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Abstract. We consider some problems about pairs of disjoint N P sets.
The theory of these sets with a natural concept of reducibility is, on the
one hand, closely related to the theory of proof systems for propositional
calculus, and, on the other, it resembles the theory of NP completeness.
Furthermore, such pairs are important in cryptography. Among others,
we prove that the Broken Mosquito Screen pair of disjoint N P-sets can
be polynomially reduced to Clique-Coloring pair and thus is polynomi-
ally separable and we show that the pair of disjoint NP-sets canonically
associated with the Resolution proof system is symmetric.

1 Introduction

The subject of study of this paper is the concept of pairs of disjoint N P-sets.
Thus instead of studying sets (or in other words, languages), the most common
object in complexity theory, we study pairs of sets and we require, moreover, that
they are disjoint and that they belong to INP. The research of such pairs was
initiated by Razborov in [13]. He studied them in connection with some formal
systems, in particular, proof systems for propositional calculus and systems of
bounded arithmetic.

There is a natural concept of polynomial reducibility between pairs of disjoint
sets. We say that a pair (A, B) is polynomially reducible to (C, D) if there is a
polynomial time computable function f defined on all strings such that f maps A
into C' and B into D. (Note that polynomial reducibility does not imply that the
corresponding sets are polynomially (Karp) reducible.) We say that a pair (A, B)
is polynomially separable, if there exists a function f computable in polynomial
time time such that f is 0 on A and it is 1 on B.

A related concept is the concept of a propositional proof system. A general
propositional proof system, as defined by Cook and Reckhow [5], is simply a
nondeterministic algorithm for the set of propositional tautologies. There are
several well-studied concrete systems, coming from logic, automated reasoning
and others. Proof systems can be compared using the relation of polynomial
simulation (see Section 3 for definitions). It has been conjectured that there is
no strongest propositional proof system.
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Razborov [13] associated a pair of disjoint NP sets in a natural way to each
proof system: roughly speaking, one set is the set of tautologies that have short
proofs in the given system, the other is the set of non-tautologies. This relation
gives a reason to believe that in the lattice of the degrees of pairs there is no
biggest element. It seems that the lattice of degrees of pairs reflects the strength
of the systems, hence there should not be the biggest degree of a pair (unless
we define it as the degree of pairs that are not disjoint), but we are not able to
derive this statement from the standard complexity theoretical conjectures such
as P # NP. Most people believe that P # NP N coN P, which implies that
that there are pairs of disjoint NP sets that are not polynomially separable.
The only concrete sets in NP N coN P that are conjectured not to belong to P
come from cryptography. (In cryptography one assumes even more, namely, that
there exists a set A € NP N coN P such that a random element of A cannot be
distinguished from a random non-element of A using a probabilistic algorithm
with probability significantly larger than 1/2.)

In this paper we show that a pair called Broken Mosquito Screen, introduced
by A. Haken [4] is polynomially separable. Pairs similar to BM S have been
proposed for bit commitment schemas in cryptography. The polynomial separa-
bility implies that such schemas are not secure. Furthermore, we show simple
monotone reductions between BM S and the Clique-Coloring pair. Hence one
can deduce exponential lower bounds on monotone boolean circuits for BM S
[4] and Clique-Coloring [12] one from the other. Note that all lower bounds on
monotone computation models, with the exception of Andrejev’s, are in fact
lower bounds on devices separating two IV P sets.

In section 3 we consider some basic relations between proof systems and
disjoint IV P-pairs. This section contains some new observations, but mostly it is
a survey of simple basic facts. It is mainly intended as a brief introduction into
the subject for those who are not experts in it.

In section 4 we shall show a symmetry property of the pair associated to
the Resolution proof system. This is not a surprising result, as such properties
have been already established in Razborov’s original paper for stronger systems.
The reason for presenting the reduction explicitly is that Resolution is relatively
weak, so it does not share all good properties of strong systems. Furthermore, we
would like to understand this pair and, possibly, to find a simpler combinatorial
characterization of its degree.

