
Uniform Circuits for Division:
Consequences and Problems∗

ERIC ALLENDER †

Dept. of Computer Science
Rutgers University

allender@cs.rutgers.edu

DAVID A. MIX BARRINGTON ‡

Dept. of Computer Science
University of Massachusetts
barring@cs.umass.edu

WILLIAM HESSE §

Dept. of Computer Science
University of Massachusetts
whesse@cs.umass.edu

∗To appear in Proc. IEEE Conference on Computational Complexity, 2001
†Supported in part by NSF grant CCR-9734918.
‡Supported in part by NSF grant CCR-9988260.
§Supported by NSF grant CCR-9877078.

1

Electronic Colloquium on Computational Complexity, Report No. 33 (2001)

ISSN 1433-8092

Abstract

Integer division has been known to lie in P-uniform TC0 since the mid-
1980’s, and recently this was improved to L-uniform TC0. At the time that the
results in this paper were proved and submitted for conference presentation, it
was unknown whether division lay in DLOGTIME-uniform TC0 (also known
as FOM). We obtain tight bounds on the uniformity required for division,
by showing that division is complete for the complexity class FOM + POW
obtained by augmenting FOM with a predicate for powering modulo small
primes. We also show that, under a well-known number-theoretic conjec-
ture (that there are many “smooth” primes), POW (and hence division) lies
in FOM. Building on this work, Hesse has shown recently that division is in
FOM [17].

The essential idea in the fast parallel computation of division and related
problems is that of Chinese remainder representation (CRR) – storing a num-
ber in the form of its residues modulo many small primes. The fact that CRR
operations can be carried out in log space has interesting implications for small
space classes. We define two versions of s(n) space for s(n) = o(log n):
dspace(s(n)) as the traditional version where the worktape begins blank, and
DSPACE(s(n)) where the space bound is established by endmarkers before
the computation starts. We present a new translational lemma, and derive
as a consequence that (for example), if one can improve the result of [15]
that {0n : n is prime} 6∈ dspace(log log n) to show that {0n : n is prime}
6∈ DSPACE(log log n), it would follow that L 6= NP.

1 Introduction

The exact complexity of division, powering, and iterated multiplication of integers
has been a major open problem since Beame, Cook, and Hoover [7] showed these
problems to be in P-uniform TC0 in 19841. (TC0 is the set of problems solvable by
threshold circuits of constant depth and polynomial size, “P-uniform” means that
these circuits can be constructed by a poly-time Turing machine.) In a recent break-
through, Chiu, Davida and Litow [11] showed these problems to be in L-uniform
TC0, (i.e., the circuits can be constructed in log space). They thus also solved an
even older open problem by showing these problems to be solvable in log space
itself.

This result naturally raises the question of whether these problems fall within
the most natural version of “uniform TC0”, that of DLOGTIME-uniform circuits or
problems definable by first-order formulas with MAJORITY quantifiers. Here we

1[7] claimed only P-uniform NC1, but it was observed later by Reif [23] that their algorithm is
implementable in TC0.

1

show that the non-uniformity necessary for the construction of [11] is quite lim-
ited: In Immerman’s descriptive complexity setting [19], we need only first-order
formulas with MAJORITY quantifiers and a single extra numerical predicate. This
predicate calculates powers modulo a prime of O(log n) bits.

We then consider various algorithms for powering modulo a small prime, and
their consequences for the uniformity of division circuits. Following an argument
of Chiu [10], powering modulo a small prime can be achieved by fully-uniform cir-
cuits of logarithmic depth and fan-in two (“Ruzzo-uniform NC1”) and hence divi-
sion is itself in uniform NC1, in fact in NC1-uniform TC0. But we also show that
powering modulo a small prime lies in another natural class that provably does not
contain all of NC1, suggesting that the full power of NC1-uniform TC0 is not needed
for division. Finally, we show that the special case of powering modulo a smooth
prime is in fully-uniform TC0. It follows that under a widely-believed but unproven
hypothesis about the density of smooth primes, division and related problems actu-
ally are in fully-uniform TC0.

Subsequent to this work, Hesse [17] has shown unconditionally that powering
modulo any small prime is in fully-uniform TC0 (in fact it is in fully-uniform AC0).
Thus integer division and the related problems considered here are actually all in
fully-uniform TC0. This work will not be described here but will appear together
with the results of this extended abstract in a forthcoming paper [18].

Finally, we consider the implications of the new division algorithm for the study
of small-space complexity classes. Most prior work on Turing machines with O(log log n)
space, for example, has assumed that the work tape starts out blank, with no marker
to indicate the end of the available space. We call this class dspace(log log n), in
contrast to the class DSPACE(log log n) where this initial marker is given.

The space-efficient CRR algorithms allow us to prove more efficient transla-
tional arguments, showing that the unary languages in DSPACE(log log n) are sim-
ply the unary encodings of the languages in log space. This highlights the differ-
ence between dspace and DSPACE classes. For example, a classic result of Hart-
manis and Berman [15] says that the set of unary strings of prime length is not in
dspace(o(log n)). The new translational lemma shows that proving an analogous
result for DSPACE(log log n) would separate the classes L and NP.

2 Circuits for Division: An Overview

We are concerned with the complexity of three basic problems in integer arithmetic
(with input and output in binary representation):

• DIVISION: Given a number X of n bits and a number Y of at most n bits,
find bX/Y c,

2

• POWERING: Given a number X of n bits and a number k of O(log n) bits,
find Xk, and

• ITERATED MULTIPLICATION: Given n numbers X1, . . . , Xn, each of at most
n bits, find the product X1X2 . . . Xn.

