Separation of NP-completeness Notions

A. Pavan* Alan L Selman†

March 29, 2001

Abstract

We use hypotheses of structural complexity theory to separate various NP-completeness notions. In particular, we introduce an hypothesis from which we describe a set in NP that is \(\leq^P_T\)-complete but not \(\leq^P_{it}\)-complete. We provide fairly thorough analyses of the hypotheses that we introduce.

1 Introduction

Ladner, Lynch, and Selman [LLS75] were the first to compare the strength of polynomial-time reducibilities. They showed, for the common polynomial-time reducibilities, Turing (\(\leq^P_T\)), truth-table (\(\leq^P_{tt}\)), bounded truth-table (\(\leq^P_{bt}\)), and many-one (\(\leq^P_m\)), that

\[\leq^P_m < \leq^P_{bt} < \leq^P_{it} < \leq^P_T, \]

where \(\leq^P_r < \leq^P_s\) means that \(\leq^P_r\) is properly stronger than \(\leq^P_s\); that is, \(A \leq^P_r B\) implies \(A \leq^P_s B\), but the converse does not hold. In each case, the verifying sets belong to \(E = \text{DTIME}(2^n)\).

Ladner, Lynch, and Selman raised the obvious question of whether reducibilities differ on NP. If there exist sets \(A\) and \(B\) in NP (other than the empty set or \(\Sigma^+\)) such that \(A \leq^P_T B\) but \(A \not\leq^P_{it} B\), then, of course, \(P \neq NP\) follows immediately. With this in mind, they conjectured that \(P \neq NP\) implies that \(\leq^P_T\) and \(\leq^P_{it}\) differ on NP.

In the intervening years, many results have explained the behavior of polynomial-time reducibilities within other complexity classes and have led to a complete understanding of the completeness notions that these reducibilities induce. For example, Ko and Moore [KM81] demonstrated the existence of \(\leq^P_T\)-complete sets for EXP that are not \(\leq^P_{it}\)-complete. Watanabe [Wat87] extended this result significantly, showing that \(\leq^P_{1-it}, \leq^P_{bt}, \leq^P_{it},\) and \(\leq^P_{T}\)-completeness for EXP are mutually different, while Homer, Kurtz, and Royer [KR93] proved that \(\leq^P_{m}\) and \(\leq^P_{1-it}\)-completeness are identical.

*Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email: aduri@cse.buffalo.edu
†Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email: selman@cse.buffalo.edu
However, there have been few results comparing reducibilities within \(\text{NP} \), and we have known very little concerning various notions of \(\text{NP} \)-completeness. It is surprising that no \(\text{NP} \)-complete problem has been discovered that requires anything other than many-one reducibility for proving its completeness. The first result to distinguish reducibilities within \(\text{NP} \) is an observation of Wilson in one of Selman’s papers on p-selective sets [Sel82]. It is a corollary of results there that if \(\text{NE} \cap \text{co-NE} \neq \text{E} \), then there exist sets \(A \) and \(B \) belonging to \(\text{NP} \) such that \(A \leq^p \text{ptt} \leq^p \text{tt} B \), \(B \leq^p \text{ptt} A \), and \(B \not\leq^p \text{tt} A \), where \(\leq^p \text{tt} \) denotes positive truth-table reducibility. Regarding completeness, Longpré and Young [LY90] proved that there are \(\leq^p_{m} \)-complete sets for \(\text{NP} \) for which \(\leq^p_{\text{tt}} \)-reductions to these sets are faster, but they did not prove that the completeness notions differ. The first to give technical evidence that \(\leq^p_{\text{tt}} \) and \(\leq^p_{m} \)-completeness for \(\text{NP} \) differ are Lutz and Mayordomo [LM96], who proved that if the p-measure of \(\text{NP} \) is not zero, then there exists a \(\leq^p_{3_{\text{tt}}} \)-complete set that is not \(\leq^p_{m} \)-complete. Ambos-Spies and Bentzien [ASB00] extended this result significantly. They used an hypothesis of resource-bounded category theory that is weaker than that of Lutz and Mayordomo to separate nearly all \(\text{NP} \)-completeness notions for the bounded truth-table reducibilities.

It has remained an open question as to whether we can separate \(\text{NP} \)-completeness notions without using hypotheses that involve essentially stochastic concepts. Furthermore, the only comparisons of reducibilities within \(\text{NP} \) known to date have been those just listed.

Here we report some exciting new progress on these questions. Our main new result introduces a strong, but reasonable, hypothesis to prove existence of a \(\leq^p_{\text{tt}} \)-complete set in \(\text{NP} \) that is not \(\leq^p_{m} \)-complete. Our result is the first to provide evidence that \(\leq^p_{\text{tt}} \)-completeness is weaker than \(\leq^p_{m} \)-completeness. Let Hypothesis H be the following assertion: There is a UP-machine \(M \) that accepts \(0^{*} \) such that (i) no polynomial time-bounded Turing machine correctly computes infinitely many accepting computations of \(M \), and (ii) for some \(\varepsilon > 0 \), no \(2^{n_{\varepsilon}} \) time-bounded Turing machine correctly computes all accepting computations of \(M \). Hypothesis H is similar to, but seemingly stronger than, hypotheses considered by researchers previously, notably Fenner, Fortnow, Naik, and Rogers [FFNR96], Hemaspaandra, Rothe and Wechsung [HRW97], and Fortnow, Pavan, and Selman [FPS99].

