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Abstract

We show that the class Sp

2
is a subclass of ZPPNP. The proof uses universal hashing,

approximate counting and witness sampling. As a consequence, a collapse first noticed
by Samik Sengupta that the assumption NP has small circuits collapses PH to Sp

2

becomes the strongest version to date of the Karp-Lipton Theorem.

1 Introduction

The class Sp
2 was introduced independently by Canetti [C96] and Russell and Sundaram [RS95]

in the mid 1990’s. Suppose there are two competing all powerful provers Y and Z. A string
x is given, Y wishes to convince us that x ∈ L, and Z wishes to convince us the opposite
x 6∈ L. We—the verifier—have only deterministic polynomial time computing power. A
language L is in Sp

2 iff there is a P-time predicate P such that the following holds:

If x ∈ L then there exists a y, such that for all z, P (x, y, z) holds;
If x 6∈ L then there exists a z, such that for all y, ¬P (x, y, z) holds, where both
y and z are polynomially bounded in length of x.

In other words, if x ∈ L then Y has irrefutable proof y which can withstand any challenge
z from Z; and if x 6∈ L then Z has irrefutable proof z which can withstand any challenge y
from Y .

The motivation by both Canetti [C96] and Russell and Sundaram [RS95] was to provide a
refinement of the Sipser-Lautemann Theorem that BPP ⊆ Σp

2 ∩ Πp
2 [Si83, L83]. Indeed,

Canetti [C96] extended Lautemann’s proof to show that BPP ⊆ Sp
2, whereas Russell and

Sundaram [RS95] showed further that MA ⊆ Sp
2. Note that BPP ⊆ MA is trivial by

definition, thus MA ⊆ Sp
2 implies BPP ⊆ Sp

2.

As to upper bound of Sp
2, the only known containment is by definition Sp

2 ⊆ Σp
2 ∩ Πp

2 (see
Section 2). Goldreich and Zuckerman [GZ97] surveyed a number of interesting results for
classes between P and the second level of the Polynomial-time Hierarchy Σp

2 and Πp
2. These

classes include ZPP,RP,BPP,NP,PNP,MA,AM,ZPPNP and Sp
2. They called the classes

listed here upto PNP “Traditional classes—classes of the 1970’s”, the class Arthur-Merlin
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“a class of the 1980’s”, and the class Sp
2 “a class of the 1990’s”, underscoring that not much

is yet known about this class Sp
2. In their paper [GZ97] Goldreich and Zuckerman gave a

number of elegant proofs of known results with the strikingly sharp amplification technique
due to Zuckerman [Z96]. They also prove an interesting result MA ⊆ ZPPNP. This last
result was new in 1997 when [GZ97] appeared; it was independently obtained by Arvind and
Köbler [AK97]. In the final diagram summarizing the known facts about all these classes
between P and Σp

2 and Πp
2, Goldreich and Zuckerman used the letter X to stand for both

Sp
2 and ZPPNP, as they share all the known containment properties both below and above.

They further state that it is unknown how these two classes are related.

The main result of this paper is

Theorem 1 Sp
2 ⊆ ZPPNP.

The proof uses universal hashing, approximate counting and witness sampling.

There is an interesting consequence of this result with respect to the well known Karp-
Lipton Theorem concerning sparse sets (with contribution by Sipser) [KL80]. This theorem
says, if NP is Cook-reducible (≤p

T ) to sparse sets, or equivalently, if SAT has polynomial size
circuits, then the Polynomial-time Hierarchy collapses to its second level: PH = Σp

2 ∩ Πp
2.

Many researchers have since tried to improve on this signature theorem—To simplify the
proof and to strengthen the collapse. On the one hand, there emerged what I consider to
be the “book” proof (as Erdös would say) of the theorem (As far as I know John Hopcroft
[H81] was the first to give essentially this proof):

To simulate Πp
2 by Σp

2, guess a poly-size circuit C for SAT, modify C via self-
reducibility so that whenever C(φ) = 1 it also produces a satisfying assignment
to φ, then check all universal paths of the Πp

2 computation lead to a satisfiable
formula.

