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Abstract

We study the space complexity of refuting unsatisfiable random k-CNF's in the Resolution
proof system. We prove that for any large enough A, with high probability a random k-CNF
over n variables and An clauses requires resolution clause space of Q(n - A_%), for any
0 < € < 1/2. For constant A, this gives us linear, optimal, lower bounds on the clause space.

A nice consequence of this lower bound is the first lower bound for size of treelike resolution
refutations of random 3-CNFs with clause density A >> 4/n. This bound is nearly tight.
Specifically, we show that with high probability, a random 3-CNF with An clauses requires
treelike refutation size of exp(Q(n/A%)), for any 0 < e < 1/2.

Our space lower bound is the consequence of three main contributions.

1. We introduce a 2-player Matching Game on bipartite graphs G to prove that there are no
perfect matchings in G.

2. We reduce lower bounds for the clause space of a formula F' in Resolution to lower bounds
for the complexity of the game played on the bipartite graph G(F') associated with F'.

3. We prove that the complexity of the game is large whenever G is an expander graph.

Finally, a simple probabilistic analysis shows that for a random formula F', with high probability
G(F) is an expander.

We also extend our result to the case of G—PH P, a generalization of the pigeonhole Principle
based on bipartite graphs G. We prove that the clause space for G — PHP can be reduced to
the game complexity on G.
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1 Introduction

1.1 Proof Space Complexity

The importance of Proof Complexity comes from the close relationship between its fundamental
questions and long-standing open problems in Complexity Theory. In its more general setting a
Propositional Proof System can be defined as a polynomial time computable function that is onto
the set of tautologies [CR79]. In similarity with Circuit Complexity, we have very little knowledge of
the properties of arbitrary proof systems, and thus usually we restrict our attention to some simple
concrete proof systems. The system receiving most attention by far is the Resolution system.
The attention arises from several reasons. Resolution has a single rule, that is relatively simple to
analyze. Resolution is used heavily in practice for Automated Theorem Proving. In the last 15 years
several fundamental works have analyzed the complexity of proofs in Resolution, showing that many
tautologies require exponentially long refutations in Resolution [Hak85, Urq87, CS88, BP96, BW98].

As it is well known, the complexity of an algorithm is measured not only in terms of the running
time but also in terms of the memory consumption. The space not only is a natural measure for
the complexity of algorithms, but, as for the time measure, is also widely studied in Complexity
Theory.

The proof complexity measure related to the time complexity measure is the size of a proof,
that is the number of symbols used in the proof, or when polynomially related, the number of
formulas used. Recently [ET99, ABRWO00] introduced and studied a new complexity measure
for propositional proof systems, analogous to the space complexity measure for circuits. For the
Resolution system, Esteban and Tordn [ET99] proposed to consider as measure for the Resolution
space complexity, the number of different clauses that must be simultaneously available (that is
kept in memory) to obtain the empty clause. Alekhnovich et al. [ABRWO00] generalized under
several aspects, the work [ET99]. First of all they extend the definition of clause space complexity
in a natural way to all important propositional proof system such as Frege Systems or Polynomial
Calculus. Moreover to measure the memory content in a given moment during a proof they also
considered the wvariable space, that is the overall number of variables used, as well as the total
number of symbols needed, the bit space.

In spite of its recent introduction several non trivial upper and lower bounds for space complexity
are already known. Tordn in [Tor99] gave lower bounds for clause space in Resolution. He considered
two well-known tautologies, for which several lower bounds for the size are known: the PH P, and
the so-called Tseitin Tautologies. Alekhnovich et. al. [ABRWO00] devised a general technique to
give non trivial lower bounds for the clause space in Resolution, and in other proof systems. Using
this method they obtain non trivial clause space lower bounds in Resolution for class of formulas
like PHP,, GT, and CT,.

1.2 Random CNF's

It is well-known that in circuit complexity simple counting arguments show that a random function
is hard to compute. In studying the complexity of a given proof system it is natural to ask what
is the proof complexity of a tautology taken at random. However we don’t have a definition of
what is a random tautology. Still, in some cases, if we restrict our attention only to certain kinds
of tautologies we can deduce informations on their random behaviour. An easy calculation shows
that for a high enough constant A, with high probability (i.e. with probability 1 —o(1)). a random
3-CNF formula with n variables and An clauses is unsatisfiable (A is called the clause density).
Let us introduce the definition of a random CNF and the satisfiability threshold.