Beame, Cook, and Hoover [7] showed that each of these problems can be solved
by a family of threshold circuits of constant depth and polynomial size. As always
in circuit complexity, a key property of the circuit family is its degree of uniformity.
The circuits of [7] are P-uniform, in that they can be constructed in time polynomial
in n. Thus [7] shows that these problems are in the class P-uniform TC0.

Recently Chiu, Davida, and Litow [11] have dramatically improved this result
by constructing circuit families for these problems that are constructible in log space
(hence putting the problems in L-uniform TC0). A logspace machine can simulate
a constant-depth threshold circuit if it can construct it, so this result also solves the
longstanding open problem of putting these problems into the class L (deterministic
log space).

We present a simplified division algorithm that was inspired by [11], and in
our presentation we pay close attention to the use of non-uniformity in the circuits.
To do this we use the formalism of descriptive complexity developed by Immer-
man [5, 4, 19], where constant-depth circuit families are presented in the form of
first-order formulas. For example, the complexity class FO consists of those lan-
guages that can be described by first-order formulas where the variables range over
the universe {1,. . .n}, corresponding to the n positions of the input string, there are
atomic formulas for equality, order, addition, and multiplication, as well as a for-
mula X[i] that evaluates to true if the ith symbol of the input is 1, and there are
first-order quantifiers ∃ and ∀. This class FO is equivalent to the circuit complexity
class DLOGTIME uniform AC0 — see [5] for the exact definition and the proof.
The larger class FOM (“first-order with MAJORITY”) is the same as FO except that
MAJORITY quantifiers may be used in the formulas. This class is equal in power
to DLOGTIME uniform families of threshold circuits of constant depth and poly-
nomial size (“DLOGTIME-uniform TC0”). In FOM one can multiply two n-bit
numbers, add together n n-bit numbers, and of course carry out all operations in
FO.

The central idea of all the TC0 algorithms for DIVISION and related problems
is that of Chinese remainder representation (CRR). An n-bit number is uniquely
determined by its residues modulo polynomially many primes, each of O(log n)
bits. (The Prime Number Theorem guarantees that there will be more than enough
primes of that length.) Of course, our problems specify that their input and output
must be in ordinary binary notation, so we are faced with the problem of converting
to and from CRR.

3

We observe in Lemma 3.1 that converting from binary to CRR can be accom-
plished if we augment FOM with the power predicate (POW) “ai ≡ b (mod p)”
where a, b, i and p each have O(log n) bits, and p is prime. Since the multiplica-
tive group of a prime number is cyclic, the predicate POW allows us to identify a
generator of this group (the least g such that gp−1 ≡ 1 (mod p) and no smaller
power of g is 1) and to compute discrete logarithms modulo p for each number.
More precisely, there is a first-order formula GEN(g, p) that has POW as a prede-
fined predicate, that is true if and only if g is the least generator of the multiplicative
group mod p. Thus finding a generator can be accomplished in the complexity class
FO+POW. We will also call this a FO reduction to POW from the problem of find-
ing generators. Similarly, it is easy to see that computing discrete logs mod p can
be performed in FO + POW.

Finally, note that if the input and output are in CRR, the iterated multiplica-
tion problem simply reduces to the iterated addition problem (by adding the discrete
logs), showing that iterated multiplication (in CRR) is in FOM once the power pred-
icate is present (i.e., it is in the class FOM + POW).

This construction was used in [7], but additional work is required in order to
compute these functions in binary, instead of CRR. In fact, most of the division al-
gorithm presented by Beame, Cook, and Hoover in [7] is in FOM — the only ex-
ceptions are computation of discrete logarithms and conversion to and from CRR.
In order to convert from binary to CRR, Beame, Cook and Hoover needed an ad-
ditional predicate: the binary representation of the product of the first n3 primes.
While the power predicate is easily seen to be computable in logspace, this prime-
product predicate was not known to be so computable. The central contribution of
[11] is to develop better methods for working with CRR, so that the prime-product
predicate is no longer needed. In the next section, we present a procedure for con-
version from CRR to binary that can be computed in FOM+POW. Thus the power
predicate, the essential ingredient in converting a binary number into CRR, is pow-
erful enough (along with FOM operations) to get a number out of CRR into binary.

3 Converting CRR Numbers to Binary

We will refer to numbers with polynomially many bits as long numbers, and denote
them by capital letters. Numbers of O(log n) bits will be called short, and denoted
by small letters. We are given two long numbers X and Y and asked to find Z =
bX/Y c. Note that it suffices to find a small number of candidates for Z , as in FOM
we can compute ZY for any candidate and then verify that X−ZY is non-negative
and less than Y .

To fix notation, we now recapitulate the development of CRR. If we are given a

4

sequence of distinct primes m1, . . . ,mk, each a short number, let M be their prod-
uct. Any number X < M can be represented uniquely as (x1, . . . , xk) with X ≡ xi

(mod mi) for all i. For each number i, let Ci be the product of all the mj’s except
mi, let hi be the inverse of Ci modulo mi. It is easy to verify that X is congruent
modulo M to

∑k
i=1 xihiCi. In fact X is equal, as an integer, to (

∑k
i=1 xihiCi) −

rM for some particular number r, called the rank of X with respect to M (denoted
rankM (X)). Note that r is a short number. It is equal to the integer part of the sum
of the k rational numbers xihiCi/M or xihi/mi, each of which is between 0 and
mi.

