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Abstract

A new notion of predictive complexity and corresponding amount
of information are considered. Predictive complexity is a general-
ization of Kolmogorov complexity which bounds the ability of any
algorithm to predict elements of a sequence of outcomes. We con-
sider predictive complexity for a wide class of bounded loss functions
which are generalization of square-loss function. Relations between
unconditional KG(z) and conditional KG(z|y) predictive complexi-
ties are studied. We define an algorithm which has some “expanding
property”. It transforms with positive probability sequences of given
predictive complexity into sequences of essentially bigger predictive
complexity. A concept of amount of predictive information IG(y : z)
is studied. We show that this information is non-commutative in a
very strong sense and present asymptotic relations between values

IG(y:z), IG(z :y), KG(z) and KG(y).
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1 Introduction

A central problem considered in machine learning (and statistics) is the prob-
lem of predicting future event z, based on past observations zjzg...x,_1,
where n = 1,2.... A prediction algorithm makes its prediction in a form of
a real number between 0 and 1. The quality of prediction is measured by a
loss function A(c, p), where o is an outcome and 0 < p < 1 is a prediction.

The main goal of prediction is to find a method of prediction which min-
imizes the total loss suffered on a sequence © = xyx9... 2, forn = 1,2....
This “minimal” possible total loss of prediction was formalized by Vovk [9]
in a notion of predictive complexity. This complexity is a generalization of
the notion of Kolmogorov complexity and gives a lower bound to ability of
any algorithm to predict elements of a sequence of outcomes.

Predictive complexity K'G(z) represents the minimal possible total loss
of prediction of a sequence x on-line. It depends on a way in which this loss
was suffered. This way is represented by a specific loss function. Various loss
functions A(co,p) are considered in literature on machine learning and pre-
diction with expert advice (see, for example, [7], [1], [9], [12], [2]). The most
important of them are logarithmic loss function and square-loss function.
Logarithmic loss function is close to Kolmogorov complexity [4]. Square-loss
function 1s important to applications, corresponding predictive complexity
gives a lower limit to the ability of the method of the least squares.

Overview of our results. In this paper we present results for a class
of bounded loss functions which are generalization of the squared difference.
We study relations between unconditional and conditional predictive com-
plexities. In particular, a variant of triangle inequality is proved (Proposi-
tion 4). We prove that in some cases KG(z) can be essentially bigger than
KG(z|y) and KG(y). We define an algorithm ® which has some “expanding
property”: this algorithm transforms with positive probability a sequence x
of given predictive complexity k into a sequence ®(xz) with predictive com-
plexity KG(®(z)) > cklogf, where n is the length of z, ¢ is a constant
(Theorem 1). This is impossible for Kolmogorov complexity K (z), since for
any computable mapping @ it holds K (®(z)) < K(z)+0(1). We summarize
our results in a limit form in Theorems 2 and 3. We also study a concept of
amount of predictive information

IG(y : z) = KG(z) — KG(z|y).

We explore relations between four important values IG(y : z), IG(z : y),
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KG(z) and KG(y) in a limit form (Theorems 5, 6, 7). In particular, we
prove that IG(y : x) is non-commutative in a very strong sense.

Organisation of the paper. A definition of predictive complexity is
given in Section 2. We study the histogram of predictive complexity and re-
lation between Kolmogorov complexity and predictive complexity of square-
loss type. In Section 3 we consider a triangle inequality for predictive com-
plexity and show that it cannot be improved. We obtain also relations rep-
resenting the deviation of the value of KG(z) from KG(y), KG(z|y) and
KG([y,z]). Most of them are followed from the existence of an algorithm
with expanding property. In Section 4 relations for predictive information are
considered. Section 6 is rather technical. Here we give detailed proofs of the
main theorems, in particular, Subsection 6.4 contains the basic construction
of this paper: an algorithm with expanding property.

