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Abstract

Local receptive field neurons comprise such well-known and widely
used unit types as radial basis function neurons and neurons with
center-surround receptive field. We study the Vapnik-Chervonenkis
(VC) dimension of feedforward neural networks with one hidden layer
of these units. For several variants of local receptive field neurons
we show that the VC dimension of these networks is superlinear.
In particular, we establish the bound Q(W logk) for any reasonably
sized network with W parameters and k& hidden nodes. This bound
is shown to hold for discrete center-surround receptive field neurons,
which are physiologically relevant models of cells in the mammalian
visual system, for neurons computing a difference of Gaussians, which
are popular in computational vision, and for standard radial basis
function (RBF) neurons, a major alternative to sigmoidal neurons in
artificial neural networks. The result for RBF neural networks is of
particular interest since it answers a question that has been open for
several years. The results also give rise to lower bounds for networks
with fixed input dimension. Regarding constants all bounds are larger
than those known thus far for similar architectures with sigmoidal
neurons. The superlinear lower bounds contrast with linear upper
bounds for single local receptive field neurons also derived here.
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1 Introduction

The receptive field of a neuron is the region of the input domain giving rise to
stimuli to which the neuron responds by changing its behavior. Neuron mod-
els can be classified according to whether these stimuli are contained in some
bounded region or may come from afar, in other words, whether their recep-
tive field is local or not. Prominent examples of local receptive field models
are neurons with center-surround receptive field and neurons computing radial
basis functions, whereas sigmoidal neurons represent a widely used model type
having a non-local receptive field. The impressive computational and learning
capabilities of neural networks, being significantly higher than those of single
neurons, are well established by experimental findings in biology, by innumer-
able successful applications in practice, and by substantial formal arguments in
the theories of computation, approximation, and learning. An evident question
is to what extent these network capabilities depend on the receptive field type
of the neurons.

An extensively studied measure for quantifying the computational and learn-
ing capabilities of formal systems is the Vapnik-Chervonenkis (VC) dimension.
It characterizes the expressiveness of a neural network and is mostly given in
terms of the number of network parameters and the network size. A well known
fact is that the VC dimension of sigmoidal neural networks is significantly more
than linear. This has been shown for networks growing in depth (Koiran and
Sontag, 1997; Bartlett et al., 1998), and for constant-depth networks with the
number of hidden layers being two (Maass, 1994) and one (Sakurai, 1993). The
two latter results for networks of constant depth are of particular significance
since they deal with neural architectures as they are used in practice, where
one rarely allows the number of hidden layers to grow indefinitely. Moreover,
the case of one hidden layer is of even greater interest, because single neurons
almost always have a VC dimension that is linear in the input dimension and,
hence, linear in the number of model parameters.! This has been found for sig-
moidal neurons (Cover, 1965; Haussler, 1992) (see also Anthony and Bartlett,
1999) and for several other models such as higher-order sigmoidal neurons with
restricted degree (Anthony, 1995), for the neuron computing Boolean monomi-
als (Natschldger and Schmitt, 1996), and for the product unit (Schmitt, 2000).
Thus, the fact that networks with the minimal number of one hidden layer have
superlinear VC dimension corroborates the enormous computational capabilities
arising when sigmoidal neurons cooperate in networks.

In this article we study networks with one hidden layer of local receptive field
neurons. We show for several types of receptive fields that the VC dimension

1A notable exemplar of a single neuron having superlinear VC dimension is
the model of a spiking neuron studied by Maass and Schmitt (1999).



of these networks is superlinear. First, we consider discrete models of cells with
center-surround receptive field (CSRF). The first real neurons to be identified as
having a receptive field with center-surround organization are the ganglion cells
in the visual system of the cat. The recording experiments of Kuffler (1953) from
the optic nerve revealed the pure on- and off-type responses within specific areas
of ganglion cell receptive fields and their concentric, antagonistic center-surround
organization. Also other neurons of the mammalian visual system such as the
bipolar cells of the retina and cells in the lateral geniculate nucleus are known
to have center-surround receptive fields (see, e.g., Tessier-Lavigne, 1991; Nicholls
et al., 1992). CSRF neurons play an important role in algorithmic experiments
with self-organizing networks. The question how center-surround receptive fields
can emerge in artificial networks by adjusting their parameters has been investi-
gated using unsupervised (Linsker, 1986, 1988; Atick and Redlich, 1993; Schmid-
huber et al., 1996) as well as supervised learning mechanisms (Joshi and Lee,
1993; Yasui et al., 1996). It is found that cells similar to those of the first few
stages of the mammalian visual system develop when applying simple learning
rules and using training data from realistic visual scenes. Neural networks with
center-surround receptive fields have also been fabricated in analog VLSI hard-
ware. The silicon retinae constructed by Mead and Mahowald (1988) (see also
Mead, 1989), Ward and Syrzycki (1995), and Liu and Boahen (1996) consist of
neuromorphic cells performing operations of biological receptive fields.