Definition 1.1 (Random CNFs) Let IF:%" be the probability distribution obtained by selecting m
clauses uniformly at random from the set of all 2% - (2) clauses of size k over n variables. F ~ IF"TC,;",

means that F is selected at random from this distribution. A random k-CNF formula is a formula

F ~ T,

Definition 1.2 (Satisfiability Threshold) Let 6y be the satisfiability threshold for k-CNFs, i.e.
0k is the minimal constant such that as n — oo, whp F ~ F]g’z is unsatisfiable.!

Size proof complexity of unsatisfiable random CNFs has been widely studied. Chvatal and
Szmerédi in their seminal paper [CS88| showed that with high probability, any random 3-CNF
over n variables and An clauses for A = O(1), requires exponentially long Resolution proofs to be
refuted. The importance of their work was in showing that in fact Resolution is a very weak proof
system, because in some sense almost all unsatisfiable 3-CNF require exponential size proofs to be
refuted. Their lower bound was later improved and simplified by Beame and Pitassi in [BP96],
and finally improved up to a ratio A = o(y/n) by Beame, Karp, Pitassi and Saks in [BKPS98],
and reformulated in terms of a general technique based on the width by Ben-Sasson and Wigderson
in [BW98] . All these results, as well as the results presented in this paper can be generalized to
k-CNFs for arbitrary constant k& > 3.

1.3 Our Results

Lower bounds for the clause space of unsatisfiable random 3-CNF didn’t follow from any of the
techniques devised in the previous works on space complexity [ET99, ABRWO00, Tor99]. In fact
this was left as an open problem in both [Tor99] and [ABRW00].

In this paper we study the clause space complexity of refuting unsatisfiable random CNF in
Resolution. Qur main result is the following.

Theorem 1.3 For any k > 3, any 0 < € < 1/2 and any A > 6, with high probability refuting a

random k-CNF with n variables and A - n clauses requires Clause Space ) (n AT kij;ie)

For instance, setting A to be a constant we get linear lower bounds. Since [ET99] showed that
the clause space of any formula is at most n + 1, this lower bound is optimal up to a multiplicative
constant.

Corollary 1.4 [Constant A] For any constant A > 0y, a random k-CNF with n variables and
An clauses requires Q(n) clause space to refute.

Another interesting corollary is for large clause density, which we state for concreteness for
k=3.

Corollary 1.5 For any constant 1 > § > 0, there exists an € > 0 such that with high probability,
a random 3-CNF with n variables and n>~9 clauses requires clause space Q(nf) to refute.

This lower bound which applies for clause density greater than y/n, is in contrast with the known
lower bounds for size of proofs within this density range: our best size lower bounds become trivial
when the clause density reaches y/n. Indeed, one corollary of our space lower bound is the first
exponential lower bound on the minimal size of a treelike refutation, for clause density greater than
v/n (theorem 5.5).This bound is nearly tight. Previously such lower bounds were known only for
special types of treelike proofs, formed by a Ordered DLL algorithm [BKPS98|.

!Currently, the best lower bound on 83 is 3.145 < 63 of [A00] and the best upper bound is 83 < 4.5793 [JSY00]
and a recent 63 < 4.506 claimed by [DBMOQO0].




1.4 Proof Outline

A 3-CNF has an obvious interpretation in terms of bipartite graphs. Under this intepretation, a
matching in the graph G(F') associated with F' corresponds to a partial assignment satisfying part
of the formula F.

In order to prove clause space lower bounds on F, we define a 2-player game (The Matching
Game) to be played on the bipartite graph G(F'), associated with F. The aim of the first player is
to prove that there is no perfect matching. The second player is an opponent which instead tries
to force a perfect matching. The first player should complete his task “remembering” as few as
possible of his moves in the game.

We prove two main properties. First that the clause space of refuting a 3-CNF can be reduced
to the natural complexity measure for the game (i.e the minimal number of moves Player I needs
to remember to win). Then we prove that when the graph is an expander, the first player needs
to remember a large number of moves, where the size is correlated to the expansion parameters of
the graph.

It turns out that our characterization of clause space is quite general. Indeed we can extend our
result also to the case of another tautology based on bipartite graphs G, the G — PH P, introduced
by [BW98]. We prove that clause space for G — PHP can be reduced to the game complexity of
the Matching Game played on G.

