Electronic Colloquium on Computational Complexity, Report No. 38 (2001)

Approximating Schedules for Dynamic Graphs Efficiently

Andreas Jakoby! Maciej Liskiewicz Riidiger Reischuk
Institut fur Theoretische Informatik, Universitat Liibeck
jakoby/liskiewi/reischuk@tcs.mu-luebeck.de

May 2001

Abstract

A model for parallel and distributed programs, the dynamic process graph (DPQ), is investigated
under graph-theoretic and complexity aspects. Such graphs embed constructors for parallel programs,
synchronization mechanisms as well as conditional branches. They are capable of representing all
possible executions of a parallel or distributed program in a very compact way. The size of this
representation can be as small as logarithmic with respect to the size of any execution of the program.

In a preceding paper [4] we have analysed the expressive power of the general model and various
variants of it. We have considered the scheduling problem for DPGs given enough parallelism taking
into account communication delays between processors when exchanging data. Given a DPG the
question arises whether it can be executed (that means whether the corresponding parallel program
has been specified correctly), and what is its minimum schedule length.

In this paper we study a subclass of dynamic process graphs called PAR-output DPGs, which
are appropriate in many situations, and investigate their expressive power. We have shown that
the problem to determine the minimum schedule length is still intractable for this subclass, namely
this problem is NEXPTIME-complete as is the general case. Here we will investigate structural
properties of the executions of such graphs. A natural graph-theoretic conjecture that executions
must always split into components that are isomorphic to subgraphs turns out to be wrong. We
are able to prove a weaker property. This implies a quadratic upper bound on the schedule length
that may be necessary in the worst case, in contrast to the general case, where the optimal schedule
length may be exponential with respect to the size of the representing DPG. Making this bound
constructive, we obtain an approximation to an NEXPTZME-complete problem. Computing such
a schedule and then executing the program can be done on a parallel machine in polynomial time in
a hihgly distributive fashion.

Keywords: parallel processing, dynamic process graphs, scheduling, overlap, approximation

1 Introduction

Large parallel or distributed computations tend to have a lot of regularities. For example, the same
instruction sequence may be executed by many processors in parallel. To describe the elementary steps
and the logical dependencies among them one can use graphs, often called process or data flow graphs. One
would like to keep the description of the parallel processes and their dependencies as compact as possible,
for example not to unfold parallelism if this is not necessary. For this purpose, we have introduced a new
graph model called dynamic process graphs, DPG for short. For a detailed motivation see [4].

These graphs posses an additional labelling function specifying the mode of the input and output
behaviour of each node, where a node represents a process of the computation. This allows us to model
basic primitives for specifying parallel programs, like fork and join. Following the OCCAM notion, these
modes have been called ALT and PAR. If the input mode of a task v is ALT then in order to execute v one
of the direct predecessor tasks has to be completed, whereas in case of PAR all of its predecessors have
to be completed. A corresponding requirement is specified by the output mode when v has been finished.
For the ALT output mode one of its direct successors (resp. all of them in case PAR) has to be initiated.

Imajor part of this research was done while visiting the Department of Computer Science, University of Toronto

ISSN 1433-8092

If one restricts the input and output mode to PAR then this variant is equivalent to ordinary data flow
graphs. Using both modes, however, the representation of parallel programs by dynamic process graphs
can provide an exponential compaction compared to the length of the actual execution sequences. Given
a dynamic process graph, the first question that arises is whether it describes a legal parallel program. If
yes then one would like to find an efficient execution of the program specified in such a compact form. We
assume here that enough parallelism is available, so that the question turns into the problem of executing
the program as fast as possible.

Dynamic process graphs and Boolean circuits are somehow related. We have shown that such graphs
can be used to model computations of a circuit [4]. This has then been used to prove that dynamic process
graphs using arbitrary combinations of modes provide a very compact nontrivial representation. To find
an optimal schedule, which is N"P-complete for ordinary graphs, turns out to be NEXPTIME-complete.
A similar complexity jump has been observed for classical graph problems in [1, 7, 6]. These papers have
shown that simple graph properties become N P-complete when the graph is represented in a particular
succinct way using generating circuits or a hierarchical decomposition. Under the same representa-
tion graph properties that are ordinarily N"P-complete, like HAMILTON CYCLE, 3-COLORABILITY,
CLIQUE etc., become NEXPTIME-complete.

If we put restrictions on the modes of a dynamic process graph its execution becomes easier. In [4, 5]
we have given a precise complexity classification for the different subclasses. The most interesting subclass
seems to be DPGs for which the output mode is restricted to PAR, but for the input mode both alternatives
are possible. Such graphs are still able to model, for example, the two natural ways in which objects
of an object-oriented language can be activated: the total case, where all input parameters have to be
specified before activation, and the partial case, where an object fires for any specified parameter once.
For PAR-output graphs computing the minimum schedule length remains NEXPTIME-complete [5].
This means that the search space of all possible solutions still has double exponential size.

This paper is concerned with approximations of optimal schedules for parallel programs specified
by dynamic process graphs. Our main focus will be the maximal process duplication and the maximal
overlap when executing different threads of programs. For the subclass of PAR-output graphs we prove
a quadratic upper bound for scheduling such compactly represented programs. This contrasts to the
unrestricted case for which this bound may be exponential. Thus, restricting the expressive power of this
graph model leads to parallel and distributed programs with time complexity being decreased drastically.
We will also show that an appropriate schedule can be constructed and executed time efficiently if enough
processors are available. The optimal schedule can be approximated in a highly distributive fashion.

The rest of this paper is organised as follows. In the next section, we will give a formal definition of
dynamic process graphs. Section 3 exhibits structural properties of this computational model. The upper
bound on the approximation of an optimal schedule will be derived from a sequence of transformations
described in section 5. The distributive implementation is discussed in section 7. We will conclude with
some open problems.

2 Dynamic Process Graphs and Runs

For a DAG, a directed acyclic graph G = (V, E) with node set V' and edge set E, let pred(v) denote the
set of direct predecessors of a node v € V, and succ(v) its direct successors. pred”(v) denotes the set
of all ancestors of v. A source is a node with indegree 0, a sink has outdegree 0.

Definition 1 A dynamic process graph (DPG) G = (V, E, I,0) consists of a finite DAG (V, E) and
two node labellings I,0 : V — {ALT,PAR}. V = {v1,v2,...,v,} represents the set of processes and E
the dependencies among them. I and O describe input, (resp. output) modes of the v;.

A run of G is a DAG Hg = (W, F) with a partition W = Wiy UWo U ... UW, of its node set.
The nodes in W; are called execution instances of process v;. To express this correspondence W; will
also be denoted by W (v;). For some v; the set W (v;) may be empty. However, a run Hg has to fulfill the
following conditions:

1. For each source node q of G the set W(q) consists of exactly one execution instance.

2. For everyv € V with pred(v) = {u1,us,...,up} # 0, (resp. for each set succ(v) = {uf,ul,...,u.} #
0), and for all w € W (v) it holds:

o if I(v) = ALT then w has a unique predecessor y belonging to W (u;) for some i € {1,...,p};
o if I(v) = PAR then pred(w) = {y1,¥y2,-..,Yp} with y; € W(u;) for each i € {1,...,p};
e if O(v) = ALT then w has a unique successor z belonging to W (u};) for some j € {1,...,r};
e if O(v) = PAR then succ(w) = {21, 22, ..., 2r} with z; € W(u};) for each j € {1,...,r}.

As size of a DPG G (resp. a run Hg) we take the number of its nodes denoted by |G| (resp. |Hg]|).

A DPG G will be called executable iff there exist runs for it.

If not both types of modes occur in a DPG we get a restricted DPG. For example, a DPG with output
mode O = PAR will be called o PAR-output DPG, and if I = ALT an ALT-input DPG.

As usual, our DAGs are not allowed to have multiple edges between a pair of nodes u,v. However, some
constructions and illustrations given later in section 5 will have several edges e; = (u,v), e2 = (u,v), ...
running in parallel. This is only done to simplify the presentation. To be formally correct, such edges can
be distinguished by adding nodes in the middle, thus generating the edges €] = (u, p1), €] = (p1,v), €4 =
(u, p2), € = (p2,v), ... This local simplification will not have any influence on the essential properties
of the DPGs considered there.