2 Predictive complexity

We consider only simplest case, where events are simple binary outcomes
from {0,1}. Let us denote =, = {0,1}" and = = U ,=,,. We denote by
I(x) the length of a finite sequence x € =, 2" = x; ..., is its initial prefix
of length n. By A we denote the empty sequence from =. It is important
to consider the case when some a prior: information is used in performing
predictions. We consider a set of signals A. For simplicity we will consider
the case A = =.

It is natural to suppose that all predictions are given according to a
prediction strategy (or prediction algorithm) §. When performing prediction
p; the strategy S uses two input sequences, a sequence oV =y, g, .. il
of previous outcomes, and a sequence y' = yi,ys,...,y; of signals, i.e p; =

S(2"",y") and

n
Losss(z"|y") = Z My, S(271 yh).
=1
The value y" = 0", n = 0,1,..., corresponds to the case when a priori
information does not used (here by 0" we denote the sequence of n zeros).
The value Lossg(z"|y") can be interpreted as predictive complexity of
" given y". This value, however, depends on S and it is unclear which
S to choose. Levin [11], developing ideas of Kolmogorov and Solomonoff,
suggested (for the logarithmic loss function) a very natural solution to the
problem of existence of a smallest measure of predictive complexity. Vovk [8]



extended these ideas in a more general setting for a class of mixable loss
functions.

Let us fix n > 0 (the learning rate) and put § = e™7 € (0,1). Let ¢, be
the infinum of all ¢ such that for each simple probability distribution P(7y)
on [0,1] (i.e. having a finite domain) there exists a prediction 4 such that

Ao, 4) < clogg > BV P(y) (1)

for all o. If ¢, = 1 then the corresponding loss function (game) is called
n-mixable. We can take 0 < n < 1 in the case of log-loss function, where
A(l,p) = —logp and A(0,p) = —log(l — p), and 0 < < 2 in the case of
square difference A(o,v) = (o0 —7v)? (see [7]).

A function KG(z|y) is a measure of predictive complezity if the following
two conditions hold:

e (i) KG(A|A) = 0 and for every z,y of equal length and each extension
~v of y there exists a prediction p depending on x and y~v such that
inequality

KG(zolyy) > KG(zly) + Mo, p) (2)
holds for each o.

e (ii) KG is semicomputable from above, which means that there exists
a computable sequence of simple functions KG' taking rational values
and such that for every = and y it holds K G(z|y) = inf; KG'(z|y).

By a simple function we mean a function which takes rational values or +oc
and equals oo for almost all z € =.

Requirement (i) means that the measure of predictive complexity must be
valid: there exists a prediction strategy that achieves it. (Notice that if > is
replaced by = in (2), the definition of a total loss function will be obtained.)
Requirement (ii) means that K'G(z|y) must be “computable in the limit”.

The main advantage of such definition is that a semicomputable from
above sequence KG;(x|y) of all measures of predictive complexity can be
constructed. More precisely, there exists a computable from 7, t, z, y sequence
KG:(z|y) of simple functions such that

o (iii) KGI' (z|y) < KGi(x|y) for all 4,¢, z;

o (iv) KG;i(z|y) = inf; KGi(z|y) for all 4, z;
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¢ (v) for each measure of predictive complexity KG(x|y) there exists an

¢ such that KG(z|y) = KG;(x|y) for all  and y.

We will use Kolmogorov prefix complexity which is a modification of the
plain Kolmogorov complexity (see e.g. Li and Vitanyi [5], Section 3).

Proposition 1 Let a loss function A(w,p) be computable and n-mizable for
some 1 > 0. Then there ezists a measure of predictive complexity KG(x)
such that for each measure of predictive complezity KG,(x|y)

KG(z|ly) < KGi(z|y) + (In2/n)K (1), (3)

holds for all z,y, where K(i) is the Kolmogorov prefiz complezity of the
program 1 enumerating KG; from above.

The proof this proposition is based on Vovk’s aggregating algorithm [9] (see
Section 6.1).

Let some n-mixable loss function A(e, p) be given. Put
b = inf sup Ao, p). (4)
P

We suppose that b > 0. We suppose also that the loss function is computable,
and hence, it is continuous by p in the interval [0,1]. Then the infimum in (4)
is attained for some computable real number p. For log-loss function b = 1,
1
4
We impose a very natural condition

p=1and b=1 p=1in the case of squared difference.