The paper is organized as follows. In Section 2 we give some preliminary definitions. Section 3
is dedicated to the definition of the Matching Game and its relationship with the clause space. In
Section 4 we prove a lower bound for the Matching Game played on graphs from the class of (r, €)-
bipartite expanders. In Section 5 we prove a Lemma studying under which parameters r = r(n)
and € = €¢(n), a random k-CNF over n variables defines an (r, €)-bipartite expander. This result
joint with results from previous sections gives the lower bound for resolution. Finally in Section 6
we show that the Matching Game applies also to the G — PHP.

2 Definitions

Let V be finite set of boolean variables. A literal [ is either a variable x € V or its negation Z. A
clause is a disjunction (eventually empty) of literals. A CNF' formula is a conjunction of clauses and
it will be convenient to see it as a set of clauses. We use calligraphic letters (e.g. F,C) for denoting
CNF formulas, and capital letters for denoting clauses. A 3-CNF formula is a CNF formula in
which all the clauses have exactly 3 literals.

For F a formula, Vars(F) is the set of variables appearing in F. A restriction on F is a partial
function p : Vars(F) — {0,1}. F, denotes the CNF formula obtained from F after applying p in
the standard way: if a literal £ is set to 1 by p, then all clauses C' of F such that ¢ € C' disappear in
F|p; all clauses C in F such that C = VD become D in F,. We say p(z) = x when z ¢ Domain(p).
The size of a restriction, |p|, is [Domain(p)|.

2.1 Clause Space in Resolution

Resolution is a refutation proof system for unsatisfiable CNF formulas based on the following
propositional resolution rule:

DiU{z} DyU{z)}
Dy U Dy




We define a space complexity measure following the definitions of [ABRWO0]. Let [n] be the
set {1,...,n}.

Definition 2.1 A configuration is a set of clauses. A refutation w of a CNF F, is a sequence of
configurations Cy,...,Cs such that Co = 0, Cs = {B} (the empty clause) and for all t € [s], Cy is
obtained from Ci—1 by one of the following rules:

Axiom DOowNLOAD C; := Ci—1 U C for some clause C € F;
MEMORY ERASING C; := Cy_1 — C' for some C' C Ci_1;

INFERENCE ADDING C; := Ci—1 U C, for some C obtained by a single application of the resolution
rule to two clauses in Ci_1.

The following definitions define the measure for the resolution space: the clause space. Let
7 F F denote that 7p is a resolution derivation (in the form of sequence of configurations) of F.

Definition 2.2 (Clause Space) For C a set of clauses, |C| is the number of clauses in C. The
space of a set of configurations m = {Co, . ..,Cs} is the mazimal number of clauses in a configuration
of m.

The clause space of refuting an unsatisfiable CNF F, denoted CSpace(F), is the minimal space
of a resolution refutation of F.

Definition 2.3 (Width) |C| (also denoted by w(C) - the width of C) is the number of literals in
the clause C. The width of a set of clauses F is the width of the largest clause in F. The width of
a resolution refuation of F is the width of the largest clause in the refutation. Finally, the width of
refuting an unsatisfibale set of clauses F, denoted by w(t F) is the minimal width taken over all
refutations of F.

3 The Matching Game

We wish to reduce the space required to refute a CNF formula to a natural combinatorial game
played on a bipartite graph. We shall prove lower bounds for this game whenever the bipartite
graph is an expander.

Definition 3.1 Bipartite Expanders A bipartite graph G =< VUU, E > s called an (r,€)-
bipartite expander if
wWicv [VI<r IN(V)I =1+,

where N (V') is the set of neighbors of V'.

3.1 Proving there is no Perfect Matching

For G =< (V UU), E > a bipartite graph, if |V| > |U| then there is no matching of V' into U. We
wish to prove this claim, using “limited space”. For this purpose let us define a two player game.
The players are Pete (Prover) and Dana (Disprover). Pete tries to prove that there is no matching
from V' to U, and Dana tries to prove that such a matching exists. Pete has k fingers, numbered
{1,...,k}, and Dana has k fingers, numbered identically. We start with all vertices of G uncovered,
and on each round one of the following occurs:



1. Pete Places a finger j on some uncovered v € V, and Dana must answer by placing her finger
j on some uncovered u € U that is a neighbor of v.