The computation of this rank function is central to the argument of [11] that
DIVISION is in L-uniform TC0. It is computable in logspace [13, 21], and in fact
the algorithms can be adapted to put it in FOM+POW. (For more detail on this see
[2].) Here we present a self-contained argument, without computing rank directly,
that conversion from CRR to binary and DIVISION are in FOM + POW. First we
note again that we can carry out the other conversion, from binary to CRR.

Lemma 3.1 If X,m1, . . . ,mk are each given in binary and X < M , we can com-
pute (x1, . . . , xk) (the CRRM form of X) in FOM + POW.

Proof. For each modulus mi and each j < n we must calculate 2j (mod mi)
(given by the power predicate), add the results (using iterated addition in FOM), and
take the result modulo mi (in FO).

It will be useful to observe that dividing by a short prime is easy.

Lemma 3.2 Let p be a short prime. Then the binary representation of 1/p can be
computed to nO(1) bits of accuracy in FO + POW.

Proof. Let p be odd and write 2k as ap + b with b = 2k mod p. The kth bit of the
binary expansion of the rational number 1/p is defined to be the low-order bit of a.
But since ap is congruent to b modulo 2 and p is odd, this is also the low-order bit
of b. The latter can clearly be computed in FO + POW.

Lemma 3.3 [13, 14] Let X and Y be numbers less than M given in CRRM form.
In FOM + POW we can determine whether X < Y .

Proof. Clearly, X < Y if and only if X/M < Y/M . Thus it is sufficient to show
that we can compute X/M to polynomially-many bits of accuracy.

Recall that X = (
∑k

i=1 xihiCi)−rankM (x)M . Thus X/M is equal to (
∑k

i=1 xihi(1/mi))−
rankM (x). The numbers xi are given to us as the CRRM of X . The number Ci mod
mi can be computed in FOM + POW (by adding the discrete logs of the mj for
j 6= i), and hi is simply the inverse of that number mod mi. By Lemma 3.2, each

5

summand can be computed in FOM + POW to nO(1) bits of accuracy. Since iter-
ated addition is in FOM, we can thus compute polynomially-many bits of the binary
representation of (

∑k
i=1 xihi(1/mi)), which is equal to X/M + rankM (X). Since

the rank is an integer, X/M is simply the fractional part of this value and this is just
the value that we want.

One useful consequence of being able to compare integers in CRR is that it en-
ables us easily to convert from one CRR basis to another. That is, if we are given
X in CRRM for one list of moduli m1, . . . ,mk, M =

∏k
i=1 mi and we want to

convert to CRRP for some list of distinct short primes p1, . . . , pl, P =
∏l

i=1 pi, all
that is necessary is to compute X mod p for an arbitrary short prime p.

Lemma 3.4 Given X in CRRM and a short prime p, we can compute X mod p in
FOM + POW.

Proof. If p is one of the moduli in M , the answer is given explicitly in the input.
Thus we assume that p does not divide M . In this case, consider the CRR base
M ′ = Mp. We would like to compute X in CRRM ′ , since this would give us
X mod p.

Trying each of the p = nO(1) possible values i for X mod p, we obtain the
CRRM ′ of nO(1) different numbers X0, X1, . . . , Xp−1, one of which is X . It is
easy to see that X is the only one of these numbers that is less than M .

Observe that in FOM + POW we can compute the CRRM ′ of M (by adding
the discrete logs of the mj mod p). Thus we can compute X mod p by finding the
unique Xi that is less than M , carrying out all comparisons in CRRM ′ , by Lemma
3.3.

Our next step in the division algorithm is to show how to divide by products of
distinct short primes.

Lemma 3.5 Let b1, . . . , b` be distinct short primes, B be the product of the bi’s, and
let X be given in CRRM form. Then we can compute bX/Bc, also in CRRM form,
in FOM + POW.

Proof. Assume without loss of generality that B divides M . (Otherwise, extend
the basis, using Lemma 3.4.) Thus let M = BP where P =

∏k
i=1 pi.

In FOM + POW we can compute the following quantities:

• B in CRRM (by adding the discrete logs modulo each mi),

• The CRRM of S = (
∑`

i=1 xihi(B/bi)), where hi is the multiplicative in-
verse of B/bi mod bi,

• Y = X − S in CRRM ,

6

• B−1 mod P (i.e., the unique number T < P such that BT ≡ 1 (mod P);
this can be computed in CRRP by merely inverting each nonzero component
of the CRRM of B).

Note that S ≡ X mod B, and also S =
∑`

i=1 xihi(B/bi) <
∑`

i=1 biB < `bB,
where b is the maximum of the bi. Note also that Y is a multiple of B, and thus
Y/B is an integer. Also note that Y/B < P , since Y ≤ X < BP . Thus if we
compute Y T in CRRP we have the CRRP of the integer Y/B, and from this we
can compute Y/B in CRRM .

Therefore bX/Bc differs from Y/B = Y T by at most S/B + O(1) = nO(1).
That is, we can compute a list of nO(1) consecutive values, one of which is equal to
bX/Bc. We can find the correct value by determining the value j such that (Y T +
j)B ≤ X < (Y T + j + 1)B.

Theorem 3.6 Let X be given in CRRM form. Then we can compute the binary
representation of X in FOM + POW.

Proof. We remark that a simple extension of this result and Lemma 3.1 shows that
it is possible in FOM+ POW to convert numbers from any base to another, by first
converting to CRR.