This result is especially interesting because the measure theory and category theory techniques seem to be successful primarily for the nonadaptive reducibilities. We will prove an elegant characterization of the genericity hypothesis of Ambos-Spies and Bentzien and compare it with Hypothesis H. Here, somewhat informally, let us say this: The genericity hypothesis asserts existence of a set \(L \) in \(\text{NP} \) such that no \(2^{2n} \) time-bounded Turing machine can correctly predict membership of infinitely many \(x \) in \(L \) from the initial characteristic sequence \(L|x = \{ y \in L \mid y < x \} \). That is, \(L \) is almost-everywhere unpredictable within time \(2^{2n} \). Clearly such a set \(L \) is \(2^{2n} \)-bi-immune. In contrast, we show that Hypothesis H holds if there is a set \(L \) in \(\text{UP} \cap \text{co-UP} \) such that \(L \) is P-bi-immune and \(L \cap 0^{*} \) is not in DTIME\((2^{n_{\varepsilon}}) \), for some \(\varepsilon > 0 \). Thus, we replace “almost-everywhere unpredictable” with P-bi-immunity and we lower the time bound from \(2^{2n} \) to \(2^{n_{\varepsilon}} \), but we require \(L \) to belong to \(\text{UP} \cap \text{co-UP} \) rather than \(\text{NP} \).

We prove several other separations as well, and some with significantly weaker hy-
potheses. For example, we prove that NP contains \(\leq^P_T \)-complete sets that are not \(\leq^P_m \)-complete, if NP \(\cap \) co-NP contains a set that is \(2^{n^\varepsilon} \)-bi-immune, for some \(\varepsilon > 0 \).

2 Preliminaries

We use standard notation for polynomial-time reductions [LLS75], and we assume that readers are familiar with Turing, \(\leq^P_T \), and many-one, \(\leq^P_m \), reducibilities. A set \(A \) is truth-table reducible to a set \(B \) (in symbols \(A \leq^p_T B \)) if there exist polynomial-time computable functions \(g \) and \(h \) such that on input \(x \), \(g(x) \) is a set of queries \(Q = \{ q_1, q_2, \ldots, q_k \} \), and \(x \in A \) if and only if \(h(x, B(q_1), B(q_2), \ldots, B(q_k)) = 1 \). The function \(g \) is the truth-table generator and \(h \) is the truth-table evaluator. For a constant \(k > 0 \), \(A \) is \(k \)-truth-table reducible to \(B \) (\(A \leq^p_{k-tt} B \)) if for all \(x \), \(|Q| = k \), and \(A \) is bounded-truth-table reducible to \(B \) (\(A \leq^p_{btt} B \)) if there is a constant \(k > 0 \) such that \(A \leq^p_{k-tt} B \). Given a polynomial-time reducibility \(\leq^P_r \), recall that a set \(S \) is \(\leq^P_r \)-complete for NP if \(S \in \text{NP} \) and every set in NP is \(\leq^P_r \)-reducible to \(S \).

Recall that a set \(L \) is \(p \)-selective if there exists a polynomial-time computable function \(f : \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \) such that for all \(x \) and \(y \), \(f(x, y) \in \{ x, y \} \) and \(f(x, y) \) belongs to \(L \), if either \(x \in L \) or \(y \in L \) [Sel79]. The function \(f \) is called a selector for \(L \).

Given a finite alphabet, let \(\Sigma^\omega \) denote the set of all strings of infinite length of order type \(\omega \). For \(r \in \Sigma^* \cup \Sigma^\omega \), the standard left cut of \(r \) [Sel79, Sel82] is the set

\[
L(r) = \{ x \mid x < r \},
\]

where \(< \) is the ordinary dictionary ordering of strings with 0 less than 1. It is obvious that every standard left cut is \(p \)-selective with selector \(f(x, y) = \min(x, y) \).

Given a \(p \)-selective set \(L \) such that the function \(f \) defined by \(f(x, y) = \min(x, y) \) is a selector for \(L \), we call \(f \) a min-selector for \(L \). We will use the following simplified version of a lemma of Toda [Tod91].

Lemma 1 Let \(L \) be a \(p \)-selective set with a min-selector \(f \). For any finite set \(Q \) there exists a string \(z \in Q \cup \{ \bot \} \) such that \(Q \cap L = \{ y \in Q \mid y \leq z \} \) and \(Q \cap \overline{L} = \{ y \in Q \mid y > z \} \). The string \(z \) is called a “pivot” string.

Now we review various notions related to almost-everywhere hardness. A language \(L \) is immune to a complexity class \(C \), or \(C \)-immune, if \(L \) is infinite and no infinite subset of \(L \) belongs to \(C \). A language \(L \) is bi-immune to a complexity class \(C \), or \(C \)-bi-immune, if \(L \) is infinite, no infinite subset of \(L \) belongs to \(C \), and no infinite subset of \(\overline{L} \) belongs to \(C \). A language is \(\text{DTIME}(T(n)) \)-complex if \(L \) does not belong to \(\text{DTIME}(T(n)) \) almost everywhere; that is, every Turing machine \(M \) that accepts \(L \) runs in time greater than \(T(|x|) \), for all but finitely many words \(x \). Balcazar and Schoning [BS85] proved that for every time-contractible function \(T \), \(L \) is \(\text{DTIME}(T(n)) \)-complex if and only if \(L \) is bi-immune to \(\text{DTIME}(T(n)) \).
Given a time bound $T(n)$, a language L is $T(n)$-printable if there exists a $T(n)$ time-bounded Turing machine that, on input 0^n, prints all elements of $L \cap \Sigma^n$ [HY84]. A set S is $T(n)$-printable-immune if S is infinite and no infinite subset of S is $T(n)$-printable.

