Electronic Colloquium on Computational Complexity, Revision 01 of Report No. 039 (2001) b rar

On Uncertainty versus Size in Branching
Programs

S. Jukna !

Universitat Frankfurt, Institut fur Informatik, D-60054 Frankfurt, Germany
Institute of Mathematics and Informatics, LT-2600 Vilnius, Lithuania

Institute of Computer Science, Acad. of Sci., 18200 Prague 8, Czech Republic

Abstract

We propose an information-theoretic approach to proving lower bounds on the size
of branching programs. The argument is based on Kraft type inequalities for the
average amount of uncertainty about (or entropy of) a given input during the various
stages of computation. The uncertainty is measured by the average depth of so-called
‘splitting trees’ for sets of inputs reaching particular nodes of the program.

We first demonstrate the approach for read-once branching programs. Then we
introduce a strictly larger class of so-called ‘balanced’ branching programs and,
using the suggested approach, prove that some explicit Boolean functions cannot
be computed by balanced programs of polynomial size. These lower bounds are
new since some explicit functions, which are known to be hard for most previously
considered restricted classes of branching programs, can be easily computed by
balanced branching programs of polynomial size.

Key words: Computational complexity, branching programs, decision trees, lower
bounds, Kraft inequality, entropy
1991 MSC: 68Q17, 94C10, 94Q17

! Research partly supported by DFG grant SCHN 503/2-1.

2 Research supported by GA CR grant 201/98/0717 and partly (in the year 2000)
by the Ministry of Education of the Czech Republic — The research and development
project LNOOAO056. In the year 2002 supported by GA CR grant 201/02/1456.

4 March 2002

ISSN 1433-8092

1 Introduction

We consider the usual model of branching programs. Despite considerable
efforts, the best lower bound for the size of unrestricted branching programs
remains the almost quadratic lower bounds of order Q(n?/log®n) proved by
Nechiporuk in 1966 [9]. In order to learn more about the power of branching
programs, various restricted models were intensively studied. We do not intend
to survey the progress in this direction—a comprehensive exposition of the
known lower bound techniques for restricted models of branching programs
can be found in [11,12]. Here we only mention that the last impressing step
in this direction was recently made in [3,2,4] where the first super-polynomial
lower bounds were obtained for branching programs of linear length.

Still, the power of general branching programs is far from being understood,
and it is important to look more closely at the information flow during the
computations in such programs.

In this paper we describe an approach to proving lower bounds, which is based
on a more careful analysis of the ‘amount of uncertainty’ about particular
inputs during the computations, and can be roughly described as follows.

Let P be a branching program computing a given Boolean function f. We
stop each computation of P at a particular node. In this way we distribute
the inputs among the nodes of P: each class F' of this distribution corresponds
to one node v and consists of those inputs for which the computations were
stopped at that node. Then we use the sub-program of P rooted at v to
associate with F' its ‘splitting tree’—a decision tree 7', each leaf of which
is reached by exactly one input from F' (and, perhaps, several inputs from
outside F'). This tree computes the function f correctly on all inputs from
F', but may err on other inputs. We use the average depth of this tree to
measure the average ‘amount of uncertainty’ about the inputs from F' after
the computations on them have reached node v. The set of splitting trees for
all classes F' of the distribution gives us a ‘splitting forest’ in P. The most
interesting (and most difficult) step is to show, using combinatorial properties
of the function f, that the average depth of this forest cannot be too large.
Using Kraft type inequalities we can then conclude that there must be many
trees in the forest. Since each tree in this forest corresponds to its own node
in P, we need many nodes in P.

The general idea of the approach is expressed in Theorem 5 relating the size
of any branching program P to the average depth of the splitting trees for the
partitions of {0,1}" induced by P.

If P is a read-once branching program, then measuring the average depth of
its splitting forests is an easy task. Looking for larger classes of branching

programs for which this task is still tractable, we define in Section 4 one
general property of branching programs—their ‘degree of balance.” Roughly,
a branching program is ‘balanced’ if it is possible to distribute a large set of
inputs among its nodes so that every splitting tree T" in the obtained forest is
‘balanced enough’ in the sense that the average depth of 7" is not much larger
than the length of the shortest branch in 7. We then prove the following.

e Read-once branching programs are balanced (Section 4.1).

e Explicit functions (such as the characteristic functions of linear codes),
which are hard for most of previously considered restricted models of branch-
ing programs, can be easily computed by small balanced branching programs
(Section 4.1). This fact is not surprising—it just indicates that being ‘bal-
anced’ is a new type of restriction which allows a lot of freedom in com-
putations. In particular, for a function f to have a small balanced branch-
ing program it is enough that f can be computed by a small unrestricted
branching program and has some combinatorial singularity hidden inside;
this singularity can be hardwired into the program to make it balanced.

e We isolate a new combinatorial property of Boolean functions—the ‘strong
stability’ and, using the bounds on the average depth of splitting trees, we
prove that any function having this property requires balanced branching
programs of exponential size (Theorem 13). This criterion implies that some
explicit Boolean functions—the Clique function and a particular Pointer
function (which belongs to AC?)-—cannot be computed by balanced pro-
grams of polynomial size.

We note that the class of ‘balanced’ branching programs is only a temporary
model which reflects the level of proofs which we are able to do at this time.
The main motivation for studying various restricted computational models is
to build up techniques and intuition about inherent properties of functions
which make them hard to compute. In this paper we make one more step
in that direction: we propose a general information-theoretic technique for
proving lower bounds and, using this technique, identify a new combinatorial
property (the stability) of functions which make them hard to compute in a
‘balanced’ way.