It is sufficient to show that we can compute the CRRM of bX/2kc for any k.
This is because, to get the k-th bit of a number X that is given to us in CRR, we
compute u = bX/2kc and v = bX/2k+1c, and note that the desired bit is u − 2v.
We get this bit as a CRR number, but it is easy to recognize the CRR forms of the
numbers 0 and 1.

First, we create numbers A1, . . . , Ak , each a product of polynomially many short
odd primes that do not divide M , with each Ai > M . Let P = M

∏k
i=1 Ai, and

compute X in CRRP . By Lemma 3.5 (or directly) we can compute (1 + Ai)/2 in
CRRP . It is easy to show that (

∏k
i=1(Ai + 1))/

∏k
i=1 Ai < 1 + (k/M).

Note that in FOM + POW we can compute the CRRP representation of Q =
bX ∏k

i=1((1 + Ai)/2)/
∏k

i=1 Aic. But X
∏k

i=1((1 + Ai)/2)/
∏k

i=1 Ai is equal to
(X/2k)(

∏k
i=1(Ai+1))/

∏k
i=1 Ai < (X/2k)(1+(k/M)). Thus Q ∈ {bX/2kc, bX/2kc+

1}. We determine which of {Q,Q−1} is the correct answer by checking if Q2k >
X (using the CRRP representation).

Corollary 3.7 DIVISION is in FOM + POW.

Proof. It is easy in FOM to divide numbers in binary if we are able to compute
powers in binary [7] — we simply use a power series to approximate the quotient
to within an additive error of one, and test the two possible integer quotients using

7

the FOM multiplication algorithm. But we have seen that ITERATED MULTIPLI-
CATION, and hence POWERING, are in FOM + POW if the input and output are in
CRR form. The FOM + POW algorithms to convert from binary to CRR and vice
versa thus suffice to perform division (in binary) in FOM + POW.

4 The Class FOM + POW

What does this new algorithm finally tell us about the complexity of DIVISION? In
one sense the circuit complexity of DIVISION has been well-understood since [7];
DIVISION can be computed by threshold circuits of constant depth and polynomial
size, and since MAJORITY is reducible to DIVISION, we cannot hope to put DIVI-
SION into a smaller circuit class.

The remaining question, of course, is how uniform the threshold circuits can
be made to be. The main result of [11] is that the P-uniform circuits of [7] can be
made L-uniform, with the important consequence that DIVISION is in L itself. Our
analysis of their algorithm tells us something more, that DIVISION is in the class we
have called FOM + POW. Although this class is now known to be equal to FOM
itself [17], the following closer analysis of it still raises some interesting complexity
issues.

Here is a list of problems that have been known since [7] to be in P-uniform
TC0 but were not known (before [17]) to be in FOM:

• DIVISION

• POW

• ITERATED MULTIPLICATION

• POWERING

• CONVERTING CRR TO BINARY2

• CONVERTING BINARY TO CRR

• DIVISIBILITY (i.e., given X and Y , does X divide Y ?)

Note that CONVERTING BINARY TO CRR and DIVISIBILITY were known pre-
viously to be in L-uniform TC0, by the arguments of [7]. All of these problems are
in FOM + POW. For some of these problems, this is optimal, as the following ob-
servations show.

2To be completely formal, the statement of this problem should include a specification of the mod-
uli used in CRR. For the purposes of this paper any reasonable definition is sufficient, and hence we
leave this unspecified.

8

Proposition 4.1 DIVISION is complete for FOM + POW under FO reductions.

Proof. We must show that both MAJORITY and POW are obtainable by FO-
reduction from DIVISION. Note first that Beame, Cook, and Hoover presented a
FO reduction from POWERING to DIVISION in [7]. This suffices to also reduce
the binary MULTIPLICATION problem to DIVISION, because the expression XY =
[(X + Y)2 − X2 − Y 2]/2 reduces MULTIPLICATION to POWERING. MAJORITY

is reducible to MULTIPLICATION as shown in [9].
It remains to solve the POW predicate ai ≡ b (mod m) with these tools. We

can use POWERING to compute ai, find q = bai/mc using DIVISION directly, com-
pute ai − qm using MULTIPLICATION, and compare the result to b.

Although the other problems are not known to be hard under FO reductions,
some of them are complete under FOM reductions.

Proposition 4.2 POW, ITERATED MULTIPLICATION, and POWERING are com-
plete for FOM + POW under FOM reductions.

Proof. (of Proposition 4.2) For POW this is a trivial observation. Since all of
these problems are in FOM + POW, they are all FO-reducible to DIVISION. An
argument in [7] reducing DIVISION to POWERING is easily seen to provide a FOM
reduction. And, of course, POWERING is a special case of ITERATED MULTIPLI-
CATION.

A natural approach to determining the complexity of all these problems, then, is
to consider a variety of algorithmic attacks on POW. It is easy to see that POW is in
L, and hence that FOM+POW is contained in L-uniform TC0. A clever application
of the result of [11], due to Chiu [10], gets us further:

Proposition 4.3 The problem POW is in Ruzzo-uniform NC1 [24]. Hence FOM+
POW is contained in both uniform NC1 and NC1-uniform TC0.