2 The Broken Mosquito Screen pair

Definition 1. The BMS pair is a pair of sets of graphs (BM Sy, BM S1) such
that

— BMS, is the set of graphs such that for some k > 2 the graph has k? — 2
vertices and contains k disjoint cliques with k — 1 cliques of size k and one
of size k — 2,



— and BM S, is the set of graphs such that for some k > 2 the graph has k* —2
vertices and contains k disjoint independent sets with k — 1 independent sets
of size k and one of size k — 2.

Clearly BM Sy, BM Sy € NP. To prove that the two sets are disjoint, suppose
that a graph G satisfies both conditions at the same time. Each independent set
of size k must contain a vertex that is not contained in any of the cliques of size
k, since there are only k£ —1 such cliques and an independent set can have at most
one vertex in common with a clique. But then we get k—1 vertices outside of the
k—1 cliques of size k, so the graph has at least (k—1)k+k—1 > k2 —1 vertices,
which is a contradiction. Thus BMSg N BMS; = . This pair was introduced
by A. Haken along with his new method for proving exponential lower bounds
on the size of monotone boolean circuits. Then, in a joint paper with Cook [4],
it was used to prove an exponential lower bound on the size of cutting planes
proofs. We define a modification of the pair, denoted by BMS’, by relaxing the
conditions a little. In the BM S’ pair (BM S}, BMS]) we ask for only £ — 1
cliques of size k, respectively, k — 1 independent sets of size k. A very important
pair is the following Clique-Coloring pair.

Definition 2. The CC pair is a pair of sets (CCo,CC1) such that CCoy and
CCy are sets of pairs (G, k) with G a graph and k > 2 an integer such that

— CCy 1is the set of pairs (G, k) such that G contains a clique of size k
— and CC} is the set of pairs (G, k) such that G can be colored by k—1 colors.

It is well-known that the C'C pair is polynomially separable; the function that
separates C'C' is the famous 0 function of Lovész [10]. We will show a reduction
of BMS’ to CC, hence BMS’" and BM S are also polynomially separable.

Proposition 1. BM S’ is polynomially reducible to CC.

Proof. Let G = (V,E) be a graph on k% — 2 vertices. We assign a graph H to
G as follows. The vertices of H are (i,v), 1 <i < k—1,v € V; ((i,v), (j,u))
is an edge in H, if i = j and (v,u) € E, or i # j and v # u. If G contains
k — 1 disjoint cliques of size k, we can take one such clique in each copy, different
cliques in different copies, and thus get a clique of size k? —k in H. Now suppose
G contains k — 1 disjoint independent sets of size k. Let X be the union of these
sets. Thus the graph induced on X by G can be colored by k£ — 1 colors and the
size of X is k(k — 1). Hence we can color the vertices [1,k — 1] x X of H by
(k —1)? colors. The remaining vertices can be colored by |V \ X| = k — 2 colors
(by coloring (i,v) by v). Thus we need only (k—1)2+k—2 = k?> —k — 1 colors.
Hence G — (H, k* — k) is a reduction of BM S’ to CC.

Corollary 1. The BM S pair is polynomially separable.

If a pair is polynomially separable, then, trivially, it can be polynomially
reduced to any other pair. The algorithm for separation of the CC pair is,
however, highly nontrivial, therefore the next proposition gives us additional



information. Recall that a function f is a projection, if for every fixed input size
n, the output size is a fixed number m and each bit of f(x) is either constant
or depends on only one bit of z. In other words, f(z) is computed by depth 0
circuit. So far it was irrelevant in what form we represent the integers in the
pairs. In the following we shall need that they are represented in unary.

Proposition 2. CC is reducible to BM S’ using a polynomial time computable
projection.

Proof. Let (G, k) be given, let G = (V, E), n = |V|. We can assume w.l.o.g. that
n is even n > 4 and k = n/2. We construct a graph H from 2k — 2 copies of
G and some additional vertices. The edges connecting the copies and the edges
connecting the additional vertices do not depend on G. Thus H is defined as a
projection of G. The set of vertices of H is {0,1} x [1,k — 1] x V plus a set U
of n elements and a set W of n — 2 elements. A pair ((¢,7,v), (j, s,u)) is an edge
in H, if either i = j and r = s and (v,u) € E,or i = j and r # s and v = u,
or i # j. On U we put a matching and W will be an independent set. Every
vertex of {0,1} x [1,k—1] x V will be connected with every vertex of U and W,
and there will be no edges between U and W. The number of vertices of H is
2k —1)n+n+n—-2=2n/2—1)n+n+n—-2=n? -2

Assume that G has a clique K of size k. Then H has k —1 = n/2 — 1
disjoint cliques of size 2k = n of the form {0,1} x {r} x K. Furthermore we get
n—k = n/2 disjoint cliques of size n by taking {0,1} x [1,k—1]x {v},v € V\K
together with a pair from U. Thus H contains n — 1 disjoint cliques of size n.