2 Notation

We use standard notations concerning Boolean functions and branching pro-
grams. Given a set of bits I C [n] = {1,...,n}, an assignment on I is a
mapping a : I — {0, 1} which assigns the value a; € {0,1} to each bit i € I;
the bits in I are the specified bits of a, and their number |I| is denoted by
la|. The assignments on the whole set [n] are called input vectors (or simply
inputs).

A branching program (b.p.) is a directed acyclic graph P = (V, E) with one
source and two or more sinks (out-degree 0 nodes). The out-degree of each
(non-sink) node is 2. Every node is labeled by a variable z; and the two out-
going edges are labeled by tests z; = 0 and x; = 1. In this case we say that
a test on the i-th bit is made at that node. The sinks are labeled by 0 and
1. The size of a branching program P, size(P), is the number of its nodes.
Computation comp(a) on an input a € {0,1}" is the sequence of nodes of P
which starts in the source of P and at each node v labeled by z;, comp(a)
follows the out-going edge labeled by the test x; = a;. The label of the sink
reached by comp(a) is denoted by P(a). If the computation comp(a) contains
node v, then we also say that input a reaches this node. The program computes
a Boolean function f if P(a) = f(a) for every input a € {0,1}", i.e. if every
computation comp(a) reaches a sink labeled by f(a).

For technical reasons it will be (sometimes) convenient to assume that the
in-degree of every node in a b.p. P = (V, E) is at most 2. This can be easily
achieved by introducing at most |E| < 2 - |V| additional ‘dummy’ nodes of
out-degree 1 at which no tests are made. The size of the obtained b.p. is at
most three times the size of the original b.p.

A decision tree is a branching program, whose underlying graph is a tree. The
depth of a node is the length of (i.e. the number of edges in) the path from the
source to this node. A branch in a decision tree T is a path from the source
to a leaf. By dmin(T) and dmax(T) we denote, respectivelt, the minimum and
the maximum length of a branch in 7.

3 The approach

In this section we introduce the notions of a ‘canonical decision tree’ and a
‘splitting decision tree’, and describe their intuitive meaning. We will use these
concepts in Section 3.4 to state a general information-theoretic lower bound
on the size of branching programs.

Let P be a branching program computing some Boolean function f : {0,1}" —
{0,1}. Given input a € {0,1}", the program has at its source no knowledge
whether f(a) =0 or f(a) = 1. To collect this information, the program makes
tests on some bits of a. Suppose that the computation on a reaches some node
v. How can we express the amount of information about input a at this point?

Intuitively, this information consists of two parts. One part of information is
expressed by the fact that the computation on a has reached the node v. This
is a ‘static’ information and the program uses its underlying graph to encode
this information.

To capture the ‘dynamic’ information, let F' be some set of inputs reaching
that node v. Starting at this node, the program must determine the value of
f(a) knowing that a € F, i.e. knowing that the input has reached node v.
To achieve this goal, the program makes some further tests on the bits of a
in order to separate this input a from the remaining inputs b € F' for which
f(b) # f(a). This process (of collecting necessary information after reaching
the node v) can be represented by the so-called ‘canonical decision tree’.

3.1 Canonical decision trees

Let FF C {0,1}" be an arbitrary subset of inputs reaching node v of P. The
canonical decision tree Ty, for F' at v within P (or simply Ty if v is fixed) is
constructed as follows. Starting at node v, we unfold the program into a tree
rooted in v. In this tree we perform all computations starting from v which are
given by the inputs from F'. After that we do the following transformations:
we delete all the nodes (together with the corresponding subtrees) which are
not reached by any of the inputs from F', and contract all the non-branching
edges. That is, if (u, us) is the only edge leaving node u;, then remove this
edge and identify node us with u;.

During the deletion operation we remove all those tests which were not used
to classify the inputs from F' (these tests might be used by the program to
classify another set of inputs). The contracted edges (u1,us) correspond to
tests which were not necessary for inputs in F': the computations on all inputs
from F' reaching node u; go to node us. Thus the obtained decision tree 7w
contains only those tests which are essential to classify the inputs from F'. Note
that the decision tree T is guaranteed to compute correctly the function only
on the set of inputs F—it may be that Tr(b) # f(b) for some inputs b & F.

Every input a € F follows some branch p, in Tx (a path from the root to
a leaf). The length |p,| of this branch (i.e. the number of nodes minus 1)
corresponds to the ‘amount of uncertainty’ about (or the ‘entropy’ of) input
a after the computation on this input has reached the node v—the program
must test all these bits to determine value f(a).

The length of branches in T corresponds to the ‘dynamic’ part of information
about the inputs from F at node v. To capture also the first ‘static’ part of
information (the fact that the inputs from F have reached that node) we
extend tree Tr to a ‘splitting tree’ for F'.

3.2 Splitting trees

Let p be a branch in 7% and let F, be the set of all inputs from F' the
computations on which follow this branch. If |F,| = 1, i.e., if only one input
from F' follows branch p, then do nothing. Otherwise, we attach to the leaf of
p a decision tree which tests some of the remaining (not tested along p) bits
until each leaf of the resulting extended tree is reached by exactly one input
from F'. Intuitively, the number of tests made in the subtree attached to p
gives us information about how many tests are necessary to distinguish each
input a € F, from the remaining inputs in Fj,.

Doing this for all leaves of T we obtain a decision tree 7" with the property
that every leaf is reachable by exactly one input from F'. The leaf reached by
an input a € F is labeled by f(a); hence, T is a standard decision tree which
computes f correctly on all inputs from F' (although it may err on other
inputs) and has an additional property that each leaf is reached by exactly
one input from F. We call such a tree a splitting tree for F' at node v within
program P.