A(0,0) = A(1,1) =0, (5)

which holds in both cases of log-loss and square-loss functions. We also con-
sider additional requirements on loss function by which square-loss function
differs from log-loss function:

A(0,1) = A(1,0) = a. (6)

Now, when restrictions on a loss function were specified let us fix some
KG(z|y) satisfying conditions of Proposition 1 and call its value the con-
ditional predictive complezity of x given y. In the case when y 1s trivial, i.e.
consists only from zeros we consider (unconditional) predictive complexity
KG(z) of a sequence .



A very natural problem arises: to estimate the cardinality of all sequences
of predictive complexity less than k. A trivial property of Kolmogorov com-
plexity and predictive complexity for log-loss function is that the cardinality
of all binary sequences z of complexity < k is > 2*=¢ and < 2* for some
positive constant ¢. In the case of predictive complexity of non-logarithmic
type the cardinality of the set of all sequences of bounded complexity is infi-
nite. We can estimate the number of sequences of length n having predictive
complexity < k. We denote by #A the cardinality of a finite set A. Let us
consider a set

Ang = A{yll(y) = n, KG(y) < k}. (7)

Proposition 2 There exists a constant ¢ such that for all n and k

3 (”) <H#ALS Y (") (8)
i<(k—c)/a \* i<k/b \!

Proof. Let a sequence x of length n has no more than m ones. Consider
prediction strategy S(z) = 0 for all z. Then by (5) and (6) there are at least

3 (:’) of z such that KG(z) < Losss(z) + ¢ < am + ¢ < k, where ¢ is

i<m
a constant. Then m < (k — ¢)/a and we obtain the left-hand side of the
inequality (8).

To prove the right-hand side of the inequality (8) consider the universal
prediction strategy A(z) = p, where p = p(x) is the prediction from the
item (i) of definition of the measure of predictive complexity. By definition
Lossp(z) < KG(x) for each z. By (4) for any = we have A\(0,A(z)) > b
or A(1,A(z)) > b. By this property we assign new labelling to edges of the
binary tree using letters A and B. We assign A to (z,20) and B to (z,z1) if
A0, A(z)) > b, and assign B to (z,20) and A to (z, z1) otherwise. Evidently,
two different sequences of length n have different labellings. For each edge
(z,z0) labeled by A it holds A(o, A(z)) > b and, hence, for any sequence
z of length n having more than m As it holds KG(x) > Lossy(z) > bm.

Therefore, #A4,, < 2 (") O
i<k/b
A more strong upper bound of the cardinality of the set A, is given in

[10]. Let K(z) be the Kolmogorov (prefix) complexity of z.

Proposition 3 A positive constant ¢ exists such that for all n and k < 67"
for all x of the length n such that KG(z) < k the inequality

k k k
K(z) < (E—I—Q)logn—glog@-l-c (9)



holds.

Sketch of the proof. Let us consider the recursively enumerable set A,
defined by (7) above. We can specify any « € A, by n, k and the ordinal
number of z in the natural enumeration of A, i.e. K(z) < log#A, 1 +
2log n+2log k 4+ ¢ for some constant ¢. The needed upper bound now follows
from (8). For details see Section 6.3. O

3 Triangle inequality

The following Proposition 4 is an analogue of the corresponding result for

the prefix Kolmogorov complexity K (z) < K(z|y) + K(y) + O(1) [5].

Proposition 4 Positive constants ¢; and ¢y exist such that for all x and y

of length n
KG(z) < KG(z|y) + (In2/n)K(y) + e1 < (10)
KG(z|y) + o KG(y)log (K(Z(y)) . (11)

Inequality (11) holds if KG(y) < bn/2.

Proof. This proposition is a direct corollary of Proposition 1. For any finite
sequence y define y = y0>®. The measure of predictive complexity S(z) =
KG(z|g"®) can be enumerated from below by a program depending from y.