Proof. (of Proposition 4.3) Since POWERING and DIVISION are each in L-
uniform NC1 by [11], for any k we can raise a k-bit number to a log k-bit power
modulo a k-bit number using circuits of depth O(log k) that are DSPACE(log k)-
uniform. Taking k = log n, we can raise a small number to the power log n modulo
a small number, using a circuit of depth O(log log n) that is DSPACE(log log n)-
uniform. Making a log n-ary tree of such circuits, we can compute POW itself with
a circuit whose depth is (O(log log n) times O(log n/(log log n))) = O(log n) that
is fully uniform except for the O(log log n)-depth components that are DSPACE(log log n)
uniform.

Proving Ruzzo-uniformity of this NC1 circuit requires answering questions about
the extended connection language of the circuit, that is, questions about the node

9

numbers of paths of length log n through the gates [24]. We can answer such ques-
tions in FO as long as we can do so for each individual DSPACE(log log n)-uniform
component. This means questions about paths of length O(log log n) where each
edge is decidable by a DSPACE(log log n) machine. Replacing each edge with a
state graph for the machine, we get a question about paths in a uniform graph with
polylog many nodes. But any such questions are in FO, as desired. The full paper
will contain further details about such “short path” problems.

A second attack on POW places it in a new complexity class defined in a re-
cent paper of Barrington, Kadau, Lange, and McKenzie [6]. They looked at groups
presented as multiplication tables and the complexity of various problems includ-
ing that of computing powers. These results apply directly to the group of integers
modulo m (where m is polynomial in n) because the product operation of this group
is FO computable. They showed that powering in such a group, and thus POW, is
in a new complexity class they called FOLL.

The class FOLL is defined to be those languages definable by first-order for-
mulas with a quantifier block iterated O(log log n) times, or equivalently languages
recognized by uniform circuit families (of AND and OR gates) of depth O(log log n),
polynomial size, and unbounded fan-in. The key step in computing POW is to note
that ajk, for example, is FO computable from the complete table of j-th and k-th
powers, since ajk = b iff ∃c : (aj = c) ∧ (ck = b). Thus each round of FO com-
putation squares the highest power computed, and (with some other clauses in the
definition) after O(log log n) rounds all powers polynomial in n can be computed.

FOLL clearly contains FO and is contained in uniform AC1, and both contain-
ments are proper, but little else is known about FOLL (For example, is it contained
in NC1, L or NL?) We do at least know, by well-known lower bounds on circuit size
and depth (e.g.,[25]), that the parity language is not in FOLL. Since FOLL is closed
under FO reductions, it follows that no language in FOLL can be complete under
such reductions for any class including parity, in particular for L, NC1, or FOM.

The fact that POW is not complete for NC1 suggests that FOM + POW does
not have the full computational power of NC1-uniform TC0. It is plausible, given
this analysis that POW itself is in FOM, and thus that the class FOM + POW (in-
cluding DIVISION) collapses to FOM. In the next section we consider yet another
algorithmic attack on POW, which (assuming a number-theoretic hypothesis) does
effect this collapse. (In fact, subsequent to this work the collapse has been shown
to occur unconditionally [17].)

10

5 Division in FOM Given Enough Smooth Primes

In this section, we show that a widely-believed and “empirically true” number-theoretic
hypothesis implies that Division is in FOM. (Though this result has subsequently
been shown to hold unconditionally [17], we hope the proof techniques will still be
of interest.)

We define a smooth prime to be a prime p for which p − 1 factors completely
into small prime powers. If the smooth primes are sufficiently dense in the set of all
primes, then integer division can be performed over a CRR basis containing only
smooth primes. The calculations over this smooth prime basis will reduce to smaller
instances of division and iterated multiplication. We will repeat this reduction a
constant number of times, until we have instances of division that can be computed
directly in FOM.

There are different degrees of smoothness. In number theory, a number is called
Y -smooth if all of its prime factors are less than Y . Here we will require enough
primes p such that all of the prime power factors of p − 1 are less than 2(log p)1−ε

,
which is equal to p(1/ log p)ε

. We need at least an inverse polynomial fraction of the
primes to have this property, specifically:

Hypothesis 5.1 There exist natural numbers M, c and a real number ε > 0 such
that for any n > M , there are n primes p1, . . . , pn such that (a) each pi is less than
nc, and (b) any prime power qk dividing p − 1 satisfies qk < 2(log n)1−ε

.

Much stronger hypotheses about smooth primes are widely believed to be true;
a much larger proportion of numbers (not necessarily of the form p−1) are known to
satisfy much stronger smoothness conditions [8]. Empirically, the fraction of num-
bers of the form p− 1 that are Y -smooth is approximately the same as the fraction
of all numbers that are Y -smooth, for all Y . The best that has been proven, how-
ever, is that a significant fraction of primes p less than n have p−1 an n3/10-smooth
number [3]. This is not sufficient for our purposes.

Under Hypothesis 5.1, there are enough smooth primes so that we may carry
out the iterated product and division algorithm presented in Section 3 using only
smooth primes as CRR moduli. Thus we need only evaluate the POW predicate for
smooth primes p. (We can determine in FO whether a given prime is smooth.) This
allows us to reduce POW to instances of POW with significantly smaller inputs.

We define the problem POW(x), for x a (reasonably constructible) function of
n, to be the set of tuples 〈a, i, b,m〉 where ai ≡ b (mod m) and each of a, i, b,
and m have at most x bits. Whenever x = O(log n), the arguments of Sections 3
and 4 tell us that POW(x) is FOM-equivalent to the special case of DIVISION with
arguments of 2x bits or to the special case of POWERING where the base has 2x bits
and the exponent has x bits.