Note that (unlike the canonical tree Tp) splitting trees are not uniquely
determined—there may be several ways to extend the canonical tree Tr to
a splitting tree. We are interested in the minimal possible average depth of
these trees: if the average depth is small then, intuitively, the average amount
of information about the inputs from F' at node v is large. Since the average
depth of each binary tree is at least the logarithm of the number of leaves,
and since every splitting tree for F' has precisely |F'| leaves, this implies that
the set F' cannot be large, and hence, we need many nodes to classify all the
inputs from {0, 1}".

Remark 1 The splitting trees for F' at a node v capture the information
about all inputs from F' after the computations on them reach v. It is worth
to mention that (as demonstrated in [8]) in some situations the language of so-
called ‘windows’, used in [13,7], may be more appropriate: this language allows
one to express the amount of information at node v of individual inputs from
F. On the other hand, the goal of this paper is to present the main idea of the
approach itself. In this respect, the use of a well-known concept (like decision
trees) seems to be more justified.

3.8 Awerage depth of trees and forests

To state our general lower bound for branching programs we need one fact
about the average depth of (binary) trees and forests. Throughout this section,
by a binary tree we will mean an (oriented) tree with a root such that each of

its non-leaf nodes has out-degree 1 or 2.

The total depth of a tree T, D(T), is the sum of the depths of its leaves, that is,
D(T) = 3, |p| where the sum is over all branches p in T and |p| is the length
of p. The average depth d..(T) of a tree is its total depth D(T') divided by
the number |T'| of the branches (leaves) in it.

The following well-known fact gives a lower bound on the average depth of
binary trees in terms of the number of leaves in them.

Proposition 2 FEvery binary tree with N leaves has average depth at least
log, N.

This fact can be proved by induction on N using the convexity of the func-
tion f(x) = zlogyx (see, e.g. [1], pp. 92-93). It can be also derived from
Kraft’s inequality saying that for every binary tree with branches p, ..., pn,,
Yy 2-IPil < 1. One can prove it also directly by showing that the mini-
mum average depth is achieved by trees whose branches have almost the same
length.

PROOF. Given an arbitrary binary tree with N leaves, we first contract
all out-degree 1 nodes. The resulting tree is ‘truly’ binary and its average
depth can only decrease. After that we perform the following transformation.
Take a leaf u of maximal depth d(u), and a leaf v of minimal depth d(v).
If d(u) > d(v) + 2, then rearrange the tree in such a way that the leaf u
and its sibling become children of v; the father of u becomes a leaf. After
this transformation the total number N of leaves remains the same and the
average depth can only decrease. Proceeding in this way we will obtain a tree
T with the same number N of leaves whose average depth is at most that of
the original tree, and the difference between the maximal and the minimal
length of its branches does not exceed 1. Hence, for some ¢, the depth of each
leaf is equal to ¢ or to ¢ — 1. Since all non-leaves in 7" have out-degree 2, we
have that ¢t = [log, N| and N = 2 — 2 where 0 < z < 2'"! is the number
of leaves of depth t — 1. Since ¢ = log, (/N + z) and the remaining leaves have
depth t, the average depth is

t(N — x) (t—l):r:t

A
dave(T) = N TN N

= log,(N +) — - > log, N,

where the last inequality holds because 0 < z/N < 1 and 1+ y > 2¥ for all
y€l0,1]. O

We will need a similar fact for forests.

A forest is a finite collection of trees. The total depth of a forest F is the sum
D(F) = Y per D(T) of the total depths of its trees. The average depth daye(F)
of a forest F is its total depth D(F) divided by the total number > rcx |T'| of
branches in the trees in F.

Lemma 3 Let F be a forest consisting of r binary trees, and N = > pcr|T)|
the total number of branches in them. Then

logy (N/7) < daye(F) < max dave(T).

PROOF. The upper bound follows by an easy induction on the number
of trees in the forest, because for any real numbers, x1/y; > x9/ys implies

z1/yh > (21 + 22) /(Y1 + ¥2).

Let x; := |T;| be the number of branches in the i-th tree; N := Y7, x; and
xo := N/r. Consider a straight line g(z) = ax + b which is a tangent of the
function f(z) := x - log, x at the point (zg, f(z¢)). Since f is convex and g is
its tangent, we have

Xr:f(ac,) > zr:g(x,) =raxg+rb=r-g(xe) =7r- f(xo) =7 f(N/r).

=1 =1

Since, by Proposition 2, D(T;) > |T;| - log, |T;| = f(x;) for each i = 1,...,7,
the desired lower bound follows:

duve(F) = éD(T»/N > ilfm)/zv > (r/N) - F(N/r) = logy (N/7).

O

Note that a somewhat weaker lower bound day.(F) > log,(N/r) — 1 can be
derived more directly as follows. Let ¢t = [log, r|; hence, r = 2" — z for some
integer 0 < x < 2!, Take a binary tree T” with r leaves, first = of which have
depth £ — 1 and the remaining » — x have depth ¢. Attach the i-th tree to the
i-th leaf of 7". The resulting tree 7 has N leaves, and daye(7") < daye(F) + t.
Since daye(T) > logy N, we obtain daye(F) > dave(T) —t = logy N — [logy 7| >
log,(N/r) — 1.

3.4 Average entropy of partitions and the program size

Lemma 3 holds for arbitrary forests of binary trees. In the rest of this paper
we fix our attention to forests consisting of special decision trees— splitting
trees.’

A splitting tree for a set F' C {0, 1}" of inputs is a decision tree where each leaf
is reached by exactly one input from F' (but may be reached by several inputs
outside F'). The entropy h(F') of F is the minimum average depth d,y.(7") of
a splitting tree T' for F'.