2. Pete removes a finger j from a covered v € V, and Dana answers by removing her finger j
from its covered neighbor u € U.

Notice that the set of fingers placed on the graph corresponds naturally to a partial matching
in G : each v covered by a finger j of Pete is matched to the u that is covered by Dana’s finger j
in reply. Pete wins the game when he places a finger on some vertex such that all its neighbors are
already covered by Dana. If Pete cannot win the game, then Dana wins. We define M Space(QG)
(Matching Space) to be the minimal number of fingers that Pete needs in order to win the game.
Clearly M Space(G) < |U|+ 1.

3.2 Reducing Clause Space to Matching Space

Definition 3.2 For C a CNF formula, define G(C) to be the following bipartite graph:
1. 'V is the set of clauses.
2. U is the set of variables.

3. (C,x) € E(QG) iff the variable x appears in the clause C (we do not care whether x appears
as a positive or negative literal).

The main claim of this section is:
Theorem 3.3 CSpace(C) > M Space(G(C)).

Proof: For m = {(C;,,x;,),-..(Ci,,z;,)} a partial matching in G(C) of size k, define p(m) to be
the restriction of size k that sets the variable z;; to the value that satisfies the clause Cj;, for
j=1...k, and leaves all other variables unassigned.

Assume Dana has a winning strategy when the matching game is played on G(C) using k fingers.
We will use this strategy to show that every set of clauses derivable in clause space k is satisfiable.
Let Cp,...C¢ be a derivation from C, of space k. We construct inductively a sequence of partial
matchings in G(C), mg,...my my C E t =0...4, that maintains the following properties for all
t=0...4

1. my is the matching obtained by playing the matching game with & fingers for ¢ < ¢ rounds.
2. my| < |Gyl .
3. Ctlp(mt) =1

my is the empty matching. For the induction step, we prove the claim according to the type of
rule used at time ¢:

1. Axiom Download: If the new axiom C' is satisfied by the restriction, we do nothing, and
clearly all properties are maintained. Otherwise, the number of fingers Pete has at time t—1 is
at most |C;—1| < k — 1, and thus, when Pete places a finger on C in G(C), Dana can respond
by placing a finger on some uncovered z appearing in C. We set my = my—1 U {(C,z)}.
All properties are maintained: the new matching corresponds to playing one more round of
the matching game. The memory size and the matching size are both incremented by one.
Ct'p(mt) = 1, because Ct—1|p(mt,1) = 1, and C'p({(C,m)}) =1.



2. Inference: Set m; = my_1. By the soundness of resolution, we know that C;_; |= C; and
hence Ct|y(m,) = Ctlp(m,_,) = 1. Since |C¢| > |C;—1] it also follows that |my| < |Cyl.

3. Memory Erasure: C; = C;_1 — C' for some clauses C’'. Any assignment satisfying C;_1 also
satisfies C;. We set my; C my_1 to be some minimal size submatching such that C;| p(ms) = 1.
Since p(m) is in 1-1 correspondence with m, for any m, we have that |m;| < |C;| using the
locality lemma for Resolution from [ABRWO00].

Lemma 3.4 (Locality lemma) [ABRW00] Let p be a restriction and C be a set of clauses,
such that (Acee Clp) = 1. Then there exists a sub-restriction p' of p, such that (Aqee Cly) =
1, and |p'| <|C|.

Thus we get that the clause space required to refute C is at least M Space(G(C)) and the theorem
is proved. L]

4 Lower Bound on the Matching Game

We shall now prove lower bounds on the Matching Space when G is a good expander. In the proof
we extensively use Hall’s theorem:

Theorem 4.1 (Hall’s Matching Theorem) For a bipartite graph G =< VUU, E >, there exists
a perfect matching of V! CV into U iff VV" C V', IN(V")| > |[V"].

We call V! minimal unmatchable into U’ if V' is unmatchable into U’, and any proper subset
of V' is matchable into U’. By Hall’s theorem, this occurs iff |[N(V')| < |[V'| but for all V' C
VNV = [V

Theorem 4.2 (Matching Space Lower Bound) If a graph G =< (V UU),E > is an (r,¢)-

bipartite expander, then
€T

24¢

M Space(G) >

Proof: Suppose the game is played until at time 7', Pete wins. Thus, at time 0 < ¢ < T the set
of covered vertices corresponds to a partial matching in G. For any 0 <t < T, let E; C FE be the
matching at time ¢, let s; = |E¢| be the matching space at time ¢, and let V; (resp. U;) be the set
of uncovered vertices in V' (resp. U). We define a strategy for Dana.