11

Lemma 5.2 Assume Hypothesis 5.1. Then for x = O(log n), POW(x) is FOM-
reducible to POW(x1−ε), where ε > 0 is the parameter in the hypothesis.

Proof. (of Lemma 5.2)
Given the hypothesis, there are enough smooth primes of O(x) bits to form a

CRR basis that will allow us to perform DIVISION and ITERATED MULTIPLICA-
TION on numbers of 2x bits. Thus POW(x) FOM-reduces to the special case of
POW(x) consisting only of those instances where the modulus is a smooth prime.
Now we will show that we can reduce such instances of POW to those where in
addition, the exponent i has only x1−ε bits.

In general, let p be a prime number, and let d be an upper bound on the size of
the prime power factors of p − 1. That is, let p − 1 be factorized as qr1

1 qr2

2 . . . qrk

k
where d is the maximum of the numbers qri

i . We will show that instances of POW
with modulus p reduce to instances of POW with the same modulus and with the
exponent less than d. The query ai ≡ b (mod p) requires computing the i’th
power in the multiplicative group of residue classes modulo p, denoted Z

∗
p. This

multiplicative group is a cyclic Abelian group, so it is a product of Abelian groups
with orders equal to the prime power divisors of p − 1.

The multiplicative group Z
∗
p is cyclic, so it has a generator, g. Given a ∈ Z

∗
p,

the discrete log of a, l(a), is the unique natural number less than p − 1 such that
gl(a) ≡ a (mod p). Note that if s is any divisor of p − 1, then b is an s-th power
of an element a ∈ Z

∗
p if and only if l(b) is a multiple of s. This follows, since as = b

iff sl(a) ≡ l(b) (mod p− 1), which is equivalent to the existence of an integer t
such that l(b) = s(l(a) − (p − 1/s)t).

Let us now observe that we can find a generator of Z
∗
p in FO + POW, invoking

POW only with exponents less than d. It can be seen that an element of Z
∗
p is a

generator if and only if its discrete log is relatively prime to p − 1. We know that
(l(b), p−1) = 1 if and only if qj does not divide l(b), for any qj . As observed above,
this holds if and only if b is not a qj-th power, for any qj . That is, b is a generator
if and only if ∀a aqj 6= b. Thus by an FO-reduction to POW with exponent qj , we
can find the least such b and call it our generator g.

Now let us show that all instances of POW for a smooth prime can be solved
in FO + POW, invoking POW only with exponents less than d. Since the qj’s are
relatively prime, we can represent numbers less than p− 1 in CRR using the q

rj

j as
moduli. Given a ∈ Z

∗
p, where the CRR of l(a) is (a1, . . . , ak), we can compute aj

as follows: l(a) ≡ aj (mod q
rj

j) iff l(ag−aj) ≡ 0 (mod q
rj

j), which happens

if and only if ag−aj is a q
rj

j -th power. Thus, to check if aj is equal to s, we com-

pute b = (g−1)s and check if there exists a t such that tq
rj
j = ab ∈ Z

∗
p. Both the

exponents s and q
rj

j are less than d, as desired. Now a general instance of the POW

12

predicate ai ≡ b (mod p) reduces to finding the CRR representation of l(a) and
l(b) and verifying that for each j, iaj ≡ bj (mod q

rj

j), all of which lies in FO.
We are now left with queries ai ≡ b (mod p), where a, b, and p each have x

bits and i is less than d. (Recall that d is O(2x1−ε

) and that both x and d are functions
of n). We can resolve this query by multiplying a with itself i times and dividing the
result by p. In particular, this is an instance of ITERATED MULTIPLICATION (where
the input and output consist of O(x2x1−ε

) = 2O(x1−ε) bits, followed by DIVISION

where the input size is also 2O(x1−ε). Now the results of Section 3 show that these
problems are in FOM + POW(x1−ε), as desired.

A constant number of applications of this lemma now reduces our original prob-
lem to the following simple lemma:

Lemma 5.3 The problem POW(
√

log n) is in FOM.

Proof. (of Lemma 5.3) To calculate ai mod p, we guess the numbers abi/2jc mod
p, for 0 ≤ j <

√
log n. Specifically, we assert the existence of a bit string of log n

bits that encodes these
√

log n numbers abi/2
√

log nc, . . . , abi/2c mod p, ai mod p,
each of which has

√
log n bits. Given this bit string, we can easily check that each

number abi/2j−1c mod p is the square, mod p, of the number abi/2jc mod p, or that
square multiplied by a. The last of these numbers is equal to ai mod p.

Theorem 5.4 Assuming Hypothesis 5.1, POW = POW(log n) is in FOM. Thus in
this case FOM + POW = FOM and all the problems from Section 4 are in FOM.

6 Small space-bounded complexity classes

For many people working in computational complexity theory, space-bounded com-
putation only “begins” with logarithmic space. To be sure, there is a large liter-
ature dealing with space bounds between log log n and log n. (For example, see
[20] for a perspective on the sequence of difficult papers leading up to a separa-
tion of the bounded-alternation hierarchy for sublogarithmic-space-bounded ma-
chines.) Nonetheless, this work relies on the automata-theoretic limitations of the
small-space-bounded machine. For instance, if s(n) = o(log n) is a fully-space-
constructible function, then there is a constant k such that, for infinitely many n,
s(n) < k. Thus every infinite unary language in dspace(o(log n)) has an infinite
regular subset. This provides easy proofs of lower bounds for the space complexity
of many languages, such as the proof in [15] that the set {0n : n is prime} cannot
be accepted in space o(log n).