Given a branching program P and a set A C {0, 1}" of inputs, we can define
a partition A = Fy U---U F, of A into r < size(P) mutually disjoint classes
Fi, ..., F. by stopping the computation comp(a) on each input a € A at a
particular node (or edge); we call such a process a distribution of A within
P. A splitting forest for such a distribution is a forest F = {T1,...,T,},
where the i-th tree T; is a splitting tree for the i-th class F;. The entropy of
the distribution is the maximal entropy of its classes, that is, the maximum of
h(F}), ..., h(F;). The average entropy of the distribution of A is the minimum
average depth day.(F) of a splitting forest F for this distribution. Taking the
minimum over all possible distributions of A within P we obtain the entropy
H(A, P) and the average entropy h(A, P) of A within P.

Remark 4 By the second inequality in Lemma 3, h(A, P) < H(A, P). More-
over, if we take an arbitrary distribution of A within P and take a class F' of
this distribution with the largest entropy h(F'), then H(A, P) < h(F).

Theorem 5 Let P be a branching program and A C {0,1}" a set of inputs.
Then size(P) > |A| -2~ MAP) > |A| . 2~ HAP),

PROOF. Fix a distribution of A within P of average entropy h(A, P), and let
F be the corresponding splitting forest; hence, du.(F) = h(A, P). Since the
classes of the distribution are mutually disjoint and each tree in F is a splitting
tree for the corresponding class, the total number N of branches in F is equal
to the (total) number |A| of inputs in A. Hence, if F consists of r trees then,
by Lemma 3 and Remark 4, logr > log, N — due(F) = log, |A| — h(A, P) >
log, |[A| — H(A, P). Since r < size(P), we are done. O

Theorem 5 suggests the following way to show that no branching program
P, computing a given function f, can be small: try to distribute a large set
of inputs among the nodes (or edges) of P and—using the properties of the
distribution together with the properties of the computed function f and,
apparently, the structural properties of the program itself-—show that the
average entropy of the distribution cannot be very large. To demonstrate the
idea, let us consider the following two simple examples (the third, less trivial
example is given in [8]).

Example 6 Recall that a branching program is read-once (1-b.p.) if along ev-
ery path every bit is tested at most once. A Boolean function f is m-mized if

for any two assignments a # b on a subset I of |I| = m bits there is an assign-
ment ¢ on the remaining bits such that f(a,c) # f(b,c). It is well known (see,
e.g., [12], Lemma 6.2.4) that every 1-b.p. computing an m-mixed function has
size exponential in m, and most lower bounds for 1-b.p.’s were obtained using
this criterion. A similar lower bound can be also derived using the approach
described above. Let P be a 1-b.p. computing an m-mixed Boolean function
f- As mentioned in Section 2, we can assume (at the cost of increasing the
size of a b.p. by a factor of 3) that the in-degree of every node in P is at most
2. Our goal is to show that size(P) > 2™~

To show this, let us use the following ‘first meeting’ distribution of inputs from
A = {0,1}" among the nodes of P’: stop the computation on a € A at the
first node v where this computation meets the computation on an input that
followed a different path from the source and which is still not mapped to a
node before v.

Let F' be a class of this distribution with the largest entropy h(F’). Since
h(F) > H(A, P) and |A| = 2", Theorem 5 yields size(P) > 2" ") and it is
enough to show that h(F) < n —m + 1. For this, it is enough to construct a
splitting tree T for F' of average depth duye(T) <n —m+ 1.

Since each node of the program P has in-degree at most 2, the distribution rule
ensures that every input from F' follows one of two paths from the source to
v (if there would be more than two such paths, then some two of them would
be stopped before the node v). Let a and b be the corresponding (to these
paths) partial assignments. We construct a splitting tree T for F' as follows.
Let T be the canonical tree of F' and ¢ be a bit on which both a and b are
specified and a; # b;. By making a test on this bit at a leaf of Tr we obtain
a tree T" with the property that each of its leaves is reached by extensions of
only one of the two inputs a and b. If a leaf of T” is reached by more than one
extension of a (or b) then we can split these extensions by making some further
tests. Since these extensions have the same values on all |a| bits specified in
a (resp., on all |b| bits specified in b), we have daye(T) < dmax(T) < n—k+1
where k£ := min{]al, |b|}. Hence, it remains to show that & > m, i.e. that the
computations on inputs from F' could not be stopped ‘too early.” To show this,
assume that £ = |a| < m — 1, and let I, and I, be the sets of specified bits of
a and b, respectively. If I, = I, = I then (due to the read-once property) we
would have that f(a,c) = f(b, c) for all inputs ¢ : I — {0, 1}, a contradiction
with the mixedness of f. Hence, the sets I, and I, must be different and, since
|I,| < |I,], there must be a bit ¢ such that ¢ € I, but i & I,. Since the program
is read-once, 7 € I, implies that this bit cannot be tested after the node v. But
then f(a,0,¢) = f(a,1,¢) for all ¢ : I, U{i} — {0,1}, a contradiction with
the mixedness of f.

Example 7 Let f be a Boolean function in n = st variables which, given

10

an s x t 0-1 matrix a = {a,;}, outputs 1 if and only if matrix a contains a
monochromatic row, i.e., row ¢ such that a;; = --- = a;;. Let P = (V, E) be an
arbitrary branching program computing f. Intuitively, in order to (correctly)
accept a matrix a € f71(1), at some moment of the computation comp(a) on
this matrix the program must ‘know’ all ¢ bits of some monochromatic row.
And indeed, it is easy to show that the entropy H(A, P) of A = f~1(1) within
the program P cannot exceed n — t.