Strategy 4.3 Answer trying to maintain the property:
YV CV, V| <r—s, V' can be matched into Uy. (1)

At t =0 sy = 0, and the property holds, by the definition of expansion and Hall’s theorem. Let
t be the first time property (1) does not hold. We claim that s; > 55~. The proof of this claim is
divided into two cases, according to the step taken at time ¢.

1. Pete removes a finger from v: Let u be the vertex matched to v at time ¢ — 1 (i.e.
(v,u) € Ei1). Vi = Vi1U{v}, Uy = U1 U{u} and sy = s;—1 — 1. There exists some V' C V;
of size at most r — s¢, that is minimal unmatchable into U;.

Claim 4.4 |V'| =r — 5.



Proof: By definition, |[V'| < r — s;. Assume, for the sake of contradiction, that |[V'| < r — s;.
By the minimality of ¢, every set of size (r — s;) — 1 = r — s;—1 which does not include v,
is matchable into U; because it is even matchable into U;_; C U;. A set of size r — s;_1
which does includes v can be matched into U; in the following way: match v to u, and use
the matching of the remaining set (of size r — s, 1 — 1) into U;_1, which must exist, by the
minimality of . We conclude that V' is matchable into Uy, contradiction. Thus V| > r — s;.

(

Let us calculate the size of the set of neighbors of V' in the original graph G. On the one
hand, |V'| < r, and hence by the definition of expansion:

IN(VII = 1+ V| (2)

On the other hand, V' is minimal unmatchable into Uz, and hence by Hall’s matching theorem
[V!| > |[IN(V') N U|. The only other possible neighbors of V'’ in G are in the matching F},
which has size s;. Thus we get

V[ + 5> [N(V')] 3)

Combining the two inequalities and setting |[V'| = r — s; we get:

V| +s > (1+oV] = (4)
se > e-|V] = (5)
€E'T €T

>
5t l+e 2+e

Case 1 is proven.

. Pete places a finger on v: Let uq,...uq be the neighbors of v in U;_; (for some d > 0).
For any choice u; that Dana makes, there is some V* C V;, |V*| < r — s; that is minimally
unmatchable into U1 \ {u;}.

Claim 4.5 There is no matching of V = ud_, Vi U {v} into Up_;.

Proof: Assume for the sake of contradiction that V is matchable into U;_1, and fix such
a matching. Let U’ C U;_; be the image of V? under this matching. Recalling that V*
is minimal unmatchable into U;_; \ {u;}, we conclude that u; € U’. This is true for any
1 =1...d, and hence all neighbors of v are already taken by the matching on U;-LIV". Thus
v cannot be matched, contradiction. ]

By the claim, and the minimality of ¢, [V| > r — s;_1, and since s; = s,_1 + 1, we get
| U;i:l VH >r—s.

Claim 4.6 Fori=1...d, |N(V))NU;_1| = |[V'|.

Proof: |Vi| <r—s; < r—s4_1, s0o V? is matchable into Ui—1, and hence |N(Vi)OUt_1| > V.
V? is minimal unmatchable into Uy 1 \ {u;}, so |[N(V?*) N U1 \ {w;}| < |V?|, and hence
IN(V) NUi_4| < |V O

For all i, |V;| < r — s;, whereas, |UL ; V| > r — s;. There must exist some subset I C [d] such
that "5% < |Ujer V'| < r — 5. Fix such an I, and denote V' = U/ V™.




Claim 4.7 Suppose V1,... V¥ are sets such that for all i € [d]

(a) IN(VH)| = [V,
(b) V* is matchable into U.

Then |N(UieqV)| < | Uierq V.