Assume that x(G) < k — 1. Then we can cover each of the two sets {i} x
[1,k—1] x V by k — 1 independent sets of size n by uniting the independent sets
diagonally. Thus we get 2(k — 1) = n — 2 disjoint independent sets of size n. On
U UW we have another independent set of size n/2 +n —2 > n.

Note that the reduction of BM S’ to CC presented above is also projection,
thus the two pairs are very close to each other. We believe, though we do not
have a proof yet, that a refinement of the proof will give the same for the original
BMS. Furthermore, these projections are monotone (hence computable by linear
size monotone circuits), thus one can get exponential lower bounds on the size
monotone boolean circuits for one pair from the other.

What are the pairs that we still believe that they are not polynomially sepa-
rable? As noted above, the most likely inseparable pairs are from cryptography.
Any bit commitment schema that we believe is secure gives such a pair. For
instance, the encryption schema RSA can be used to encode a single bit by
using the parity of the encoded number. Thus one set is the set of codes of
odd numbers and the other consists of the codes of even numbers. Every one-
way permutation can be used to define a inseparable pair. All these pairs are
based on number theory. Pairs based on pure combinatorics are rather scarce. A
somewhat combinatorial pair of disjoint VP sets is implicit in the lower bound
on monotone span programs of [2]. This pair is based on bipartite graphs with
special properties. There are two known constructions of such graphs. The first
construction uses deep results from commutative algebra, the second uses deep



results from number theory. We do not know a polynomial time separation algo-
rithm for these pairs, but also we do not have any particular reasons to believe
that they are not separable. Here is another pair that we do not know how to
separate.

Definition 3. The MM MT (Monotone-Min-Maz-Term) pair is the pair of sets
(MMMTy, MMMT) in which both sets are sets of some pairs (C,k), C a
monotone circuit and k a number and

— MMMTy, is the set of pairs such that C has k + 1 disjoint minterms,
— MMMT is the set of pairs such that C has o maxterm of size k.

We suspect, however, that MM MT can be reduced to CC, since to prove
the disjointness of the sets in the pair, essentially, only the pigeon hole principle
is needed.

3 Propositional proof systems

In 1970’s Cook initiated systematic study of the complexity of propositional
proofs. In a joint paper with Reckhow [5] they defined a general concept of a
propositional proof system: a propositional proof system is a polynomial time
computable function S mapping all strings in a finite alphabet onto the set
of all tautologies TAUT. To be precise one has to specify in what language the
tautologies are. In this paper we will need only tautologies in DNF. The meaning
of the definition is: x is a proof of S(x). The fact that every string is a proof
seems strange at first glance, but, clearly, it is only a technicality. The crucial
property is that one can test in polynomial time whether a given string is a proof
of a given formula.

Propositional proof systems are quasi-ordered by the relation of polynomial
simulation. We say that P polynomially simulates S, if there exists a polynomial
time computable function f such that P(f(z)) = S(z) for all z. Thus given an
S proof x of a formula ¢ (i.e. ¢ = S(z)), f finds a P proof f(z) of this formula
(ie. ¢ = P(f(2)))-

As in the next section we will consider the resolution proof system, which is
a refutation system, we shall often talk about refutations, i.e., proofs of contra-
diction from a given formula, rather than direct proofs. Again, this is only facon
de parler.

Disjoint N P pairs are closely related to propositional proof systems. Follow-
ing [13] we define, for a proof system S, REF(S) to be the set of pairs (¢,1™),
where ¢ is a CNF formula that has a refutation of length < m in S and 1™ is
a string of 1’s of length m. Furthermore, SAT"™ is the set of pairs (¢, 1™) where
¢ is a satisfiable CNF. We say that (REF(S),SAT™*) is the canonical N P-pair
for the proof system S.

