Bounded-Width Probabilistic OBDDs and

1

In order to study the relationship between different complexity classes re-
stricted models of computation are considered. Branching programs are
one of the most investigated computation models (see [17], [5] for a lot of
references) during the last years. In particular, read-once ordered branch-
ing programs (OBDDs) determine complexity classes whose relationships
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Abstract

Restricted branching programs are considered by the investigation of
relationships between complexity classes of Boolean functions. Read-
once ordered branching programs (or OBDDs) form the most restricted
class of this computation model. Since the problem of proving exponen-
tial lower bounds on the complexity for general probabilistic OBDDs
is open so far, it is interesting to study this problem in a restricted set-
ting. For this reason we deal in this work with probabilistic OBDDs
whose width is bounded.

We prove in this work that probabilistic OBDDs of width bounded
by a constant can be more powerful than even non-deterministic read-
once branching programs. To do it we present a probabilistic OBDD of
constant width computing the known function PERM . We prove for
several known functions that they cannot be computed by probabilis-
tic OBDDs of constant width. To show it we present a new method
allowing to obtain lower bound Q(n) on the width of corresponding
OBDDs (n is the number of variables).
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are successfully proven [2], [11], [12]. The same time OBDDs are convenient
tools to represent Boolean functions because of the possibility to manipulate
them efficiently [7]. Probabilistic OBDDs are the most general OBDDs.

We recall basic definitions. A deterministic branching program P is a
directed acyclic multi-graph with a source node and two distinguished sink
nodes: accepting and rejecting. The out-degree of each non-sink node is
exactly 2. Each node is labeled by some variable z;, and two arcs out-
going from z;-node are labeled by 0 and 1. The label “a” indicates that
only inputs satisfying x; = a may follow this arc in the computation. A
branching program P computes a function h,, in the obvious way: for each
x € {0,1}", hy(x) = 1 if and only if there is a directed path starting in the
source and leading to the accepting node such that all labels along this path
are consistent with x = z1z2...z,. The branching program becomes non-
deterministic if we allow guessing nodes, that are nodes with two outgoing
arcs being unlabeled. A non-deterministic branching program P outputs 1
on an input x if and only if there exists (at least one) computation on x
starting in the source node and leading to the accepting node. A probabilistic
branching program has in addition to its standard (deterministic) nodes spe-
cially designated nodes called random nodes. Each such node corresponds
to a random input y; having values from {0,1} each with probability 1/2.
We say that a probabilistic branching program computes a function h if it
outputs h(x) with probability greater than 1/2 for any input x. If this prob-
ability is at least 1/2 + € for some € > 0 one says that the computation has
bounded error €. A probabilistic branching program P on n variables deter-
mines a function c¢p: {0,1}" — [0, 1]; ¢p(x) is the probability that P reaches
the accepting sink on the input x. We call this function the characteristic
function of the branching program P.

We define the complezity of a branching program P as the number of
its nodes. We denote the class of Boolean functions computable by polyno-
mial size nondeterministic branching programs as NP-BP. We say that a
function belongs to the class PP-BP if and only if there is a polynomial size
probabilistic branching program computing this function. For a probabilistic
computation with bounded error, we use another notation for the complex-
ity class. Let BPP.-BP be the class of functions computable with error
€ > 0 by polynomial size probabilistic branching programs. Furthermore,
let BPP-BP := Uy<c<1/2 BPP~BP. For a restricted class of branching pro-
grams (), we define analogous complexity classes using “-Q” as a suffix to
their notations.

A read-once branching program (BPI) is a branching program in which
every variable is tested at most once on each path. A BP1 is called ordered



(or OBDD) if the variables have to be tested according to some fixed or-
dering w. An OBDD is called oblivious if it can be leveled, i.e. arcs lead
only to nodes of the neighboring level, and each level contains only z-nodes
for some fixed variable z. The width of an OBDD is the maximum num-
ber of nodes belonging to a level. OBDDs having the width bounded by a
constant (bwOBDD for short) are studied in this work. The restriction on
the width was studied earlier for general deterministic branching programs
[3]. Recently, Newman [16] showed that functions computable by determin-
istic bwOBDDs can be computed probabilistically with bounded error with
constant number of queries.