Proof: By induction on d. For d = 1 the claim is simply condition a. Let V]%EW = Va\
(UZVP) be the set of “new” vertices added by V¢, and V&, ;) = VE\ Vg If Vigy = 0
there is nothing to prove. Otherwise, assume for the sake of contradiction that |V (VﬁdEW) \
NULZVH| > [V gwl, ie. V¥ adds more neighbors than its size, when it is added to US_, V°.
By property 2 we know that |[N(VZ, )| > |V4. pl. Thus

INVY| = IN(VSLp)| + IN(View) \N(V(SiLD)[
IN(VSLo)| + IN(VR gw) \N(U?:_%VZ)‘

VéLo| + [Vagwl
> |V

2
>

The second inequality follows from the fact that VgL p C Uf;ll V. We have reached a contra-
diction to property (a), and the claim is proven. O

Let us calculate once again the size of the set of neighbors of V' in the initial graph G. On
the one side s;—1 + |[N(V') N Uy—1| > |N(V")|. Applying claims 4.6, 4.7 to {V*};cs gives us

si—1 + V[ > IN(V').

On the other hand, the expansion property and the fact |V'| < r give us
NV = 1+ V.

Combining the two together, we get:

|VI|+St,1 > (1+6)|V’| == (St>8t—1)

r—3
st > elV'] = (V> )
€-r
s
! 2+€
Case 2 is proven, and with it the theorem. L]

5 Proof of the Theorem 1.3

In this section we complete the proof of the main theorem 1.3.
Proof of Theorem 1.3: By the following lemma 5.1, with high probability F ~ IF’X’;L is an

(Q(n . A_kirif), e) -bipartite expander. By theorem 4.2 the matching game played on G(F) re-
quires space (Q(n AT )) , and finally by theorem 3.3 the clause space is at least (Q(n N == )) .
O

The rest of this section is devoted to analyzing the expansion parameters of a random G(F),
using a union bound.



Lemma 5.1 For each integer k > 3 and 0 < € < 1/2, there exists a constant k = k(k,€) such
that the following holds. For F ~ IFJX" with probability tending to 1 as n tends to oo, G(F) is an

n’

N E . .
(m ‘me A ke e) -bipartite expander.

Proof: Let F ~ ]FZT; a k-CNF and let G(F) be the bipartite graph associated with F. Let
r = knA— 25, where the constant x will be determined later. Let BAD be the event that G(F)
is not an (r, ¢)-bipartite expander. We prove that the Pr[BAD] tends to 0 as n grows. We bound
the probability of BAD by the probability that there exists a set V' C V, with 1 < |V’| < r, such
that |[N(V')| < (14 ¢€)|V'| and then we use the union bound to upper bound this probability.

Observe that there are (Az") possible sets V! C V of size 7, and there are ((147:5)1‘) possible small
sets of neighbors of V'. For a given set V' of size 4, and a given set U’ of size (1+ ¢€)i, the probability
that N(V') C U’ is

(1+e€): .
PZ':((HI; ))z < ((1+€)Z)ki

(%) n

Let us bound the probability of the BAD event:

Pr{BAD] < i(?)'(afe)z‘)ﬂ

=1
: ;(eény (@ i/’:Le)z')(lmi (& Ze)i)ki

< YA (L) M
i=1

The first inequality uses the well-known estimation (z) < (%)b, and the second is true for the

constant ¢ = c(k,€) = e>7¢ - (1 4 €)¥~17¢ (recall that 0 < € < 1/2).
We now split the proof into cases:

Case 1: A > nl/10

Pr[BAD]

AN
i)
—

| =
N—

—

BN

|

Y

&
s

IN
)
—~

<
~—
—~
T
[\
2
s

INA
M
N[ =
g

i=1

This geometric sum vanishes as n goes to oo, because A > n/10,

Case 2: A < nl/10

Notice that since A < n!/10 k>3 and e < 1/2, then r > n7/10. We split the sum of equation
(7) into two:



Pr[BAD] < Z[c )k=2=))i (8)

AN

Z[c Ic 2— e)]z (9)

+ zr: [c-A- (l)(k—2—e)]i (10)
i=y/n "

We bound the first sum by the geometric sum

vn
9) < Z[C.nl/lo.n—%(k—Z—e)]i

n1/10—1/4]i

I
M I
B

n71/4]z'

IN
M5
?