The polynomial reducibility quasi-ordering of canonical pairs reflects the
polynomial simulation quasi-ordering of proof systems.



Proposition 3. If P polynomially simulates S, then the canonical pair of S is
polynomially reducible to the canonical pair of P.

Proof. The reduction is given by (¢,1™) — (¢,17(™)), where p is a polynomial
bound such that |f(z)| < p(|z|) for all .

It is possible, however, to give an example of two systems that are not equiv-
alent with respect to polynomial simulation, but still have canonical pairs mu-
tually polynomially reducible. We will give the example a few lines below.

The main problem about canonical pairs is, how hard it is to distinguish
elements of one of the sets from the elements of the other set, in particular,
is the pair polynomially separable? This question is related to the so called
automatizability of a proof system. A proof system S is automatizable, if there
exists a polynomial time algorithm that for a given formula ¢ and a number m
finds a refutation of ¢ in time polynomial in m, provided a refutation of length
at most m exists. The following is trivial:

Lemma 1. If S is automatizable, then the canonical pair of S polynomially
separable.

The converse may be not true, but a the following weaker statement is true.

Lemma 2. If the canonical pair of S polynomially separable, then there exists
a proof system S’ which polynomially simulates S and which is automatizable.

Proof. Let f be a polynomial time computable function that is 0 on REF(S)
and 1 on SAT™*. In the proof system S’ a refutation of ¢ is a sequence 1™ such
that f(¢,1™) = 0. Formally, we define S’ by S'(w) = ¢, if w = (¢,1™) and
f(o,1™) = 0; S'(w) = 21 V —z; otherwise. A polynomial simulation of S by S’
is the function w + (S(w),11*!).

Corollary 2. The canonical pair of a proof system S is polynomially separable
iff there exists an automatizable proof system S’ that polynomially simulates S.

The last corollary shows that from the point of view of proof search the
problem of the polynomial separation of the canonical pair is more important
than automatizability. For example, assuming a reasonable complexity theoreti-
cal conjecture, it has been established that Resolution is not automatizable [1].
But this does not exclude the possibility that an extension of Resolution is au-
tomatizable. To show that the latter possibility is excluded means to prove that
the canonical pair of Resolution is not polynomially separable. (Thus the relation
of these two concepts is similar to undecidability and essential undecidability of
first order theories in logic.)

We shall mention two more concepts that are connected with disjoint N P-
pairs. The first is the feasible interpolation property. We say that a system S
has the feasible interpolation property if, given a proof of a formula

o(2,9) vV ¥(Z,2), (1)



in which Z, ¢, Z are strings of distinct propositional variables, one can construct
in polynomial time a boolean circuit C' with the property

C@)=0=¢(z,5) and C(T)=1= ¢(x,32).

The meaning of this is that the sets {Z ; Iy-¢(Z,9)} and {Z ; Iz—(Z,2)},
which have polynomial size nondeterministic boolean circuits, can be separated
by a polynomial size (deterministic) circuit. If we had a sequence of formulas of
the form above given uniformly in polynomial time and also their proofs given
in this way, we would get, from the feasible interpolation property, a pair of
disjoint N P-sets and a polynomial time separation algorithm for them. On the
other hand, given an NP set A, we can construct (in fact, generate uniformly
in polynomial time) a sequence of formulas «,, such that for |Z| = n, T € A iff
35 o, (T, 7). So the statement that two NP sets are disjoint can be expresses as
a sequence of formulas of the form 1.

Consequently: feasible interpolation means that whenever we have short proofs
that two NP sets are disjoint, then they can be polynomially separated.

