easy. For example, the constructive version of this problem
is the discrete log problem (see [BB97] §3.5). Algorithms for solvable matrix groups are given in [Lu92],
however the running time of the membership algorithm is not polynomial in the bit-size of the input but
depends also on the largest divisor of the order of the group other than the characteristic. For the infinite
group PSL(2,7Z) average case polynomial time algorithms are known for subgroup membership ([CFKL]).

2. DEFINITIONS AND STANDARD RESULTS

We recall some standard definitions and results regarding finite groups.

Let G be a finite group. If S C G, then (S), will denote the subgroup generated by the elements of S,
in other words it is the intersection of all subgroups of G which contain S. If S C G and g € G, then
S9 ={gsg~! | s € S}, denotes the conjugate subset of S by g. If H is actually a subgroup then H9 is also a
subgroup. If S C G, the normalizer of S in G is denoted by Ng(S) and is defined to be:

Ng(S)={g|g€G,S?=S}.
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The normalizer is a subgroup of G. A subgroup H of G is called a normal subgroup of G if Ng(H) = G.
Clearly G and 1 are trivially normal in G. If a group G has no non-trivial normal subgroups then G is called
a stmple group.
The centralizer of a subset S of G is defined as follows:

Cg(S)={glgeG,VseS : gsg' =5

The centralizer of the group itself is called the center of the group and denoted by Z(G) = Cg(G). Note
that Cg(S) is a normal subgroup of Ng(S).

The following is a basic result in finite group theory:

Theorem 2.1 (Lagrange). If G is a finite group, and H is a subgroup of G, then |G| = |H||G : H|.

Definition 2.2. Let G be a group. If we have a finite chain of subgroups of G
G:G=GyDG1D---CGy=1

such that for each i,1 <1i < r, G;i is a maximal normal subgroup of G;_1, we say that G, is a composition
series of length v of G. The set of factor groups

Go .. G
GG,

Note that each group in the composition factor is simple.

is said to be the set of composition factors.

We define the group PSL(2,p). The special linear group of dimension 2 over the finite field Z /pZ denoted
SL(2,p) is the set of matrices:

a b

c d

together with ordinary matrix multiplication. Z(SL(2,p)) = {+I}, and the quotient group SL(2,p)/{+I} is
the projective spectal linear group PSL(2,p).

ad—bc=1 mod‘p}.

We will define three other families of groups which will play a role in our discussion (see [Gor68] for details).

Let q be any prime power GU(3, q) consists of all 3 x 3 unitary matrices with entries in GF[q?]. A matrix X
of GL(3, g?) is said to be unitary if X! = (X°)!, where X° is the matrix obtained by applying the Frobenius
autormorphism o(x) = x% to each entry of the matrix X. The group modulo its center is the projective
unitary group, PGU(3,q), a subgroup of the projective general linear group PGL(3,q?). The projective
special unitary group is the subgroup PSU(3,q) = PGU(3, q) N PSL(3, q2).

We now define the family of Suzuki groups Sz(q) over K = GF[q], where q = 22™*! and m > 0. Let

0 0 0 1
0010
T_0100
1.0 00

2m+1

The field K has exactly one automorphism 7 such that 72(x) = x? for all x € K, namely 7t(x) = x . For

a,be K, and A € K%, let

1 0 0 0

a 1 0 0

Sla,b) = b ma) 1 0
a’(m(a)) +ab+n(b) am(a)+b a 1
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and
ATF2ZT 0 0 0
0 AZm 0 0
0 0 A Zm 0
0 0 o A2
The Suzukt group Sz(q) is defined to be the following subgroup of GL(4, q)

Sz(q) = (S(a,b), M(A), T | a,b € K,A € KX).

M(A) =

Another family of groups is the Ree groups denoted R(q),q = 3°™*+!, m > 0; for whose definition we refer
to [Ree61]. The Ree groups are obtained by following the Lie Algebra analogue of the definition of Suzuki
groups in GF[32m+1],

The following is the basic fact we will use in our main theorem:

Theorem 2.3. The orders of the families of groups PSL(2,p),PSU(3, q),Sz(q) and R(q) are as follows:
(1) |PSL(2,p)| = % fo is an odd prime.

(2) |IPSU(3,q)| = %, where q s a power of a prime.

(3) I18a(q)l = a*(q> + 1)(a* = 1), and ¢ =2+, m > 0.

(4) IR(a)l = a*(a® +1)(q — 1), where g = 3™+, m > 0.

3. THE SHORT PRESENTATION CONJECTURE

In [BS84] the following conjecture is formulated:

Conjecture: Every finite simple group of order n has a presentation by generators and relations of length
< log® n, where C > 0 is a constant.

There is plenty of evidence for this conjecture, in particular the following results are proved in [BGKLP97]:

Theorem 3.1. If the Short Presentation Conjecture holds for all finite simple groups with some
constant C > 2, then every finite group G has a presentation of length O(log“"' G).

Theorem 3.2. The Short Presentation Conjecture holds, with C =2, for all finite simple groups, with
the possible exception of the rank 1 twisted groups of Lie type, namely: PSU(3, q),Sz(q) and R(q).

Conditional on the Short Presentation Conjecture the membership problem for a group can be checked in
NP N coNP, more precisely:

Theorem 3.3 ([BS84],[BGKLP97]). Let G be a finite group, such that none of its composition factors
is one of the rank 1 twisted groups of Lie type. Then the group membership problem for G is in
NP N coNP.