To see this, observe that, for every input a € A, all t bits of at least one of
its monochromatic rows must be tested during comp(a), since otherwise the
program would accept some input from f~1(0). This suggests the following
distribution of inputs from A among the edges of P: stop the computation
comp(a) on an input a € A at the edge e € E, where the last test on a
monochromatic row of a is done. Let w.l.o.g. z; ; = 1 be the label of e, and
let I C A be the set of inputs stopped at this edge. Since for every input
from F' this was the last test on its monochromatic row and since this test
was a 1-test, the i-th row of all inputs from F' is an all-1 row. That is, all the
inputs from F' have the same values on all ¢ bits of this row, implying that the
maximal depth of any splitting tree for F' does not exceed n — t. Since this
holds for every class F of the distribution, we obtain H (A4, P) < n —t.

Note that this upper bound on the average entropy is too weak to yield a non-
trivial lower bound on the program size, just because the set A of distributed
inputs is too small, |A| < 25206~ = 252"~* and the resulting lower bound
|A| - 22=™ on the number of edges in P does not exceed 2s = 2n/t. This is not
strange, because the function f has a trivial b.p. of size O(n). The purpose of
this example was only to demonstrate that, using some special properties of
the function, it is possible to say something about the average entropy even
in the case of unrestricted branching programs.

4 Balanced branching programs

We have seen that (at least in some cases) bounding the average entropy of
distributions within 1-b.p.’s is an easy task. In this section we introduce one,
more general class of branching programs—so-called ‘balanced’ programs—
where this task is still tractable. Roughly, a program P is ‘balanced’ if some
large set A of inputs can be distributed among the nodes so that each class F’
of this distribution has a splitting tree 7" which is ‘balanced enough,” has at
least one ‘redundant test’ and computes the function correctly on all inputs
from F.

It may happen that all splitting trees 1" for a class F' are very disbalanced in
the sense that some of their branches may be much shorter than the average

11

depth dave(7). Intuitively, this means that, for different inputs a € F, the
program uses ‘very different ideas,” either to compute the value of f on inputs
from F starting from node v (if the canonical tree T is already disbalanced)
or to reach the node v on these inputs (if the disbalance occurs when trying
to split the inputs reaching a leaf of Tr). To make our life easier we can try to
forbid this and require that the disbalance of 7" should not be too large. We
can also require that 7" should compute the function f correctly on all inputs
from F. These two conditions alone do not restrict the computational power
of the branching programs seriously, so we introduce the third requirement
that T should contain a so-called ‘redundant test.” Let T be a decision tree.
We say that:

o T is A-balanced if dye(T) < A + dpin(T);

e T respects function f on a set of inputs F' if T(a) = f(a) for all a € F
(especially, if P computes f and T is a splitting tree for F at v within
program P, then T respects f on F);

e abit ¢ is redundant for T if every branch of T has a test on z;, and T'(a;_0) =
T(a;—1) for every input a € {0,1}" reaching this test from the root of T
(a;—¢ denotes the input a with its i-th bit replaced by ¢).

Definition 8 The branching program P is A-balanced if there is a set A C
{0,1}™ of |A| > 22 inputs and a distribution of the inputs from A among
the nodes of P such that for each class F, |F| > 2, of this distribution there
is a splitting tree T which is A-balanced, has a redundant bit, and respects the
function computed by P on all inputs from F'.

Let us make several remarks concerning this definition.

First, we use parameter A in two roles: it is an upper bound for the allowed
disbalance of trees and it is a lower bound for the required number of dis-
tributed inputs. We use one parameter for the ease of presentation, but the
reader should keep in mind its twofold role.

Second, note that the requirement for 7' to respect function f alone is not
a restriction: by appropriate labeling of the leaves, every splitting tree can
be forced to respect any function; this requirement turns into a real restric-
tion only in conjunction with the requirement that at least one bit must be
redundant for 7.

Third, we do not require that the average depth of splitting trees for the
classes of distribution must be small (by Theorem 5, this would immediately
imply that the program must be large)—we only require that the lengths of
individual branches in these trees should not be much smaller than the average
length.

In the next section we will show that, at the cost of a small increase in size,

12

every read-once branching program (1-b.p.) can be made A-balanced with
A = 0, and that explicit functions, which are hard for restricted models of
branching programs considered so far, can be easily computed by A-balanced
branching programs with constant A.

4.1 The power of balanced programs

Theorem 9 For every 1-b.p. of size L there is a 1-b.p. of size O(nL) which
computes the same function and is A-balanced with A = 0.

PROOF. The argument is similar to that used in Example 6. Let P be a
1-b.p. of size L. The program is uniform if, for every node v, along every path
from the source to v one and the same set of bits is tested, and if all n bits
are tested along every path from the source to a sink. As observed in [10],
the uniformity is actually not a serious restriction. Namely, by adding some
‘dummy tests’ (i.e. tests where both out-going edges go to the same node),
every 1-b.p. can be made uniform; the size increases by a factor of at most
n + 1. By introducing at most 2L additional ‘dummy’ nodes of out-degree 1
(at which no tests are made) we can easily transform the 1-b.p. into a 1-b.p.
with the additional property that every node has in-degree at most 2. Our
goal is to show that the resulting program is A-balanced with A = 0.

To show this, let us distribute the set A = {0,1}" of all inputs by the ‘first
meeting’ rule (used in Example 6): stop the computation on a € A at the
first node v where this computation meets the computation on an input that
followed a different path from the source and which is still not mapped to a
node before v. (The input which is not distributed according this rule ends as
a unique input in a sink.)

Let F' be the set of |F'| > 2 inputs distributed at some node v. Our goal is
to show that there is a splitting tree T" for F' satisfying all three conditions of
Definition 8: is 0-balanced, has a redundant bit, and respects the function f
computed by P on all inputs from F.

