
Extractors from Reed-Muller Codes

Amnon Ta-Shma
Department of Computer Science

Tel-Aviv University
Israel 69978.

email: amnon@post.tau.ac.il.
�

David Zuckerman
Department of Computer Science

University of Texas
Austin, TX 78712.

email: diz@cs.utexas.edu †

Shmuel Safra
Department of Computer Science

Tel-Aviv University
Israel 69978.

email: safra@post.tau.ac.il

May 2, 2001

Abstract

Finding explicit extractors is an important derandomization goal that has received a lot of attention in
the past decade. This research has focused on two approaches, one related to hashing and the other to
pseudorandom generators. A third view, regarding extractors as good error correcting codes, was noticed
before. Yet, researchers had failed to build extractors directly from a good code, without using other tools
from pseudorandomness. We succeed in constructing an extractor directly from a Reed-Muller code. To do
this, we develop a novel proof technique.

Furthermore, our construction is the first and only construction with degree close to linear. In contrast,
the best previous constructions had brought the log of the degree within a constant of optimal, which gives
polynomial degree. This improvement is important for certain applications. For example, it follows that
approximating the VC dimension to within a factor of N1 � δ is AM-hard for any positive δ.

�

Some of this work was done while the author was at the University of California at Berkeley, and supported in part by a David and
Lucile Packard Fellowship for Science and Engineering and NSF NYI Grant CCR-9457799.

†Some of this work was done while the author was on leave at the University of California at Berkeley. Supported in part by a David
and Lucile Packard Fellowship for Science and Engineering, NSF Grant CCR-9912428, NSF NYI Grant CCR-9457799, and an Alfred
P. Sloan Research Fellowship.

0

Electronic Colloquium on Computational Complexity, Report No. 36 (2001)

ISSN 1433-8092




min-entropy k t truly random bits m output bits reference

any k t � logn
� Θ � 1 � m � t

�
k � Θ � 1 � Lower bound

and non-explicit.
[RTS00]

k � Ω � n � t � O � log2 n � m � Ω � k � [NZ96]
k � Ω � n � t � O � logn � m � Ω � k � [Zuc97]

any k t � O � log2 n
logk � m � k1 � α [Tre99]

any k t � O � logn � m � k � logn [RSW00]
any k t � O � logn

�
log2 � o � 1 	 k � m � k

�
t � O � 1 � [TSUZ01]

k 
�� nm log2 � n � t � logn
�

O � log � log 
 m ��� m This paper
k � Ω � n � t � logn

�
O � loglogn � m � Ω � k � This paper

Table 1: Milestones in building explicit extractors. The error ε is a constant.

1 Introduction

1.1 History and Background

Sipser [Sip88] and Santha [San87] were the first to realize that extractor-like structures can be used to save on
randomness. Sipser and Santha showed the existence of such objects, and left open the problem of explicitly
constructing them. True extractors were first defined in [NZ96]:

Definition 1.1. [NZ96] E : � 0 � 1 � n � � 0 � 1 � t � � 0 � 1 � m is an ε-extractor for a class of distributions � over
� 0 � 1 � n, if for every distribution X ��� the distribution E � X � Ut � is within statistical distance ε from the
uniform distribution on � 0 � 1 � m. 1 E is explicit if E � x � y � can be computed in time polynomial in the input
length n

�
t. E is a � k � ε � -extractor if E is an extractor for all distributions with min-entropy k.2

When we refer simply to extractors, we mean � k � ε � -extractors; if we mean extractors for other classes of
distributions we will specify that. Extractors, thus, extract the entropy from a defective random source using
few additional truly random bits. The goal is to construct extractors for any min-entropy k with t, the number
of truly random bits, as small as possible and m, the number of output bits, as large as possible.

Building on earlier work of Zuckerman [Zuc90, Zuc96], Nisan and Zuckerman [NZ96] built an extractor
with t � O � log2 n � when the entropy of the source k was high, k � Ω � n � . Srinivasan and Zuckerman extended
this solution to the case k � n1 � 2 � ε and Ta-Shma [TS96] further extended it for any entropy k. Also, Ta-
Shma was the first to extract all the entropy from the source. Zuckerman [Zuc97] showed a construction with
t � O � logn � working for high entropies k � Ω � n � . All of this work used hashing and k-wise independence in
various forms.

Departing from previous techniques, Trevisan [Tre99] showed a connection between pseudorandom gen-
erators for small circuits and extractors. Trevisan then used the Nisan-Wigderson pseudorandom gener-
ator [NW94] to construct a simple and elegant extractor that achieves t � O � logn � when k � nΩ � 1 	 and
t � O � log2 n � for the general case. Trevisan’s work was extended in [ISW99, ISW00, RSW00, TSUZ01] to
work for every k with only t � O � logn � truly random bits. These extensions added to the complexity of the
extractor.

Thus, in the current state of the art, there are two techniques that are used in various forms and com-
binations and different degrees of complexity. Even after all that work, all the known constructions use
t � O � logn � while the lower bound is only t � logn

�
O � 1 � . This progress is summarized in Table 1.1 for the

case of constant error ε.

1Ut denotes the uniform distribution on t bits, and E � X � Ut � denotes the distribution obtained by evaluating E � x � y � for x chosen
according to X and y according to Ut . Also, see Section 2 for the definition of statistical distance, also known as variation distance.

2See Section 2 for the definition of min-entropy.

1



1.2 The significance of the extractor degree

Besides their straightforward applications to simulating randomized algorithms using weak sources, extrac-
tors have had applications to many areas in derandomization that are seemingly unrelated to weak sources,
and below we list some of them. Extractors have been used to construct expanders that beat the second
eigenvalue method [WZ99], superconcentrators and non-blocking networks [WZ99], sorting and selecting
in rounds [WZ99], pseudorandom generators for space-bounded computation [NZ96], unapproximability of
clique [Zuc96] and certain ΣP

2 minimization problems [Uma99], time versus space complexities [Sip88],
leader election [Zuc97, RZ98], another proof that BPP � PH [GZ97], random sampling using few random
bits [Zuc97], and error-correcting codes with strong list decoding properties [TSZ01]. Hastad [Hås96] uses
non-explicit dispersers3 in his result that CLIQUE is unapproximable to within n1 � α for any α � 0. The use
of non-explicit dispersers make the result depend on the assumption that NP �� ZPP; a derandomized version
would assume that NP �� P.

In many of these applications, extractors are viewed as highly unbalanced strong expanders. In this view
an extractor is a bipartite graph G � � V1 � V2 � E � with V1 being � 0 � 1 � n, V2 � � 0 � 1 � m and an edge � x � z � exists
iff there is some y � � 0 � 1 � d such that E � x � y � � z. Thus, the degree of each vertex of V1 is D � 2d , and the
extractor hashes the input x � � 0 � 1 � n to a random one of its D neighbors in � 0 � 1 � m.