1
As for the second sum, setting k(k,e) = (ﬁ) "2 we get that (Lyk=27¢ = m,
Recalling A > 0 > 1 we get:

(10) < Z[c )29 ve

\/_ .9~V
Z [2CA1+€ sn-2

Clearly, both sums vanish as n approaches co. lemma 5.1 is proven. U

5.1 Lower Bounds for Treelike Resolution Size

One nice consequence of the Space lower bound of theorem 1.3 is a new lower bound for minimal
size of treelike resolution refutations for high clause density (A > y/n). A treelike resolution proof
is a proof in which every derived clause can be used at most once in resolution inference. [BKPS98]
proved the following upper bound for the minimal size of tree-like resolution proofs for random
CNFs.

Theorem 5.2 [BKPS98] Let k > 3, and A > 0. With high probability the size of a minimal tree-
like resolution refutation of a random k-CNF with n variables and An clauses, is 20(n/AVE=2) h0(1)

10



This upper bound is achieved by a satisfiability algorithm called ordered DLL, which produces
a treelike resolution proof. Moreover, [BKPS98] proved a matching lower bound for this algorithm.

The question of existence of short arbitrary treelike resolution proofs has been open for A > /n,
and the best previous lower bounds were those of [BKPS98, BW98], which followed essentially from
width lower bounds (for simplicity we cite only the case of 3-CNF):

Theorem 5.3 [BKPS98, BWY8] For any 0 < € < 1/2, if A = n'/2=¢_ then with high probability, a

random 3- CNF with n variables and An clauses requires treelike resolution size of exp (Q(n/Ali—e)) .

We can now improve the lower bound using the following theorem of [ET99].

Theorem 5.4 [ET99] Let ¢ be an unsatisfiable CNF formula with tree-like resolution refutations
of size S. Then ¢ has a resolution refutation of space [log ST+ 1.

Plugging in theorem 1.3 we get the following lower bound, which nearly reaches the upper
bound of [BKPS98] mentioned previously.

Theorem 5.5 For any k > 3, any 0 < € < 1/2, and any A > 0y, with high probability re-
futing a random k-CNF with n variables and A - n clauses requires treelike resolution size of

exp (Q (n AT ki?;if)).

We give the explicit result for 3-CNFs with high clause density.

Theorem 5.6 For any 0 < € < 1/2, there exists a § > 0 such that with high probability, refuting a
random 3-CNF with n variables and n? € clauses requires treelike refutation size of exp (Q(n‘s))

For general resolution, we do not have any lower bounds for A > y/n. This is in contrast with
the space and the minimal treelike size, for which we have nearly optimal lower bounds.

It would be interesting to understand the space complexity around the range A = n and
observe whether passing this point causes formulas to have constant space refutations, as well as
understanding in general whether our lower bounds for space are tight.

6 Space Lower Bounds for G — PHP

An Optimal Space lower bound for refutation of the pigeonhole principle in Resolution was proved
by [ET99], and even extended to the Polynomial Calculus by [ABRWO00]. The Graph Pigeonhole
Principle, G — PHP, was introduced by [BW98] as a generalization for which size lower bounds
still apply. The idea is to restrict the number of holes that a pigeon may go to, according to some
underlying graph G. We prove that the space complexity of refuting the G — PH P to the matching
game, in a generalization of theorem 3.3.

Definition 6.1 (G — PHP) Let G = ((VUU), E) be a bipartite graph, |V| =m, |U|=n. Assign
each edge a distinct variable x,. G — PHP is the conjunction of the following clauses:

def
P, = Voyee Te forv €V.

HY, €2,V a0 fore=(v,u),¢ = (v,u), v €V,
v#v, weU.

11



Denote by H the conjunction of H}},,, for all e = (v, u), e =0,u), v,o' €V, v#£v, ueUl.
For C a set of clauses over Vars(G — PHP), and p a partial restriction that does not falsify H, we
say C|, = 1(mod H) if H |= C|,, i.e. any assignment that satisfies 7, satisfies C|, as well.

Lemma 6.2 A restriction falsifies H iff there exist a pair of edges e1 = (v,u), ea = (v',u) such
that v #v' and ey, ex € {e: x|, = 1}.

Theorem 6.3 For any graph G, CS(G — PHP) > Space(G).