Samik Sengupta [Se00] first noticed that this “book” proof actually gave the collapse to Sp
2 !

(See Section 5.)

While the proof of Karp-Lipton Theorem becomes extremely transparent, more research
effort went into trying to extend this beautiful result. Much work was done on the general
theme (we mention some in Section 5). Over the years there have been steady improvements
on the exact level of collapse of PH, assuming SAT has small circuits. In this regard,
the best result so far is due to Bshouty et. al. [BCGKT94] and Köbler and Watanabe
[KW95]. Their result states that if NP has polynomial size circuits, then the Polynomial-
time Hierarchy collapses to ZPPNP. Admittedly the proofs of the theorem of Bshouty et.
al. and Köbler-Watanabe are more involved than the “book” proof of the basic version of
the Karp-Lipton Theorem and depend on previous interesting results by Jerrum, Valiant
and V. Vazirani [JVV86] and others.

By the new theorem Sp
2 ⊆ ZPPNP (unconditionally), the (currently) strongest Karp-Lipton

Theorem becomes

Theorem 2 (Sengupta) If SAT has polynomial size circuits, then the Polynomial-time
Hierarchy collapses to Sp

2.
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We observe that while this becomes the strongest collapse for the Karp-Lipton Theorem,
its proof reverts back to the simple “book” proof.

Theorem 1 also subsumes the result MA ⊆ ZPPNP by Goldreich-Zuckerman [GZ97] and
Arvind-Köbler [AK97], as we know from Russell and Sundaram [RS95] that MA ⊆ Sp

2.

2 Preliminaries

The class Sp
2 was defined by Russell and Sundaram [RS95] as follows: L ∈ Sp

2 iff there is a
P-time computable 0-1 function P on three arguments, such that

x ∈ L =⇒ (∃py)(∀pz)[P (x, y, z) = 1]

x 6∈ L =⇒ (∃pz)(∀py)[P (x, y, z) = 0]

where as usual “∃py” stands for “∃y ∈ {0, 1}p(|x|)” for some polynomial p(·). Similarly “∀pz”
stands for “∀z ∈ {0, 1}q(|x|)” for some polynomial q(·). By padding we can suitably extend
the length of both y and z, and henceforth we can assume they both vary over the same
length n which is a power of 2, and n is polynomially bounded in the length of x.

Given x, for convenience, for a pair (y, z) we say y beats z if P (x, y, z) = 1, and z beats y
if P (x, y, z) = 0.

It is immediately clear that both implications “=⇒” can be replaced by the if and only if rela-
tion “⇐⇒” without changing the class Sp

2. For instance, suppose (∃py)(∀pz)[P (x, y, z) = 1],
let y0 be such a y. Then certainly x ∈ L, else we would have a z0 such that (∀py)[P (x, y, z0) =
0], which is clearly a contradiction to P (x, y0, z0) = 1. Similarly (∃pz)(∀py)[P (x, y, z) = 0]
implies x 6∈ L. Thus

x ∈ L ⇐⇒ (∃py)(∀pz)[P (x, y, z) = 1]

x 6∈ L ⇐⇒ (∃pz)(∀py)[P (x, y, z) = 0]

It follows from this if and only if condition that Sp
2 ⊆ Σp

2∩Πp
2. In fact Sp

2 consists of precisely
those languages in Σp

2 ∩ Πp
2 where membership in both Σp

2 and Πp
2 are demonstrated by a

single predicate P .

Canetti [C96] defined the class Sp
2 as follows: L ∈ Sp

2 iff there is a P-time computable 0-1
function P on three arguments, such that for all x,

(∃py)(∀pz)[P (x, y, z) = χL(x)]

and
(∃pz)(∀py)[P (x, y, z) = χL(x)],

where χL is the characteristic function of L.