In order to compare our hypotheses with the genericity hypothesis we describe time-bounded genericity [ASFH87]. For this purpose, we follow the exposition of Ambos-Spies, Neis, and Terwijn [ASNT96]. Given a set A and string x, $A|_x = \{y \mid y < x \text{ and } y \in A\}$. Let $\Sigma^* = \{z_n\}_n$, where z_n is the n-th string in lexicographic order. We identify the initial segment $A|_{z_n}$ with its characteristic sequence; i.e., $A|_{z_n} = A(z_0) \cdots A(z_{n-1})$. A condition is a set $C \subseteq \Sigma^*$. A meets C if for some x, the characteristic sequence $A|_x \in C$. C is dense along A if for infinitely many strings x there exists $i \in \{0, 1\}$ such that the concatenation $(A|x)i \in C$.

Then, the set A is DTIME$(t(n))$-generic if A meets every condition $C \in$ DTIME$(t(n))$ that is dense along A. To simplify the notation, we say that A is $t(n)$-generic if it is DTIME$(t(n))$-generic.

Finally, we briefly describe the Kolmogorov complexity of a finite string. Later we will use this in an oracle construction. The interested reader should refer to Li and Vitányi [LV97] for an in-depth study. Fix a universal Turing machine U. Given a string x and a finite set $S \subseteq \Sigma^*$, the Kolmogorov complexity of x with respect to S is defined by

$$K(x|S) = \min \{|p| \mid U(p, S) = x\}.$$

If $S = \emptyset$, then $K(x|S)$ is called the Kolmogorov complexity of x, denoted $K(x)$. We will use time-bounded Kolmogorov complexity $K^t(x)$ also. For this definition, we require that $U(p)$ runs in at most $t(|x|)$ steps.

3 Separation Results

Let Hypothesis H be the following assertion:

Hypothesis H: There is a UP-machine M that accepts 0^* such that

1. no polynomial time-bounded Turing machine correctly computes infinitely many accepting computations of M, and
2. for some $\varepsilon > 0$, no 2^{n^ε} time-bounded Turing machine correctly computes all accepting computations of M.

Theorem 1 If Hypothesis H is true, then there exists a \leq^P_T-complete language for NP that is not \leq^p_T-complete for NP.

Proof. Let M be a UP-machine that satisfies the conditions of Hypothesis H. For each $n \geq 0$, let a_n be the unique accepting computation of M on 0^n, and let $l_n = |a_n|$. Define the language

$$L_1 = \{\langle x, a_n \rangle \mid |x| = n, \text{ and } x \in \text{SAT}\}.$$
Define the infinite string \(a = a_1 a_2 \ldots \), and define
\[
L_2 = L(a) = \{ x \mid x < a \}
\]
to be the standard left-cut of \(a \).

We define \(L = L_1 \oplus L_2 \) to be the disjoint union of \(L_1 \) and \(L_2 \). We will prove that \(L \) is \(\leq^P_T \)-complete for NP but not \(\leq^P_H \)-complete.

Lemma 2 \(L \) is \(\leq^P_T \)-complete for NP.

Proof. It is clear that \(L \) belongs to NP. The following reduction witnesses that SAT \(\leq^P_T \) L:
Given an input string \(x \), where \(|x| = n\), use a binary search algorithm that queries \(L_2 \) to find \(a_n \). Then, note that \(x \in \text{SAT} \) if and only if \(\langle x, a_n \rangle \) belongs to \(L_1 \). \(\blacksquare \)

Lemma 3 \(L \) is not \(\leq^P_H \)-complete for NP.

Proof. Assume that \(L \) is \(\leq^P_H \)-complete for NP. Define the set
\[
S = \{ \langle 0^n, i \rangle \mid \text{the } i\text{-th bit of } a_n = 1 \}.
\]
Clearly, \(S \) belongs to NP. Thus, by our assumption, there is a \(\leq^P_H \)-reduction \(\langle g, h \rangle \) from \(S \) to \(L \). Given this reduction, we will derive a contradiction to Hypothesis H.

Consider the following procedure \(A \):

1. input \(0^n \);
2. compute the sets \(Q^j = g(\langle 0^n, j \rangle) \), for \(1 \leq j \leq l_n \). Let \(Q = \bigcup \{ Q^j \mid 1 \leq j \leq l_n \} \);
3. Let \(Q_1 \) be the set of all queries in \(Q \) to \(L_1 \) and let \(Q_2 \) be the set of all queries in \(Q \) to \(L_2 \) (\(Q = Q_1 \cup Q_2 \));
4. If \(Q_1 \) contains a query \(\langle x, a_t \rangle \), where \(t \geq n^\varepsilon \), then output “Unsuccessful” and Print \(a_t \), else output “Successful”.

Observe that this procedure runs in polynomial time. We treat two cases, namely, either \(A(0^n) \) is unsuccessful, for infinitely many \(n \), or it is successful, for all but finitely many \(n \).

Claim 1 If the procedure \(A(0^n) \) is unsuccessful for infinitely many \(n \), then there is a polynomial time-bounded Turing machine that correctly computes infinitely many accepting computations of \(M \), thereby contradicting Clause 1 of Hypothesis H.