N / S e

Q1 =ALT \/ Q1 :PAR\---/

Q2 =PAR R Q2 =PAR A

Figure 1: A node v with input label Q1 and output label Q2 and the schematic representation.

Fig. 1 shows a node v with input mode @; and output mode Q2. Throughout the paper we will
illustrate the ALT-mode by a white box, the PAR-mode by a black box. For a node with indegree at
most 1 the input mode is inessential, and similarly the output mode of a node with outdegree at most 1.
Hence, we will not explicitely define such a label.

Fig. 2 gives an example of a DPG and two runs of it. DPGs can be used to specify parallel programs
in a compact way. A run then corresponds to an actual execution of the program. The size of a run can
be smaller than its defining DPG (an example can be found in [4] Fig. 6). More typically, however, a run
will be larger than the DPG itself since the PAR-constructor allows process duplications. The runs in
Fig 2 illustrate this property. We have shown an upper bound on the maximum size blow-up, resp. the
possible compaction ratio of DPGs.

Theorem A [4] Let G = (V, E,I,0) be a DPG and Hg = (W, F) be a corresponding run. Then it holds
|W| < 2IVI=1 and this general upper bound is best possible.

Thus, DPGs may have processes that require exponential many execution instances with respect to
the size of their description.

The motivating question for our study of DPGs is how efficiently a compactly specified parallel program
IT can be executed. Note that this is a crucial problem during compile-time. Furthermore, we like to
construct an optimal schedule for the tasks of II (compare e.g. [2]). The result above implies an upper
bound for the scheduling time of such a compactly presented program. However, this bound may be
much too pessimistic. If enough processors are available it is conceivable that runs use only linear time
or even less by executing many tasks in parallel. The maximal possible speedup obviously depends on
the delay occurring when processors have to exchange data.

Definition 2 Let G = (V,E,I,0) be a DPG and H = (W, F) be a run of G. If w € W is an execution
instance the subrun R(w) is the subgraph of H induced by pred*(w), i.e. it consists of w and all its
predecessors together with all their connections in F. We call a subrun R(w) of H k-overlapping iff
for every node v € V it holds

[R(w) N W()| < k+1.

A run H is k-overlapping if all its subruns are k-overlapping. A 0-overlapping run will also be called
non-overlapping. The overlap function for DPGs is given by

¥(G) := min {k |G has a k-overlapping run } .
We say that G requires k-overlap iff v(G) > k.

Note that non-overlapping implies that each subrun has to be isomorphic to a (not necessarily induced)
subgraph of G. This condition seems to be quite natural when executing tasks in parallel. Fig. 2, however,
shows that it does not have to hold, even for DPGs with output restriction PAR. The two execution
instances of the sink s induce two different subruns. For the run illustrated in (b) each subrun is non-
overlapping, and it is isomorphic to a subgraph of G. In (c) both subruns R(s) for the two execution
instances corresponding to the sink s contain both execution instances of process .

Figure 2: (a) A DPG with 2 nonisomorphic runs: process t has 2 execution
instances, and the same holds for all its successors; (b) a non-overlapping run,
(c¢) a run with overlap at W (t).

The maximum size of a subrun of H gives a better upper time bound for executing H than just the
size of H because all subruns can be executed independently in parallel. Moreover, if a DPG G has a
non-overlapping run then its execution instances can be executed in linear time with respect to the size
of G.

Now we give a formal definition for scheduling DPGs. Let § be a parameter describing the commu-
nication delay of the system.

To schedule a run H = (W, F) with delay § we assume that an unbounded number of processors can
be used. In each unit-time interval a processor P can execute one single task w. In order to schedule w
at time ¢t each direct predecessor of w must have already been executed — either by P itself in previous
time intervals or by some other processor by time interval ¢ — 1 — ¢ such that the result of this predecessor
can arrive at P on time. Scheduling task graphs in the presence of communication delays has first been
considered in [8].

Definition 3 A schedule S for a DPG G with delay § is a schedule of a run H = (W, F) of G. Let T(S)
denote the length of S, i.e. the point of time when S has executed all execution instances. The minimum
schedule length of G is then given by

Topt(g,é) = T(S) .

min
S schedule for (G,d)

To establish lower bounds, instead of the optimization problem to compute Top(G,d) and a schedule S
achieving this bound we consider the decision problem.

Definition 4 DYNAMIC PROCESS GRAPH SCHEDULE (DPGS)
Giwen o DPG G with communication delay 6 and a deadline T*, does Tpp(G,0) < T* hold?

The complexity of DPGS has been analysed in [4]. In general, the problem is difficult since runs may
be of exponential size. The situation for computing an optimal schedule is even worse. The number of
different runs can even grow double exponentially.

Theorem B [4] There exist families of DPGs with double exponential many different schedules with
respect to the size of the underlying graphs.

3 The Structure of Runs

We have seen that the size of a run can be exponential with respect to the size of its underlying DPG.
But this does not imply that an optimal parallel execution of such a run requires exponential time. Each
subrun may be small, thus exploiting enough parallelism the whole run may be completed quite fast.

It turns out that the amount of overlap is an important measure how efficiently a DPG can be
executed in parallel. First we will investigate the question whether non-overlapping runs always exist
for a given DPG. A simple thought shows that if G = (V, E, I,0) possesses a non-overlapping run then,
independently of the communication delay, one can achieve T, (G,9) < |V

3.1 Input Restricted DPGs

Proposition 1 For o DPG with a unique input mode, either I = ALT, or I = PAR, every run is
non-overlapping.

Proof: Let G be a DPG with run H = (W, F). If only the ALT-input mode occurs for every w € W each
subrun R(w) is a simple path connecting w with a source.

If I = PAR then one can show by a simple topological induction starting from the sources that no process
can have more than one execution instance: By definition, each source has exactly 1 execution instance.
If (u,v) € E and [W(v)| > 1 then by definition of the PAR input mode it has to hold |[W (u)| > 1, too. B

a) b)

A A
PN
A A N

- O

Figure 3: A DPG with v(G) > 0: its unique run is 1-overlapping.

3.2 DPGs with Output Mode ALT

The non-overlapping property does not hold anymore when the input mode may vary — even if one
restricts the output mode. In case of O = ALT, consider the simple graph in Fig. 3. It requires two
execution instances for process v, and both have to be ancestors of the sink. However, we can show:

Proposition 2 For ALT-output DPGs with k sources it holds that every process has at most k execution
instances. Hence, the overlap can be at most k and the size of a run is bounded by k- |V|.

Proof: The upper bound on the number of execution instances can be shown by a flow-argument.
Regard an ALT-output DPG G as a flow graph with unlimited edge capacity. We will construct a flow
on G such that the flow leaving a node corresponds exactly to the number of execution instances this
process requires. The requirement for the sources to have exactly one execution instance generates an
initial flow of size k from the sources to their direct successors. The ALT output mode implies that the
flow does not increase. On the other hand, an internal node v with input mode PAR will decrease the
flow by |pred(v)| — 1. The flow leaving a node corresponds exactly to the number of execution instances
this process requires. |

Since the number of sources is trivially bounded by the size of the DPG we get a linear upper bound
on the overlap and a quadratic bound on the maximum size of a run.

To see that these estimates are asymptotically sharp consider the following family of DPGs Gi,Ga, ...
illustrated in Fig. 4. The nodes of Gy partition into three subsets Vi1 = {v1,.-., 0}, V2 = {v1, ..., us },
Vi,s ={q1,---,qxr}, and a single sink s. The sink has PAR-input mode, all other nodes have ALT as input
and output mode. The edges are given by:

By = { (vj,u1), (uk,q5),(g5,8) | j € [L.Ek]} U { (uj,uj41) | j €Lk —1]}.

From the requirements of a run it is not difficult to verify that these DPGs have unique runs illustrated
in Fig. 4 with linear overlap. Thus we can state the following result:

Figure 4: Left: An ALT-output DPG that requires linear overlap; right: its unique run of quadratic
size.