Clearly the Canetti definition implies the Russell-Sundaram definition. The reverse impli-
cation also holds. For completeness we sketch a simple proof (see [RS95, C96] for more
details.) Suppose a predicate P is given in the Russell-Sundaram definition. We define an

3



extended predicate P̂ to satisfy the Canetti definition. For x, suppose y and z vary over
{0, 1}n. Then P̂ is defined over {0, 1}|x| × {0, 1}n+1 × {0, 1}n+1:

P̂ (x, 1y, 1z) = 1

P̂ (x, 1y, 0z) = P (x, y, z)

P̂ (x, 0y, 1z) = P (x, z, y)

P̂ (x, 0y, 0z) = 0

Intuitively in the Canetti set up both provers are expected to prove the right assertion
whether or not x ∈ L.

ZPP denotes zero-error probabilistic polynomial time. ZPPNP is the class accepted by zero-
error probabilistic polynomial time oracle Turing machines using an NP oracle. By Cook’s
Theorem, we can assume without loss of generality that this oracle is the set of satisfiable
boolean formulae SAT.

3 S
p
2 ⊆ ZPP

NP

To prove the main Theorem 1, we proceed as follows. Let x be given. Let {0, 1}n be the
witness sets for both provers Y and Z. Here n is polynomially bounded by |x|, and is a
power of 2.

We will grow a list Yk ⊂ {0, 1}n of y’s, where |Yk| = k, and k = 1, 2, . . . , nO(1); initially the
list Y1 can be arbitrary given, for example Y1 = {0n}. In the k-th stage, with Yk in hand,
we ask the SAT oracle whether there exists a z ∈ {0, 1}n such that P (x, y, z) = 0 for every
y ∈ Yk, i.e., a z that beats every y ∈ Yk. Since |Yk| = k is polynomially bounded, this is
clearly a SAT query by Cook’s Theorem. If the answer is No, we can already conclude that
x ∈ L and halt. Even though we may not have found a witness y0 which beats every z as
promised in the definition when x ∈ L, we can conclude that x ∈ L, since otherwise x 6∈ L
would have guaranteed a z0 which beats all y, which certainly include all y ∈ Yk.

Hence let’s assume the answer to the SAT query is Yes, then we can use self-reducibility to
obtain from the SAT oracle one such z. Then we can ask if there is another such z which
beats all y ∈ Yk.

Let
Z(Yk) = {z ∈ {0, 1}n | (∀y ∈ Yk)[P (x, y, z) = 0]}.

There are two cases. Either |Z(Yk)| ≤ n2 or |Z(Yk)| > n2. In the first case we can find out
this is so in no more than n2 + 1 steps querying the SAT oracle, and obtain the complete
list z1, z2, . . . , z`, where ` ≤ n2. Then we will ask the SAT oracle sequentially for each
i = 1, . . . , `, whether (∀y ∈ {0, 1}n)[P (x, y, zi) = 0], i.e. if this zi is a promised witness that
beats all y when x 6∈ L. If for some 1 ≤ i ≤ `, we get an answer that this zi beats all y then
we reject x and halt. If for all 1 ≤ i ≤ `, we get an answer that this zi does not beat all y,
we claim that x ∈ L, and we should accept x and halt. This is because, had it been x 6∈ L,
then some z0 which beats all y ∈ {0, 1}n certainly belong to Z(Yk), and would have been
among the complete list z1, z2, . . . , z`. Thus we accept x in this case correctly, even though
we may not have found the promised witness y which beats all z.
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Now we assume the “general case” where we found that |Z(Yk)| > n2. So far we have not
used any probabilistic moves. It is here we will use random coins. Our goal is to find a new
y∗ to be appended to the list Yk so that the corresponding Z(Yk+1) is shrunk significantly.
Let Yk+1 = Yk ∪ {y∗}, then we wish to guarantee that |Z(Yk+1)| ≤ |Z(Yk)|/2 with high
probability. If so, we would guarantee that the size |Z(Yk)| shrinks geometrically every step
by a constant fraction with high probability, and thus in polynomial time we end up in the
case with |Z(Yk)| ≤ n2.