Then by (3) for any z such that [(z) = [(y)
KG(z) < KG(zly) + (In2/n)K(y) 4 1,

where ¢ is a positive constant. Applying the upper bound on K(y) from
Proposition 3 we obtain the needed result. O

The following theorem shows that inequality (11) cannot be improved.
We construct a computable mapping having some “expanding property”: it
transforms sequences of given predictive complexity into sequences of essen-
tially bigger predictive complexity.

Let Cy,x be a set of sequences y of the length n having k changes from
0 to 1 or from 1 to 0 (occurences of combinations 01 and 10 in y); it is also
convenient to consider a case y; = 1 (i.e. a case when y starts from 1) as a
change.



Let us consider a computable predictive strategy S such that S(A) =0
and S(z1) =1, S(x0) = 0 for all . By (6) we have Losss(y) < a(k + 1) for
each y € Cy k. Therefore, KG(y) < ak + O(1) for each y € Cy . Let [r] be

the least integer number s such that s > r.

Theorem 1 For any n and k < 5 a computable mapping ® from Cyy to a
subtree {z|l(z) = n,0"~™ C z}, where m = [log4* (2)1, exists such that for
a portion > 1/2 of all y € Cp . the output v = ®(y) satisfies

KG(z) > %log (Z) (12)
KG(z|y) = O(log n). (13)

We have also KG(y) < ak+ O(1) for each y € C,, 1. In the case k = k(n) =
o(n) the factor b/20 in (12) can be replaced on b/2.

Sketch of the proof. We construct a mapping ® which compresses the set C,,
into the set {z|l(z) = n,0"™™ C z}, where m = [log4* (:)-|, such that the
density of of the image of ® in this set is sufficiently large, namely, 47%. We
prove also a variant of “incompressibility lemma”, from which follows that
the large portion of this image consists of elements = of predictive complexity
KG(z) satisfying (12) (see Section 6.4 for a detailed construction). O

In the following theorems we present results of Proposition 4 and Theo-
rem 1 in an asymptotic form. For any functions a(n) and 5(n) the expres-
sion a(n) = O(H(n)) means that there exist constants ¢; and ¢, such that
cif(n) < a(n) < ¢B(n) holds for all n. The expression a(n) = Q(8(n))

means that there exists a constant ¢; such that a(n) > ¢;3(n) for all n.

Theorem 2 Let a function k(n) be unbounded, v(n) = Q(logn), and k(n) =
O(n), v(n) = O(n). Then

sup KG(z) =0 <1/(n) + k(n)log (#)) (14)

z:3Y(KG(y)<k(n),KG(z|y)<v(n))

Proof. The part < follows from Proposition 4. In case v(n) > k(n)log (k("—n))
the part > of (14) is evident. Otherwise, the statement follows from Theo-
rem 1. O

For any = zy...2, and y = y; ...y, we consider “a pair” [y,z] =
Y121 - .- YnTn. The following theorem defines some limits of that predictive
complexity of a pair can be less than complexity of their elements.
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Theorem 3 Let k(n) = Q(logn), v(n) = Qk(n)), k(n) = O(n) and v(n) =
O(n). Then

sup KG(z) =0 (V(n) + k(n) log (L)) . (15)

23y (KG(y) <h(n),KG([y,]) <v(n) k(n)

Proof. In case v(n) > k(n)log (kn—n)) the part > of (15) is evident. Otherwise,
we use Theorem 1 and its proof. Let us consider the mapping ® from the
proof of Theorem 1 (see Section 6.4) and and the sequences y and = = ®(y)
satisfying the conditions of this proposition. Define a computable prediction
strategy S

5(y1:c1 - yi-1$i_1yi) = (I)(yi)i = Ty,
S(ylxl .. yle) = 0.
Then by (6) we have Losss([y, z]) < ak(n) and, therefore,
KG((y,]) < ak(n) + (n2/n)K(S) < ak(n) + (21n2/n) log n < cuv(n) (16)

for some constant ¢;. By Theorem 1 KG(y) < cylogn < ¢sk(n) for some
constants ¢z, ¢3. The part > of (15) follows from these inequalities after
normalizing of k(n) and v(n).