Proposition 3 The family of ALT-output DPGs Gy, = (Vi, Ey, I, Og) of size 3k+1 defined above requires
runs of size (k+2)-k+1 and v(Gg) =k — 1.

3.3 Unrestricted DPGs

Thus, in case of ALT output mode runs have a quadratic increase in size at most. In the unrestricted
case, this property does not hold anymore as the following result shows.

Proposition 4 For each natural number k there exists a DPG Gy, of size 2k + 1 with v(Gy) = k=1 _1,
Every run of Gi has size 3-2F71,

Proof: Gy, is constructed as follows. It consists of 2k + 1 nodes V}, := {v; | 1 <i <2k +1 } such that
the first £ + 1 nodes form a complete DAG as well as the last k£ + 1 nodes:

E, = {(vvy) |1<i<j<k+1} U {(vv;) | k+1<i<j<2k+1}.
The modes are given by

AT i i<kl . [PAR if i<k+1,
I(w) = {PAR it i>ke1, ond Ol) = {ALT if Q> k41,

G4 and a run H, are shown in Fig. 5.

v1 |W(’l}1)‘ =1

Vo |W(’l)2)‘ =1

v3 [W (v3)| =2 ®\

V4 [W(va)| = 4 @l) Cl) Cl) ‘<l>)
vs |[W(vs)| = 8 (Cf Cf Cf CiD
ve [W(ve)| = 4 © O O o)
v [W(vr)| =2 p)/

Vg |W(’Ug)‘ =1

V9 |W(’Ug)‘ =1

Figure 5: Left: DPG G,; right: a corresponding run Hy.For §, = 24 the

minimum schedule length estimates as T,pi(Ga,04) = 24.

We claim that for any run Hy, of Gy it holds

1 fori=1,
22 for2<i<k+1,

W)l = 2%kt for k4+1<i <2k, (1)
1 fori=2k+1.

Adding up these numbers we get that a run Hj requires 3 - 28—1 = 3. 2(VI=1)/2-1 many execution
instances, and the size of its middle layer W (vy1) equals 251, For the single execution instance w of
the sink of Gg, that is the unique node in W(vgg41) the subrun R(w) is identical to the complete run,
thus all execution instances of the node vg41 in the middle of Gy, are predecessors of w. This proves that
every run of Gy, requires (28=! — 1)-overlap.

It remains to prove the correctness of equation (1). Let Gi be the subgraph of Gj, consisting of
the first k£ + 1 nodes {v1,...,v41} and Gi be the subgraph of Gy consisting of the last k + 1 nodes

{Vk41,...,vap41}. Note that the input and output mode of vj4q is ALT. For any run of G; it holds:
1 fori=1,
W (wi)| = { 272 for2<i<k+1.

Assume that this equality is true for the graph G} . G; consists of G; , followed by a single node vg1,
which is a direct successor of any node v; of G ;. Because the input mode of vj41 is ALT and the output
mode of any node in G;_, is PAR we can conclude

k k
W(osn)l = D IW(w)| = 1+ 272 =241,
i=1 =2

G? consists of a single node vg41 followed by a copy of G_,, such that each node of Gi_; is a direct
successor of vj41. We have to show that for any run of G} it holds

1 fori=2k+1
W (vl = { 2%k fork+1<i<2k.
This is simply the property dual to Gi _,, since every execution instance of Gi _, has a preceding execution
instance in W (vg41). |

Hence, these DPGs require runs Hy of exponential size. In order to schedule such a run either an
exponential number of processors or exponential time is necessary. In particular, since Hy possesses only
one sink it does not pay to utilize more than 1 processor if the communication delay 6;, is large — here
8p = |Hg| = 3 - 281 suffices.

Corollary 1 For the family Gy, defined above it holds Top(Gr,0r) = 3- 20VI=D/2=1 for large commu-
nication delay.

Let us remind that communication delay complicates the scheduling problem with an unlimited num-
ber of processors significantly only if the delay grows with the size of the graphs [3].

4 PAR-output DPGs

In rest of this paper we will analyse the remaining case of DPGs with output mode restricted to PAR.
Contrary to the previous cases, there does not seem an easy argument how the size of their runs and
their scheduling time can be bounded. We will achieve this goal by estimating the maximum overlap
necessary. As one can see in Fig. 2(c) PAR-output DPGs may have runs that are overlapping. Fig. 2(b)
shows that this overlapping run can be modified into a non-overlappping one. Such a property, however,
does not hold in general; in other words, there exist DPGs G with y(G) > 0.

As the main technical result of this paper we will establish a nontrivial upper bound on (G). The
proof will be constructive. From it we can deduce an efficient approximation method for computing an
optimal schedule. Furthermore, this approach allows a fast parallel implementation.

In the following, only for the purpose of simplifying the presentation, some DPGs will be drawn with
multiple edges between two nodes u,v. Instead of using multiple edges we could differentiate such edges
by splitting them and adding an additional node in the middle. This, however, would only blow-up the
construction.

In general it will not be necessary to make an explicit distinction between multiple edges between two
nodes u,v. If necessary we will use subscripts to uniquely label them: (u,v)o, (u,v)1, -...

Let us first discuss some general properties of PAR-output DPGs. For a run Hg = (W, F) of G with
node partition W = |J;_, W (v;) define the characteristic vector as the sequence

x(Hg) = (W(v)],[W(v2)l,---, [W(va)]) 5

and p(Hg) as the maximal value of the entries in x(Hg), that means u(Hg) := max,eg |[W(v)|. By
Theorem A, for all i holds:
W (w)] < W] < 2VI71,

thus u(Hg) < 2/VI-1,
Lemma 1 For a PAR-output DPG G all runs have ezxactly the same characteristic vector.

Proof: For any PAR-output executable DPG G the following breadth-first search procedure computes
the characteristic vector independently of a particular run of G. For every source node v, by definition it
has to hold |W(v)| = 1. Then for a non-source node v with I(v) = ALT, by the conditions of a run one

has to choose
W) = > (W)

vj Epred(v)
many execution instances. For v with I(v) = PAR all direct predecessors uy, ..., ur of v must have the
same number of execution instances and |W (v)| has to equal this number — otherwise G would not be
executable. |

This agreement between different runs of G implies that for the characteristic vector instead of x(Hg)
we can simply write x(G), and similarly u(G).

Corollary 2 pu(G) < 2911,
Theorem 1 There exists an executable PAR-output DPG G with v(G) > 0.

Proof: We construct a PAR-output DPG G = (V, E, I, O) as follows. Let V := {a,b,¢,d, e, f, g, h,i,j,k}
and FE be defined as in Fig 6. Note that G has multiple edges (e.g. between a and b). Let I(v) := PAR
for v € {a, f, k}, and the remaining nodes have ALT input mode.

Q

E——
OX JO¥ 1oy

OO T eW(g)

WH¥e¥ W)Ne¥ ¥W)NeW ¥) Ee¥

Figure 6: Left: Graph G with v(G) > 0; right: a fragment of its run Hg.

We claim that for this graph v(G) > 0, i.e. every run of G requires nontrivial overlapping. To see this let
us assume to the contrary that Hg = (W, F) is a non-overlapping run of G. The unique characteristic
vector of G is (1,2,3,4,4,4,6,8,12,12,12). Let W(a) = {uo}, W(b) = {v1,v2}, W(c) = {w1,ws,ws},
and name the execution instances such that

(wo,v1), (uo,v2), (vi,w1), (v2,w2), (uo,ws) € F .
We colour the nodes of Hg using four colours 0,1, 2,3 as follows:
C(ug) = 0, C(v1) :=C(w1) :=1, C(v2) := C(ws) :=2, C(ws) :=3.

The colouring of nodes in W (g) and in W (h) will be inessential, therefore we omit to specify them. For
each node x € W (j) define C(x) := £ if z is a successor of w,. Hence, a multiset describing the colours
of the execution instances in W () is equal to

{1,1,1,1,2,2,2,2,3,3,3,3}. (2)

For any z € W(d) UW (e) let C(z) be equal to the colour of its direct predecessor. Moreover, for any
z € W(f), if z€ W(d) and y € W(e) denote its direct predecessors then one of the following four cases
has to occur (otherwise Hg would be 1-overlapping):

1.C(y) =1 and C(z) =1,
2.C(y) =2 and C(z) =2,
3.C(y) =3 and C(z) € {1,2},
4. C(y) =0 and C(z) € {1,2}.