The second type of receptive field neuron we consider is called the difference-
of-Gaussians (DOG) neuron and is a continuous version of the above model.
Like this, it also has its origin in neurobiology. Extending the work of Kuffler
(1953), Rodieck (1965) has probably been the first to introduce the difference-of-
Gaussians as a quantitative model for the functional responses of ganglion cells.
The importance and the physiological plausibility of the DOG for satisfactorily
fitting functions to experimental data from retinal ganglion cell recordings is also
demonstrated by the work of Enroth-Cugell and Robson (1966). The DOG is
generally accepted as a mathematical description of the behavior of several cell
types in the retino-cortical pathway,? such as the above-mentioned bipolar cells,
ganglion cells, and cells in the lateral geniculate nucleus (Marr and Hildreth,
1980; Marr, 1982; Glezer, 1995). Models based on DOG functions may even
provide better descriptions of experimental data than other common models of
visual processing as shown by Hawken and Parker (1987) in their study of the
monkey primary visual cortex.

The third and last type of local receptive field neuron in this study is the

2In particular, Marr and Hildreth (1980) prove that under certain condi-
tions the difference-of-Gaussian operator closely approximates the Laplacian-
of-Gaussians, also known as Marr filter, which they show to be well suited to
detect intensity changes and, especially, edges in images.



radial basis function (RBF) neuron, specifically the standard, that is, Gaussian
RBF neuron. RBF networks are among the major neural network types used in
practice (see, e.g., Bishop, 1995; Ripley, 1996). They are appreciated because
of their powerful capabilities in function approximation and learning that are
also theoretically well founded. A series of papers specifically deals with show-
ing that under rather mild conditions RBF networks can uniformly approximate
continuous functions on compact domains arbitrarily closely (Hartman et al.,
1990; Park and Sandberg, 1991, 1993; Mhaskar, 1996). Even before RBF net-
works were considered as artificial neural networks they were a well established
method for multi-variable interpolation and function approximation. A compre-
hensive account on the approximation theory of radial basis functions up to 1990
is given by Powell (1992). The connections between approximation theory and
learning in adaptive networks of RBF neurons were begun to be explored by
Broomhead and Lowe (1988) and Poggio and Girosi (1990). Moody and Darken
(1989) study learning algorithms for RBF networks that can be implemented as
real-time adaptive systems. They show that combined supervised and unsuper-
vised learning methods can be computationally faster in RBF networks than the
gradient-based methods devised for sigmoidal networks. The reader may consult
the volumes by Howlett and Jain (2001a,b) or Yee and Haykin (2001) for recent
developments in RBF neural networks.

There has been previous work on the VC dimension of radial basis function
networks. Bartlett and Williamson (1996) show that the VC dimension and
the related pseudo dimension of radial basis function networks with discrete
inputs is O(W log(W D)), where W is the number of network parameters and
the inputs take on values from {—D,...,D}. The best known upper bound
for RBF networks with unconstrained inputs is due to Karpinski and Macintyre
(1997) and is O(W?2k?), where k denotes the number of network nodes. Holden
and Rayner (1995) address the generalization capabilities of networks having
RBF units with fixed parameters and establish a linear upper bound on the VC
dimension. Anthony and Holden (1994) consider fully adaptable RBF networks
with adjustable hidden and output node parameters. Referring to the lower
bound Q(W log W) for sigmoidal networks due to Maass (1994) they write
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. we leave as an open question whether it is possible to obtain
a lower bound similar to that recently proved by Maass (1993, 1994)
for certain feedforward networks ... ”

(p. 104). The work of Erlich et al. (1997) together with a result of Lee et al.
(1995) gives a linear lower bound (see also Lee et al., 1997). Although there
exists already a large collection of VC dimension bounds for neural networks, it
has not been known thus far whether the VC dimension of RBF neural networks
is superlinear. Major reasons for this might be that previous results establishing



superlinear bounds are based on methods geared to sigmoidal® neurons or con-
sider networks having an unrestricted number of layers* (Sakurai, 1993; Maass,
1994; Koiran and Sontag, 1997; Bartlett et al., 1998).