The < part of (15) follows from Proposition 4 and an obvious inequality

KG(z|ly) < KG([y,z]) + ¢,

where ¢ is a positive constant. O

4 Predictive information

The amount of predictive of information in a sequence y about a sequence x
of the same length in the process of on-line prediction was defined by Vovk
[9]
IG(y: z) = KG(z) — KG(z|y). (17)
In this section we explore relations between four important values IG(y : ),
IG(z 1 y), KG(z) and KG(y) in a limit form. These results are mainly based
on the construction of Theorem 1.
Predictive information is non-commutative in a very strong sense. Define

gi(n) = sup 1G(z:y)

. (18)
I(2)=l(y)=n IG(y : )



Theorem 4 It holds

g1(n) = O(n). (19)

Sketch of the proof. Consider the random string z (eg sequence of coin tosses).
Another string y will be equal to = without its first sign. These strings provide
needed example. For the exact proof see Section 6.2. O

Let us define IG( )
y:x

g2(n) = sup ————-=. 20

() lo)=t(y)=n KG(y) (20)

The main results of Section 3 can be summarized in the following theorem.
Theorem 5 It holds g(n) = O(logn).

Proof. The right-hand inequality follows directly from (11). The left-hand
inequality can be derived from Theorem 1. Its enough to let k = \/n. O
Let us define also

IG(y: x)
gas(n) = sup 21
)= P RG() (21)

Theorem 6 It holds

lim g3(n) = 1. (22)

n—oo

Proof. The part (22) follows from Theorem 1, where we let k = n'/2. O

Theorem 7 Let k(n) < bn for all n. Then a constant ¢ ezxists such that

sup IG(y:2)=0 (k(n) log (%)) (23)
(e.):l(2)=1(y)=n, K G(s) <k(n) (n)
sup IG(y:z)=FE(n)+ O(1) (24)
(z.y)d(2)=l(y)=n,K G(x)<k(n)
sup IG(y: z) = 0O(n) (25)

(z,y):d(z)=l(y)=n,IG(xy)<c

Proof. The right-hand part of (23) follows from Proposition 4. The left-hand
part of (23) follows from Theorem 1. To prove (24) put z = y and note that
KG(z|z) = O(1). Relation (25) follows from the proof of Theorem 4. O
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6 Appendix

6.1 Proof of Proposition 1

A sequence KG;(z|y) of all measures of predictive complexity can be defined
using standard methods of the theory of algorithms.
Let r; be a semicomputable from below sequence of real numbers such

that the series Z r; 1s convergent and its sum does not exceed 1. We can take
=1
r; = 27K Analogously to [8] and [9] a measure of predictive complexity

KG(z|y) can be defined
KG(z|y) = logg Z pRGialy)y. (26)

where 3 = e™". By definition KG(z|y) is semicomputable from above, i.e
(ii) holds. We must verify (i). Indeed, by (26) for every z,y of equal length
and 0,3 € {0,1}

KG(zol|yB) — KG(z|y) = logg Z q,-ﬁKG"(“wB)_KG"(x|y) > (27)
i=1
logﬁ Z qlﬂk(am‘) > Mo, 7), (28)
i=1

where

io: ﬂIxG a:|y)
Here for any ¢ a prediction v; = v(z, y3) satisfying
KGi(zolyB)— KGi(z|y) > Mo, i)

exists since each element of the sequence KG;(z|y) satisfies the condition
(1) of the measure of predictive complexity. A prediction v satisfying (28)
exists by definition of the constant ¢, in Section 2. For further details see

[9], Section 7.6.
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6.2 Proof of Theorem 4

For any sequence x = xy ...z, define its left shift Tx = z,5...x,0. The proof
of the theorem is based on the following simple lemma.