Although there are results concerning incomparability of probabilistic
OBDDs with bounded error on the one hand and non-deterministic OBDDs
[1] or even non-deterministic BPIs [19] on the other hand, the power of prob-
abilistic OBDDs without bounded error was not studied yet. In this paper
we present a new method helping to find probabilistic OBDDs computing
certain functions and a new technique to find lower bounds on the width
of probabilistic OBDDs. We show in this work that probabilistic bwOBDD
can be more powerful than non-deterministic BP1. We present basic lem-
mas helping to obtain different characteristic functions of some probabilistic
bwOBDDs. Using these lemmas, we prove that the function PERM known
to be hard for non-deterministic read-once branching programs can be com-
puted by probabilistic bwOBDD.

There is no known exponential lower bound of the complexity of prob-
abilistic OBDDs without bounded error. We prove for several known func-
tions that they can not be computed by probabilistic OBDDs of a constant
width. To show it we present a new method allowing to give lower bound
Q(n) on the width of corresponding OBDDs (n is the number of variables).

2 Characteristic functions of probabilistic
bwOBDDs

What kind of functions can be the characteristic functions of OBDDs or of
bwOBDDs? We need the following modifications of simple lemmas from [14]
(see also [15]).

Lemma 1 For any constant o, 0 < a < 1, if the binary representation of
a has t positions then there exists a bwOBDD B(«) of width 2 with t levels
consisting only of random nodes such that cp(q) = a.

Lemma 2 Let cg, and cp, be the characteristic functions of bwOBDDs B,



of width wy and Bo of width we, respectively, reading deterministic variables
of the same set X in the same order. Then the following functions are the
characteristic functions of some bwOBDDs with the same variable order:
1 — ¢, (x), 1/2(cB, (x) + ¢B,(x)), cB,(X)cp,(x). These OBDDs that we
denote as 1 — By, 1/2(By + Bg), and B1By have the width wy, wi + we, and
wiwe respectively.

If bwOBDDs Bi and Bs have disjoint sets of variables then there are
bwOBDDs 1/2(B1+B3) and By Bs with characteristic functions 1/2(cp, (x)+
¢B,(x)) and cp, (x)cp,(x) of width maz(wi,w2) + 1 — sg(|lw1 — wa|) and
maz(wi,wy) respectively.

Using these lemmas it is easy to construct a bwOBDD computing some
function f, if a bwOBDD B with the following property is known. There is
some number p,, such that cg(x) > p, if and only if f,(x) = 1. The following
theorem presents a method to produce a desired bwOBDD if for a known
bwOBDD B and some number p,, cg(x) = p, if and only if f,(x) = 1.

Theorem 1 Let f,, be a function on n variables. Let p, be a real and B be
a probabilistic OBDD of width ¢ with the following property. For every word
x,|x| =n, fo(x) =1 if and only if cg(x) = pp. Then f, is computable by a
probabilistic OBDD of width ¢ + 2¢ + 2.

Proof. Let B have n' levels. Then there is an €, > (1/2)" such that if
f(x) =0 then |cg(x) —pn| > €. Let s, be a real with binary representation
equal to the prefix of n’ + 1 bits of the binary representation of p,: i.e.
Pn = O.pg) ...p%"IH) ...and s, = O.p%l) .. .p%nlﬂ).

Consider s,, > 1/2. Because of Lemmas 1 and 2, there exists a bwOBDD
By = B(3(1— B+ B(p'))) of width ¢(c+2) with the characteristic function
cg, = cp(3(1 —cp +p')), p' = 2s, — 1. The function cp, has the maximum
equal to p" = s2/2 if cp = sp,.

If s, < 1/2 then there exists a bwOBDD By = (1 — B)(3(B + B(p'))) of
width c(c + 2) with the characteristic function cg, = (1 — cg)(5(cs + p')),
p' =1 —2s,. The function cp, has the maximum equal to p” = (1 — s,,)?/2
if cg = sp.

For both cases if cg(x) # pn, ie. fn(x) = 0, then cp, < p" — €2/2
otherwise f,(x) =1 and cg, > p"— %(Z(H'H)H). Let p™ be a real with binary
representation equal to the prefix of 2n’ + 3 bits of the binary representation
of 1 —p" + €2 /4. The bwOBDD 1/2(B;y + B(p")) of width c(c + 2) + 2 with
the characteristic function 3(cp, + p”') computes the function f,. |



We studied in this section OBDDs with a fixed variable ordering. Al-
though these computation seem to be somewhat poor they are sufficiently
powerful for our purpose.