Since the program is uniform, all the computations from the source to v test
the same set I of bits and, since the program is read-once, none of these bits
is re-tested on any path starting at v. Hence, all the branches of the canonical
tree Tp for F' at v within program P have the same length n — |I|. Assume
w.l.o.g. that I = {1,...,k}. Then the set F has the form F = B x {0,1}"*
where B C {0,1}*. Moreover, the stopping rule, together with the fact that
all nodes have in-degree at most 2, implies that B consists of precisely two
partial inputs a # b € {0,1}* (for otherwise the computations on some two

13

of them would be stopped before the node v). Let i € I be any bit for which

Each leaf of T is reached by two inputs from F' which differ on 7. Hence,
we can extend Tr to a splitting tree for F' by making at each of its leaves u
a test on the variable x; and labeling the two new leaves by the label of w.
Since Tr(a) = f(a) for all inputs @ € F, the resulting splitting tree 1" respects
function f and bit ¢ is redundant for 7". Moreover, T" is 0-balanced since all
branches of 7" have the same length n — k+ 1. O

In general, for a branching program to be balanced it is sufficient that it has
some ‘balanced enough’ fragment—a node (or a set of nodes) at which a large
set of inputs is classified in a balanced enough manner.

Let f be a Boolean function in n variables. A A-singularity of f is a subset
F C {0,1}" of |[F| > 2" 2 inputs such that there exists a A-balanced splitting
tree T" for I’ which respects f on F' and has a redundant bit.

Proposition 10 Let f be a function which can be computed by an unrestricted
b.p. of size L. If f has a A-singularity whose characteristic function can be
computed by an unrestricted b.p. of size M, then f can be computed by a
A-balanced branching program of size 2L + M.

PROOF. Let F be a A-singularity of f, and g the characteristic function of
F. Let Py and P, be branching programs computing f and g. To obtain the
desired program we connect two identical copies of Py with both sinks of P.
Since all inputs from F' reach the 1-sink v of P, we can distribute the whole
set F' to v. Since F' is a A-singularity for f, this distribution satisfies all three
conditions of Definition 8. O

By Proposition 10, every Boolean function f can be computed by a A-balanced
b.p. of size O(L), where L is the size of an unrestricted b.p. for f and A is
the length of the shortest minterm or maxterm of f. Thus, presence of a short
minterm or maxterm gives us a singularity which makes the function easy to
compute by balanced b.p. Another type of singularity is given by the parity
function. Assume, for example, that our function f(z1,...,z,) is constant on
a set I of all inputs whose first £ (2 < k£ < n) bits contain an odd number
of 1’s; hence, |F| > 2"~!. It is easy to see that F' is a A-singularity of f with
A = 1. Indeed, let T" be a decision tree, each branch of which makes tests on
all the variables z1,...,x,, except of z; (for each input in F' after the tests
on first £ — 1 bits, the value of z; is pre-determined). Label all leaves of T’
by the corresponding constant (the value of f on F). It is clear that T is a

14

0-balanced splitting tree for F', respects the function f on F', and every bit
1 # k is redundant for 7T'.

In a similar vein, Proposition 10 can be used to show that explicit Boolean
functions, which are known to be hard for different restricted models of branch-
ing programs, can be computed by small balanced programs. Here we restrict
ourselves by two important examples.

Example 11 It is known that for some explicit linear codes their charac-
teristic functions cannot be computed in polynomial size by quite powerful
restricted models of branching programs, including syntactic read-k-times de-
terministic ([10]) and non-deterministic ([5]) branching programs where along
every path (be it consistent or not) no variable can be tested more than k
times as long as £ = o(log,n), and so-called (1,4+s)-b.p. ([6]) where along
every consistent path at most s bits can be tested more than once, as long as
s = o(n/logy n).

On the other hand, these functions are easy to compute by balanced programs.
To see this, let C C {0,1}" be a linear code (i.e. a linear subspace of GF(2)"),
and let fo(x) be its characteristic function, i.e. fo(z) =1 iff x € C. We may
assume that C' is nontrivial, i.e. has minimal Hamming distance at least 2.
Then the parity-check matrix of C' contains a row b with at least two 1’s.
Let F be the set of all inputs x such that (x,b) = 1. Then f¢(z) = 0 for all
x € F. Since the scalar product (z, b) is just a parity function, the observation
above implies that set F'is a A-singularity of f with A = 1. Since each parity
function has an obvious uniform 1-b.p. of linear size and the function f¢ itself
can be computed by an unrestricted b.p. of size O(n?), Proposition 10 implies
that fc can be computed by a A-balanced b.p. of size O(n?) with A = 1.

Example 12 Let us consider function f(zy,...,z,), which computes the par-
ity of all pairs (4,) such that i + j < n, and z; - ; - 2;1; = 1. Ajtai [2] has
recently proved that this function is hard for branching programs of linear
length. On the other hand, this function can be computed by a A-balanced
program of size O(n?) with A = 2.

To show that f has a desired singularity, let us associate with each input
x = (1,...,%,) the parity S(z) of the number of all 1 < 4 < n/2 for which
T; = Tn_; = 1, and the parity S'(x) of all such ¢, except for : = 1. Let F' be the
set of all inputs = for which S(z) = 0. Let 7" be a decision tree testing the bits
Zo,%3,-..,Tn_o. Bach leaf of this tree is reached either by two inputs from F
with z1 -z, = 1 (if §'(x) = 1), or by six inputs from F with z; - 2,1 = 0 (if
S'(xz) = 0); hence, |F| > 2"~2. In the first case we make the test on z, whereas
in the second case we first make the test on z; followed by the test on z,, (if
x1 = 1) or the test on z; and on z,_; followed by the tests on z,, (if z; = 0).
The obtained tree T is a splitting tree for F'. Since all its branches have length

15

at least n — 2, the tree is A-balanced with A = 2. Moreover, for each (of the
two) inputs z € F' reaching a last test on z,, we have S(z) = 0. This means
that, independent of the outcome of this last test, the pairs summing up to n
cannot change the value of f, and hence, the last bit n is redundant for 7.

