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Abstract

We study a model of computation where executing a program on an input corresponds to calculating a product in
a finite monoid. We show that in this model, the subsets of

�
0 � 1 � n that can be recognized by nilpotent groups have

exponential cardinality.

Translator’s Note: This is a translation of the article “Sur les langages reconnus par des groupes nilpotents,” C. R. Acad.
Sci. Paris, t. 306, Série I, p. 93-95, 1988. It was translated in 1998 with permission from the authors by Alexander and
Sarah Russell.

We will consider here a model of computation, recently formalized in [BT87a], that permits the definition of subsets
of � 0 � 1 � n by performing operations in a finite monoid M.

Let � n �	�
� 1 ������� n � . Elements of � n �	� M � 0 � 1 � we shall call instructions. A program (on M) is a finite sequence
P � v1 ���� vl of instructions. Such a program defines a function from � 0 � 1 � n to M: for all w1 ��� wn � � 0 � 1 � n, P � w ���
v1 � w ������ vl � w � , where � i � f ��� w ��� f � wi � . We shall say that a subset L ��� 0 � 1 � n is recognizable by M if there exists a
program P and a subset F of M such that L � P � 1 � F � .

This notion of recognition generalizes that of finite automata; it was introduced in connection with the study
Boolean circuits and offers a purely algebraic perspective on certain types of circuits of interest to the community. We
shall refer the reader to [Coo85] for a detailed description of such circuit problems and to [BT87a] for the relationship
between circuits and programs.

In this model there exist monoids which, for all n, can recognize arbitrary subsets of � 0 � 1 � n. We concern ourselves,
then, for a monoid M and a given language L ��� 0 � 1 ��� , with the optimum length, as a function of n, of a program
over M that permits the recognition of L  !� 0 � 1 � . We know, for example, that the language � w : "w " 1 # 0 mod p � ,
where "w " 1 designates the number of occurrences of 1 in the word w, cannot be recognized by an aperiodic monoid
with programs of subexponential length.

One the other hand, there also exist monoids that cannot recognize certain languages at all, regardless of the length
of the program. It is shown in [BT87b] that a nilpotent group cannot recognize the subset � 1 n � for large enough n. We
shall sharpen this result, demonstrating the following

Theorem 1. Let G be a nilpotent group. There exists a constant c � c � G � such that all non-empty subsets of � 0 � 1 � n

recognized by G are of cardinality at least 2n $ c.

It will be convenient to use another description for the languages under study. Let R be a be a commutative,
unitary, finite ring and X �%� x1 �����&� xn � a set of indeterminates: we denote by N the ideal of R � X � generated by the
polynomials xi ' x2

i . An element of R � X � $ N is therefore a polynomial of the form r � x 1 �����&� xn �(� ∑I )�* n + λI � ∏i , I xi � ,
λI � R. Any such polynomial determines, in a natural fashion, a function of � 0 � 1 � n in R. We will say that L �-� 0 � 1 � n

is recognizable by r if there exists a subset S � R such that L � r � 1 � S � . The theorem follows immediately from the
two following lemmata.

Lemma 1. Let L be a subset of � 0 � 1 � n recognized by the nilpotent group G. There exists a finite ring R � R � G � and a
polynomial r � R �X � $ N of degree d � d � G � such that L is recognized by r.

Lemma 2. Let r be an element of R �X � $ N of the degree d. There exists a constant c � c � R � d � such that the cardinality
of all nonempty subsets L �-� 0 � 1 � n recognized by r is at least 2n $ c.
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Proof of Lemma 1. Suppose that G is a group of nilpotence class m and exponent q. (That is, the ascending central
series of G terminates in m steps.) We consider P � w � as a word in G � , the free monoid of base G: from [Th é83], we
know that the value of this word in G is determined by the numbers���

P � w �
u � mod q : u � G � � 1 � " u "�� m �

where " u " denotes the length of u and � P � w 	u 
 represents the number of occurrences of u as a subword of P � w � . It is

sufficient to establish the existence of a polynomial of degree m, in ��� $ q � � � X � $ N, which calculates � P � w 	u 
 mod q,
since then the desired parameters can be simultaneously determined by a polynomial of degree m over �� $ q � � l , where
l is the number of words in G � of length at most m. Let " u " � s: an occurrence of u in P � w � arises from s instructions,
thus depends on at most s variables. We denote by F the set of pairs � J � K � of disjoint parts of � n � for which the union
has cardinality at most s: let λ � J � K 	 be the number of factorizations of the program P of the form P � P0v1P1 ��� vsPs

such that v1 ���� vs � w ��� u iff wi � 1 for all i � J and wi � 0 for all i � K. The desired polynomial is then

∑
J � K ) F

λJ � K � ∏
j , J

x j ��� ∏
k , K

� 1 ' xk � � �
In the proof of the second lemma we shall use the following notations: σ � w � will represent � i : w i � 1 � , and for

any subset J � � n � , XJ � � x j : j � J � � X .

Proof of Lemma 2. We suppose that R has cardinality t and characteristic p. The proof proceeds by induction on d.
Base case. Let r � λ0 � ∑n

i � 1 λixi and let a be an element of R in the image of r. We choose w, an element of
r � 1 � a � which minimizes "w " 1: we must have "w " 1 � t p; otherwise we would have p indices i1 �����&� ip in σ � w � with
λi1 � ���� � λip , contradicting the choice of w. It remains to be shown that the other variables, of which there can be at
most n ' t p, can be fixed in an exponential number of fashions without changing the value of the polynomial. We are
thus brought to study the cardinality of the set � w : q � w � � 0 � where q � ∑s

i � 0 µixi is a polynomial of degree 1 without
constant term. For each a � R we set Ia � � i : µi � a � , ψa � w � � "σ � w �  Ia " and let na be the cardinality of Ia: we can
write q � w � � ∑a , R aψa � w � and we will have q � w ��� 0 each time ψa � w ��� 0 mod p for all a. The number of solutions
to the equation q � x ��� 0 is therefore at least

∏
a , R ��

na
p

∑
k � 0

�
na

pk ������ ∏
a , R

�
2na

2p � � �
1
2p � t

2s

and we can choose c � R � 1 � � 22t p.
Inductive case. We now consider r � x � � ∑λI � ∏i , I xi � where the sum extends over the subsets of � n � of size at

most d and we suppose that r � 1 � a � is nonempty. Then Ramsey’s theorem guarantees the existence of a natural number
m � m � p � t � d � with the following property: if n � m then there exists a subset J � � n � of cardinality pd! such that for
i � 1 ������ d the coefficients associated with the subsets of J of size i all have the same value, which we denote λ i. It
follows that we can find w � r � 1 � a � with "w " 1 � m: in effect, if "w " 1 � m, we can find J � σ � w � with the property
defined above. Defining y � � 0 � 1 � n by yi �� wi iff i � J we have

r � y ��� r � w � '
d

∑
s � 1

λs

�
pd!
s � � r � w � �

In general, we can therefore find a subset J of size at most tm such that for all a in the image of r there exist w with
σ � w ��� J and r � w �	� a. We rewrite the polynomial r in the form r � x � � s � x � � u � x � � v � x � where s � x �	� ∑I ) J λI � ∏i , I xi �
and u � x � � ∑I ) * n + � J λI � ∏i , I xi � . The last term v � x � can itself be written as v � x � � ∑I ) J µI � ∏i , I xi � ; the coefficients

µI are then polynomials of degree less than d in the variables X * n + � J : this sum consists of l � ∑d � 1
s � 1 � tms 
 terms. From

the canonical isomorphism R � X * n + � J � l �� Rl � X * n + � J � and from the induction hypothesis, we deduce the existence of a
constant c � c � Rl � d ' 1 � such that the l polynomials µI simultaneously annul themselves for at least 2n � tm $ c settings
of the variables X * n + � J. For each of these settings the variables XJ can be fixed in a way to obtain any element of the
image of r. Each of these values is thus obtained for at least 2n $ � c2tn � settings of variables X .
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This restriction on the computational capacity characterizes the nilpotent groups since all others can recognize
arbitrary languages.
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[BT87b] David A. Mix Barrington and Denis Th érien. Non-uniform automata over groups. In Proceedings of the
Fourteenth Annual International Conference on Automata, Languages, and Programming, 1987.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64(1-
3):2–22, 1985.
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