3 Probabilistic OBDD of constant width can do
more than polynomial nondeterministic BP1s

The author presented in [14] a function belonging to the class
Q = PP-bwOBDD \ (BPP-OBDD U NP-OBDD). Now we investigate the
even harder function PERM),, corresponding to the set of permutation ma-
trizes. It is known ([9], [13]) that this function is hard for nondetermin-
istic read-once branching programs. Recall that PERM, : {0,1} —
{0,1},n = m?, and PERM,,(x) = 1 if and only if every row and every col-
umn of the Boolean m x m-matrix £ = (211,212, ..., Zm,m) contains exactly
one 1. The function PERM,, can be computed by a polynomial size proba-
bilistic OBDD with bounded error [18]. Due to [14] probabilistic bwOBDDs
with bounded error are not more powerful than deterministic bwOBDDs.
Therefore, PERM,, does not belong to BPP-bwOBDD. We show that this
function can be computed by a probabilistic bwOBDD if there is no bound
on the error.

Theorem 2 The function PERM, can be computed by a probabilistic
OBDD B(PERM,) of constant width.

Proof. We describe the OBDD B(PERM,) computing PERM,. This
OBDD reads variables in the order 1 1,z12,...,Zmm- B(PERM,) has

the following parts. For any i, 1 <14 < m, a deterministic OBDD Pl(i) and a
probabilistic OBDD PQZ) read the ¢-th row of the matrix and check whether

this row contains exactly one 1. If this is the case then PQ(Z) reaches the
accepting sink with probability (%)] for z; j; = 1. There exist such OBDDs
having on each level 3 nodes one of which will be called rejecting node. All
paths from this rejecting node lead to the rejecting sink.

We firstly describe a probabilistic OBDD P for which reals p,, and €,
exist such that cp(x) = pn, if PERM,(x) = 1, and |py, — cp(X)| > €n
otherwise. The source of P is a random node selecting PQ(I) or Pl(l).

The accepting sink of Pl(z), 1 <4 < m—1, is identified with a ran-

dom node leading to Pl(H_l) or to P2(i+1). This part can be written as

PP 4 PIY)). The accepting sink of P{™™") is identified with



a random node leading to PQ(m) and to a rejecting node (the subprogram
pimVipim).

The accepting sink of PQ(i), 1 <4 < m, is identified with a random node
leading to a rejecting node and to P?EHI) (the subprogram PQ(i) %ngiﬂ)).

The later program P?,(i), 2 <1 < m, is the copy of Pl(i) which accepting
sink, for ¢ < m, is identified with a random node leading to a rejecting node
and to P§i+1) (the subprogram Pli)%P?fiH)). Note that P3(i+1) is reachable
from P2(i) too.

P reaches the accepting sink only if each i-th row of X contains exactly
one non-zero element z;;, and cp(x) = (3)™ S/, ()% in this case. It is
easy to see that the function cp(x) is equal to

1\ 1 % 1 m—1 1 2m
G x6) -G -G -
i=1
if and only if {j;|]1 < j; < m,1 <i<m} = {i|]l <i< m} ie =z corre
sponds to a permutation matrix. Otherwise |p,, —cp(x)| > (3)?™. Therefore

there exists the desired probabilistic OBDD B(PERM,,) of constant width
(Theorem 1). I

S

m

Corollary 1 The function PERM,, is computable by a probabilistic OBDD
of width 59.

Indeed using the construction in the proof of Theorem 1 we transform the
bwOBDD P having on each level 7 nodes with a rejecting node. Each
level of the probabilistic OBDD B(PERM,,) has the unique rejecting node.
Therefore B(PERM,,) has the width 7(6 + 2) + 2+ 1 = 59.

4 Lower bounds on the width of probabilistic
OBDDs

It is known that lower bounds on the complexity of OBDDs can be obtained
from lower bounds for one-round communication complexity. One considers
in such an investigation the following matrix. Let X7 be a subset of variables
set X. Then for a function f on X denote as CM ;(1 the communication
matriz. Each row of this matrix corresponds to an assignment a to X;
and each column to an assignment b to X \ X;.The element CM ;(1 (a;b) of

CM ;( ! on the intersection of this row and this column is equal to f(a;b):



(a; b) denotes in our paper the complete assignment to X where, for example,
variables in X; obtain assignments corresponding to a.