Now we sketch the promised example of the two nonequivalent proof systems
with essentially the same canonical pair. In [11] we have shown (using the feasible
interpolation property) that in the cutting planes proof system C P the tautology
expressing the disjointness of sets of the pair CC has only exponentially long
proofs. Note that the disjointness of the C'C pair is based on the pigeon hole
principle: it is not possible to color a k-clique by k& — 1-colors. This may seem
paradoxical, as the pigeon hole principle has polynomial size proofs in C'P. The
explanation is that in order to use the pigeon hole principle we need to define
a mapping and the mapping from the clique to the colors cannot be defined
using the restricted means of CP. In CP one can use only linear inequalities
with propositional variables. To define the mapping we need quadratic terms,
namely, terms of the form z;y; for ; coding a vertex of the clique and y; coding a
color. So let us define an extension of C P, denoted by C P2 that allows quadratic
terms. What it means precisely is the following. Given a formula with variables
Z1,...,Tn we allow in its proofs inequalities with terms of the form z; and z;x;
for i < j (and, of course, constants). On top of the axioms and rules of CP the
proofs of CP%2 may use the following axioms about the quadratic terms:

0<zix; <1, wixj <y, wix; <25, x;+2; <x05+ 1.

One can show that in this system the C'C tautology has polynomial size proofs.
To prove that the canonical pair of CP? is polynomially reducible to the one
of CP, use the following mapping: (¢,1™) — (¢',17(™) with ¢’ expressing
that the above axioms for quadratic terms imply ¢. Since CP is a refutation
system, we can think of ¢ as a set of inequalities from which we want to derive a
contradictory inequality and then ¢' is the union of this set with the inequalities
for the quadratic terms. p(m) is a suitable polynomial overhead.!

! Note for Experts. The Lovész-Schrijver system combined with C' P that we considered

in [11] seems not to be strong enough to polynomially simulate CP?, as it does not
allow to apply the rounding up rule to quadratic inequalities.



The last property of proof systems that we mention in this paper is the
feasible reflection. We say that a system S has the feasible reflection property if
the formulas

S,n,m(Z,G) V 10,(Z, Z)

have polynomial size proofs, where 7s ., m(Z,§) is a propositional encoding of
‘y is an S refutation of length m of formula x of length n’ and 0,(Z, %) is an
encoding of ‘z is a satisfying assignment of formula x of length n’. Furthermore,
we will assume that the proofs of these formulas are given uniformly by a polyno-
mial time algorithm. The meaning of the formulas, actually tautologies, is that
either the formula x has no refutation of length m or it is not satisfiable. Thus
feasible reflection of S means that we can generate in polynomial time proofs of
propositional instances of the statement REF(S) N SAT* = {.

Proposition 4. If a proof system has both feasible interpolation and feasible
reflection properties, then its canonical pair is polynomially separable.

Proof. Feasible reflection means that one can efficiently generate proofs of the
tautologies expressing the disjointness of the canonical pair. Feasible interpo-
lation property means that any N P-pair that has such proofs is polynomially
separable. Hence the canonical pair is polynomially separable.

We know of strong systems that have feasible reflection property (see [6]
Thms 9.1.5 and 9.3.4),2 we also know of weak systems that have feasible in-
terpolation property, but we have no example of a proof system that has both
properties. In fact we do not know of any natural proof system the canonical
pair of which is polynomially separable. Let us conclude by noting that the last
proposition can be refined. Thus to prove polynomial separation of the canonical
pair of a system S we only need to have short P proofs of the reflection principle
for S in some, possibly stronger, system P that has the feasible interpolation
property.

4 The NP-pair of Resolution

We shall consider the canonical pair of the Resolution proof system. Resolution
uses only formulas that are disjunctions of variables and negated variables (called
literals); these formulas are called clauses. The only rule of Resolution is the cut
in which we combine two clauses with a complementary literal into one, omitting
the complementary literal. A proof is a sequence of clauses such that at the
beginning we have the clauses that we want to refute and then a sequence of
clauses follows such that each of these clauses follows by an application of the
resolution rule from two clauses before it. In general, the length of a proof is the

2 For a logician this may look surprising, since reflection principles for first order
theories are stronger than consistency and even the latter is unprovable by Gdédel
theorem. Furthermore, reflection for strong enough propositional proof systems is
equivalent to their consistency [6].



length of a binary sequence that encodes the proof. In Resolution the size of each
step of the proof, which is a clause, is bounded by the number of propositional
variables that appear in the clauses to be refuted. Hence we can assume w.l.o.g.
that the length is simply the number of clauses in the proof.

To get more information on the pair (REF(R),SAT*), where R stands for
the resolution proof system, we prove the following symmetry property of it.