Lemma 1 It holds

KG(z|Tz) = 0O(1), (29)
KG(Tz) = KG(Tz|z) + O(1) (30)

The proof of this lemma is given in Section 6.5.
To prove the right-hand side of (19) take y = Tx. Then by Lemma 1 a
positive constant ¢ exists such that

IG(Tx:z) = KG(z) — KG(z|Tz) > KG(z) — ¢
IG(z:Tx)=KG(Tz) — KG(Tz|z) < ¢

for all z. Using the definition (4) of b and the diagonal argument it easy to
construct a sequence z of length n such that KG(x) > bn. From this the
right-hand side of (19) follows. The left-hand side of (19) follows from the
inequality

KG(z) <bl(z)+¢

for all x, where ¢ is a positive constant. This inequality can be easily proved
using a computable prediction strategy which always predicts p, where p
minimizes the condition (4). O.

6.3 Proof of Proposition 3

To prove inequality (9) let us consider the recursively enumerable set (7). We
can specify any x € A, by n,k and the ordinal number of x in the natural
enumeration of A, . Let & < bn/2. Then using an appropriate encoding of
all triples of positive integer numbers we obtain for all z of the length n

K(;v) <log #Ank + 2logn + 2logk + ¢ < (31)
k
logg<k7/lb) +2logn 4 2logk + ¢ < (32)
en k/b
logk(k—/b) + 2logn 4 2logk + ¢ < (33)
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k+2 1 1 2 kl k+ "= (34
b BTN T logk/by ) b BB T T )
k k
(z + 2) logn — glog — 4+ (35)

where ¢, ¢ and ¢’ are positive constants.

6.4 Proof of Theorem 1

For any n and any sequence z of the length < n by a subtree =, (z) we mean
a set

En(z) = {yllly) = n,z Sy}

The height of the subtree is the number m = n — I(z).
The main technical result of this paper is a construction of a mapping ®
from C,  into a subtree En(Ol) of height m = [log 4k (Z)], where | = n — m.
Let y * y' denotes the maximal joint prefix of y and y’, i.e. a sequence z

of maximal length such that z C y and z C y'. The main requirement to ®
is that

[(@(y) * 2(y') 2 Uy *y) (36)
for all y,y" € C .

We construct the mapping ® as a result of a recursive procedure
COMP(n, k, o), where n and k be positive integer numbers and o = 0 or 1.

Procedure COMP(n, k, o).

For any n the procedure COMP(n,0,0) returns the identical mapping @
on the set {0"}, the procedures COMP(n, 1,1) and COMP(n,0,1) return the
identical mapping ® on the set {17}.

Let C7 ). be the set of all sequences from C,  starting from o (o = 0,1).

If & > 0 the procedure returns a mapping ® from C7, into a subtree
Zn(o) for some I. Without loss of generality we suppose that o = 0.

In the following we will construct this mapping ® by series of subsequent
reassignments of the values of ®. We start with the mapping ® identical on

r?,k' We will do also a series of subsequent transformations of subtrees of
the initial tree =,.

Counsider the base which is a sequence of n zeros 0" (in the case o =1
the base is a sequence of n ones 1"). There are n — 1 subtrees =,(0'1) on the
base, 7 = 1,...,n — 1. Each sequence z € Cp; of length n belongs to one of
such trees En(Oil). We call them basic subtrees.
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For each i = 1,...,n — 1 we apply the procedure COMP(n — i,k —1,1).
For each i the procedure returns a subtree =,_;(1%) and a mapping ®; from
Crll_ak_l into this subtree.

Induction hypothesis: for each i the set ®;(C,

n—ijo1) Zn—i(1%) occupies
at least 4= portion of all sequences of basic subtree Z,_;(1%). In other

words,

#@i(crlt—i,k—l n En_,(lk)) 2 4_(k_1)#5n—i(1ki)-

There is a natural one-to-one correspondence between sequences 0'1z € Cy i
and sequences x € C'Tll_l-7k_1. Then we can redefine ® on C&k such that for
each 7 and for each 1z € C,ll_l-7k_1 it holds ®(0'1z) = 0'®,(1xz).

Denote A; = =,,(0°1%) and call it the compressed basic subtree. By the
induction hypothesis we obtain that @(Cgk)ﬂ(U,-A,-) occupies at least 4~*=1)
portion of all sequences from U; A,.