In case 1, 2 and 3 let C(x) := C(y); in case 4 let C(z) := C(z). Hence, the multiset describing the colours
of W(f) is equal either to {1,1,2,3} or to {1,2,2,3}. For z € W (i) let C(z) be equal to the colour of its
predecessor in W(f). This implies that the multiset of colours of W (i) is either

{1,1,1,1,1,1,2,2,2,3,3,3} or {1,1,1,2,2,2,2,2,2,3,3,3} 3)

Obviously, we get that for any € W (j) node w¢ (4 is a predecessor of , and additionally if C(z) € {1, 2}
then also vc(,) is a predecessor of z. Moreover, for any y € W(i) it holds that if C(y) € {1,2} then
node v¢(,) has to be a predecessor of y; if C'(y) = 3 then it is required that w3 is its predecessor. Now
consider the connections between W (k) and W (i), W(j) in Hg. From the remark above it follows that if
z € W(j) and y € W (4) are direct predecessors of z € W (k) then it holds

Cz)=1 - Cy)=1 and Cx)=2 - C(y)=2.
These conditions and the multiplicities of colours (2) imply that for £ = 1,2 it holds
HyeW(@):Cly) =4} 2 {zeW():Clz) =4} = 4.

But according to (3) this is impossible, thus we get a contradiction. |

The DPG in Fig 6 and its runs already look quite complicated. It was not easy to find such an example
of a graph with nonzero overlap, and it seams that this construction cannot be iterated to establish a
better lower bound. Thus, the best lower bound on the overlap of PAR-output DPGs known to us at
the moment is only 1. On the other hand, establishing good upper bounds also turned out to be quite
difficult. By a lengthy and complicated construction we have been able to prove the following nontrivial
bound.

Theorem 2 For every executable PAR-output DPG G it holds (G) < log, u(G).

The proof of this Theorem will be given in section 6. For each fixed u-value we will construct a most
complicated DPG with respect to overlapping and establish an upper bound on its overlap.

From Theorem 2 and the exponential upper bound on the maximum size of a run p(G) < 2!9-1 we
can conclude y(G) < |G| — 1, i.e::

Corollary 3 FEvery executable PAR-output DPG has a run with an overlap that is linearly bounded with
respect to its size.

As indicated above, this result implies a nontrivial upper bound for scheduling PAR~output DPGs.

Corollary 4 For every executable PAR-output DPG G it holds Topt(G,0) < |G|?, independently of the
communication delay 6.

Hence, PAR-output DPGs can be executed quite fast. Our proof will be constructive and yields an
efficient method to generate a schedule S for G with T'(S) < |V|?.

We obtain this upper bound for the minimum schedule length by considering 7(G)-overlapping runs
for G. It may be conjectured that runs with minimum overlap can always be scheduled in optimal time
Topt(G,). But we can show that this is not the case.

Theorem 3 There exist PAR-output DPGs G with v(G) = 0 such that for an appropriately chosen
communication delay 6 no non-overlapping run of G can achieve the minimum schedule length Top (G, 90).
In other words, overlap between execution instances may be necessary for optimal schedules even if the
DPG@G can be executed without overlap.

Proof: Figure 7 illustrates such a family of DPGs. Run (a) in the middle is non-overlapping, run (b) on
the right is 1-overlapping. The sequence A is the chain of execution instances for uq,...,uq1, similarly
B and D for vq,...,vs, and C and E for wq,...,we. If d > £ and the communication delay 9 is at least as
large as d, a minimum schedule in case (a) requires time Ty = 4+ 2¢+ d, in case (b) time 7o =4+ ¢+ d.

a)T1=4+4+2-£+4d b) To =4+4+¢+d
P P t1

Ud+1

Figure 7: Left: A DPG G parameterized by 2 natural numbers £ and d.Middle and Right: Two
different runs (a) and (b) of G; the appropriate optimal schedules are illustrated on the right.

10

5 Transforming PAR-output DGPs into a Normal Form

Our overall proof strategy to approximate the minimum schedule length based on the notion of overlap
can be described as follows. We define a special family of PAR-output DPGs that have a regular structure
called normal form. It will be shown that these DPGs require the largest overlap. This is done by proving
that an arbitrary PAR-output DPG can be embedded into a normal form DPG without increasing the
overlap. Finally, for DPGs in this normal form we are able to establish an upper bound on the overlap.
Their regular structure allows us to make an inductive construction that generates runs with small overlap.

This section describes the transformation of PAR-output DPGs into a normal form DPG. It will be
quite technical. For DPGs G of this special form we will establish the upper bound on their maximum
overlap v(G) in the following section. Combining this bound with a reverse transformation for correspond-
ing runs from the normal form to an arbitrary graph and ensuring that the overlap does not increase
during this procedure the upper bound on v(G) for arbitrary G as stated in Theorem 2 will be obtained.

5.1 DPGs with Synchronization

Given an executable PAR-output DPG G, to construct a «y(G)-overlapping run seems difficult. To warm
up, let us first consider a restricted class of PAR-output DPGs.

Definition 5 A PAR-output DPG is called synchronized if each nonsource node has indegree 2, all
paths from a source to a sink have the same length, and for each such path the sequence of input modes
of its nodes alternates between PAR and ALT.

First, it will be proven that such graphs have non-overlapping runs. This will be our starting point
to generalize the proof techniques to arbitrary PAR-output DPGs.

Proposition 5 Every synchronized PAR-output DPG G has a non-overlapping run. Hence, it holds
Y(G) =0 and T,,:(G,d) < |V|, independently of the communication delay §.

Proof: By induction, assume that this claim holds for every synchronized DPG of depth £ (the base case
£ = 1 being trivial), and let G be a synchronized DPG of depth £ + 1. Let G’ be the DPG that we get
from G by cutting off all sources of G. Note that G' is a synchronized DPG of depth £. By the inductive
assumption, there exists a non-overlapping run Hg for G'. Furthermore, let Lo := {q1,...,qx} denote the
set of sources of G, and L; the set of nodes which are connected directly to these sources. Then we can
generate a non-overlapping run Hg = (W, F') for G as follows.

1. If the input mode of the nodes L; is PAR then by construction of ', in H; there exists exactly one
execution instance t; € W (v;) for every node v; € L;. The run Hg consists of a copy of H(and an
additional execution instance w; for each ¢; € Lg. Then (wj,t;) € F iff (gj,v;) € E. It is obvious
that Hg is a run for G. Since H is non-overlapping and there exists only one execution instance
for each node in Lg, the resulting run Hg is also non-overlapping.

2. If the input mode of the nodes Ly is ALT let E; and E; be a partition of the edges in EN (Lo X Ly)
such that for every v; € L; one of its incoming edges belongs to E; and the other to Ey (recall
that by the synchronization property each v; € Ly has indegree 2). Now Hg consists of two copies
of Hf, say H} and HZ, and additional execution instances w; for nodes v; € Lo. If t} € H} is an
execution instance of a source node v; of G’ then we draw an edge from wj to t} iff (u,-,vi) € FE;.
Analogously, we draw an edge between w; and a sink 7 of Hg iff (u;,v;) € E,. This yields a valid
run Hg for G. Furthermore, if Hg is non-overlapping and there exists only one execution instance
for each node u € Ly, the resulting run Hg is non-overlapping, too.

|
Now consider an arbitrary executable PAR-output DPG G = (V, E,I,0). The transformation of G
consists of five stages:

(A) (B) (©) (D) (E)
G — Ga — G — G — Gp — GEg.

Each stage puts an additional restriction on the graphs as follows:

11

(A) every node with input mode ALT has indegree exactly two;

(B) every direct predecessor and every direct successor of a node with input mode PAR has input mode
ALT;

(C) the sources and sinks have input mode PAR and on every path from a source to a sink the input
mode of the nodes alternates;

(D) for each value i < pu(G) there exists at most one PAR-input node that requires exactly ¢ execution
instances. This unique node will be called u; in the following;

(E) for each pair of numbers 1 < i < j with i+ j < u(G) there exists at most one ALT-input node v;,;
requiring exactly i+ j execution instances such that (u;,v; ;), (u;,v;, ;) are edges of Gg, where u;, u;
are the unique nodes with 4 (resp. j) execution instances. This includes the special case ¢ = j in
which there are two edges that run from u; to v; ;.