Similar upper bounds for other explicit functions can be found in [13,14]; here
we only mention that these bounds hold even for so-called ‘gentle’ programs—
a very special type of balanced branching programs.

4.2 The weakness of balanced programs

What functions are hard for balanced programs? We have seen that functions
which were hard for previous restricted models of branching program can be
easily computed in a balanced manner. This is not surprising because (as
we have seen) for the program to be balanced the presence of any ‘balanced
enough’ singularity is sufficient. This fact just means that being balanced is a
new property of b.p., and that combinatorial properties of Boolean functions,
which make them hard for known restricted models of branching programs,
do not work for balanced branching programs.

In this section we introduce one combinatorial property of Boolean functions
and, using the proposed general frame (Theorem 5), prove that these functions
are hard to compute in a balanced manner.

The property itself is quite natural: we require that for every bit ¢ there is an
input ¢ € {0,1}" such that we cannot change the value f(c) by flipping some
number of bits, unless we flip the i-th bit of ¢ itself. To be more precise, recall
that the Hamming distance between two inputs a and b is the number of bits
1 such that a; # b;.

A Boolean function f is strongly k-stable if for every bit ¢ there is an input
c € {0,1}" and a constant € € {0,1} such that f(c') = ¢, @ e for every input

/

d=(d,...,d,) of the Hamming distance at most k£ from c¢. We call such ¢ a

witness for bit 1.

Theorem 13 Let f be a Boolean function in n variables. If f 1is strongly
k-stable, then any A-balanced branching program for f has size at least 28=22.

PROOF. Let P be a branching program computing f, and assume that it is
A-balanced. Then, by Definition 8, there is a set A C {0,1}" of |A4| > 2n~4
inputs and a distribution of these inputs among some nodes of P such that
for each class F', |F| > 2, of the distribution there is a splitting tree 7" which
is A-balanced, has a redundant bit, and respects the function f on all inputs

16

from F. Let F be a class of this distribution with the largest entropy h(F),
and T the corresponding splitting tree for F'. Since daye(T) = h(F) > H(A, P)
(see Remark 4), Theorem 5 yields

size(P) > |A| - 27 HAP) > gn=A—dave(T)

Since T is A-balanced, we have daye(T) < A+ dmin(T), and it remains to show
that T has at least one branch of length n — k£ at most, i.e.,

din(T) < 0 — k.

To show this, let ¢ be a bit which is redundant for 7. Let ¢ € {0,1}" be
a witness for ¢ and e be the corresponding constant. Assume w..o.g. that
¢; = 0. Since 7 is a redundant bit of 7', there is a test on ¢ on the branch
of T followed by c. From the redundancy of this test on 7 it follows that
T(ci1) = T(c). Let a,b be two inputs from F which induce two branches
of T followed by inputs ¢, ¢;1; hence, T'(a) = T(c) and T(b) = T(cim1)-
Since a,b € F' and T respects function f on all the inputs in F, we obtain
fla) = T(a) = T(c) = T(ci51) = T(b) = f(b). On the other hand, if both
branches in question were longer than n — k, then both a, b would differ from ¢
on k bits at most, implying that f(a) = a;® € # b; ® e = f(b), a contradiction
to the strong stability of f. Hence, dmin(T) <n—k. O

4.8 FExplicit stable functions

An s-clique is a complete graph on s vertices. The clique function Clique,, ; has

(’21) Boolean variables, encoding the edges of an n-vertex graph, and outputs
1 iff this graph contains at least one s-clique.

Corollary 14 If A < /n/3 then every A-balanced branching program for
Clique,, s has size exponential in /n.

PROOF. By Theorem 13, it is enough to show that, for every 2 < s < /n,
the function Clique,, , is strongly k-stable for k := s — 2. That is, we have to
show that for every edge e there is a graph G = (V, E) such that every graph
G' = (V, E') obtained from G by adding/deleting at most & edges, contains
an s-clique if and only if e € E'.

Take an edge e = {u, v}. Since k(k+1) < n—2, we can choose k+ 1 mutually
disjoint k-cliques Uy, ..., Uxyq1 on V \ {u,v}. Join all the vertices in each of
these cliques with both ends of e. We claim that the obtained graph G = (V, E)
has the desired property.

17

To show this, let G’ = (V, E') be a graph obtained from G by adding/deleting
k edges at most. If e € E’ then G’ contains at least one of the s-cliques on
{u,v}UU;, since we have to remove at least £+1 edges from E\{e} to destroy
all these cliques. If e ¢ E’ then G’ has no s-cliques, because graph G’ lacks
edge e and has at most £ — 1 new edges. Indeed, the only possibility to get
such an s-clique is to take some vertex w ¢ {u,v} and connect it with one
of the ends u or v of edge e and with all the vertices in some k-clique Us;.
This requires at least k£ + 1 new edges. (The alternative would be to take two
different vertices w; and ws and connect them with some of U;; this would
require 2k + 1 new edges). O

The Clique function is NP-complete. Below we describe explicitly a strongly
stable function which belongs to ACP.

Let n =t -r? where t = [log, n]. Arrange the n variables X = {z¢,..., %, 1}
into a ¢t xr? matrix; split the v-th row (1 < v < ¢) into r blocks B,1, Ba, . .., By,
of size r each, and let ¢, be the OR of ANDs of variables in these blocks. The
pointer function m(X) is defined by: 7,(X) = z; where j = >/ _;£,2"7! is the
number whose (reversed) binary code is (1, ..., &t).