Often this degree D is of more interest than d � logD. For example, in the samplers of [Zuc97] the
degree is the number of samples; in the simulation of BPP using weak sources [Zuc96] the degree is the
number of calls to the BPP algorithm; in the extractor codes of [TSZ01] D is the length of the code; and in
the unapproximability of CLIQUE, the size of the graph is closely related to D.

As stated before, all previous constructions have degree D � poly � n � � poly � log �V1 � � while the lower
bound (that matches non-explicit constructions) is only D � O � n � � O � log �V1 � � . In fact, when the error ε
allowed is very large and close to 1, dispersers require degree which is smaller than n, namely O � n

log 1
1 � ε
� .

Getting such a disperser would derandomize Hastad’s result.
Our construction breaks the polynomial degree bound and is the first to be close to linear. An unapprox-

imability result that required just the extractors we construct is due to Mossel and Umans [?]. They showed
that if dispersers with degree n1 � δ can be constructed for all positive δ, then it is AM-hard to approximate
the VC dimension to within a factor of N1 � γ for all positive γ. Our degree is even smaller, and extractors are
stronger than dispersers, so the unconditional unapproximability of VC dimension follows.

1.3 Our construction

Our construction uses error-correcting codes. Codes are known to be related to extractors. For example,
Ta-Shma and Zuckerman [TSZ01] showed that extractors are equivalent to codes over large alphabets having
good list decoding properties. Explicit extractors correspond to codes with explicit encoding. However, they
used extractors to give good list decodable codes, but not the reverse.

Earlier, Trevisan used error-correcting codes in his extractor construction. However, this construction
seems to draw its power from pseudorandom generators rather than from coding theory. Indeed, Trevisan
himself emphasized the use of pseudorandom generators, since he obtained relatively strong extractors with-
out using codes at all.

Trevisan’s extractor can be viewed as first encoding the weak source input x � � 0 � 1 � n with any good error
correcting code (good here means minimum distance close to half) and then using the truly random bits y to
select bits from the encoded string using designs. Can we use a specific good code to allow y to be used in a
more efficient way?

Our extractor construction is the first to do this, and we use y in a trivial way. Our good code is a Reed-
Muller code. Specifically, we view the input x from the weak source as defining a low degree multivariate
polynomial x̂ : � d � � over some large field � . We use the truly random bits to choose an element a �
� d and the m outputs correspond to the values of x̂ on the m points a

� � 1 � 0 ������� � � a � � 2 � 0 ������� � 0 � ������� � a �
� m � 0 ������� � 0 � . For each one of these points we compute x̂ � a � � i � 0 ������� � 0 ��� , we encode it again using a good
binary code and we output a random bit of it. Thus, the construction can be viewed as using a Reed-Muller
concatenated with a good binary code for encoding, and selecting m consecutive points for the output.

3A disperser is a one-sided version of extractor.

2



For simplicity we will focus on the bivariate case, though the multivariate case works as well, and gives
different parameters. Notice the simple way in which we use the random string y to select the output bits.
Indeed, this gives an extractor using only t � logn

�
O � log m

ε � truly random bits. Formally, we prove:

Theorem 1. For every m � m � n � ,k � k � n � and ε � ε � n � such that � n � m � log2 n
�

k
�

n. There is an explicit
family of � k � ε � extractors En : � 0 � 1 � n � � 0 � 1 � t � � 0 � 1 � m with t � logn

�
O � log m

ε �
�

O � 1 � .
To further improve our result, we notice that our construction can be viewed as an efficient reduction

from the problem of constructing extractors for general sources, to the problem of constructing extractors for
almost semi-random sources. We then show an efficient construction for almost semi-random sources. We
use this to give a construction using only t � logn

�
O � log � log 
 m ��� truly random bits. Formally,

Theorem 2. For every m � m � n � ,k � k � n � and ε � ε � n � such that � n � m � log2 n
�

k
�

n and m 
 2log2 1
ε ,

there is an explicit family of � k � ε � extractors En : � 0 � 1 � n � � 0 � 1 � t � � 0 � 1 � m with t � logn
�

polylog � ε � 1 � �
O � log � log 
 m � � 4.

Notice, that while we dramatically improve the random bit complexity, the construction works only for
entropies k � n1 � 2 � γ and the number of output bits is only kδ for some δ � γ. We can make the construc-
tion work for smaller entropies by using multivariate polynomials instead of bivariate polynomials; see the
appendix for details. We can also extract more output bits in the case where the entropy is k � Ω � n � . Formally,

Theorem 3. For any constants δ � ε � 0, there is a constant γ such that there is an explicit family of � δn � ε �
extractors E : � 0 � 1 � n � � 0 � 1 � t � � 0 � 1 � m, where t � logn

�
O � loglogn � and m � γn.

Beyond the significance of the better bounds on the degree of Theorems 2 and 3, Theorem 1 is the
first (and only) purely algebraic extractor construction, and the only one relying solely on error-correcting
codes. Moreover, the simplicity and good constants may make it practical, which is probably not the case for
previous constructions.

1.4 Our proof technique

We want to prove that whenever X is large enough, the distribution E � X ;U � is close to uniform. Recall
that we view an input x ��� 0 � 1 � n as a bivariate polynomial x̂ : � 2 � � . We then use a truly random string
� a1 � a2 � � � 2 , and the m output bits are based on the m values x̂ � a1

�
1 � a2 � ������� � x̂ � a1

�
m � a2 � . Now suppose

E � X ;U � is not close to uniform. Then there must be a distinguisher that on average can learn the value
x̂ � a1

�
i � a2 � from the values x̂ � a1

�
1 � a2 � ������� � x̂ � a1

�
i � 1 � a2 � .

We now play a mental game. We pick a random line L and we assume someone is giving us the correct
values of x̂ on i � 1 consecutive parallel left-shifts of L, i.e., L � � 1 � 0 � through L � � i � 1 � 0 � . Each point on L
is preceded by i � 1 points for which we already know (by assumption) the right value of x̂. Hence we can use
the predictor to predict that point, with some moderately good success probability. Overall, the predictor is
correct for many points on L. We now use the fact that x̂ restricted to L is a low-degree polynomial to actually
find the value of x̂ on that line (using list-decoding for Reed-Solomon codes). We then learn L

� � 1 � 0 � ,
L
� � 2 � 0 � , etc., until we learn enough lines to reconstruct x̂ itself.

Playing that mental game we can prove that there is a set of about md queries (and recall that d is about
� n and m is the number of output bits) such that almost every x � X can be reconstructed given the answers
to these queries. Note that d2 queries can always reconstruct X ; our gain is that we can reconstruct X using
only dm instead of d2 queries. This shows that X has size at most � � � md , or equivalently has entropy at most
md logq. We conclude that if X is larger than that the distribution E � X � U � is close to uniform.