These transformations will not change the p-value of the DPGs — the maximal number of execution
instances a process requires. Furthermore, we will will make sure that if Gg has a y(Gg)-overlapping run
then the graph of each stage has a v(Gg)-overlapping run, too. More precisely,

Y(G) < v(Ga) < v(GB) < v(Gc) < v(Gp) < v(GE) -

5.2 Stage A: indegree exactly 2

As the first step the indegree of each node v of G with I(v) = ALT is reduced by replacing it by an
appropriate binary tree in G4. From a 7(Ga)-overlapping run Hu of G4 we show how to construct a
(G a)-overlapping run H of G. To obtain H from H 4 one only needs to delete all execution instances of
nodes of the auxiliary binary trees except for the roots and then connect the roots with the remaining
execution nodes in the obvious way.

a) G: Ga:

biné,fy_,,,-»->
trees

Figure 8: a) A PAR-output DPG before and after transformation A; b) the corresponding runs.

The details of this transformation G i) G4 are as follows. Since every node with only one direct
predecessor can be assigned input mode PAR, we can assume that each node with input mode ALT has
indegree at least 2. In the new DPG G4 = (Va,Ea,I14,04) each ALT-input node will have indegree
exactly 2. Every v € V has a counterpart g4(v) in V4 — which for short will be denoted by v' — with
the same input and output mode. For every edge (u,v) such that I(v) = ALT with indegree(v) = 2,
or I(v) = PAR, we add the edge (u',v") = (ga(u),g9a(v)) to E4. For each ALT-input node v € V with
indegree d > 2 let vy, vq,...,v4 be the sequence of its direct predecessors i.e. (v1,v)...(vg,v) are edges
of E. Then we add 2d — 2 nodes ul,u2,...u2?"2 to V4 - in the following called dummy nodes — and

2 d—2

connecting edges to E4 such that we obtain a binary tree rooted in v', with ul,u2,...u3 2 as inner

12

d 2d—2
v

nodes, and w1, ud,... u as leaves. As input mode for the inner nodes we chose ALT, while for the

leaves the mode is set to PAR. Next, we connect these leaves with the nodes g4 (v;) by drawing for each
i € [1..d] an edge from ga(v;) to ud*t*=2. The transformation of G is illustrated in Figure 8.a. We extend

the mapping g4 to the edges of G by
ga:VUE — V4UE4

as follows: for any edge (u,v) if I(v) = PAR or I(v) = ALT and indegree(v) = 2 then let ga(u,v) :=
(u',v"). Otherwise, for any direct predecessor v; of v let ga(v;,v) = (ga(v;),u), where u is the direct
successor of ga(v;) in the tree with root v'.
In general, for a mapping g : VUE — V'UE’ between graphs G = (V,E) and G' = (V', E') we
define an inverse partial function
g:V'UE' — 2VVF

by g(z) :={ 2z € VUE | g(z) =z }. In the special case of the function g4 since it is injective its inverse
G4 can be considered as a partial function with range V U E.

We generate a run H := (W, F) for G by simply deleting the execution instances of dummy nodes
from the run Hy := (W4, F4) of G4 and connect the execution instances of the nodes ga(v) directly
as described by the dummy execution instances (see Fig. 8.b). Since the dummy nodes only introduce
simple paths in the run of G4, the resulting graph is a run for G. Note that this modification can be
performed for each subrun independently. Let us call a path dummy if all its nodes except the endpoints
are dummy nodes. Then a formal definition can be given by

W= | Walga)) ,
veV
F = {(s,t) e WxW|(s,t) € Fa or there exists a dummy path from s to tin Hy } .

This operation does not change the maximal number of execution instances required to execute the DPG.
Furthermore, if the run of G4 is k-overlapping the same holds for the run of G obtained this way. Hence,
we have shown:

Lemma 2 u(G) = (Ga) and v(G) <~(Ga).

For later implementation of this transformation let us add the following remark. Given a mapping
from Hy to G4 describing the inverse function of W, and F4 we can compute a run H for G as well
as the inverse functions of W and F' by using g4 and deleting all the dummy nodes and edges starting
at a dummy node locally. Hence, this operation can be performed at each node and each edge of Hy
independently in parallel.

5.3 Stage B: with respect to the input mode, PAR-nodes are surrounded by ALT-nodes

If we remove from G4 all nodes with input mode ALT it will fall apart into a bunch of connected
components C1,Cy, ... that contain only PAR-input nodes. With respect to the execution problem a
component C; almost behaves like an ordinary process graph since both input and output are fixed to
PAR. In particular, all its nodes require the same number of execution instances. Thus, we can shrink each
such component C; to a single node ¢; to obtain a reduced DPG Gg = (Vp, Eg, Ig,Op) (see Figure 9.a).

Speaking more formally, any v € V4 with I4(V) = ALT possesses a direct counterpart v’ = gp(v)
in Vp. In addition, Vg contains a node ¢; for each component C;. For nodes with PAR input mode let
K (v) denote the index i of the component C; that contains v and define gp(v) = ck(y). Ep is defined
as follows. Assume that E4 contains an edge e = (u,v) and let v’ = gp(u) and v' = gg(v). Then one of
the following four cases occurs:

1. Ia(u) = I4(v) = ALT: then Ep contains the edge €' := (u',v");

2. Ta(u) = ALT and I4(v) = PAR: then add the edge €' := (u’, ck(v)) to Ep. If there are other nodes
¥ in the component Ck () all these edges (u,?) are represented by the same edge €' in Gp.

13

3. I4(u) = PAR and Ia(v) = ALT: then add the edge €' := (ck(u),v') to Eg. Since v has indegree
2 there exists another edge (@,v) with endpoint v. However, if 4 is also a PAR-input node and
K(u) = K(u) then we add two edges ey := (ck(w),v')o and €] := (ck(a),v')1 to Ep. These two
edges are numbered according to an ordering between v and @ (we can assume that a total order
on the nodes of G4 is given — for example, deduced from their names).

4. T4(u) = I4s(v) = PAR: this case does not add any edge to Ep.

In the first three cases we define gg(e) := €, in the last one gg(e) := cx(y).

From a k-overlapping run Hg for Gg a k-overlapping run for G4 can be generated by replacing each
execution instance z; of a node ¢; by a copy Z; of its corresponding component C; in G4. The nodes
of such a copy Z; are connected to the predecessors of z; in Hp according to the topology of G4. To
connect these nodes to their successors is slightly more involved. Let T'; denote the set of direct successors
of z;. For every edge (u,v) € E4 there is a unique edge (ck(y),v) € Ep. Furthermore, for every pair
of execution instances zg(,) € W(ck(y)) and t € W(v) and every edge (ck(y),v) there exists an edge
(2K (u),t) in Hp. Hence, we can use this relation to connect the nodes of Z; to the execution instances
of v according to the topology of G4. The bound on the overlap in Hp implies the same bound for
the resulting run of G4 and the maximal number of execution instances does not change. The relations
between the runs of G4 and Gp are illustrated in Fig. 9.b.

a) Ga: b) Hp: Hyp:

A
0O QO
</

Figure 9: a) A PAR-output DPG before and after transformation B; b) the corresponding runs.

Thus, it holds

Lemma 3 u(Ga) = u(G) and v(Ga) <v(GB).

The inverse mapping gg is also a local operation on the graph Gg. Given a mapping from Hp to Gp
that describes the inverse function of Wy and Fg we can compute a run H 4 for G4 as well as the inverse
mapping of W4 and F4 by performing gz on each element of Hp independently in parallel.