Definition 4. A pair (A, B) is symmetric, if (A, B) is polynomially reducible
to (B, A).

This property has been shown for some stronger systems using first order
theories associated to the proof systems [13]. The symmetry of the canonical
pairs of such systems can also be derived from the feasible reflection property.
Resolution is weaker than such systems, in particular it is unlikely that it pos-
sesses the feasible reflection property. Therefore we give a direct proof of the
symmetry of the canonical pair of Resolution. The idea of the proof is to show
a property that is a little weaker than feasible reflection.

Theorem 1. The canonical pair of Resolution is symmetric.

Proof. We need, for a given CNF ¢ and a number m, to construct in polynomial
time a CNF 9 such that if ¢ is refutable by a resolution refutation of length m
then 1) is satisfiable and if ¢ is satisfiable, then 1 is refutable by a refutation
with length polynomial in m. Let ¢ be the conjunction of clauses C1,...,C,, let
the variables in the clauses be z1, ..., z,. We shall represent a refutation of ¢ of
length m by a 2n x m matrix, plus some additional information. The columns of
the matrix will encode the clauses of the refutation. The additional information
will specify for each clause that is not an assumption, from which two clauses it
has been derived. Furthermore we shall specify the variable that was resolved in
this step of the refutation.

It will be clear from the construction of ¢ that the formula is a correct
description of the refutation, ie., if a refutation exists, then v is satisfiable. Thus
the assignment (¢,1™) — (¢,1™) maps REF(R) into SAT*, (whatever m' we
choose).

The nontrivial part is to show that if ¢ is satisfiable, then there is a resolution
refutation of v that is polynomial in the size of ¢ and m (the size of this proof
will determine the m' and then we get that SAT™* is mapped to REF(R)). This
will be proved as follows. We take a satisfying assignment and derive gradually,
for each j = r,r+1,...,m, the clause that says that the j-th clause of the proof
agrees with the satisfying assignment at least in one literal. The contradiction is
obtained by using the clauses of ¥ that express that the last clause C,, should
be empty (clauses (1) below). Here is a detailed proof.

Variables y.;;, e =0,1,i=1,...,n, j =1,...,m encode clauses. Namely,
Yo,s,; (resp. y1,i,;) means that —x; (resp. x;) is present in the clause C;. Variables
Pk (resp. gjx) 1 < j < k,r <k <m say that C was obtained from C; and C;
contains negated (resp. positively) the resolved variable. Finally, variables v; ;



determine that C; was obtained by resolving variable z;. The following are the
clauses of .

(0) yo,i,; or y1,5,; for all ¢ and all j < r, according to which literal occurs in
C; (recall that for j < r the clauses are given by ¢);

(1) “Ye,i,m, for all e, i (the last clause is empty);

(2) o,i,; V 4,5, for all 4, j (C; does not contain x; and —z; at the same
time);

(3a) V<r Piks (3b) Vicp, @ik, for k >3

(4) “pjr V gk, for j <k, r <k;

(5) =ik V i ks "Gk V gk for G, j' <k, j # j's r <k ((3-5) say that
there are exactly two clauses that are assigned to Cy);

(6a) —pjx V ik V yo,,; (the C; assigned to Ck contains literal —z;);
6b) =gk V ik V y1,4,; (the C; assigned to Cj, contains literal z;);

7&) Wik VUiV Weij V Ye,ik (Ck contains Cj except for ﬁ.%'i);
7b) =gk V Uik V Weii V Ye,ie (Cr contains C; except for —z;);
8a) V, v,k for r < k;

(8b) —w;k V —wy i for i # ', r < k (the resolution variable z; is uniquely
assigned to Cy).