The technique was inspired by work done on list decoding of Reed-Muller codes, and its application to
hardness amplification in [STV99]. Aside from applying an error-correcting technique to a different infor-
mation theoretic setting, our proof techniuqe has additional ideas. For example, we obtain our savings by
learning a line using previously learned lines, and this whole notion of recycling queries makes sense only
in our setting and does not appear in previous constructions. We believe this is a completely new, clean and
elegant way of constructing extractors.

4The polylog � ε � 1 � term can be improved to O � logε � 1 � but we postpone it to the full version of the paper.

3



2 Preliminaries

Throughout, � � � q denotes a field of size q. As usual, � n � denotes the set � 1 � 2 ������� � n � . If S is a set and t is
an element, then S

�
t denotes the set � s � t : s � S � . All logarithms are to the base 2. We will assume, when

needed, that various quantities are integers. It is not hard to check that this has only a negligible effect on our
analysis.

2.1 Statistical Distance and Min-entropy

Definition 2.1. The statistical distance (or variation distance) between two distributions D1 and D2 on the
same space S is

max
T � S

� D1 � T � � D2 � T � � � 1
2 ∑

s � S � D1 � s � � D2 � s � � �

Definition 2.2. The min-entropy of a distribution D on a probability space S is mins � S � � log2 D � s � � .

2.2 Polynomials

We will use the following lemma due to Sudan.

Lemma 2.3. [Sud97] Given a sequence of m distinct pairs pairs � xi � yi � � � 2 , there are less than 2m � a
degree d polynomials p such that p � xi � � yi for at least a values of i ���m � , provided that a 
 � 2dm.

Corollary 2.4. For each element u � � assign a set Su of size at most A. Then there are less than 2A � δ degree
d polynomials p such that p � u � � Su for at least a δ fraction of points, provided that δ 
�� 2dA � � � � .

2.3 Binary Codes

An � n � k � code is a linear binary code of length n and dimension k. When we refer to relative measures, we
mean the ordinary measures divided by the length. We will need binary codes with good combinatorial list
decoding properties.

Definition 2.5. A binary code has combinatorial list decoding property α if every Hamming ball of relative
radius 1

2 � α has O � 1 � α2 � codewords.

We will use codes from the following code construction due to [GHSZ00].

Fact 2.6. There is a polynomial-time (in fact, Logspace) constructible � n � k � code with combinatorial list
decoding property α, where n � O � k � α4 � .

Simpler and more efficient constructions can be achieved with somewhat worse parameters, e.g. [NN93,
AGHP92].

2.4 Reed-Muller Codes

Our construction uses a � h � D � Reed-Muller code over � q . In such a code the message specifies a polynomial f
in D variables over � q of total degree at most h, and the output is all the values of f over � D

q . Every polynomial

in D variables of total degree
�

h can be represented by the coefficients of the different monomials xi1
1 � ������� xiD

D

with i1
� ����� iD �

h, and there are exactly � h � D
D � such monomials. It follows that such a code has length qD

and dimension � h � D
D � .

4



3 Top-down overview

Define h ����� 2n
logq � . Let � � � q be a field of size q � h. We will need the characteristic of � to be

bigger than h, so it is easiest to think of q as prime. The reduction begins by viewing the n-bit input string
x � � 0 � 1 � n as a function f : � 2 � � of total degree at most h � 1. This is possible since every degree h � 1

bivariate polynomial f can be specified using � h � 1
2 � coefficients from � q and � h � 1

2 � logq 
 h2

2 logq 
 n.

The function Z

Input : x � � 0 � 1 � n.

Setting : � is a field of size q, h � � � 2n
logq � . We associate with x � � 0 � 1 � n a function x̂ : � 2 � �

of total degree at most h � 1.

Binary code : BC is a linear binary code of dimension � � logq, combinatorial list decoding prop-
erty α (see Definition 2.5), α will be determined later, and length ¯� .

Random coins : a � � a1 � a2 � � � 2 , j ��� ¯� � .
Output : Z � x;a � j � i � BC � x̂ � a1

�
i � a2 ��� j for i � 1 ������� � m

For formulating our assertion about Z � X ;U � we need a definition of a variant of semi-random sources.
Semi random sources were defined and studied in many early papers, most notably [SV86, CG88, NZ96,
SZ99]. We extend this definition to a β–almost semi-random source:

Definition 3.1. A distribution X � X1 � X2 � ����� � Xm is β–almost α semi-random if for every i � 1 ������� � m

Pr
x � X

x 	 x1 
�� � � 
 xm

� Pr � Xi � xi � X1 � x1 ������� � Xi � 1 � xi � 1 � � 1
2
� α � � β

If β � 0 we say X is α semi-random.

We claim:

Theorem 4. For every n, m and α � β � 0 set q the smallest prime larger than 29

β2α2 h. Let us denote Z �
Z � X � Ut � where Z � Z1 � Z2 � ����� � Zm. Then:
 If Z is not β-almost α semi-random, then � X � � 4

βq � m � logn 	 h.


 t
�

logn
�

O � log � 1
αβ ���

�
O � 1 � and Z can be computed in O � logq � space and poly � q � � poly � n � 1

αβ �
time.

To verify parameters, note that ¯� � O � logq � and Z uses t � 2logq
�

log ¯� random bits. We have:
t � 2logq

�
log ¯� �

2logh
�

O � log 1
αβ �

�
loglogq

�
O � 1 � � logn � loglogq

�
loglogq

�
O � log � 1

αβ ���
�

O � 1 � .
Also, the running time of Z is dominated by the complexity of evaluating x̂ � a � , which can be done with
O � logq � space and poly � q � time. We will later deal with the challenging part of proving the reduction cor-
rectness.

We are now ready to prove Theorem 1:

Proof. (Of Theorem 1) Suppose m � m � n � ,k � k � n � and ε � ε � n � are such that � n � m � log2 n
�

k
�

n. Let us

set α � β � Θ � ε
m � and q � Θ � � n

logn
1

α2β2 � . We claim Z � X ;U � is the desired � k � ε � extractor.

To see that, let X � � 0 � 1 � n be an arbitrary set of cardinality at least K � 2k. As k 
 � n � m � log2 n,
� X � 
 4

β q � m � logn 	�� n and by Theorem 4, Z � Z � X ;U � is a β–almost � � log2 � 12
� α � ������� � � log2 � 12

� α � � semi-
random source. We finish the proof with:

Claim 3.2. Z � X ;U � is O � m � α � β � � � O � ε � close to uniform.