5.4 Stage C: the input mode alternates; sources and sinks have input mode PAR

To achieve property (C) it suffices to add dummy nodes with PAR-input mode to Gg between successive
nodes that have the same input mode, which, due to the previous transformation, can only be the ALT-
mode. In addition, we can make sure that the input mode of each source and each sink is PAR. This
transformation will be denoted by gc(Gp) := G — an example is illustrated in Fig. 10. Note that this
transformation increases the size of the graph by a factor of at most two. To generate a run of Gg using
a run He of Go we delete the execution instances of the additional PAR-input nodes and connect their
predecessors and successors directly. It follows directly:

14

Lemma 4 p(Gp) = u(Ge) and ~(GB) < v(Gc).

As in stage A, the inverse function g can be computed by a simple local operation on Go. Given a
mapping from Hc to Go describing the inverse function of W¢ and F we can compute a run Hp for
Gp as well as the inverse functions of Wg and Fp by using g, and deleting all the dummy nodes and
edges. As in the previous stages this operation can be performed on each execution node and edge of Ho
independently in parallel.

After having performed this transformation one can divide the nodes of G into levels as indicated by the
gray horizontal sections in Fig. 10. In every level all its nodes have the same number of execution instances.
Since the input mode alternates and ALT-input nodes increase the number of execution instances, whereas
for PAR-input nodes this number stays constant, each level has depth at most 2. We define these levels
as follows: £1(G) contains the sources, which all have input mode PAR, and £;(G) for i > 1 the level
such that the number of execution instances of a process is 4. Let £}(G) denote the nodes of level £;
with input mode ALT, and £2(G) those with input mode PAR. For i > 1, certain £;(G) may be empty.
But due to the alternation property, if £;(G) is nonempty then both its sublevels Lf (G) with j = 1,2 are
nonempty.

a) gB:

| OJ0)
Z8 A
a
%l
M CI‘E‘I‘)

Q
™
RS

il

Figure 10: a) A PAR-output DPG before and after transformation C; b) the corresponding runs.

5.5 Stage D: eliminating PAR-input duplicates

The next step reduces the number of PAR-input nodes at each nonempty level £; to a single node such
that for any value ¢ < u(G) there exists at most one PAR-input node with 4 execution instances called ;.
To construct the new DPG Gp, for every node v € Vo with I(v) = ALT we generate a node v' = gp(v).
For every nonempty PAR-input level £? of G, a PAR-input node ¢; is generated, and gp(v) := ¢; for all
v € L2. For an edge e = (u,v) in G, we define gp(e) := (9p(u), gp(v)) (see Fig. 11). This operation may
generate several edges e between a pair of nodes u’,v' of Gp. As in Stage B, they are handled differently
according to their type. Parallel edges running into the same PAR-input node, that means v’ represents
a level £?, are reduced to a single edge, whereas two parallel edges e running into a ALT-input node v’
are kept. They will be named (u',v')o and (u',v');.

From a run Hp for Gp one can construct a run for Go in a straightforward way. Each execution
instance of a node ¢; has to be expanded to a cluster of nodes that represent the complete level £2.
Connections to execution instances of direct predecessors and successors can then be made in such a way
that the overlap does not increase. Simply label all execution instances of duplicates in a consistent way
and draw the edge connection correspondingly (see Fig. 11). If £? has several connections from or to a
process u we make sure that in the run for each cluster representing £? its edges to execution instances
of u all choose the same execution instance. Hence, if Hp is k-overlapping so is the run H¢ constructed
this way.

15

Figure 11: a) The DPG before and after transformation D; b) the mapping of a run Hp to He performed
by transformation D.

Lemma 5 u(Gc) = u(Gp) and v(Ge) <v(9p)-

Again, the inverse transformation g, is local. Furthermore, given a mapping from Hp to Gp specifying
the inverse of nodes in Wp and edges in Fp, one can construct a run H¢ for Go as well as the inverse
transformation from H¢ to Go independently for each execution instance and edge in parallel.

5.6 Stage E: reducing the number of ALT-input nodes

In the final stage, for each non-empty level £; we collapse the number of ALT-input nodes that have the
same predecessors to a single node in order to achieve the final property that for all values i, 7,k < u(G)
with £ =4+ j and ¢ < j there exists at most one ALT-input node v; ;.

This is done as in the previous transformation. Fig. 12 illustrates the procedures. Again, the mappings
and their inverse are local, and the overlap does not increase.

gE: b) HE: HD:

exexexo M{eTerore
~=

Figure 12: a) The DPG before and after transformation E contracting ALT-input nodes to a single node;
b) the corresponding run transformation duplicating the execution instances of such a contraction.

Lemma 6 u(Gp) = u(Geg) and v(Gp) < v(GE).

Summarizing we have shown

16

Proposition 6 FEvery DPG G can be transformed to a DPG Gg fulfilling properties (A) - (E) as specified
above. In particular, every path in Gg from its unique source to its unique sink alternates with respect to
the input mode of its nodes, u(Gg) = u(G), and v(Gg) > v(G).

6 A Linear Bound on the Maximal Overlap

To finish the proof of Theorem 2 we will restrict the class of DPGs still further. Given a graph of type
GE, a corresponding complete DPG is obtained from it by expanding its levels £1 up to £,(g,) to their
maximal size such that conditions (A) to (E) still hold. This transformation generates a unique DPG
that only depends on u(Gg). DPGs in such a normal form turn out to be easier to analyse.

Before discussing the special properties of these graphs we will relate arbitrary DPGs to this normal
form. A DPG @' is a subgraph of a DPG ¢ iff for the underlying graphs the ordinary subgraph relation is
fulfilled and the input and output modes of corresponding nodes match. Note that for DPGs this subgraph
ordering does not behave monotonically with respect to executability and overlap. For example, consider
the graph obtained by adding the two edges (a,) and (a,j) to the DPG in Fig. 6. This larger graph has
a non-overlapping run (to find such a run is not too difficult and we leave it to the reader), whereas the
original DPG requires 1-overlap as we have proven.

Thus we need additional restrictions in order to relate v(G) and (G') if G’ is a subgraph of G.

Proposition 7 Let G' be a subgraph of a PAR-output DPG G such that for each node v € G' it holds:
|[Wgr (v)| = |[Wg(v)|. Then v(G') < v(G), in particular if G is executable the same holds for its subgraph.

Proof: From the fact that [Wg (v)| = |Wg(v)| for all nodes v € G' we can conclude, that each ALT-
input node of G' has the same predecessors as the corresponding node in G. Hence, a run for G’ can be
constructed as a subgraph from the run Hg such that Wg: (v) = Wg(v) for all nodes v € G'. Therefore,
the set of predecessors of each execution instance of t € W in Hg: is a subset of its predecessor execution
instances in Hyg. |

Definition 6 For an integer £ > 0 define o PAR-output DPG Cp = (Vy, Ey, I,0), called the complete
l-level DPG, as follows:

Ve = {ur,ug,...,w} U {v;|1<i<jandi+j<{},
Ey = {(ui,vij), (uj,vi5), (vij,up) |1 <i<j, 2<k<Llandi+j=k},
I(ug) := PAR and I(v;;) = ALT.

It is not hard to check that this graph satisfies all five properties (A)—(E). Moreover, it holds u(C¢) = £. As
an example the complete DPG Cg is illustrated in Fig. 13. As a result of the sequence of transformations
described in the previous section C; is the largest possible graph obtainable when starting from DPGs
with p-value at most £. Thus, by Proposition 7 this graph is the worst example that can occur with
respect to the maximum overlap. The motivation for considering this special family of graphs is that for
these complete graphs we are able to prove a general upper bound on the maximum overlap necessary.

Theorem 4 v(Ce) < log, L.

Before proving this result let us consider its implications in more detail. Given an arbitrary PAR-
output DPG G = (V, E, I,0) with £ := u(G), by the sequence of transformations (A) to (E) we obtain
a DPG G' = (V',E',I',0") with u(G") = £ and y(G) < v(G'). Since G’ satisfies properties (A) to (E)
we can consider it being a subgraph of C,. More precisely, its nodes can be named such that V' C V,, in
particular for ug € V' it holds |W (ug)| = k for any k < £. Every node of G’ requires the same number of
execution instances in G’ as in C;. Hence, Proposition 7 implies

Corollary 5 7(G) £ v(G") £ Y(Cug)) -

Combining this estimation with Theorem 4 we arrive at the claim of Theorem 2

Y(G) < logy u(G) -

17

Figure 13: Left: the complete graph 6-level DPG Cg; right: a run for Cg.