13

However, it is still an open question whether the set of (binary encodings of)
primes can be accepted in space o(log n). How can this be? Surely the binary en-
coding of a set cannot be easier than the unary encoding of the same set!

Let us see why this is still an open question. Usually a lower bound on the com-
plexity of the binary encoding of a set follows from a bound on the complexity of
the unary encoding, using a standard translation lemma, such as:

Lemma 6.1 (Traditional Translation Lemma) If s(log n) = Ω(log log n) is fully
space-constructible, then the first statement below implies the second:

• A ∈ dspace(s(n)).

• un(A) ∈ dspace(log n + s(log n)).

The converse also holds, if s(log n) = Ω(log n).

Note in particular that this translation lemma does not allow one to derive any
lower bound on the space complexity of A, assuming only a logarithmic lower bound
on the space complexity of un(A). As an example to see that this is unavoidable,
consider the regular set A = 10∗. Arguing as in [15] it is easy to see that un(A) =

{02k

: k ∈ N} is not in dspace(o(log n)) (since it has no infinite regular subset).
There is another reasonable way to define space complexity classes. Let DSPACE(s(n))

be the class of languages accepted by Turing machines that begin their computation
with a worktape consisting of s(n) cells (delimited by endmarkers), as opposed to
the more common complexity classes dspace(s(n)) where the worktape is initially
blank, and the machine must use its own computational power to make sure that
it respects the space bound of s(n). Viewed another way, DSPACE(s(n)) is sim-
ply dspace(s(n)) augmented by a small amount of “advice”, allowing the machine
to compute the space bound. (This model was defined under the name “DEMON-
SPACE” by Hartmanis and Ranjan [16]. See also Szepietowski’s book [27] on sublog-
arithmic space.)

DSPACE(s(n)) seems at first glance to share many of the properties of dspace(s(n)).
In particular, it is still relatively straightforward to show that there are natural prob-
lems, such as the set of palindromes, that are not in DSPACE(o(log n)). (This fol-
lows from a simple crossing-sequence and Kolmogorov-complexity argument [16].)

The main contribution of this section is an easy argument, showing that the ef-
ficient division algorithm of [11] provides a new translation lemma.

Lemma 6.2 New translation lemma Let s(n) = Ω(log n) be fully space-constructible.
Then the following are equivalent:

• A ∈ dspace(s(n))

14

• un(A) ∈ DSPACE(log log n + s(log n)).

Proof. (of Lemma 6.2) For the forward direction, it is sufficient to present a
small-space algorithm for un(A).

Note that log log n space can hold the binary representation of a short prime
p. Thus on input 0n, a DSPACE(log log n) machine can compute the pieces of the
Chinese Remainder Representation of n.

Thus, by [11], in space log(|n|) = log log n we can compute the bits of the bi-
nary representation of n. Thus, on input 0n a Turing machine can simulate a s(|n|)-
space-bounded computation (of a machine having input n) in space s(log n).

For the converse, given a Turing machine accepting un(A) in space log log(x)+
s(log x) on input 0x, we want to use log(|x|) + s(|x|) = O(s(|x|)) space to deter-
mine if x ∈ A. We provide merely a sketch here.

The most naı̈ve approach to carry out this simulation will not work, since we do
not have enough space to record the location of the input head in a simulated com-
putation on 0x, and thus we cannot perform a step-by-step simulation. However,
we do have enough space to carry out a simulation until either

(a) the input head returns to an endmarker without repeating a worktape config-
uration, or

(b) some worktape configuration is repeated.

In case (a), a step-by-step simulation is sufficient. In case (b), we can determine the
period of the loop, and (doing some simple arithmetic) we can determine the state
the machine will be in when it encounters the other end marker.

Thus in either case, the simulation can proceed.

Corollary 6.3 Let C be any complexity class. In order to show C is not contained
in L, it suffices to present a set A ∈ C such that un(A) 6∈ DSPACE(log log n).

In some ways, DSPACE(log log n) is a more natural class than dspace(log log n),
in the sense that this class is related to a natural class of branching programs, whereas
no similar characterization is known for dspace(log log n). The following result
makes this more precise.

For this extended abstract, we assume the reader is familiar with basic defini-
tions regarding branching programs.

Theorem 6.4 A is accepted by DLOGTIME-uniform branching programs of poly-
nomial size and width O(logO(1) n) if and only if A is FO-reducible to a language
accepted by an oblivious DSPACE(log log n) machine.

15

Proof. (of Theorem 6.4) First, consider a language accepted by an oblivious
machine M with a worktape of size O(log log n). By definition of “oblivious”, the
input location scanned by M at time t can be computed in FO. Thus it is an easy
matter to construct a branching program with a node for each worktape configu-
ration on each level, with edges simulating M ’s transition function. The resulting
branching program will be FO-uniform, and this can be transformed into an equiv-
alent DLOGTIME-uniform branching program by standard techniques.

Conversely, let A be accepted by a DLOGTIME-uniform leveled branching pro-
gram of width logO(1) n. It is easy to show that there is a FO reduction that, given
an input string x, produces a sequence of the form

##f1#f2# . . . #ft##

where t is the number of columns, and each fi is a function fi : {1, . . . w} →
{1, . . . w}, where w = logO(1) n is the width of the branching program, with the
property that fi(j) = j′ iff the branching program, when in vertex j in column i,
moves to vertex j ′ in column i + 1 when querying the specified bit of x.