5



Proof. We can start with i � m going down to i � 1. For each such i there is at most β fraction of bad prefixes.
For each such bad prefix, we can redistribute its weight uniformly on all extension of the prefix. This makes
at most an mβ difference to the distribution, and the new distribution is a true semi-random source.

Next, notice that for every prefix, the probability of the next bit being 0 or 1 is at most 1
2
� α. We can

again go down from i � m to i � 1 and redistribute the weight so that it is perfectly uniform. The resulting
difference is again O � mα � . Thus, altogether, Z � X ;U � is O � m � α � β � � close to uniform.

3.1 Further reducing the number of truly random bits

We now want to save the O � logm � extra term we have in t. To do that we work with a constant α, say α � � 1.
Then the distribution Z � Z � X ;U � is not close to uniform. However, Z is β–almost α semi-random, with
constant entropy in each of the bits. It therefore suffices to give an extremely efficient extractor for almost
semi-random sources.

An extractor working on a general distribution over n input bits need at least t 
 logn � O � 1 � truly random
bits, even when the allowed error ε is a constant. In contrast, we show that extractors for semi-random sources
require only t � O � 1 � truly random bits. We also show that efficient extractors for the β-almost semi-random
case exist.

Theorem 5. For every α � β � 0 there is an ε-extractor F : � 0 � 1 � m � � 0 � 1 � r � � 0 � 1 � m � for β-almost α semi-
random sources with r � poly � log 1

pε � and m
� � m � O � log 
 m log 1

ε � .
For lack of space we present the proof in the appendix. We now prove Theorem 2.

Proof. (Of Theorem 2) Suppose m � m � n � ,k � k � n � and ε � ε � n � are such that � n � m � log2 n
�

k
�

n and

m 
 2log2 1
ε . Let us set � log2 � 12

� α � � 1
2 , β � Θ � ε

log
�

m � and q � Θ � � n
logn

1
β2 � . Let F � X ;U � be the extractor

for β–almost semi-random sources, of Theorem 5. Our extractor is

E � x;y1 � y2 � � F � Z � x;y1 � ;y2 � �
That is, we first apply Z on the input x together with the truly random string y1, and then we apply the
extractor F for β–almost semi-random sources together with a new truly random string y2.

Correctness : Let X � � 0 � 1 � n be an arbitrary set of cardinality at least K � 2k. As k 
 � n � m � log2 n,
� X � 
 4

βq � m � logn 	�� n and by Theorem 4, Z � Z � X ;U � is a β–almost � 1 semi-random source. It then
follows by Theorem 5 that E � X ;U � is O � ε � close to uniform.

Parameters : By Theorem 4, the length of y1 is logn
�

4log � 1
β �
�

O � 1 � � logn
�

log � log 
 m ��� � log 1
ε
�

O � 1 � .
By theorem 5 the length of y2 is polylog � ε � 1 � . Thus the number of truly random bits used is as required.
The output length of Z is m, and thus the output length of E is m � O � log 
 m log 1

ε � 
 m
2 provided that

m 
 2log2 1
ε . To get error ε and m output bits, just apply the above construction with m

� � 2m and
ε

� � Ω � ε � .

3.2 Increasing the output length

We can apply techniques from [RSW00, NZ96] to increase the length of the output and prove Theorem 3:

Proof. (of Theorem 3, Sketch.) Reingold, et.al. [RSW00] showed how to add O � loglogn � truly random bits
to the input X and extract a block B of length δ

2 n, such that B is close to a 2γn source and X is close to a

source with min-entropy δ
4 n, even conditioned on B. We can then apply techniques implicit in [NZ96] and

explicit in [SZ99]. We use the extractor of Theorem 2 to add logn
�

O � log 
 n � truly random bits to X and
extract polylog � n � almost-random bits that are close to uniform even conditioned on B. We now use these
polylog � n � bits and the original extractor of [NZ96] (though the more complex [Zuc97] is better) to extract
γn almost-random bits from B.

6



4 The reduction to almost semi-random sources

We want to prove Theorem 4, i.e., we want to show that if Z is not as required than there exists a large subset
X

� �
of X such that the answers to a small number of queries distinguishes elements of X

� �
. This shows that X

� �

is small, and therefore X itself is small. We begin with some definitions.

Definition 4.1. A predictor P for bivariate polynomials is a probabilistic function that on input a � F 2 picks
a set of queries Q � a � � � v1 ������� � vs � of points in F2, and gets s answers b1 ������� � bs � F from an oracle. We
stress that the set Q � a � may be chosen at random and may or may not depend on a. It then computes a subset
P � a;v1 ������� � vs � b1 ������� � bs � � F.

P has A possible answers if for every a � F2, every possible set of queries v1 ������� � vs � F2 and every set of
answers b1 ������� � bs � F it holds that the size of P � a;v1 ������� � vs � b1 ������� � bs � is at most A. P predicts f : F2 � F
with success p if

Pr
a � F2 � P

� f � a � � P � a;v1 ������� � vs � f � v1 � ������� � f � vs � � � 
 p

P predicts S � � 0 � 1 � n with success p if, for every x � S, P predicts x̂ with success p. P has preprocessed
queries if Q does not depend on a, and P is deterministic if it does not use random coins (neither to choose Q
nor to compute its answer).

Notation 4.2. Suppose P is a predictor for bivariate polynomials and f : � 2 � � . P f
Q � a � denotes the value

P � a;v1 ������� � vs � f � v1 � ������� � f � vs ��� , i.e., the query points are Q � a � and the answers are the values of f on these
points. Whenever the set of queries Q is clear from the context we write P f � a � to denote this value. If P is
deterministic, the set of queries Q is completely determined by a, and then we always denote this value by
P f � a � .

Theorem 4 follows from the following lemma:

Proposition 1. If Z � Z � X ;U � is not β–almost α semi-random, then there exists a deterministic predictor
for a set X

� �
, of size at least � X � � � 
 β

4 � X � , using � m � logn � h preprocessed queries, 1 possible answer and
success 1. Hence � X � � 4

q q � m � logn 	 h.

Notice that while in general we need about h2

2 values to determine an arbitrary degree h � 1 bivariate
polynomial, here only about mh queries suffice. This immediately translates to X being small.

4.1 Evaluating a Point

We now fix a set X such that Z � Z � X ;U � is not β–almost α semi-random. We begin with a certain “segment
predictor.”

Definition 4.3. P is a segment predictor if the set of queries is

Q � a1 � a2 � � � � a1 � s � a2 � ������� � � a1 � 1 � a2 � �
Our first step towards proving Proposition 1 will be to prove the following.

Lemma 4.4. There exists a segment predictor EP for X
���

X of cardinality � X � � 
 β
2 � X � making at most m

queries, A � O � 1 � possible answers and p � β
4 success.