Proof of Theorem 4: We construct a run Hy for Cy recursively. Consider two induced subgraphs of C,
denoted by Geven and Goda that are obtained as follows (compare Fig. 14):

Veven == Vi \ {u1,vi1}, Voda = Vi \ { uk,vij|k,i,jeven}.

level
Cl Geven géfuen c godd 1

§ SEER 6

Figure 14: Splitting the complete PAR-output DPG G into Geyen, and Goqq. Since Geyen is

not executable we add one additional node ¢ to get the executable DPG G, .,,.

Note that G,qq is executable, while Geyer, is not if £ > 4. The process v1,3 in Geyen requires 1 execution
instance, the process vy 2 requires 2. But such a situation is in conflict with the PAR-input mode of u4
which implies that all direct predecessors must have the same number of execution instances. To make
Geven executable we add a new source ¢ to the graph and an edge (c,v; ;) if 4, j are both odd. This new
graph — let us call it G, ,,, — possesses a run Heyer, = (Weyen,, Feven) With the properties

Weven (vig)] = [(i+75)/2] V1<i,jwithit+j<t, (4)

Weven (ur)] = [k/2] V1I<k<L. (5)

18

The construction of Heyen, is straightforward. In particular, it holds

/‘L(géven) = |[Weven(ue)| = [£/2] .

For the recursive step, G, .,, is transformed by the function
g ‘= gg°gp°gcognpoga -

Recall that 7(Glyen) < Y(9(Géven)). Moreover, Corollary 5 implies v(9(Giyen)) < Y(Clej2)). Combining
these inequalities we obtain

Y(Goven) < Y(Cley2)) -

By induction, we can assume (C|¢/2)) < log,|£/2], that means there exists a log, |¢/2]-overlapping run
Heyen = (Weven:Feven) for gflzven‘

Now consider G,q4q4. For every i, j, with 1 <4, j and ¢ + j < £, this graph contains the edge (v; ;, ui1;)
iff i+ j is odd. Therefore, only two cases can occur: either 7 is odd and j is even, or ¢ is even and j is odd.
uy, does not belong to Goqq if k is even. This implies that either (u;,v;;) € Eoqq and (uj, vi;) € Fodd,
or (uj,v;j) € Eoqq and (us,vi;) & Eoqq. Therefore, the indegree of a non-sink ALT-input node v; ;
in Gyqq is 1 and it has only one execution instance. Hence, G,q4q is executable and any run of G,44 is
non-overlapping. Let Hyqqg = (Woad, Foaq) denote such a run. We can conclude that

2 if 4 and j are odd,
and [Woaa(vi ;)| = 1 ifi+j is odd, (6)
0 if ¢ and j are even.

1 if kis odd,
[Wodaa(ur)| = { 0 if k is even,

To finish the proof we construct a log, f-overlapping run H = (W, F) for C; from Heyen, and Hyqq.
To generate such a run take two copies Hy = (Wi, F1) and Hy = (Wa, F2) of Heyen and one copy
Hs = (W3, F3) of Hyqq. Let s1 denote the execution instance of the additional source ¢ in H; and let Sy
be the set containing s; and all its direct successors in H;. Analogously, define so and Sy for Hy. Below
we give the construction for H (see also Fig. 15). Let

W = (Wi \S1)U(W2\S2) UWs .

Figure 15: The construction of a (log, £)—overlapping run for Cp from H,4q and Heyen

For any v € V; we define a set of execution instances W (v) C W as follows. Let W (uq) := W3(u1), and
for k =2,3,...,¢ define

Wi(ug) U Wa(ug) if k is even,

W(ug) := { Wi(ug) U Wa(ug) U Ws(ug) if k is odd.

19

Fori,jwithl<i<jandi+j=klet

Wi(vi ;) U Wa(vi;) if ¢ and j are even,
W(v;;) = (Wi(vij) \ S1) U (Wa(viy) \ S2) U Wi(v;;) ifiand j are odd,
Wi(vi;) U Wa(v;;) U Ws(vs,5) if i + j is odd.

Since for v € V; the sets Wi (v), Wa(v), and W3(v) are disjoint the definition above and equations (4),
(5), and (6) imply

W (ug)| =k and [W(vi;)|=1i+]. (7)
To construct the edges F' of H we proceed as follows: For odd ¢ and j with 1 < i,jand i+ j < £ let
Ws(vij) = {tij,1,ti,52} let 2; 5,1 be anode in S1 N Wi (v; ;) and 2,2 a node in Sy N Wa(v;,;). Moreover,
let ziyj,1,2i4j,2 be direct successors of z; ;1 in Hq, resp. z; 2 in Hy. Finally, let {221} := Wi (u2) and
{#2,2} := Wa(u2). Note that according to our definition of W, both #; ;1 and z; ;2 do not belong to W
anymore. Now we choose:

F = ((W X W) n (F1 UFfUu F3)) U { (ti,j,l,ziﬂ,l), (ti’j72,zi+j,2) | i,jodd and 2 <i+j < f} .

It is easy to see that H is a run of C;: the equations in (7) imply that each node of C; has the correct
number of execution instances. From the definition of the edge set it follows that the connections between
the execution instances are correct, too. Moreover, H; and H, are log,|¢/2|-overlapping and Hs is a
non-overlapping run. Let us summarize the essential properties of H:

1. the graphs H,, H2, H3 are node disjoint,

2. for every path vy ...v from the source to a sink in G,qq and for every ¢ € [1..k — 1] it holds
[W3(vi)| = 1,

3. every subrun R(t) of H consists of either a subgraph of H; or of Hy plus a subgraph of Hs that
includes at most one execution instance of a process.

Therefore, the overlap of H is increased to 1 + log, £/2 at most.

7 Scheduling PAR-output DPGs quickly

Since PAR-output DPGs may specify runs of exponential size, even if the input mode is restricted to
ALT (see Fig. 16), it is not clear how to compute a schedule for a given DPG — even a suboptimal one —
efficiently simply because the size of the output may be extremly large.

G

I

Figure 16: An ALT-input PAR-output DPG specifying a run of exponential size.

20

It seems unlikely that the compaction provided by DPGs can always be translated to a similar com-
paction when describing their corresponding schedules. Thus, even if enough processors are available the
question remains how they can synchronize their individual work in order to cooperatively schedule the
DPG fast. In this section, we will investigate this problem and show that very little synchronisation is
actually necessary. A good schedule based on the overlap notion as described in the previous sections can
be constructed by a massive-parallel machine in a highly distributive fashion. Since the length of this
schedule provides a reasonable approximation for the optimum, the DPG can then be executed efficiently.
In parallel, each processors executes the execution instances of the partial schedule it has computed in
the construction phase. This can even be done in a quasi on-line fashion intertwining the computation
and the execution of each individual partial schedule.

More precisely, we will make the bound of Corollary 4 constructive showing that the execution of a
program specified by an arbitrary PAR-output DPG can be computed in a distributive fashion such that
each subrun is of quadratic size at most. Remember that for DPGs without mode restrictions such runs
may not exist (Proposition 4).

In the following, we will only consider DPGs with a single sink s and leave the obvious extensions
to the multiple sink case to the reader. It has already been observed that the maximum size of a set
W (v) of execution instances for a node v, i.e. u(G), can be computed sequentially in polynomial time.
The method to compute a schedule is based on the reduction described in the previous sections. u(G)
processors Pi, ..., Pyg) are used where each processor P; takes a different execution instance ¢; of the
sink and computes a corresponding subrun R(¢;) = (W;, F;). These subruns may intersect, but they are
constructed in such a way that the composition (Uf:(f) Wi, Uf:(f) F};) generates a run for G. After having
determined R(¢;) the processor P; computes a single-processor schedule for R(t;).