4. MAIN RESULT

We will impose conditions on the prime p, such that none of the exceptional family of subgroups PSU(3, q),
Sz(q), R(q) can occur as the composition factors of any subgroup H of PSL(2,p). Since the order of the
composition factors of the subgroup H have to divide the order of PSL(2,p), an obvious way to ensure that
these subgroups do not occur is to make sure that their orders cannot possibly divide the order of PSL(2,p)
for the prime we select.

Suppose we pick primes p such that p = 3,5 mod 8, then the largest power of 2 that can divide |PSL(2,p)|
is 4, hence Sz(q) cannot occur in the composition factors (since 8 divides [Sz(q)|). To exclude the possiblity
that R(q) or PSU(3, q) occur as composition factors of subgroups of PSL(2,p) it suffices to pick primes p,
such that both p + 1 and p — 1 are squarefree (in fact it suffices to pick them to be cube-free). We will now
show that there are many such primes:
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Theorem 4.1. Let A ={p < x | p a prime}. Define Aq to be the set {p € A | p = £1 mod d?}. Let
S(x) be the number of primes p < x such thatp+1 and p—1 are not divisible by any prime q>, where
q > 2. Then

sx)=1]] (1 — ﬁ)m (x) + o(Li(x)).

P#£2

Proof : By inclusion-exclusion we can write the following expression for S(x):

S =1A— D> i+ Y Apal—

4<p?<x 4<(pq)?2<x
A+ Y A
4<d?<x

Since ged(p+1,p—1) = 2if p is odd, we have |Agq| = {p <x|p=1 mod d?}[+[{p <x|p = —1 mod d?}|.
We know by the prime number theorem in arithmetic progressions that this is well approximated by the
function mLi (x). Thus we set

2 .
|Ad| = WLI (X) + Ed(X), d>1

and
|Al =Li (x) + E(x).

Where E4(x) is the error term in this approximation. Substituting in the expression for S(x) we get:

SH)=Li ) +Lib) Y 2H2L LS g

2
4<d?<x (p(d ) dz<x
. 2 2u(d)
=Li (x){H<1 —7> -y = }+ > Eqlx).
ois plp—1) o=, eld?) el
Now
u(d) 1
2) @S2l o
dz>x ¢(d?) dz>x ¢(d?)
Also
1
e(n) :nH(l - =)
P
p\n
1
<n H (1—-).
p<x P
By Mertens theorem Hpsx(] — %) = @, so we have @(n) = Q(@). Thus

T loglogd
Z@(d—z)—O(Z a2 )

dZ>x dZ>x

o(Z.7s)

dZ>x

Thus
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We can split up the error term as follows:

Z Ea(x) = Z Ea(x) + Z Ea(x).

dz<x 2 /X VX 2
< d SlogD - ToeD —<d?<x

The famous Bombieri result states that for any C > 1, there is a D > 0 such that

Z Ed(X) = O( X )
Ne

C
4 log™~x

- logD x

(see for example [Dav00] chapter 28).

X
Y omw-of ¥ )
x 1
oD, <d2<x o <d<vVX
1
o ¥ &)
1
by <d<vX
—O(xilogEx>

Thus the theorem follows. O

The following results can be proved similarly:

Theorem 4.2. Let A, = {p < x| p a prime,p = a mod 8}, (a € {3,5}), and S(x) = [{p € Aa | P —
1 and p+ 1 are not divisible by p2,p > 2}|. Then

Li (x) 2 .
S0 === H(l—m>—|—o(h (x).

p#2

Theorem 4.3. Let A, = {p < x | p a prime,p = a mod 8}, (a € {3,5}), and S(x) = p € Ao | P —
1 and p + 1 are not divisible by p3,p > 2}/. Then

S(x) = Li4(") IT (1 - m) +o(Li (x)).

p#2

Thus we have proved the following result:

Theorem 4.4. Ifp is a prime p = 3,5 mod 8 such thatp —1 and p + 1 are not divisible by any cube,
then the subgroup membership problem for PSL(2,p) s in NP N coNP. Further the number of such
primes below a bound x is asymptotic to

Li (x) 2
2 H<] pz(v—l))'

P#2

Since ]_[p 42 (] — m) > 0.93, we have that for approximately half of all the primes the subgroup
membership problem for PSL(2,p) is in NP N coNP.

5. CONCLUSION

We have shown that there are a lot of primes for which the subgroup membership problem for PSL(2,p) is
in NPNcoNP. The problem is unlikely to be easier than this since there are conections with the discrete log
problem over prime fields. The natural question to ask is whether for every prime p the subgroup membership
problem for PSL(2,p) is in NP N coNP. This might be true independent of verifying the Short Presentation



6 DENIS XAVIER CHARLES

Conjecture for the exceptional family of groups. We have used only a trivial property of PSL(2,p) namely
its order to exclude having the exceptional family of groups in the composition factors. One could try to
use more structural information of both PSL(2,p) and the exceptional groups. For example, the 2-Sylow
subgroup of the Ree groups R(q) is elementary abelian of order 8, whereas the 2-Sylow subgroup of PSL(2, p),
where p = 3,5 mod 8 is of order 4, so the Ree groups can be directly excluded from consideration. Another
direction to proceed would be to completely characterize all groups that can have one of the exceptional
groups in their composition series and thereby explicitly find all families of groups for which the membership
problem is provably in NP N coNP.
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