At the current step of induction we will change this assignment of ®
according 1nstructions given below.

Each initial basic subtree =, (0°1), 1 <7 < n — 1 contains (before apply-
ing the procedure COMP) a subtree T' = Z,(0°11) isomorphic to its upper
neighbour =,(0°+'1). This subtree T will be transformed by the procedure
COMP as a part of =,(0'1) on the previous inductive step into a subtree T’
of corresponding resulting basic subtree A, = En(O”'lk’i). The height of A; is
equal to h;, = n —1 — k;.

For each 7 if h; < h;yy then replace 4,41 on the corresponding subtree T'
of A;. Doing these replacements we simultaneously changing corresponding
assignments of the values of ®. This process provides us that h; > h;yq for
all 7.

Now we will transform all compressed basic subtrees A; into a resulting
compressed subtree =,(0') and will change the corresponding assignments of
® such that the density of the image of ® in the resulting subtree =,,(0') will
be at least 47%. The reconstruction consists of subsequent application of the
following two operations on subtrees of a binary tree.

1) Joining to the nearest upper neighbour. Suppose that there are at least
two basic subtrees of type =,(0°1%F) and =,,(0°F'1%%%) of the same height
h, where s; > 0. We transform each assignment of type ®(y) = 0'13+%u to
®(y) = 0"F'1'*+50u, i.e. move subtree =, (0713+) to =, (0"+11'+%0). We will
apply this transformation only to the first (left) pair of the basic subtrees of
height h. Then the height of the resulting subtree will be 2 4+ 1 and will not

exceed the height of the previous basic subtree.
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2) Moving up to the nearest upper free vertex on the base. Suppose
that there is a basic subtree En(0i12) and there is no basic subtree of
type Z,(0'*'1). In this case we change each assignment ®(y) = 0'1%u to
P(y) = 0"+ 1w, i.e. we move basic subtree En,(0i12u) to En,(0i+1lu).

By definition, after these transformations, the image of ® still occupies
at least 4=*=1) portion of all sequences from each transformed basic subtree.

Given initial compressed basic subtrees we transform them by applying
these two operations as many times as possible. Suppose that among final
basic subtrees there is a basic subtree of type =(0'17+%), where j > 0. Then
there are only two possibilities. The first one is that there is no basic subtree
of type =,(0F11%), where s > 1, and then the operation 2) must be applied.
The second one is that there is a subtree En(0i+112+5i) (and there is no
subtree =,,(0°t'10)). In this case the operation 1) must be applied. No basic
subtree of type =,(0'+'1) exists, since otherwise the property h; > h;qq for
heights of basic subtrees will be failed. The contradiction obtained shows
that there is no basic subtree of type Z(0°1/+%) after all transformations.

As a result we obtain the base 0" and a sequence of the new basic subtrees
on it of the type =,(0'17), where i > 1 and j = 1 or j = 2. We obtained also
a new assignment to values of ®.

Cousider the first basic subtree B of maximal height. Since, the opera-
tions 1) and 2) cannot be applied to B, it is of the form =,(0'1) or =, (0'11),
where [ > 1. Then the portion of sequences of B among all sequences of
=,.(0") is at least %. Therefore, the portion of sequences in =,(0") which are
of a form ®(y), where y € Cgk, can decrease no more than in 4 times, and
so 1t is > i4_(k_1) =47k,

We declare the mapping ® and the subtree =,,(0') as the results returning
by procedure COMP(n, k,0). We also proved that the induction hypothesis
holds for these results.

End of the procedure COMP.

Let @ and En(Ol) be outputs of COMP(n, k,0). Since the image ®(C,, x)

contains (Z) sequences in the binary tree =,(0') by density condition this

tree have < 4F (:) sequernces.
The following lemma will be used to prove the existence of elements of
big predictive complexity in a set of given cardinality.