Proof. Since Z is not β–almost α semi-random, then there is an i0 � � 1 ������� � m � such that

Pr
z � Z � Pr � Zi � zi � Zi � 1 � zi � 1 ������� � Z1 � z1 � � 1

2
� α � 
 β

We can now define T : � 0 � 1 � i � 1 � � 0 � 1 � by letting T � z1 ������� � zi � 1 � be the most frequent value of � Zi � Z1 �
z1 ������� � Zi � 1 � zi � 1 � breaking ties arbitrarily. We then have

Pr
z � Z � Pr � T � z1 ������� � zi0 � 1 � � zi0 � �

1
2
� α � 
 β

7



An averaging argument shows that there exists a subset X
� �

X of cardinality at least β
2 � X � such that for every

x � X
�
,

Pr
u � U

z � Z
�
x;u �
� Pr � T � z1 ������� � zi0 � 1 � � zi0 � �

1
2
� α � 
 β

2

Similarly, for every x � X
�

Pr
a ��� 2

� Pr
j ��� ¯�	�

z 	 Z
�
x;a 
 j �

� Pr � T � z1 ������� � zi0 � 1 � � zi0 � �
1
2
� α � 
 β

4
� 
 β

4
(1)

We can now define our segment predictor.

EP : Evaluate Point

Input : a � � a1 � a2 � � � 2

Queries : The query points are Q � a1 � a2 � � � � a1 � � i0 � 1 � � a2 � ������� � � a1 � 1 � a2 � � . The answer to
the query � a1 � i � a2 � is bi.

Algorithm : For every j ��� ¯� � compute

g j � a � � T � BC � bi0 � 1 � j ������� � BC � b1 � j �
and set g � w � � g1 � w � ����� g ¯� � w � .

Output : EP � w � is the set of all codewords of BC that have at least 1
2
� α relative agreement with

g � w � .
Note that EP is deterministic and that the queries depend on the input a. We claim:

Claim 4.5. For every x � X
�
we have Pra � x̂ � a � � EP x̂� a � � 
 β

4 .

Proof. When the answers b1 ������� � bi0 � 1 reflect the values of x̂ we have bi � x̂ � a1 � i � a2 � and:

g j � a � � T � BC � x̂ � a1 � i0
�

1 � a2 � � j ������� � BC � x̂ � a1 � 1 � a2 ��� j �

By Equation (1) for every x � X
�
, for at least β

4 of the points a � � 2 ,

Pr
j �
� ¯��� � g j � a � � BC � x̂ � a ��� j � 
 1

2
� α

However, whenever Pr j � g j � a � � BC � x̂ � a ��� j � 
 1
2
� α we have that x̂ � a � � EP x̂� a � .

Finally, since BC has combinatorial list decoding property α for any a, � EP x̂� a � � �
O � 1

α2 � .

4.2 Evaluating a Line

We use the procedure EP to build a procedure EL (for “Evaluate-Line”) that given a line L makes some
specific queries and outputs a single polynomial over � .

8



ELp � L � : Evaluate Line

Input : A line L : � � � 2 .

Random coins : Pick � � logq random points j1 ������� � j � � R � .

Algorithm :
 For every i � 1 ������� � q:

– Make the queries
�

vi
1 ������� � vi

i0 � 1 � necessary for evaluating EP � L � i ��� . Let

bi
1 ������� � bi

i0 � 1 be their answers.

– Let EP � L � i ��� � EP � L � i � ;vi
1 ������� � vi

i0 � 1 � bi
1 ������� � bi

i0 � 1 � .
 Form the set S � � � i � w � � i ��� 1 � q � � w � EP � L � i � � � .
 Compute the list G of all univariate polynomials g : � � � of degree at most h � 1 with
agreement at least β

8 q with S.

Output :
 Query the points L � j1 � ������� � L � j � � , let b1 ������� � b � be the answers.
 If there is a single polynomial g � G such that g � ji � � bi for all i ��� � � then output g and
EL � L � � g. Otherwise output “don’t know”.

We now show that EL does well on random lines.

Lemma 4.6. For every x � X
�
:

Pr
L � j1 � � � � � j� �EL x̂� L � �� x̂ � L � � � η � 17

βq

Proof. Our first claim shows that almost always G contains the right polynomial.

Claim 4.7. For every x � X
�
, PrL � x̂ � L � �� G � �

O � 1
βq �

Proof. Call v � � 2 nice for p : � 2 � � if p � v � � EPp � v � . We know that:


 For every x � X
�
, Prv � � 2 � v is nice for x̂ � 
 β

4 and


 For every p : � 2 � � and v, � EPp � v � � �
A � O � 1

α2 � .
Fix any x � X

�
. Let Yi be the random variable indicating whether L � i � is nice, and Y � ∑q

i � 1 Yi. We have

E � Y � 
 β
4 q, i.e., for every x � X

�
we expect to see many nice points on a random line L. We say L is bad for

x if Y
� β

8 q. As L is a random line the points on L are pairwise independent and it follows that

Pr �Y � E � Y �
2
� � 4σ2 � Y �

� E � Y ��� 2
� 4

E � Y � �
16
βq

If the line L is bad for x (which as we saw happens with probability O � 1
βq � ) we lose. Otherwise, Y � E � Y 	

2

and the line L contains at least β
8 q nice points v � L � i � . Therefore, x̂ � L � � G.

Our second claim shows that G has very few polynomials.

Claim 4.8. � G � �
O � 1

β �

9



Proof. Since � S � �
qA

�
O � q

α2 � and q 
 29h
α2β2 we have:

βq
8


 � 2h � � S �

By Lemma 2.3, � G � � 2qA
βq � 8 � O � 1

β � .
Now, j1 ������� � j � are taken uniformly from � . The probability two different polynomials of degree at most

h � 1 agree on l random points is at most � h � 1
q �

�
. Therefore, the probability there are two or more solutions

that agree with the query on x̂ � L � ji ��� for all i ��� � � is at most� � G �
2 � �

h
q �

�

� O � 1
β2 � �

h
q
�
�

� � 1
2
�
�
� 1

q

Altogether, we fail only if the line does not have enough nice points or if we end up with two or more solutions
in the last phase, and otherwise we output the right solution.

We now take a closer look at the queries done in EL � L � . The following claim is easy to check.

Claim 4.9. If L is not parallel to the x-axis then EL � L � queries the i0 � 1 lines L � � j � 0 � , j � � i0 � 1 � , and �
random points on the line L.

As the values of x̂ on a line can be determined by querying h points on that line, EL x̂ queries only
� i0 � 1 � h � � points. We define the “line-shape” LS � L � for a line L to be the set of � i0 � 1 � h � � points in � 2

that are queried by EL � L � .

4.3 Proof of Proposition 1

Proof. We now give a procedure EA (for “Evaluate-All”) that queries few points and outputs, with good
probability, the unique polynomial x̂ � X̂

�
that agrees with the queries.