Proof. If \(A(0^n) \) is unsuccessful, then it outputs a string \(a_t \) such that \(t \geq n^\varepsilon \). Hence, if \(A(0^n) \) is unsuccessful for infinitely many \(n \), then for infinitely many \(t \) there exists an \(n \), where \(n \leq t^{1/\varepsilon} \), and \(A(0^n) \) outputs \(a_t \). The following procedure uses this observation to compute infinitely many accepting computations of \(M \) in polynomial time.
input 0;
for $j = 1$ to $j = t^{1/8}$ do
 if $\mathcal{A}(0^j)$ outputs a_t
 then output a_t and halt.

The procedure runs in polynomial time because the procedure $\mathcal{A}(0^j)$ runs in polynomial time.

Claim 2 If $\mathcal{A}(0^n)$ is successful for all but finitely many n, then there is a 2^{n^8} time-bounded Turing machine that correctly computes all accepting computations of M, thereby contradicting Clause 2 of Hypothesis H.

Proof. We will demonstrate a procedure \mathcal{B} such that for each n, if $\mathcal{A}(0^n)$ is successful, then \mathcal{B} on input 0^n outputs the accepting computation of M on 0^n in 2^{n^8} time.

If $\mathcal{A}(0^n)$ is successful, then no member of the set Q_1 is of the form (x, a_t) where $t \geq n^8$. We begin our task with the following procedure \mathcal{C} that for each query $q = (y, z)$ in Q_1 decides whether $q \in L_1$.

1. input $q = (y, z)$;
2. If $z \neq a_t$ for some t, then (y, z) does not belong to L_1; (This can be determined in polynomial time.)
3. if $z = a_t$, where $t \leq n^8$, then (y, z) belongs to L_1 only if $|y| = t$ and y belongs to SAT. (Since $t \leq n^8$ this step can be done in time 2^{n^8}).

Thus, \mathcal{C} decides membership in L_1 for all queries q in Q_1. Therefore, if for each query q in Q_2, we can decide whether q belongs to L_2, then the evaluator h can determine whether each input $(0^n, j)$, $1 \leq j \leq l_n$, belongs to S. That is, if for each query q in Q_2, we can decide whether q belongs to L_2, then we can compute a_n. We can accomplish this using a standard proof technique for p-selective sets [HNOS96, Tod91]. Namely, since L_2 is a standard left-cut, by Lemma 1, there exists a pivot string z in $Q_2 \cup \{\bot\}$ such that $Q_2 \cap L_2$ is the set of all strings in Q_2 that are less than or equal to z. We do not know which string is the pivot string, but there are only $\|Q_2\|$ choices, which is a polynomial number of choices. Thus, procedure \mathcal{B} on input 0^n proceeds as follows to compute a_n: For each possible choice of pivot and the output from procedure \mathcal{C}, the evaluator h computes a possible value for each j-th bit of a_n. There are only a polynomial number of possible choices of a_n, because there are only a polynomial number of pivots. \mathcal{B} verifies which choice is the correct accepting computation of M on 0^n, and outputs that value. Finally, we have only to note that the entire process can be carried out in 2^{n^8} steps. This completes the proof of our claim, and of the theorem as well.
Let Hypothesis H' be the following assertion:

Hypothesis H': There is an NP-machine M that accepts 0^n such that for some $0 < \varepsilon < 1$, no 2^{n^ε} time-bounded Turing machine correctly computes infinitely-many accepting computations of M.

Theorem 2 If Hypothesis H' is true, then there exists a Turing complete language for NP that is not \leq_P-complete for NP.

Proof. Let M be an NP-machine that satisfies the conditions of Hypothesis H'. For each $n \geq 0$, let a_n be the lexicographically maximum accepting computation of M on 0^n, and let $|a_n| = l_n$. Define the language

$$L_1 = \{ \langle x, u \rangle \mid |x| = n, \text{ } u \text{ is an accepting computation of } M \text{ on } 0^m, n = m^\varepsilon/2, \text{ and } x \in \text{SAT} \}.$$

Let $a = a_1a_2a_3 \cdots$, and define

$$L_2 = L(a) = \{ x \mid x < a \}.$$

Define $L = L_1 \oplus L_2$.

It is easy to see, as in the previous argument, that L is \leq_P-complete for NP. In order to prove that L is not \leq_m-complete, we define the set

$$S = \{ \langle 0^n, y \rangle \mid y \text{ is a prefix of an accepting computation of } M \text{ on } 0^n \},$$

which belongs to NP, and assume there is a \leq_m-reduction f from S to L. Consider the procedure \mathcal{D} in Figure 1: First we will analyze the running time and then we treat two cases, namely, either $\mathcal{D}(0^n)$ is successful for infinitely many n, or it is unsuccessful for all but finitely many n.

Claim 3 The above procedure halts in $O(l_n2^{n^2/2})$ steps.

Proof. Consider an iteration of the repeat loop. The most expensive step is the test of whether “$z \in \text{SAT}$”. This test occurs only when $|z| = t^\varepsilon/2$ and $t < n^\varepsilon$. Hence we can decide whether z belongs to SAT in $2^{n^2/2}$ steps. All other steps take polynomial time. Hence the time taken by the procedure is $O(l_n2^{n^2/2})$.

Since $0 < \varepsilon < 1$, the running time of procedure \mathcal{D} is bounded by 2^{n^ε}.

Claim 4 If $\mathcal{D}(0^n)$ is successful for infinitely many n, then there is a 2^{n^ε}-time-bounded Turing machine that correctly computes infinitely many accepting computations of M.