Lemma 1 For every set S in P, there is a probabilistic polynomial time sampling procedure
A using a SAT oracle, such that for every n, A(1n) samples at most nO(1) elements S′ ⊆
S=n = S ∩ {0, 1}n in such a way that, for every subset T ⊆ S=n, with |T | > |S=n|/2,

Pr[S′ ∩ T = ∅] ≤
1

22n
.

We will give a proof of Lemma 1 in the next section.

For any witness y′ ∈ {0, 1}n, consider the set

Ty′ := Z(Yk ∪ {y′}) = {z ∈ {0, 1}n | (∀y ∈ Yk)[P (x, y, z) = 0] ∧ [P (x, y′, z) = 0]}.

We say a y′ ∈ {0, 1}n is a “bad witness” with respect to Z(Yk) if

|{z ∈ Z(Yk) | P (x, y′, z) = 1}| <
|Z(Yk)|

2
.

That is, y′ is a“bad witness” if it beats less than 1/2 of Z(Yk). Then for a fixed bad witness
y′, the subset Ty′ has cardinality greater than |Z(Yk)|/2. In this case, by Lemma 1, we can
sample a polynomial number of z ∈ Z(Yk), call the set Z ′, such that the probability

Pr[Z ′ ∩ Ty′ = ∅] ≤
1

22n
.

Since there are at most 2n bad witnesses,

Pr[(∃ a bad witness y′ ∈ {0, 1}n)[Z ′ ∩ Ty′ = ∅]] ≤
1

2n
.

Suppose now for every bad witness y′ ∈ {0, 1}n, the sample set Z ′ has a non-empty inter-
section with Ty′ = Z(Yk ∪ {y′}). That means that for every bad witness y′, y′ cannot beat
all of Z ′. With the polynomial sized set Z ′ in hand, we ask the SAT oracle once again
whether there is a y which beats all these z ∈ Z ′. Again this is a SAT query by Cook’s
Theorem. If the answer is No, then we know x 6∈ L since otherwise there is a y which beats
all z ∈ {0, 1}n, and certainly y beats all these z ∈ Z ′. So we reject x and halt.

If the answer is Yes, we use self-reducibility of the SAT oracle to obtain one such y∗. Notice
that by now there is no bad witness y′ which can beat all of Z ′. Thus this y∗ is not a bad
witness. This is true with probability ≥ 1 − 1/2n. We then define Yk+1 = Yk ∪ {y∗}. Then
with high probability we have

|Z(Yk+1)| ≤
|Z(Yk)|

2
.

As remarked earlier this gives our ZPPNP algorithm.
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4 A sampling lemma

To prove Lemma 1, we will make use of universal hashing. Consider a family of hash
functions:

{hs : {0, 1}n → {0, 1}k}s∈S

Recall that a family of hash functions is 2-universal if for every pair of distinct x 6= y in
{0, 1}n, and for every α, β ∈ {0, 1}k, Prs∈S [hs(x) = α ∧ hs(y) = β] = 1/22k, i.e., hs(x) and
hs(y) are pair-wise independent and uniformly distributed when s ∈R S. It is well known
such family of 2-universal hash functions exist and can be easily constructed with small
sample space, e.g., ha,b(x) = ax+ b and then truncate to k bits, where a, b and x range over
a finite field GF[2n].

Here is an outline of the proof of Lemma 1. First we will use hash functions and the SAT
oracle to get an approximate count of the subset S=n. If this set is polynomially small,
then we can handle it trivially. Suppose it is large. Then we will devise a simple sampling
strategy satisfying the Lemma. The estimation can be done in a number of ways; we give
a self-contained account using the notion of isolation of Sipser. (See [Si83, St83, JVV86].)
The second stage is done by a simple procedure based on an estimate of points with unique
inverse images from S=n under a random hash function. The details follow.

First we handle the trivial case where |S=n| ≤ n2, say. We can ask our SAT oracle if
S=n = ∅. If so then Lemma 1 is vacuously true (no subset T exists with |T | > |S=n|/2). If
S=n 6= ∅ yet |S=n| ≤ n2, then we can find all the elements with the help of the SAT oracle.
With all of S=n in hand, we can simply let the sample set S ′ be S=n itself.