EA : Evaluate All

Input : none.

Algorithm : Pick a random line L, and query the points in LS � L � .
For j � 1 to h � i0
 Evaluate EL � L � � j � 0 � � . Note that most of the queries needed to evaluate this have been

made or deduced previously; only the queries corresponding to j1 ������� � j � need to be
made.

Now we have evaluated a h � h block, and we extend it to the whole plane.

Now EA queries � i0 � 1 � h � � h � i0
�

1 � � � � m � � � h points. We define the “shape” SH for a line L to be
the set of points in � 2 that are queried by EA when EA picks the random line L. We say SH is a shape, if it
is the shape for some line L. Let us say that a shape SH is good for f : � 2 � � if EA f

SH , the output of EA f

when picking the shape SH, is f .

Claim 4.10. For every x � X
�
, PrSH � SH is not good for x̂ � �

hη.

Proof. For each of the h lines we learn, the probability we fail (given the right answers to the shape we use)
is at most η. By the union bound (regardless of correlations) the claim follows.

Now, hη � 17
β

h
q

� 17
β

β2

29

� 1
2 , thus, for every x � X

�
, PrSH � SH is good for x̂ � 
 1

2 . Hence, there is at least

one fixed choice of a shape SH and a subset X
� � � X

�
of cardinality at least � X � � � 
 1

2 � X � � such that SH is
good for every x � X

� �
. Since the total number of queries is at most � m � � � h � � m � logn � h, we have proved

Proposition 1 and hence Theorem 4.

10



Acknowledgements

We thank Chris Umans and Oded Goldreich for helpful discussions and comments.

References

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple constructions of almost k–wise inde-
pendent random variables. Random Structures and Algorithms, 3(3):289–303, 1992.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[GHSZ00] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list decod-
ing. In Proceedings of the 38th Annual Allerton Conference on Communication, Control, and
Computing, pages 603–612, 2000.

[GZ97] O. Goldreich and D. Zuckerman. Another proof that BPP � PH (and more). Technical Report
TR97-045, Electronic Colloquium on Computational Complexity, 1997.

[Hås96] J. Håstad. Clique is hard to approximate within n1 � ε. In Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science, pages 627–636, 1996.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into pseudo-
randomness. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pages 181–190, 1999.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with
optimal seed length. In Proceedings of the 32nd Annual ACM Symposium on Theory of Comput-
ing, pages 1–10, 2000.

[NN93] J. Naor and M. Naor. Small–bias probability spaces: Efficient constructions and applications.
SIAM Journal on Computing, 22(4):838–856, 1993.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System Sci-
ences, 49:149–167, 1994.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System
Sciences, 52(1):43–52, 1996.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the error in Tre-
visan’s extractors. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing,
pages 149–158, 1999.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages
22–31, 2000.

[RTS00] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two supercon-
centrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, 2000.

[RZ98] A. Russell and D. Zuckerman. Perfect-information leader election in log 
 n � O � 1 � rounds. In
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pages
576–583, 1998. Final version to appear in the Journal of Computer and System Sciences.

[San87] M. Santha. On using deterministic functions in probabilistic algorithms. Information and Com-
putation, 74(3):241–249, 1987.

[Sip88] M. Sipser. Expanders, randomness, or time vs. space. Journal of Computer and System Sciences,
36:379–383, 1988.

11



[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 537–546, 1999.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal of
Complexity, 13, 1997.

[SV86] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random sources.
Journal of Computer and System Sciences, 33:75–87, 1986.

[SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal on
Computing, 28:1433–1459, 1999.

[Tre99] L. Trevisan. Construction of extractors using pseudo-random generators. In Proceedings of the
31st Annual ACM Symposium on Theory of Computing, pages 141–148, 1999.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, pages 276–285, 1996.

[TSUZ01] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001.

[TSZ01] A. Ta-Shma and D. Zuckerman. Extractor codes. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, 2001.

[Uma99] C. Umans. Hardness of approximating Σp
2 minimization problems. In Proceedings of the 40th

Annual IEEE Symposium on Foundations of Computer Science, pages 465–474, 1999.

[WZ99] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit construc-
tion and applications. Combinatorica, 19(1):125–138, 1999.

[Zuc90] D. Zuckerman. General weak random sources. In Proceedings of the 31st Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 534–543, 1990.

[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16:367–391,
1996.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms,
11:345–367, 1997.

12



A Extractors for almost semi-random sources

A.1 The semi-random case

Extractors semi-random sources are really extractors for the more general block-wise sources.

Definition A.1. A distribution X � X1 � X2 � ����� � Xm is a β–almost � k1 ������� � km � block-wise source if for every
i � 1 ������� � m

Pr
x � X

x 	 x1 
�� � � 
 xm

� Pr � Xi � xi � X1 � x1 ������� � Xi � 1 � xi � 1 � � 2 � ki � � β

If β � 0 we say X is a � k1 ������� � km � block-wise source.

The problem of constructing efficient extractors for block-wise sources was studied in [NZ96] and we
present their technique. We are given a source Z � Z1 � ����� � Zb that is a � k1 ������� � kb � block-wise source, and
each Zi is distributed over � 0 � 1 �

�
i . Thus, Z is distributed over � 0 � 1 �

�
with � � ∑b

i � 1 � i. We also assume we
have b extractors E1 ������� � Eb where Ei : � 0 � 1 �

�
i � � 0 � 1 � ri � � 0 � 1 � ri � 1 . Define E : � 0 � 1 �

� � � 0 � 1 � rb � � 0 � 1 � r1

by

E � z1 ������� � zb;y � def� E1 � z1;E2 � z2; ����� Eb � 1 � zb � 1;Eb � zb;y ��� ����� �
Nisan and Zuckerman showed

Lemma A.2. If each Ei is a � ki � εi � extractor than E is an ε � ∑b
i � 1 εi extractor.

We now specify the parameters and extractors. The extractor we will be working with is from ([RRV99],
Theorem 4). This extractor has almost optimal entropy loss, and so

ri � ri � 1
�

ki � 1 � 2log
1
εi
� O � 1 �

We choose the errors εi to be εi � ε
2 � 2b � i and thus the total error is ∑b

i � 1 εi
� ε. We also fix the rate

�
i

ki
and call

it δ, and so ki � δ � i. In order for the extractors Ei to work we need that

ri 
 c0 � log3 � i � log
1
εi

for some constant c0. Alternatively, we can think of it as requiring that � i 
 2
ri

co
�
b � i

�
1

�
log 1

ε � . We pick rb �
max � � c0 log 2

ε � 2 � � 2log 1
δ � 6 � � 4logrb � 6 � . Working out the parameters we see that � b 
 2r

1 � 6
b and rb � 1 
 kb 


2r
1 � 6
b � 1. Proceeding with this we see that ri � 2r

1 � 6
i

�
1 � 1. This reveals that after some constant number of steps,

for every i ri � 2 
 2ri and hence b
�

2log 
 � � O � 1 � . Summarizing this we get:

Theorem 6. For the above parameters, E : � 0 � 1 �
� � � 0 � 1 � rb � � 0 � 1 � r1 is an ε-extractor for � k1 ������� � kb �

block-wise sources, with rb � poly � log 1
εδ � and O � � log 
 � � 2 log 1

ε � entropy loss.