7
input 0^n;
$y := \lambda$;
Repeat l_n times
begin
$f((0^n, y_0)) := x_0$;
$f((0^n, y_1)) := x_1$;
if both x_0 and x_1 are queries to L_2
 then if $x_0 \leq x_1$
 then $y := y_0$
 else $y := y_1$
 else \{At least one of x_0 and x_1 is a query to L_1; let $b \in \{0, 1\}$ be the least index such that x_b queries L_1, and let $x_b = \langle z, u \rangle$.\}
 if u is not an accepting computation of M \{thus, $x_b \notin L_1$\}
 then $y = y_b$
 else \{u is an accepting computation of M on 0^t\}
 if $t \geq n^e$
 then output “Unsuccessful,” print u, and terminate
 else \{$t < n^e$\}
 if $|z| = t^e/2$ and $z \in SAT$ \{thus, $x_b \in L_1$\}
 then $y := y_b$
 else \{$x_b \notin L_1$\} $y := y_b$
 end;
end;
output “Successful” and print y.

Figure 1: Procedure \mathcal{D}
Proof. We demonstrate that if \(D \) is successful on an input \(0^n \), then the string that is printed is an accepting computation of \(M \) on \(0^n \). In order to accomplish this, we prove by induction that \(y \) is a prefix of an accepting computation of \(M \) on \(0^n \) during every iteration of the repeat loop (i.e., a loop invariant). Initially when \(y = \lambda \) this is true. Assume that \(y \) is a prefix of an accepting computation of \(M \) at the beginning of an iteration. Then, at least one of \(f(\langle 0^n, y0 \rangle) = x_0 \), \(f(\langle 0^n, y1 \rangle) = x_1 \) must belong to \(L_2 \). If both \(x_0 \) and \(x_1 \) are queries to \(L_2 \), then the smaller of \(x_0 \) and \(x_1 \) belongs to \(L_2 \) because \(L_2 \) is \(p \)-selective. Thus, in this case, the procedure extends \(y \) correctly. If at least one of \(x_0 \) and \(x_1 \) is a query to \(L_2 \), then the procedure determines whether \(x_b \in L_1 \), where \(x_b \) is the query to \(L_1 \) with least index. If \(x_b \) belongs to \(L \), then \(\langle 0^n, yb \rangle \in S \). Hence, \(yb \) is a prefix of an accepting computation. If \(x_b \notin L \), then \(\bar{x}_b \) belongs to \(L \), because at least one of \(x_b \) or \(\bar{x}_b \) belongs to \(L \). Thus, in this case, \(yb \) is a prefix of an accepting computation. This completes the induction argument.

The loop repeats \(l_n \) times. Therefore, the final value of \(y \), which is the string that \(D \) prints, is an accepting computation.

Claim 5: If \(D(0^n) \) is unsuccessful for all but finitely many \(n \), then there is a \(2^{n^e} \)-time-bounded Turing machine that correctly computes infinitely many accepting computations of \(M \).

Proof. The proof is similar to the proof of Claim 1. The following procedure computes infinitely many accepting computations of \(M \).

input \(0^n \);
for \(j = 1 \) to \(j = n^{1/2} \) do
 if \(D(0^j) \) outputs \(u \) and \(u \) is an accepting computation of \(M \) on \(0^n \)
 then print \(u \) and terminate.

The running time of this algorithm can be bounded as follows: The procedure \(D(0^j) \) runs in time \(\sum_1^{n^{1/2}} 2^{j^2/2} \) steps. So the total running time is \(O(2^{n^e}) \).

Since the cases treated both by Claims 4 and 5 demonstrate Turing machines that correctly compute infinitely many accepting computations of \(M \) in \(2^{n^e} \) time, we have a contradiction to Hypothesis \(\text{H} \). Thus \(L \) is not \(\leq^m_p \)-complete for \(\text{NP} \).

The following results give fine separations of polynomial time reducibilities in \(\text{NP} \) from significantly weaker hypotheses. Moreover, they follow readily from results in the literature.
Theorem 3 If there is a tally language in UP – P, then there exist two languages \(L_1 \) and \(L_2 \) in NP such that \(L_1 \leq_{it} L_2, L_2 \leq_{tt} L_1 \), but \(L_1 \not\leq_{bit} L_2 \).

Proof. Let \(L \) be a tally language in UP – P. Let \(R \) be the polynomial-time computable relation associated with the language \(L \). Define

\[
L_1 = \{ (0^n, y) \mid \exists w, R(0^n, w) \text{ and } y \leq w \}
\]

and

\[
L_2 = \{ (0^n, i) \mid \exists w, R(0^n, w) \text{ and } i\text{-th bit of } w \text{ is one} \}.
\]

It is clear that \(L_1 \) is \(\leq_{it}^P \)-reducible to \(L_2 \). To see that \(L_2 \) is \(\leq_{tt}^P \)-reducible to \(L_1 \), implement a binary search algorithm that accesses \(L_1 \) to determine the unique witness \(w \) such that \(R(0^n, w) \), and then find the \(i \)-th bit.

Observe that \(L_2 \) is a sparse set. Ogihara and Watanabe [OW91] call \(L_1 \) the left set of \(L \), and they and Homer and Longpré [HL94] proved for every \(L \) in NP that if the left set of \(L \) is \(\leq_{bit}^P \)-reducible to a sparse set, then \(L \) is in P. Hence \(L_1 \not\leq_{bit} L_2 \). \(\square \)

We now prove that Turing and truth-table reducibilities also differ in NP under the same hypothesis.