Now assume |S=n| > n2.

Given x 6= y, we say x collides with y under hs if hs(x) = hs(y). For a subset E ⊆ {0, 1}n,
we say that hs isolates x ∈ E iff x does not collide under hs with any other element of
E. The following lemma of Sipser is well known and follows from a simple probability
estimate [Si83] (see also [St83]).

Lemma 2 Let E ⊆ {0, 1}n, and let {hs : {0, 1}n → {0, 1}k}s∈S be a family of 2-universal
hash functions of cardinality 22n with 1 ≤ k ≤ n. Then for all m ≥ k,

1. if |E| ≤ 2k−1 then

Ps1,...,sm∈RS [∀x ∈ E some hsi
isolates x ] ≥ 1 −

1

2m−k+1

2. if |E| > m2k then

Ps1,...,sm∈RS [∀x ∈ E some hsi
isolates x ] = 0.

For our set E = S=n, there is a unique ke, where 2 log2 n < ke ≤ n, such that 2ke−1 <
|E| ≤ 2ke . If we take every k in the range 2 log2 n < k ≤ n + 1, and randomly pick m = 4n
hash functions hs1

, . . . , hsm
: {0, 1}n → {0, 1}k, with probability ≥ 1 − 1

23n , at least for
k = ke + 1, we would get isolation. For each k we ask the SAT oracle, whether the chosen
set of hs1

, . . . , hsm
has the property that “∀x ∈ E, one of hi isolates x”. Since there are
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only m = 4n hash functions this is a SAT query. We pick the least k0 such that the oracle
confirms isolation. We abort if for no k the chosen hash functions achieve isolation. With
probability ≥ 1 − 1

23n we do not abort, and we get k0 ≤ ke + 1. Also by the second part of
the Lemma 2, we know definitely |E| ≤ 4n2k0 . Hence

k0 − 1 ≤ ke ≤ k0 + log2 n + 2.

Denote by U = 4n2k0 ; this is an upper bound of |E|, and also not too far from a lower
bound of |E|,

U

16n
< |E| ≤ U.

With this estimate, we take n hash functions hs1
, hs2

, . . . , hsn
uniformly and independently

from a family of 2-universal hash functions from {0, 1}n to {0, 1}k0+2 log
2

n+1. Note that the
size of the range is nU/2.

For any such hs, define the random variable C to be the number of colliding pairs,

C =
∑

x6=y∈E

χ[hs(x)=hs(y)].

The expectation of C is

E[C] =
∑

x6=y∈E

Prs∈RS [hs(x) = hs(y)] =

(

|E|

2

)

1

nU/2
<

|E|

n
.

Hence by Markov’s inequality

Pr[C ≥ |E|/8] ≤
8

n
.

Say a point α ∈ {0, 1}k0+2 log2 n+1 is a unique image if there is a unique x ∈ E such that
hs(x) = α. Suppose C ≤ |E|/8, then there can be at most |E|/4 many x ∈ E involved in
a collision, i.e., such that there exists some y 6= x, y ∈ E, hs(x) = hs(y). At least 3|E|/4
elements of E are mapped to a unique image. Since Lemma 1 assumes the subset T has
cardinality |T | > |S=n|/2 = |E|/2, at least |E|/4 many elements from T are mapped to a
unique image.

We now sample as follows. After the hash functions hsi
are chosen, for each 1 ≤ i ≤ n,

uniformly pick a target α ∈ {0, 1}k0+2 log2 n+1, and ask the SAT oracle whether it has an
inverse image from the set E = S=n. Since S is in P, this is a SAT query. If α ∈ hsi

(E),
we use self-reducibility to get one inverse image. This inverse image is a sample point. If
α 6∈ hsi

(E), we uniformly independently pick another target α′, and repeat this at most
20n3 times, until one sample point is found. If we do not get any sample in 20n3 tries for
this hsi

, we give up on this hsi
. If we fail to get any sample point, for all hsi

, 1 ≤ i ≤ n, we
abort.