Note that an input x is accepted by M if and only if ft(ft−1(. . . (f1(1)) . . .)) is
an accepting state of M . We encode each function f in the sequence as a list

(1, f(1))(2, f(2)) . . . (w, f(w)).

Note that there is an oblivious machine with space bound O(log log n) that takes
such a sequence of functions as input and computes the composition.

Essentially equivalent observations appear elsewhere. For instance, it is shown
in [12] that leveled branching programs of width O(2s(n)) correspond to non-uniform
finite automata with space bound s(n).

7 Acknowledgments

All three authors gratefully acknowledge the support of the NSF Computer and Com-
putation Theory program. Much of this work was carried out during the March
2000 McGill Invitational Workshop on Complexity Theory – the authors thank the
organizer Denis Thérien and all the other participants. We also thank Dieter van
Melkebeek, Samir Datta, Michal Koucký, Rüdiger Reischuk, and Sambuddha Roy
for helpful discussions.

Additional work on this project was carried out during the Park City Mathe-
matics Institute’s summer program in July and August 2000, supported by the Clay
Mathematics Institute. The authors thank PCMI, CMI, Alexis Maciel, and the stu-
dents in the PCMI undergraduate program where this material was presented.

16

References

[1] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and Arithmetic Circuits. Jour-
nal of Computer and System Sciences 60:395–421, 2000.

[2] E. Allender and D. A. M. Barrington. Uniform circuits for division: Consequences
and problems. Electronic Colloquium on Computational Complexity 7:065 (2000).
Preliminary version of this paper.

[3] R. C. Baker and G. Harman. Shifted primes without large prime factors. Acta Arith-
metica, 83.4:331–361, 1998

[4] D. A. M. Barrington and N. Immerman. Time, hardware, and uniformity. In Complex-
ity Theory Retrospective II, L. A. Hemaspaandra and A. L. Selman, eds., Springer-
Verlag, 1997, pp. 1–22.

[5] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990.

[6] D. A. M. Barrington, P. Kadau, K.-J. Lange, and P. McKenzie. On the complexity of
some problems on groups given as multiplication tables. Proc. 15th IEEE Conference
on Computational Complexity, 2000, pp. 62–69.

[7] P. Beame, S. Cook and J. Hoover. Log depth circuits for division and related problems.
SIAM J. Comput., 15:994–1003, 1986.

[8] E. R. Canfield, Paul Erd ös, and Carl Pomerance. On a problem of Oppenheim con-
cerning “factorisatio numerorum”. Journal of Number Theory, 17:1–28, 1983.

[9] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM J.
Comput., 13:423–439, 1984.

[10] A. Chiu. Complexity of parallel arithmetic using the Chinese Remainder representa-
tion. Master’s thesis, U. Wisconsin-Milwaukee, 1995. G. Davida, supervisor.

[11] A. Chiu, G. Davida, and B. Litow. NC1 Division. Preliminary version. Available
from the website http://www.cs.jcu.edu.au/∼bruce as
/papers/crr00 3.ps.gz.

[12] C. Damm and M. Holzer. Inductive Counting for Width-Restricted Branching Pro-
grams. Information and Computation 130:91–99, 1996.

[13] G. I. Davida and B. Litow. Fast parallel arithmetic via modular representation. SIAM
J. Comput., 20:756–765, 1991.

[14] Paul F. Dietz, Ioan I. Macarie, and Joel I. Seiferas. Bits and relative order from
residues, space efficiently. Information Processing Letters, 50:123–127, 1994.

[15] J. Hartmanis and L. Berman. On tape bounds for single letter alphabet language pro-
cessing. Theoretical Computer Science 3:213–224, 1976.

[16] J. Hartmanis and D. Ranjan. Space bounded computations: Review and new specula-
tion. In MFCS ’89: Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science 379, Springer-Verlag, 1989, pp. 49–66.

17

[17] W. Hesse. Division is in Uniform TC0. In ICALP 2001: Twenty-Eighth International
Colloquium on Automata, Languages and Programming (July 2001), to appear.

[18] W. Hesse, E. Allender, and D. A. M. Barrington. Fully Uniform Threshold Circuits
for Division and Related Problems. In preparation. To be submitted to Journal of
Computer and System Sciences (special issue for this conference).

[19] N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

[20] M. Li śkiewicz and R. Reischuk. Computing with sublogarithmic space. In Complexity
Theory Retrospective II, L. A. Hemaspaandra and A. L. Selman, eds., Springer-Verlag,
1997, pp. 197–224.

[21] I. Macarie. Space-efficient deterministic simulation of probabilistic automata. SIAM
J. Comp. 27:448-465, 1998.

[22] V.A. Nepomnjaščiı̆. Rudimentary predicates and Turing calculations. Soviet Math.
Dokl. 11:1462–1465, 1970.

[23] J. Reif and S. Tate. On threshold circuits and polynomial computation. SIAM J. Com-
put., 21:896–908, 1992.

[24] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sci-
ences, 21:365–383, 1981.

[25] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. Proc. 19th ACM Symposium on Theory of Computing (STOC), 1987, pp.
77–82.

[26] A. Szepietowski. If deterministic and nondeterministic space complexities are equal
for log log n, then they are also equal for log n. Theoretical Computer Science,
74:115–119, 1990.

[27] A. Szepietowski. Turing Machines with Sublogarithmic Space. Lecture Notes in
Computer Science 843, Springer-Verlag, 1994.

18

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