We shall show that there are functions that can not be computed by
probabilistic bwOBDDs. These functions are functions known to be hard for
randomized OBDDs too ([11], [20]). Some of these functions are so-called
k-stable functions. But k-stable functions are hard for read-once branch-
ing programs too (see e.g., [10]). Because there are functions in the class
P-BP1\ PP-bwOBDD weaker property than k-stability can be sufficient
for our purpose. The same statement holds if one considers BPP-OBDD:
not only k-stable functions do not belong to BPP-OBDD. Therefore, for
example, Sauerhoff [20] examined by an investigation of the complexity of
a function in the context of probabilistic O BDD-computations whether this
function can be reduced from the known function /N DE X, being hard for
one-round communication games. We show directly that functions satisfy-
ing a generalized version of k-stability are hard for probabilistic bwOBDDs
without bounded error.

A Boolean m X n matrix is full if its rows contain every vector from
{0,1}". A Boolean matrix is k-full if it has a 2¥ x k submatrix being full.
For example the communication matrix of the function IN DE X, is m~full.
If the communication matrix C M ;(1 is k-full then assignments corresponding

to the rows and the columns of a 2F x k full submatrix of CM ;(1 are called
critical.

Definition 1 Let f be a function on a set X of n variables. We call this
function (k1, ks)-indefinite if for any X; C X, | X1| = k1, the communica-
tion matriz C’M;(1 is ko-full.

To understand the relationship between our definition and the definition
of k-stability we just note that if a function is k-stable then it is (k, k)-
indefinite.

Theorem 3 A probabilistic oblivious OBDD computing a (k1, k2)-indefinite
function f has width at least ko.

Proof. Let f be computable by some probabilistic oblivious OBDD P. Con-
sider the level L of P when exactly ki variables from X are read. Let this
set of read variables be X;. Let L have k9 — 1 nodes.

Let {b;]1 < i < ko} and A = {a;]1 < i < 2¥2} be sets of critical
assignments to X \ X; and to X; respectively. For each a; € A, we consider
the probabilistic distribution p(a;) = (™M (a;) ... p*271(a;)) to reach the



nodes of L: ;\9)(a;) is the probability to reach the j-th node of L from the
source of P if the variables from X; have values a;. We also consider for
each b;, 1 <i < ko, a column vector v(b;) = (vW(b;) ... v*2-D(8;)): 1) (b;)
is the probability to reach the accepting sink of P from the j-th node of L
if the values of variables from X \ X; correspond to b;. Then

C’M;(1 (aizb;) =1 <> cp(as; b;) = p(a)v(b;) > 1/2.

There are coefficients «; not all equal to 0 such that EZ 1(aiv(b;)) = 0.
Without loss of generality, assume that «; # 0 for all 7,1 < i < ko, and

assume
ko

v(b1) = (civ(bs)).

i=2
We consider two cases: ZZ 20@ <1 and ZZ q0; > 1. We take a € A
such that for the first case, CMf (a;0;) =1 if a; <0, C’MX1 (a;0;) =0 if
a; > 0, where 2 < i < ky, and CM["(a;b1) = 1. Then

kz k2
1/2 < cp(a;br) = p(a)v(br) = Y (cipu(a)v(bi)) < 1/2) () < 1/2.
1=2 1=2

If Ez o(aj) > 1 then we take a € A such that CMXI(a; b)) =1if a; > 0,
CMf (a;0;) =0 if ; < 0, 2 < i < ko, and CMf (a;b1) = 0. Then

k2 k2
1/2 > cp(a;b1) = p(a)v(br) = Z(am(a)u(bz’)) >1/2 Z(ai) > 1/2.
i=2 i=2

It is possible to find this a because {b;|i = 1,ko2} and A = {a;|i = 1,2*2}
are the sets of critical assignments to X \ X; and to X respectively. The
obtained contradictions prove the theorem. I

Corollary 2 The k-stable functions do not belong to PP-bwOBDD.

The following functions are well investigated: ISA,,, ACH,,, and HW B,,
(see for the definitions [6], [4], and [8] respectively). It is known that these
functions belong to P-BP1 and to NP-OBDD C PP-OBDD ([2]).

Corollary 3 Let n = 2" +r and n = 2m + logm. The functions on n
variables ISAy,, ACHy, and HWB require a probabilistic OBDDs without
bounded error of width k = = — 1, m/4 , and 0.1n respectively.



We omit here simple proofs following from the original proofs of [6], [4],
and [8] respectively that ISA, is the (k,k)-indefinite function, ACH,, is
the (m,m/4)-indefinite function, and HW B,is the (0.6n,0.1n)-indefinite
function.
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