The probability that at least one of n hash functions has its C ≤ |E|/8 is ≥ 1− ( 8
n
)n. Given

C ≤ |E|/8 for a hsi
, the image of E has cardinality at least 3|E|/4 (counting only those

with unique images), and the range for the hashing function has cardinality nU/2 < 8n2|E|,
the probability that no element from hsi

(E) was chosen as a target α in 20n3 tries is

<
(

1 − 3
32n2

)20n3

< e−
15

8
n � 2−2n. Given that an element from hsi

(E) is picked in 20n3
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tries, the first element picked is not from |E|/4 many unique images from T is at most
3/4, (a unique image has at least as high a probability to be picked as those with multiple
inverse images: |hsi

(E)| ≤ |E|.)

Now we iterate this procedure a polynomial number of times (5n times suffice). Given
that we get at least one sample in each iteration, the sampling procedure A(1n) produces
nO(1) elements S′, the probability that all of which are not from T is exponentially small
≤ (3/4)5n � 1

22n . The total error probability is at most

1

23n
+ 5n

[(

8

n

)n

+ e−
15

8
n

]

+

(

3

4

)5n

<
1

22n
.

Comment: It is possible to state a more general lemma than Lemma 1. But we shall only
need the statement of this Lemma to complete our proof of Theorem 1. It is also possible
to use some earlier work by Jerrum, Valiant and V. Vazirani [JVV86], Bshouty et. al.
[BCGKT94], and Köbler and Watanabe [KW95] for this purpose. Please also see a recent
paper by Bellare, Goldreich and Petrank [BGP00]. But this simple lemma has a sufficiently
simple and self-contained proof which is sufficient for our purposes. Another useful aspect is
to avoid circularity when we claim later in Section 5 that the “book” proof of Karp-Lipton
gives the strongest form of this theorem to date. Of course from a logical point of view
there is no difference which approach to take, any proof of this lemma is acceptable.

5 An implication for Karp-Lipton

There has been a lot of work on the general theme inspired by the Karp-Lipton Theorem.
For example, Mahaney [M80] showed that if the sparse oracle is itself in NP (i.e., NP has
≤p

T -complete, not just ≤p
T -hard sparse set) then PH collapses to ∆p

2. Long [Lo82] extended
this to co-sparse oracles. Arvind et. al. [AKSS95] showed that under the same assumption
as in Karp-Lipton that SAT has small circuits then MA = AM. (See [HMO92] for a survey.)

Suppose NP has polynomial size circuits. The Karp-Lipton Theorem says that the Polynomial-
time Hierarchy collapses to Σp

2 ∩ Πp
2. Sengupta [Se00] pointed out that the same proof col-

lapses the Polynomial-time Hierarchy to Sp
2. To see this we recount the “book” proof, but

this time phrase it in terms of provers Y and Z. We only need to show that Πp
2 ⊆ Sp

2, then
it follows that Πp

2 ⊆ Sp
2 ⊆ Σp

2 and hence they are all equal.

Let L be any language in Πp
2. There is a normal form L = {x | (∀py)(∃pz)[P (x, y, z)]}, where

P is a P-time predicate. By Cook’s Theorem, without loss of generality we can assume that
it takes the form

L = {x | (∀ps)[φx,s ∈ SAT]},

where φx,s is a boolean formula computable in P-time from x and s. Let the size of φx,s be
bounded by p(|x|) for some polynomial p(·).

Now to show membership in Sp
2 we receive two strings y and z, from provers Y and Z

respectively. We expect the string y to be a poly-size circuit for formulae of size up to
p(|x|). For a pair (y, z) we accept if and only if the circuit y says the boolean formula φx,z

is satisfiable and by self-reducibility produced a satisfying assignment which satisfied it.
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We note that there exists a relativized world where the Karp-Lipton Theorem cannot be
improved to PNP [H86, W85].
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