We will now describe a recursive strategy to generate the subruns for G. Each P; starts with a copy
of G. In the first step G is simplified by the transformations A up to E generating the DPG

G' = gr(9p(9c(gs(9a(9))))) -

Next, G' with nodes V' and edges E’ is split into an even part Geyen, and an odd part Goqq as in the
previous section. For this split operation we will denote the nodes of G’ by v;; and uj as quoted in
property (E). Let u be a new node not in V' with input mode PAR and define the subgraphs by

Voaa = V' \ {ug,vi; € V'|k,i,j are even}

Eoga = E' N (Voaa X Voaa)

Veven == V' U {u}\{u1,v11}
Eeven = E' U {(u,vi;) |vij € V' andi,j > 1areeven} \ ({(v1,1,u2)} UU,, ,ep{(ur,v15)}) -

The size of both graphs is polynomially bounded in the size of G. It holds p(Gogq) < 2 and u(Gepen) <
1(G)/2. They can be generated in sequential polynomial time.

For the splitting operation we define mappings geyen, godd analogously to the transformations above,
and inverses G, 44, Jepen- NOte that the function g, (resp. Gepen) does not cover the graph G’ by its own,
whereas g, ,4(Fodd) together with g,,.,, (Eeven) provides an exact edge cover of G’ when adding the edge
(1)1,1, UQ) .

In order to construct a run for a DPG G each processor P; first computes the two split graphs Geyen
and G,qq and stores the inverse transformations g4 to g5 and g,44, Jeyen- 10 the recursive step, the first
£ := p(Geven) processors compute a run Hy = (Wi, Fy) for the left copy Gi of Geyen, and the second £
processors a run Hy = (W, F3) for the right copy Go of Geyen. Furthermore, each processor Py, ..., P,
computes a run Hs = (W3, F3) for Go44 and indicates the two execution instances in W3(v; ;) with odd 4
and j by t1;; and t2; ;. This naming can be done consistently by all processor simultaneously.

By induction we assume that each processor Py, ..., Py generates a subrun R4 (¢;) of a sink of G; such
that the union of these subruns is a run H; for G;, and similarly each processor Pyi1,..., Py a subrun
Ra(t;) of Hy. Now, each of the first £ processors replaces the direct successors of execution instances
in Wy (u) by the corresponding execution instances t1; j, and each of the second £ processors the direct
successors of execution instances in W5 (u) by the corresponding execution instances t3 ; ;. Furthermore,
for Wi(u2) = {t1,2} each processor Pi,...,P; adds the edge (t1,1,1,%1,2) to its graph, and processors
Piyq, ..., Py the edge (t2,1,1,t2,2) if Wa(u2) = {t2,2}. Let us denote the resulting graphs by Ri,. .., Re.¢.

21

The construction of Geyen, from G' implies

2- ,u'(ge'uen) < N(gl) < 2 N(geven) +1.

If u(G") equals the larger value the last processor Ps.¢y1 only computes the run H3 of G,44. By induction
it follows that Hj contains a subrun for a sink execution instance of G’ in this case. Let Rs.¢41 be this
subgraph of H,44, and consider the union

H .= U w U F| with Ri=W;,F) forall 1<i<p(G).
1<i<u(G") 1<i<u(G")

From the construction of G’ it follows that its run does not contain multiple edges. Furthermore, the
subgraphs R; are not disjoint, they might have overlapping nodes as well as edges. Analogously to
section 6 it follows that H is a run for G’ with at most log, u(G')-overlap.

Giving mappings that for the subruns of G; and G, and the run of G,44 transform their execution
instances and edges to their corresponding nodes and edges of the DPG, together with the inverse func-
tions g, g4, Gevens - - - » 94 Step by step one can locally generate the subruns of a run of G such that each
processor P; computes one subrun R(¢;) for a sink ¢; as well as the inverse elements for nodes and edges
of this subrun.

P L
\\s&{ \ &Y /(%

TS S !

]] !
R\ \f $
&

Figure 17: From left to right: a PAR-output DPG G and the resulting graphs G4, Gg, G¢o, Gp, and
Gg after applying the transformation functions. In the reverse direction the inverse transformation
functions gy, 9p, 9c» IB, and g4 have been applied.

As in the proof of Theorem 4 it follows that the run constructed this way is at most logu(G)-
overlapping. Since in each recursive step the value of u(G) decreases by a factor of two the number of
iterations is bounded by logp(G) < |G|. Without bothering about architectural details of the parallel
machine model — for example, one could choose any standard variant of a parallel random access machine
or a network of processors — we can conclude that every processor can perform its computation in
polynomial time, hence:

Theorem 5 For any PAR-output DPG G, a log u(G)-overlapping run can be computed in parallel poly-
nomial time.

Corollary 6 Given a PAR-output DPG G, the program II represented by G can be executed by a parallel
machine in polynomial time with respect to the size of its compact representation.

Let us finally point out that this result provides a fast parallel approximation to an NEXPTIME-
hard problem, namely the problem to compute an optimal schedule for a compactly specified parallel
program.

22

8 Conclusion

Dynamic process graphs are a useful tool to specificy parallel programs in a compact way. The com-
paction ratio, resp. the blow-up when unfolding the specification to an actual run of the program can be
exponential. In previous work we have shown that determining the minimum schedule length for DPGs
is an NEXPTIME-complete problem, even when we restrict the class of graphs to PAR-output DPGs
[4, 5].

In this paper we have shown that for PAR-output DPGs the maximum size of a subrun provides
an approximation for the optimal schedule length — it can be bounded quadratically in the size of the
representation. This improves significantly the best possible general upper bound for the unrestricted
class of DPGs which is exponential.

Our technical tool to obtain this bound is a careful analysis of the maximum overlap between different
subruns that cannot be avoided. This linear upper bound may not be tight, but a precise analysis of
overlap that cannot be avoided seems complicated. We have not even succeeded to design a DPG requiring
overlap 2. Furthermore, how can one efficiently recognize DPGs which possess non-overlapping runs and
can one find such runs fast? Theorem A and B imply that for certain DPGs the number of different runs
can be double exponential. Therefore, a brute-force search will be inefficient.

The upper bound has also been made constructive. For PAR-output DPGs we have described a fast
parallel algorithm to construct a low overlapping run and an appropriate schedule. Because of the possibly
exponential blowup of runs extensive parallelism may be necessary in order to achieve time efficiency. The
parallel algorithm does not require much synchronization between processors, thus these problems can
be solved in a highly distributive fashion. For a highly intractable optimization problem this algorithm
provides a fast and reasonably precise approximation — a linear approximation ratio compared to the
obvious exponential bound.

It remains an open problem to find other natural structural properties of DPGs and runs that may
yield better approximations for their minimum schedule.

References

[1] H. Galperin, A. Wigderson, Succinct Representations of Graphs, Information and Control, 56, 1983,
183-198.

[2] S. Ha, E. Lee, Compile-time Scheduling and Assignment of Data-flow Program Graphs with Data-
dependent Iteration, IEEE Trans. Computers 40, 1991, 1225-1238.

[3] H. Jung, L. Kirousis, P. Spirakis, Lower Bounds and Efficient Algorithms for Multiprocessor Schedul-
ing of DAGSs with Communication Delays, Infor. & Comp. 105, 1993, 132-158.

[4] A. Jakoby, M. Liskiewicz, R. Reischuk, Scheduling Dynamic Graphs, Proc. 16. Symposium on The-
oretical Aspects in Computer Science STACS’99, LNCS 1563, Springer-Verlag, 1999, 383-392; for a
complete version see TR A-00-02, Universitat Liibeck, 2000.

[5] A. Jakoby, M. Ligkiewicz, R. Reischuk, The Expressive Power and Complexity of Dynamic Pro-
cess Graphs, Proc. 26th International Workshop on Graph-Theoretic Concepts in Computer Science
WG2000, LNCS 1928, Springer-Verlag, 2000, 230-242;

[6] T. Lengauer, K. Wagner, The Correlation between the Complezities of the Nonhierarchical and Hier-
archical Versions of Graph Problems, J. CSS 44, 1992, 63-93.

[7] C. Papadimitriou, M. Yannakakis, A Note on Succinct Representations of Graphs, Information and
Control, 71, 1986, 181-185.

[8] C. Papadimitriou, M. Yannakakis, Towards an Architecture-Independent Analysis of Parallel Algo-
rithms, Proc. 20. STOC, 1988, 510-513, see also SIAM J. Comput. 19, 1990, 322-328.

23 ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