We remark that using the above technique we can further reduce the number of truly random bits to
O � log 1

εδ � but we will not use this and we skip the details.

A.2 Reducing β–almost block-wise sources to block-wise sources

It is clear that a β–almost block-wise source with m blocks is mβ close to a block-wise source. However, it is
important for us to avoid this mβ penalty. The key observation is a simple one:

Lemma A.3. Suppose X is β–almost � k ������� � k � block-wise source. For every 1
�

a
�

b
�

m

Pr
x � X � Pr � Xb � xb

� ����� �
Xa � xa � X1 � x1 ������� � Xa � 1 � xa � 1 � � 2 �

�
b � a

�
1 � k

2 � �
2β �

13



That is, if we look at � consecutive blocks, then instead of being � β close to the behavior we expect from
a block-wise source, we are 2β close to it.

Proof. (of Lemma A.3) Let us say X can take V possible values x � 1 	 ������� � x � V 	 , the i’th value probability pi.
Let us build a V � M table. In the i’th place of the v’th row of the table we put ’*’ iff

Pr
x � X � Xi � x � v 	i � X1 � x � v 	1 ������� � Xi � 1 � x � v 	i � 1 � � 2 � k

If we pick rows of the table according to the distribution X (i.e., we give the v’th row weight pv) then we
know that for every column the probability we see a ’*’ is at most β. In particular, if we look at the columns
a � a � 1 ������� � b then the probability we see a ’*’ is at most β. It follows that at most 2β of the rows are “bad”
and contain more than � b � a

�
1 � � 2 ’*’ in the columns a

�
1 ������� � b, and all other rows are “good”. As for

every good row we have Pr � Xb � xb
� ����� �

Xa � xa � X1 � x1 ������� � Xa � 1 � xa � 1 � �
2 � � b � a � 1 	 k � 2 the proof is

complete.

Now, suppose X � X1 � ����� � Xm is β–almost � p ������� � p � block-wise source for some p � 0, and each Xi is
distributed over � 0 � 1 � . Partition the m bits into b blocks Z1 � ����� � Zb of length � 1 ������� ��� b as in the preceding
section. Then by Lemma A.3 Z is O � b � � O � β log 
 m � close to a � � 1 ������� ��� b � block-wise source with δ � p

2 .
In particular, the same extractor E of Theorem 6 also works here, only with a slightly larger error, and we get
Theorem 5.

B The Multivariate Extractor

We now describe a generalization of the bivariate extractor to D dimensions, where D 
 3. Let h be the
smallest integer such that � h � D

D � 
 n. Let F � � q be a field of size q � h. We view the n-bit input string
x � � 0 � 1 � n as a function f : FD � F of total degree at most h. This is possible since to specify f we need to
specify � h � D

D � coefficients from Fq.

The function MED

Input : x � � 0 � 1 � n.

Setting : F is a field of size q, h ��� De � n
logq � 1 � D � D � . We identify x � � 0 � 1 � n with a function

x : HD � F of total degree h.

Binary code : BC is a binary code with dimension logq, length Z and combinatorial list decoding
property α � ε

8m (see Subsection 2.3).

Random coins : a � FD, j ���D � 1 � , z � � Z � .
Output : ME � x;a � j � z � i � BC � x̂ � a � ie j � � z for i � �m � . Here e j denotes the basis vector in FD with

a 1 in the jth position and 0’s elsewhere.

Theorem 7. For every n and m, set α � 1
8m and q the smallest power of 2 larger than Ω � mmax � 4 � D � 1 	 h � .

Then ME : � 0 � 1 � n � � 0 � 1 � t � � 0 � 1 � m is a � k � ε � strong extractor, with k � Ω � mD � 1n1 � D � logn � � , t
�

logn
�

O � D2 logm � , and ε � 1 � 1
8D . The extractor runs in O � logn � space and time polynomial in n.

We check parameters:

t
�

D logq
�

logD
�

log � logq � � m
ε
� 4 �

�
D log � mD � 1h � � logD

�
loglogq

�
O � logm �

�
O � D2 logm � � log � hD � � loglogq

�
O � D2 logm � � O � D logD � � logn � loglogq

�
loglogq

� logn
�

O � D2 logm �

14



B.1 Preliminaries

We record a generalization of Corollary 2.4.

Lemma B.1. For each element u � � d assign a set Su of size at most A. Then there are less than 4A � δ
multivariate polynomials p of total degree d such that p � u � � Su for at least a δ fraction of points, provided
that δ 
 2 � 2dA � � � � d .

Proof. Suppose there were 4A � δ such polynomials. Pick a random line L, and consider the polynomials
restricted to L. By Chebychev, every such polynomial has, with high probability, at least a δ � 2 fraction of
points u � L that satisfy p � u � � Su. By the union bound, with high probability, all such polynomials satisfy
p � u � � Su for at least a δ � 2 fraction of u � L. Also, for every two different polynomials a random restriction
will, with high probability, leave the two restrictions different. We can now apply Corollary 2.4.

B.2 A predictor in each direction

Lemma B.2. SupposeU � ME � X � U � is not ε close to uniform. Then there are tests T1 ������� � TD � 1 : � 0 � 1 � m � 1 �
� 0 � 1 � and a subset X

� � X of cardinality at least 1
2 � X � such that for every x � X

�
and every j � �D � 1 � :

Pr
y � ME � x;Ua � j �Uz 	 � Tj � Ua � j � Uz � y1 ������� � ym � 1 � � ym � 
 1

2
� 1

4m
(2)

Proof. There is a test T : � 0 � 1 � m � � 0 � 1 � that ε � 1 � 1
8D distinguishes between ME � X � U � and the uniform

distribution. Letting U j denote the uniform distribution on a � z with j held fixed, we get that for each j �
�D � 1 � ,

Pr � T � U j0 � ME � X � U j ��� � 1 � � Pr � T � Ut � m � � 1 � � 1 � δ j

with ∑δ j
� D � 1

8D � 1
8 . By a Markov argument, for each j, for at least a 1 � 4δ j fraction of x � X ,

Pr �U j � T � ME � x � U j ��� � 1 � � Pr � T � Ut � m � � 1 � 
 3
4
� (3)

Therefore, the fraction of x � X for which (3) holds for all j is at least 1 � 4 ∑δ j � 1
2 . This set is X

�
. Now, for

every j � �D � 1 � we use Yao’s next bit predictor argument to convert T into a predictor T j for each j. By the
symmetry of ME , we can assume that the predictor predicts the last bit well. We obtain that for all x � X

�
,

Equation (2) holds.