Theorem 4 If there is a tally language in UP – P, then there exist two languages \(L_1 \) and \(L_2 \) in NP such that \(L_1 \leq_{tt}^P L_2 \) but \(L_1 \not\leq_{tt}^P L_2 \).

Proof. Hemaspaandra et al. [HNOS96] proved that the hypothesis implies existence of a tally language \(L \) in UP – P such that \(L \) is not \(\leq_{it}^P \)-reducible to any p-selective set. In the same paper they also showed, given a tally language \(L \) in NP – P, how to obtain a p-selective set \(S \) such that \(L \) is \(\leq_{tt}^P \)-reducible to \(S \). Combing the two results we obtain the theorem. \(\square \)

4 Analysis of the Hypotheses

This section contains a number of results that help us to understand the strength of Hypotheses H and \(H' \).

\(^1\)The class of all languages that are \(\leq_{tt}^P \)-equivalent to \(L_1 \) is a noncollapsing degree.
4.1 Comparisons With Other Complexity-Theoretic Assertions

We begin with some equivalent formulations of these hypotheses, and then relate them to other complexity-theoretic assertions. The question of whether P contains a P-printable-immune set was studied by Allender and Rubinstein [AR88], and the equivalence of items 1 and 3 in the following theorem is similar to results of Hemaspaandra, Rothe, and Wechsung [HRW97] and Fortnow, Pavan, and Selman [FPS99]. The second item is similar to the characterization of Grollmann and Selman [GS88] of one-one, one-way functions with the addition of the attribute almost-always one-way of Fortnow, Pavan, and Selman.

Theorem 5 The following statements are equivalent:

1. There is a language L in P that contains exactly one string of every length such that L is P-printable-immune and, for some $\varepsilon > 0$, L is not $2^{n^{\varepsilon}}$-printable.

2. There exists a polynomial-bounded, one-one, function $f : 0^* \rightarrow \Sigma^*$, such that f is almost-everywhere not computable in polynomial time, for some $\varepsilon > 0$, f is not computable in time $2^{n^{\varepsilon}}$, and the graph of f belongs to P.

3. Hypothesis H is true for some $\varepsilon > 0$.

Proof. Let L satisfy item one. Define

$$f(0^n) = \text{the unique string of length } n \text{ that belongs to } L.$$

Clearly, f is polynomial-bounded and one-one. The graph of f belongs to P, because L belongs to P, because L belongs to P. Suppose that M is a Turing machine that computes f and that runs in polynomial time on infinitely many inputs. Then, on these inputs, M prints $L \cap 2^n$. Similarly, f is not computable in time $2^{n^{\varepsilon}}$.

Let f satisfy item two. Define a UP-machine M to accept 0^* as follows: On input 0^n, M guesses a string y of length within the polynomial-bound of f, and accepts if and only if $(0^n, y) \in \text{graph}(f)$. The rest of the proof is clear.

Let M be a UP-machine that satisfies item three, i.e., that satisfies the conditions of Hypothesis H. Let a_n be the unique accepting computation of M on 0^n and let $|a_n| = n^l$. Let r_n be the rank of a_n among all strings of length n^l. Now, we define L as follows: Given a string x, if $|x| = n^l$ for some n, then x belongs to L if and only if $x = a_n$. If $(n - 1)^l < |x| < n^l$, then x belongs to L if and only if the rank of x (among all the string of length $|x|$) is r_{n-1}. It is clear that $L \in P$ and has exactly one string per each length. We claim that L is P-printable-immune and is not 2^{n^ε}-printable, where $\varepsilon = l\rho$. Any machine that prints infinitely many strings of L in polynomial time can be used to print infinitely many accepting computations of M in polynomial time. Thus L is P-printable-immune. Any machine that prints all the strings of L in 2^{n^ε} time can be used print all the accepting computations of M in 2^{n^ε} time. Thus L is not 2^{n^ε}-printable.

We prove the following theorem similarly.
Theorem 6 The following statements are equivalent

1. There is a language L in P that contains at least one string of every length such that, for some $\varepsilon > 0$, L is 2^{n^ε}-printable-immune.

2. There is polynomial-bounded, multivalued function $f : 0^* \rightarrow \Sigma^*$ such that every refinement of f is almost-everywhere not computable in 2^{n^ε}-time, and the graph of f belongs to P.

3. Hypothesis H' holds for some $\varepsilon > 0$.

Next we compare our hypotheses with the following complexity-theoretic assertions:

1. For some $\varepsilon > 0$, there is a P-bi-immune language L in $UP \cap co-UP$ such that $L \cap 0^n$ is not in $DTIME(2^{n^\varepsilon})$.

2. For some $\varepsilon > 0$, there is language L in $UP \cap co-UP$ such that L is not in $DTIME(2^{n^\varepsilon})$.

3. For some $\varepsilon > 0$, there is a 2^{n^ε}-bi-immune language in $NP \cap co-NP$.

Theorem 7 Assertion 1 implies Hypothesis H and Hypothesis H implies Assertion 2.

Proof. Let L be a language in $UP \cap co-UP$ that satisfies Assertion 1. Define M to be the UP-machine that accepts 0^n as follows: On input 0^n, nondeterministically guess a string w. If w either witnesses that 0^n is in L or witnesses that 0^n is in \overline{L}, then accept 0^n. It is immediate that M satisfies the conditions of Hypothesis H.