This finishes the description of the ¢ that is assigned to (¢,1™). Now, given a
satisfying assignment (eq,...,e,) for C1,...,C, we construct a polynomial size
refutation from (0)-(8). We shall use the weakening rule, which is superfluous,
but it simplifies notation. Put

(
(
(
(

Dy = Yer, 1,k VooV Ye, nk-

We shall gradually derive clauses Dy, ..., D,,. Once we have D,,, a contradiction
follows immediately using clauses (1).
Clauses D, ..., D, follow immediately from (0) using weakening. To derive

Dy, assuming D; for j < k, we first derive clauses

(9) ik Vg V Dy
for j #1, 4,1 < k. Fix i and | and assume w.l.o.g. e; = 0. From (6b) and (2) we
get =gk V ik V 7o,4,1- Resolving with D; we get

(10) =~qik V ik V (Di \ {y0,i,1})-

From (7b) and (8b) we get

(11) =qie V ik V We,r it V Wer it ks
for all i’ # i. Resolving (10) with clauses in (11) we get =g, V ~0;k V (Dg \
{y0,i,k}). Using weakening we get

(12) ik Y QY gV Dy.

Having these for all ¢, we can resolve with (8a) and get (9). To get Dy, from (9),
first resolve with (3a) to get —p.x V =gk V Di. Then resolve with (4) to get
=qi,k V Dy Finally resolve with (3b) and get Dy.

We have shown that if ¢ is satisfiable, then there exists a proof of ¢ the size
of which is polynomial in the size of ¢ and m. Let m’ be the polynomial bound
on this proof; we can compute this bound without having the proof of 4. Thus,
if we define the reduction by (¢,1™) — (¢, 1m1), the set SAT* will be mapped
into REF(R).



The following operation on pairs, clearly, defines the the meet in the lattice
of degrees of pairs,

(A4,B) A(C,D) = (A x C, B x D).

Given a pair (A, B) we can thus form a symmetric pair by taking (A4, B) A
(B, A). This symmetrization satisfies the following stronger property: there exists
a polynomial time computable isomorphism that transposes the sets in the pair.
An example of a concrete pair that has this property is BMS. We observe
that the symmetry of a pair implies that there is an equivalent pair, namely
(A, B) A (B, A), with the stronger property.

Proposition 5. If (A, B) is symmetric, then (A, B) and (A,B) A (B, A) are
polynomially equivalent.

Proof. (A,B) A (B, A) is always reducible to (A, B) by the projection on the
first coordinate. Let f be a polynomial reduction of (A4, B) to (B, A). Then
z + (x, f(x)) is a polynomial reduction of (A, B) to (A, B) A (B, A).

Consequently, there is a pair of disjoint N P sets that has this stronger sym-
metry property and that is polynomially equivalent to the canonical pair of
Resolution.

5 Open problems and further research topics.

Our first result shows that seemingly different pairs may be in fact equivalent.
Our second result shows that the canonical pair of Resolution is equivalent to a
very symmetric pair. This gives some hope that a nice combinatorial character-
ization of the degree of the canonical pair of Resolution and other systems may
be found. If the systems are natural and robust, there should be simple combi-
natorial principles on which they are based. Ideally, we would like to prove that
some canonical pair is polynomially equivalent to some combinatorially defined
pair. At present we only have reductions of cryptographic pairs to canonical
pairs of proof systems [8, 3], but we do not have converse reductions. We do not
have any reductions from canonical pairs to pairs defined in another way.

An important problem is to decide if the canonical pairs of weak systems are
polynomially separable. In particular, prove or disprove (using plausible com-
plexity theoretical assumptions) that the canonical pair of Resolution is poly-
nomially separable. If it were polynomially separable, it might have practical
consequences for automated theorem proving (see Lemma 9).

In this paper we have considered a concept of reduction between pairs that
corresponds to many one reductions between sets. One can define also the con-
cept corresponding to Turing reductions:

Definition 5. (A, B) is polynomially Turing reducible to (C, D), if there erists
a polynomial time oracle Turing machine M such that M* separates (A, B) for
every oracle A that separates (C, D).



With this definition of reduction, it should be possible to show the equivalence
of more pairs. Eg., every (A, B) is polynomially Turing equivalent to (B, A).
Furthermore, given a pair (A, B), define P(;A’B,PIA’B by (Z1,...,%,) € PiA’B iff
Z1,...,%n € AU B and the parity of the number of x;’s such that z; € A; is 4.
It is an easy exercise to show that this pair is polynomially Turing equivalent to
(A, B).

It would be interesting to learn more about the lattice of degrees of disjoint
NP pairs. We know about this structure even less than we know about the
degrees of proof systems. Does there exist the biggest element in it? How is this
question related to the same question about the degrees of proof systems? Etc.
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