B.3 Evaluating a point using a given direction

We introduce our point evaluator EP .

EP : Evaluate Point

Input : w � FD, j � �D � 1 �
Queries : The query points are w � � m � 1 � e j � w � � m � 2 � e j ������� � w � e j; the answers are

b1 ������� � bm � 1.

Algorithm : For all z ��� Z � compute

gz � w � � T � w � j � z � BC � b1 � z ������� � BC � bm � 1 � z �
and set g � w � � g1 � w � � � � gZ � w � .

Output : EP � w � is the set of all codewords of BC that have at least 1
2
� α agreement with g � w � .

The proof of the following claim is the same as that for Claim 4.5.

Claim B.3. For every x � X
�
and j ���D � 1 � , Prw � x̂ � w � � EP x̂� w � j � � 
 α.

15



B.4 Evaluating All

To evaluate everything, we pick a random line and call Eval � D � L � . Eval � d � L � tries to compute x̂ on the affine
subspace Let Ud � L � L

�
span � e1 ������� � ed � . Thus, for d � 0 we have U0 � L � L and we try to learn the values of x̂

on the one-dimensional line L. For d � 1 we try to learn the values of x̂ on a two-dimensional affine subspace
U1 � L � L

�
span � e1 � and so forth. L is picked at random and with high probability span � e1 ������� � ed � 1 � L � will

be d–dimensional.

Eval f � d � L �

Input : A line L and a dimension d. The queries are answered by f .

Algorithm :

If span � e1 ������� � ed � 1 � L � is not d–dimensional we fail and output “don’t know”. Otherwise:

If d � 0 :

U � L. Query U on h points, interpolate the unique polynomial p � λ � of degree less than
h, and deduce f � x � for all x � L.

If d 
 1 :
 For i � 0 ������� � m � 2 perform Eval � d � 1 � L � ied � .
After this we deduce a (hopefully correct) value f � y � for each y � L

�
ied
�

span � e1 ������� � ed � 1 � and i � 0 ������� � m � 2.
 For i � m � 1 to h � 1

– For every u � Ui
def� L

�
ied
�

span � e1 ������� � ed � 1 � evaluate EP � u � d � .
Note that the queries needed for EP � u � d � have been made or previously de-
duced.

– Define an affine map φi : Fd � Ui and form the set S �� � v � w � � v � Fd � w � EP � φi � v � � d ��� .
Compute the list G of all d-variate polynomials g : Fd � F of degree at most h
with agreement at least α

2 qd with S.

– Pick � � Θ � d logq
�

log 1
α � random points j1 ������� � j � � Fd . Query the points

φi � j1 � ������� � φi � j � � , and let b1 ������� � b � be the answers.
If there is a single polynomial g � G such that g � ji � � bi for i � � � � , then deduce
that for all v, f � φi � v ��� � g � v � . Otherwise output “don’t know”.

Lemma B.4. PrL �Eval � d � L � �� x̂ � Ud � L � � �
O � md � 1h

αq � .

Proof. The probability that span � e1 ������� � eD � 1 � L � is not D–dimensional is at most 1
q . If span � e1 ������� � eD � 1 � L �

is D–dimensional then for every d � 1 ������� � D � 1 it must be that span � e1 ������� � ed � 1 � L � is d–dimensional. From
now on we assume span � e1 ������� � eD � 1 � L � is D–dimensional.

Let us define errord to be the probability (over choosing a random line L) that Eval � d � L � �� x̂ � Ud � L � , given
that all queries are answered correctly. Clearly, error0 � 0. Also, we will soon prove the recursion:

Claim B.5. errord
� � m � 1 � errord � 1

�
O � h

αqd �
and solving the recursion we get our result.

Proof. (of Claim B.5) The first term in the recursion comes from the stage where i runs from 0 to m � 2 and
we call Eval � d � 1 � � � , which has probability of errord � 1 to fail.

Each i from m � 1 to h � 1 causes an additional error, which we analyze analogously to EL. Call v � F D

nice for p : FD � F if p � v � � EPp � v � . We know that:
 For every x � X
�
, Prv � FD � v is nice for x̂ � 
 α and

16




 For every p : FD � F and v, � EPp � v � � �
A

� 1
α2 .

Fix any x � X
�
. For v � Ui, let Yv be the indicator random variable that is 1 iff v is nice, and Y � ∑v � Ui

Yv.
We have E � Y � 
 α �Ui � � αqd , i.e., for every x � X

�
we expect to see many nice points in Ui. We say Ui is bad

for x if Y
�

E � Y � � 2. As the points in Ui are pairwise independent,

Pr �Y � E � Y �
2
� � 4σ2 � Y �

� E � Y ��� 2
� 4

E � Y � � O � 1
αqd �

If Ui is bad for x we lose. Otherwise, Y � E � Y 	
2 and Ui contains at least α

2 qd nice points. Therefore,
x̂ � L � � G.

We can then apply Lemma B.1 to bound the number of polynomials in G, and we deduce that � G � � 8A
α .

Now, j1 ������� � j � are taken uniformly from F. The probability two different polynomials of degree at most h
agree on l random points is at most � h

q �
�
. Therefore, the probability there are two or more solutions that agree

with the query on x̂ � L � ji ��� for all i � � � � is at most� � G �
2 � �

h
q �

�

� O � A
2

α2 �
h
q
�
� �

O � 1
α6 �

1
2
�
�
� � 1

qd

Altogether, we fail only if the line does not have enough nice points or if we end up with two or more solutions
in the last phase, and otherwise we output the right solution.

Now let queriesd denote the number of queries made in Eval � d � � � .
Lemma B.6. queriesd

�
md � 1 � m � � � h �

2mdh.

Proof. Note that queries0 � h, and for d 
 1

queriesd
� � m � 1 � queriesd � 1

� � � h � m
�

1 � �
Now solve the recursion.

Notice that there is nothing special about our choice of e1 ������� � eD � 1. Any set of D � 1 independent vectors
will do for the construction.

The extractor ME works with one of D � 1 fixed directions e1 ������� � eD � 1 and has a very large error (close
to one). We can instead define an extractor ME

�
that picks a direction as part of its random coins. We claim

that ME
�

has a very small error. To see that, notice that if ME
�

is not an extractor, then there must be D � 1
independent directions for which the ME

�
does not work. We then continue as with the proof for ME and we

reach a contradiction. We leave the details for the full version of the paper.

17

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