To prove the second implication, let M a UP-machine that satisfies the conditions of Hypothesis H. Let a_n denote the unique accepting computation of M on 0^n and define

$$L = \{ (0^n, x) \mid x \leq a_n \}.$$

It is clear that $L \in UP \cap co-UP$. If $L \in DTIME(2^{n^\varepsilon})$, then a binary search algorithm can correctly compute a_n, for every n, in time 2^{n^ε}. This would contradict Hypothesis H. Hence, $L \notin DTIME(2^{n^\varepsilon})$.

The discrete logarithm problem is an interesting possible witness for Assertion 2. The best known deterministic algorithm requires time greater than $2^{n^{1/3}}$ [Gor93]. Thus, the discrete logarithm problem is a candidate witness for the noninclusion $UP \cap co-UP \not\leq DTIME(2^{n^\varepsilon})$, for any $0 < \varepsilon \leq \frac{1}{3}$.

Corollary 1 If, for some $\varepsilon > 0$, $UP \cap co-UP$ has a 2^{n^ε}-bi-immune language, then \leq_{PT}-completeness is different from \leq_{PT}-completeness for NP.

Theorem 8 Assertion (3) implies Hypothesis H'.

Corollary 2 If, for some $\varepsilon > 0$, $NP \cap co-NP$ has a 2^{n^ε}-bi-immune language, then \leq_{PT}-completeness is different from \leq_{PT}-completeness for NP.
4.2 Comparisons with Genericity

The genericity hypothesis of Ambos-Spies and Bentzien [ASB00], which they used successfully to separate NP-completeness notions for the bounded-truth-table reducibilities, states that “NP contains an \(n^2 \)-generic language”. Our next result enables us to compare this with our hypotheses.

We say that a deterministic oracle Turing machine \(M \) is a \textit{predictor} for a language \(L \) if for every input word \(x \), \(M \) decides whether \(x \in L \) with oracle \(L|x \). \(L \) is \textit{predictable in time} \(t(n) \) if there is a \(t(n) \) time-bounded predictor for \(L \). We define a set \(L \) to be \textit{almost-everywhere unpredictable in time} \(t(n) \) if every predictor for \(L \) requires more than \(t(n) \) time for all but finitely many \(x \). This concept obviously implies \(\text{DTIME}(t(n)) \)-complex almost everywhere, but the converse does not hold:

\textbf{Theorem 9} \(\text{EXP} \) contains languages that are \(\text{DTIME}(2^n) \)-complex but not almost-everywhere unpredictable in time \(2^n \).

Now we state our characterization of \(t(n) \)-genericity.

\textbf{Theorem 10} Let \(t(n) \) be a polynomial. A decidable language \(L \) is \(t(n) \)-generic if and only if it is almost-everywhere unpredictable in time \(t(2^n - 1) \).

\textit{Proof.} Assume that \(L \) is not almost-everywhere unpredictable in time \(t(2^n - 1) \), and let \(M \) be a predictor for \(L \) that for infinitely many strings \(x \) runs in time \(t(2^n - 1) \). Define a condition \(C \) so that the characteristic sequence

\[(L|x)\bar{x} \in C \iff M \text{ with oracle } L|x \text{ runs in time } t(2^{|x|} - 1) \text{ on input } x. \]

where \(\bar{x} = \neg(M \text{ accepts } x) \). Then, \(C \) is dense along \(L \) because \(M \) correctly predicts whether \(x \in L \) for infinitely many \(x \). It is easy to see that \(C \in \text{DTIME}(t(n)) \). However, \(L \) is not \(t(n) \)-generic because we defined \(C \) so that \(L \) does not meet \(C \).

Assume that \(L \) is not \(t(n) \)-generic, and let \(C \in \text{DTIME}(t(n)) \) be a condition that is dense along \(L \) such that \(L \) does not meet \(C \). Let \(T \) be a deterministic Turing machine that halts on all inputs and accepts \(L \). Define a predictor \(M \) for \(L \) to behave as follows on input \(x \) with oracle \(A|x \): If \((A|x)1 \in C \), then \(M \) rejects \(x \), and if \((A|x)0 \notin C \), then \(M \) accepts \(x \). If neither holds, then \(M \) determines membership in \(L \) by simulating \(T \) on \(x \). Since \(L \) does not meet \(C \), \(M \) is a predictor for \(L \). Since \(C \) is dense along \(L \) and \(L \) does not meet \(C \), for infinitely many \(x \), either \((A|x)1 \in C \) or \((A|x)0 \notin C \), and in each of these cases, \(M \) runs for at most \(t(2 \cdot 2^{|x|}) \) steps. Since \(t(n) \) is polynomial function, by the linear speedup theorem [HS65], there is a Turing machine that is equivalent to \(M \) that runs in time \(t(2^{|x|} - 1) \).

\textbf{Corollary 1} \(\text{NP} \) contains an \(n^2 \)-generic language if and only if \(\text{NP} \) contains a set that is almost-everywhere unpredictable in time \(2^{2n} \).
By Theorem 8, Hypothesis H' holds if $\text{NP} \cap \text{co-NP}$ contains a set that, for some $\varepsilon > 0$, is 2^{n^ε}-bi-immune. So, Hypothesis H' requires bi-immunity, which is weaker than almost-everywhere unpredictability, and the time-bound is reduced from 2^{2n} to 2^{n^ε}. On the other hand, we require the language to belong to $\text{NP} \cap \text{co-NP}$ instead of NP. Similarly, when we consider Hypothesis H, we require the language to be P-bi-immune and not in DTIME(2^{2n^ε}), whereas now we require the language to be in $\text{UP} \cap \text{co-UP}$. Moreover, the conclusion of Theorem 1 is not known to follow from the genericity hypothesis. At the same time, we note that the genericity hypothesis separates several bounded-truth-table completeness notions in NP that do not seem obtainable from our hypotheses.