Lemma 2 For any n let m < n and z be a sequence of the length n — m.
Then for any set W C {z|l(z) = n,z C z} for at least 1/2 portion of all
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z € W it holds
KG(z) > blmag,

where [, 18 the mazimal integer number [ such that [ < 7 and

H(i)élog#w _logm 1 (37)

’
m m m m

where H(p) = —plogp — (1 — p)log(1l — p) is the Shannon entropy.

Proof. Let A(z) be the universal predictive strategy as in the proof of Propo-
sition 2 such that Lossy(z) < KG(z) for all z. By definition of b (see (4))
for any = we have A(0,A(z)) > b or A(1,A(z)) > b. Using this property we
assign the labelling to edges using letters A and B as in the proof of Propo-
sition 2. Then for any sequence x of the length m having more than k& As it
holds Lossa(z) > bk.

Now, to estimate from below the maximal total loss of A on sequences
from W we must estimate from below the maximal number of As occurring
in sequences from W. This estimate [ satisfies inequality

i (";) < %#W. (38)

=1

The inequality (38) follows from l(T) < +#W. Since the elementary in-

equality
m) ¢ gea(t)
< 27 m

holds (see [3], Section 6.1), the inequality (38) also follows from

1omA () < %#W. (39)
This inequality follows from
[ 1 1
H<_)§#_W_M___ (40)
m m m m

Hence, we have KG(z) > bl for at least 1/2 portion of all z € W, where [ is
the maximal number satisfying (40). O
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To apply Lemma 2 get
= [log4¥ ("
m = [log (k)W
W =3(Chpr).

We have #W = (:) We must find maximal [ such that the inequality

H(L)< og (i) logm 1
m) = 2k+log(y) omoom

holds. Tt holds (}) > 2 if k < 2. Then since log (}) > k, the first term of
(41) is bigger than +. Hence, for m sufficiently large it is sufficient to find

3
such that
[ 3
H{—)<=. (42)
m 10

It is easy to verify by table values of Shannon entropy that the inequality
(42) wittingly holds if

(41)

) 1
<
m — 20
and so, we can take estimate
m
lmaw = A~
20

By Lemma 2 an z of the length n exists such that

: b n b n

Let ®(y) = z. By the prefix property (36) of mapping ® each prefix z* of
length i can be recovered from a prefix y* of length 7. Hence, a prediction
strategy S exists which computes the i-th member of = given y' = y; ...y;.
By definition we have Losss(z|y) = 0. This predictive strategy S is trivially
defined by the mapping ® given n and k as parameters. Hence, by (3) we
have KG(z]y) < (2In2/n)logn for all sufficiently large n. The proof of the

proposition is completed.
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6.5 Proof of Lemma 1

To prove (29) consider a computable prediction strategy S such that for
any sequences x and y of length n > 2 it holds S(z|y) = yp—1 (for n =1
define S(z|y) = 0). Then Losss(z|Tz) < b for each x, and by definition
KG(z|Tz) < b+ chold for all z, where ¢ is a positive constant c.

Let us prove (30). KG(Tz|x) < KG(Tz)+ O(1) by definition. To prove
the converse inequality define a function S(u) using an idea of Vovk’s [7]
aggregating algorithm (see Section 6.1).

S(u) — 10g5(2_1ﬂKG(“|0“) + 2—1ﬂKG(u|1u)). (43)

We show that S(u) is a measure of predictive complexity. Indeed, for any o

1

1
S(UG') _ S(U) — logﬁ Z 2—1ﬁfx G(uoliv) log/g Z 2—1/3B’G(u|zu) —
1=0 i=0

1

1
1Og[3 Z qiﬁIxG(uohu)—BG(uhu) > log/g Z 2—1/3)\(0,p(zu)) > /\(0_’ f)(u)),

2=0 1=0

where _
92— 1 ﬁfx"G(uhu)

4% = Yy 271 BRG)

i = 0,1, and predictions p(iu) and p(u) exist by p-mixability property of the
loss function (e, p). By definition (43) of S(u) we have for ¢ = 0,1

S(u) < KG(uliu) + (In2/n)

for all u. Hence, by definition
KG(Tz) < KG(Tz|z) + ¢

for all z, where ¢ is a positive constant.
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