Proof: For m = {(vi;,u;,), ... (vi,, u;, )} a partial matching in G of size k, we define its correspond-
ing restriction to set 1’s to all edges in m, 0’s to all edges (v, ) such that u is in matched in m to
some v’ # v, and leave all other variables unassigned. Formally:

1 (v,u) €Em
T(vu)lpm) = § 0 (Uiﬂu) ¢m And ' €V (v',u) em
* otherwise

As in the proof of theorem 3.3, suppose Dana can win when the matching game over G is
played with k pebbles. Let Cp,...Cy be a derivation from G — PHP (in the form of sequence
of configurations) of space k. We construct inductively a sequence of matchings my, ... m, that
maintains the following properties for allt =0...¢:

L |my| < |G| -
2. Ct'p(mt) =1 (mod H)

Notice that for a matching m, p(m) does not falsify #H, and can be easily extended to an
assignment that satisfies H (by setting all unassigned variables to 0). Thus, condition 2 implies
that C; is satisfiable for all £ =0... 4.

my is the empty matching. For the induction step, we prove the claim according to the type of
step taken:

1. Axiom Download: Suppose we download the axiom C. If C € H, we set m; = my_1,
and it is easy to see that both conditions are maintained. If C = P,, Pete places a blue
pebble on v in the graph G, and Dana places a red pebble on some u € N(v) (this is
possible because |m;_1| < k and Dana wins when the game is played with k& pebbles). We set
my = my—1U{(v,u)}, and once again, it is easy to verify that both conditions are maintained.

2. Inference: By the soundness of resolution, C;—1 |= C, and hence C|ji,,_,) =1 (mod H).
Additionally, |C¢| = |C;—1| + 1, so setting m; = m;_ maintains both conditions.

3. Memory Erasure: Follows from the following locality claim, which is similar to the locality

lemma of [ABRW00]

Lemma 6.4 Let C be a set of clauses over Vars(G — PHP), satisfiable (mod H). For all
matching m in G such that C|,qm) =1 (mod H) and for all clauses C € C, there exists an
edge ec € m, such that

® Clyqecy) =1 (mod H) and
o forallC'€C, C'# C C'| e,y 0 (mod H).
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Proof: Fix any C € C. Let m be a matching in G such that C|,,,,) =1 (mod #). We have
that in particular C|,,,) =1 (mod ). Now look at C. If p(m) makes C true fixing some
positive literal z., then we fix ec = e. Obviously C|,({ec}) =1 (mod H) and p({ec})
cannot falsify any other clauses in C since e € m.

Otherwise p(m) makes true C satisfying some negated literals Z.. Assume e = (v,u), then
by definition of p(m), there is a v' € V such that €' = (v'u) € m. Fix ec = ¢’. As before this
edge is good to prove our claim. L]

Thus if C; C C;—1 we pick from m; ;1 according to the previous lemma one edge per clause in
C:, and get m; that satisfies both properties. ]

7 Open Questions

1. The wvariable space of a CNF formula C is V Sp(C) & Y cecc w(C), the variable space of a
proof is the maximal variable space of a configuration in the proof, and the variable space
of refuting a formula is the minimal variable space of a proof. For any F over n variables,
V Space(F) < n?, because CSpace(F) < n. [ABRWO00] proved Q(n?) lower bounds for a
certain formula with initial width n. Can one find a 3 CNF for which V Space(F) = Q(n?)
? Is this true for a random 3-CNF with An clauses (constant A) ? We believe the answer is
positive.

2. What is the clause space complexity of refuting a random CNF formula in the Polynomial
Calculus 7 We suspect that one should get essentially the same lower bounds as for resolution.

3. For many hard tautologies we get linear lower bounds on the width and on the clause space.
This is true for Tseitin graph formulas, the Pigeonhole principle, and random formulas. Notice
that width is also a space measure : it is the maximal space of a single clause in the proof.
What is the relationship between the two measures 7 At least in one aspect width is “harder”
than space. A width lower bound yields a size lower bound for treelike and general resolution,
whereas a space lower bound yields a size lower bound only for treelike resolution. For this
reason we conjecture that CSpace(C) > width(C). Is this true ? can one find a counter
example ?

4. The following question was raised by Ron Lavi. One may view the graph matching game as
an online problem. Let G be a fixed bipartite graph, with |V| > |U|. One receives “matching
requests” online, and wishes to keep the set matched. The strategy we presented for Dana
requires her to compute on each request the matching properties for an exponential number
of subsets of V, and doing this in the trivial is inefficient. Can one find a polynomial time
algorithm that would operate as well as Dana’s strategy 7
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