4.3 Relativization

Theorem 11 There exists an oracle relative to which the polynomial hierarchy is infinite and Hypotheses H and H' both hold.

Proof. Define Kolmogorov random strings r_0, r_1, \ldots as follows: r_n is the first string of length n such that

$$K^{2^n}(r_n \mid r_0, r_1, \ldots, r_{n-1}) > n/2.$$

Then, define the oracle $A = \{r_n \mid n \geq 0\}$.

Define M to be an oracle Turing machine that accept 0^* with oracle A as follows: On input 0^n, guess a string y of length n. If $y \in A$, then accept. M is a UP^A-machine that accepts 0^* because A contains exactly one string of every length.

Now we show that no 2^{n^ε} oracle Turing machine with oracle A, for any $0 < \varepsilon < 1$, correctly computes infinitely many accepting computations of M. Observe that relative to A, this implies both Hypotheses H and H'. Suppose otherwise, and let T be such an oracle Turing machine. The gist of the remainder of the proof is that we will show how to simulate T without using the oracle, and that will contradict the randomness or r_n.

Suppose that $T^A(0^n) = r_n$. Let $l = 3n^\varepsilon$. Then we simulate this computation without using an oracle as follows:

1. Compute $r_0, r_1, \ldots, r_{l-1}$. Do this iteratively: Compute r_i by running every program (with input strings $r_0, r_1, \ldots, r_{i-1}$) of length $\leq i/2$ for 2^l steps. Then r_i is the first string of length i that is not output by any of these programs. Note that the total time for executing this step is $2^{{l/2}2^l} \leq 2^{3l/2} \leq 2^{5n^\varepsilon}$.

2. Simulate T on input 0^n, except replace all oracle queries q by the following rules: If $|q| < l$, answer using the previous computations. Otherwise, just answer “no.”

If the simulation is correct, then this procedure outputs r_n without using the oracle. The running time of this procedure on input 0^n is $2^{5n^\varepsilon} + 2^{n^\varepsilon}$, which is less than 2^{2n}. So, we can describe r_n by a string of length $O(\log n)$, to wit, a description of T and 0^n. This contradicts the definition of r_n.

14
We need to show that the simulation is correct. The simulation can only be incorrect if \(|q| \geq l\) and \(q = r_m\), for some \(m > l\). Let \(r_m\) be the first such query. This yields a short description of \(r_m\), given \(r_0, r_1, \ldots, r_{l-1}\). Namely, the description consists of the description of \(T\) (a constant), the description of \(0^n\) (log \(n\) bits), and the description of the number \(j\) such that \(q = r_m\) is the \(j\)-th query (at most \(n^e\)). Thus, the length of the description is \(O(n^e)\). Since \(l = 3n^e\), it follows that the length of the description of \(r_m\) is less than \(m/2\). The running time of \(T\), given \(r_0, r_1, \ldots, r_{l-1}\), is \(2^{n^e}\), which is less than \(2^m\). (The reason is that the first step in the simulation of \(T\) is not needed.) Therefore, the simulation is correct.

Finally, because \(A\) is a sparse set, using results of Balcázar et al. [BBS86], there is an oracle relative to which the hypotheses holds and the polynomial hierarchy is infinite.

Hypothesis H fails relative to any oracle for which \(P = NP \cap co-NP\) [BGS75]. Fortnow and Rogers [FR94] obtained an oracle relative to which \(NP \neq co-NP\) and Hypothesis H fails. We know of no oracle relative to which \(P \neq NP\) and every \(\leq_P^P\)-complete set is \(\leq_m^P\)-complete.

4.4 Extensions

The extensions in this section are independently observed by Regan and Watanabe [RW01]. In Hypothesis H we can replace the UP-machine by an NP-machine under a stronger intractability assumption. Consider the following hypothesis:

There is a NP-machine \(M\) that accepts \(0^*\) such that

1. no probabilistic polynomial time-bounded Turing machine correctly outputs infinitely many accepting computations with non-trivial (inverse polynomial) probability, and

2. for some \(\varepsilon > 0\), no \(2^{n^\varepsilon}\) time-bounded Turing machine correctly computes all accepting computations with non-trivial probability.

We can prove that Turing completeness is different from truth-table completeness in NP under the above hypothesis. The proof uses the randomized reduction of Valiant and Vazirani [VV86] that isolates the accepting computations. We define \(L\) as in the proof of Theorem 2.

Let

\[S = \{ (0^n, k, r_1, r_2, \ldots, r_k, i) \mid \exists v \text{ such that } v \text{ is an accepting computation of } M, v.r_1 = v.r_2 = \cdots = v.r_k = 0, \text{ and the } i\text{th bit of } v = 1 \} \]

where \(v.r_i\) denotes the inner product over GF[2].

Valiant and Vazirani showed that if we randomly pick \(r_1, r_2, \ldots, r_k\), then with a non-trivial probability there exists exactly one accepting computation \(v\) of \(M\) whose inner product with each \(r_i\) is 0. Thus, for a random choice of \(r_1, \ldots, r_k\), there is exactly one witness \(v\) for \((0^n, k, r_1, \ldots, r_k, i)\). The rest of the proof is similar to that of Theorem 1.
We also note that we can replace the UP-machine in Hypothesis H with a FewP-machine.

References

[RW01] K. Regan and O. Watanabe. Personal communication.