The function 7, (X) has a maxterm of length ¢-r: just assign 0 to all r variables
in the first block Bj;, and assign 0 to one variable in each of the blocks
in the remaining rows; after this assignment, m,(X) = z; with j € {0,1},
and hence, m,(X) = 0, independent of the values of the remaining (non-
assigned) variables. Thus, by the observation made in Section 4.1, 7,(X) can
be computed by a A-balanced program of size O(n?) with A = (nlog,n)"/2.
On the other hand, we have the following lower bound:

Corollary 15 If A < (n/log,n)"? /3 then any A-balanced branching pro-
gram for m,(X) has size exponential in (n/log,n)/2.

PROOF. By Theorem 13, it is enough to show that function 7, (X) is strongly
(r — 1)-stable.

Take a bit iy, and let (g1, ..., &;) be the binary code of iy, i.e., i = 3\ _, 5,2V L.
Our goal is to define an input ¢ = (co, - . -, ¢,—1) which is a witness for the bit
19. Recalling that the inputs are arranged into ¢ rows, we define the input
¢ = (co,...,cn-1) as follows: set ¢c; = ¢, where v is the number of the row

containing the variable z;. Let now ¢ = (cf,...,c,_;) be an arbitrary input

» n—1
of Hamming distance at most » — 1 from c. Let Y = {x; : ¢, # ¢;}. Since |Y|
is strictly less than r, we have that in every row at least one block is disjoint
from Y, and each block contains at least one variable outside the set Y. So,

independent of the actual values of the variables in Y, the values of ¢1,...,¢;

18

remain the same, implying that both inputs ¢ and ¢’ point to the same variable
x;,. Hence m,(X) is strongly (r — 1)-stable. 0O

An interesting aspect of the pointer function 7,(X) is that it can be computed
by a small (1, +s)-b.p. even for s = 1. On the other hand, we have shown in
Section 4.1 that there are explicit functions (the characteristic functions of
linear codes) which require (1,+s)-b.p. of super-polynomial size as long as
s = o(n/logyn), but can be computed by small (strongly) balanced branch-
ing programs. This shows that the classes of balanced branching programs
and (1,+s)-b.p. are incomparable in their power. This also shows that the
‘redundant bit’ condition in the definition of balanced programs is too strong.
The reason is that we require one bit to be redundant for all branches in a
tree. It would be interesting to prove lower bounds for balanced b.p. with this
condition relaxed into something like: there is a set I of |I| < k bits such
that every branch of 7" has a test on x; for at least one i € I and for every
input a € {0,1}" reaching this test from the root of T, T(a;—0) = T(a;1)-
It is easy to show (see, e.g., [14]) that such a relaxation leads to a properly
stronger class of b.p. even for |I| = 2: the pointer function 7, (X) can then be
computed by a balanced b.p. of size O(n?).

The most interesting open problem certainly is to find other (less artificial)
models of branching programs where bounding the average entropy of distri-
butions is still tractable.

Acknowledgements

We are indebted to anonymous referees of this paper for many valuable re-
marks.

References

[1] A. Aho, J. Hopcroft, and J. Ullman The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1972.

[2] M. Ajtai, A non-linear time lower bound for Boolean branching programs, in:
Proc. of 40-th IEEE Annual Symp. on Foundations of Computer Science, 1999,
pp. 60-70.

[3] P. W. Beame, M. Saks, and J. S. Thathachar, Time-space trade-offs for
branching programs, in: Proc. of 39-th IEEE Annual Symp. on Foundations
of Computer Science, 1998, pp. 254-263.

19

[4] P. Beame, M. Saks, X. Sun, and E. Vee, Super-linear time-space tradeoff lower
bounds for randomized computation, in: Proc. of 41-st IEEE Annual Symp. on
Foundations of Computer Science, 2000, pp. 169-179.

[6] S. Jukna, A note on read-k-times branching programs, RAIRO Theoretical
Informatics and Applications, 29:1 (1995) 75-83.

[6] S.Jukna and A. A Razborov, Neither reading few bits twice nor reading illegally
helps much, Discrete Appl. Math. 85:3 (1998) 223-238.

[7] S. Jukna and S. Zak, On branching programs with bounded uncertainty, in:
Proc. of ICALP’98, Lect. Notes in Comput. Sci., vol. 1443, Springer, 1998,
pp- 259-270.

[8] S.Jukna and S. Z&k, Some notes on the information flow in read-once branching
programs, in: Proc. of 27-th Annual Conf. on Current Trends in Theory and
Practice of Informatics, Lect. Notes in Comput. Sci., vol. 1963, Springer, 2000,
pp. 356-364.

[9] E.I. Nechiporuk, On a Boolean function, Soviet Mathematics Doklady, 7:4
(1966) 999-1000.

[10] E.A. Okolnishnikova, Lower bounds for branching programs computing
characteristic functions of binary codes, Metody diskretnogo analiza, 51 (1991)
61-83 (in Russian).

[11] A.A. Razborov, Lower bounds for deterministic and nondeterministic branching
programs, in: Proc. of FCT’91, Lect. Notes in Comput. Sci., vol. 529, Springer,
1991, pp. 47-60.

[12] I. Wegener, Branching programs and Binary Decision Diagrams: Theory and
Applications. STAM Series in Discrete Mathematics and Applications, 2000.

[13] S. Z4k, A subexponential lower bound for branching programs restricted with
regard to some semantic aspects, Electronic Colloquium on Computational
Complexity, Report Nr. 50, 1997.

[14] S. Z4k, Upper bounds for gentle branching programs, Tech. Rep. Nr. 788, Inst.
of Comput. Sci., Czech Acad. of Sci. 1999.

20

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