In this article we prove that the VC dimension of RBF networks is indeed
superlinear, thus answering the question of Anthony and Holden (1994) quoted
above. Precisely, we show that every network with n input nodes, W parameters,
and one hidden layer of & RBF neurons, where k < 2(**2)/2_ has VC dimension®
Q(W log k). Thus, the cooperative network effect observed in sigmoidal networks
is also existent in RBF networks. This result also has implications for the com-
plexity of learning with RBF networks, all the more since it entails the same
lower bound for the related notions of pseudo dimension and fat-shattering di-
mension. We do not state these consequences explicitly here but refer the reader
to Anthony and Bartlett (1999) instead. Before establishing the lower bound for
RBF networks, however, we show that the bound Q(W logk) holds for the VC
dimension of DOG networks. From this the bound for RBF networks is then
immediately obtained. The result for DOG networks, in turn, is derived from
the superlinear lower bound for discrete CSRF networks that we establish first.
Thus, this work creates a link between these three neuron models not only by
focussing on their the common receptive field property but also by the logical
requisite of the successive proofs of the VC dimension bounds.

The article is organized as follows. We introduce definitions and notation in
Section 2. The two subsequent sections contain the derivations of the superlinear
lower bounds. In Section 3 we consider networks of discrete local receptive field
neurons, specifically the binary and ternary CSRF neuron and a discrete variant
of the RBF neuron, the binary RBF neuron. In Section 4 we study networks
of DOG neurons and standard RBF neural networks. We note that all bounds
derived in both these sections have larger constant factors than those known
for sigmoidal networks of constant depth thus far. In particular, we obtain
the bound (W/5)log(k/4) for binary CSRF neurons and for DOG neurons, and
the bound (W/12) log(k/8) for ternary CSRF neurons, for binary RBF neurons,
and for Gaussian RBF neurons. For comparison, sigmoidal networks are known
with one hidden layer and VC dimension at least (1#//32)log(k/4), and with

3For a quite general definition of a sigmoidal neuron that does not capture
radial basis function neurons see, e.g., Koiran and Sontag (1997).

“We point out that it might be possible to obtain superlinear lower bounds
for local receptive field networks pursuing the approaches of Koiran and Sontag
(1997) and Bartlett et al. (1998), but only at the expense of allowing arbitrary
depth. In particular, this has no relevance for standard RBF networks.

*Note that this result also gives rise to the lower bound Q(W log W) by choos-
ing a network with £ = n hidden units.



two hidden layers and VC dimension at least (W/132)log(k/16) (see Anthony
and Bartlett, 1999, Section 6.3). The results in Sections 3 and 4 also give rise
to lower bounds for local receptive field networks when the input dimension is
fixed. In Section 5 we present upper and lower bounds for single neurons. In
particular, we show that the VC dimension of binary RBF and CSRF neurons
and of ternary CSRF neurons is linear. Further, we derive such a result for the
pseudo dimension of the Gaussian RBF neuron. Finally, in Section 6 we return to
networks of discrete local receptive field neurons and establish the upper bound
O(Wlogk) for all discrete variants of local receptive field neurons considered
here. This implies that the lower bounds for these networks are asymptotically
optimal. We conclude with Section 7 discussing the results and presenting some
open questions. An appendix gives the derivation of a bound for a specific class
of functions defined in terms of halfspaces and required for a result in Section 5.1.

2 Definitions

We first introduce the types of neurons and networks with local receptive fields
that we study. Then we give the definitions of the VC dimension and other basic
concepts that are needed in the following.

2.1 Networks of Local Receptive Field Neurons

We start with discrete neurons. Let ||u|| denote the Euclidean norm of vector .

A binary center-surround receptive field (CSRF) neuron computes the function
gvosrr : 22 — {0,1} defined as

1 ifa<|lz—c|<b,
gvosrr(c, a,b,x) = {0 <l | <

otherwise,
with input variables z1,...,z,, and parameters cy, ..., c,,a,b, where b > a > 0.
The vector (cy,...,c,) is called the center of the neuron, and a, b are its center

radius and surround radius, respectively. We also refer to this neuron as binary
off-center on-surround neuron and call for given parameters c,a,b the set {z :
gvosrr(c, a, b, ) = 1} the surround region of the neuron.

A ternary CSRF neuron is defined by means of the function gicsrr : R2" 2 —
{-1,0,1} with

1 ifa<|lz—c|| <D
gtCSRF(Ca a, b, ZE) = -1 lf ||£L' —_ C” < a,
0 otherwise.

This neuron is also called ternary off-center on-surround neuron.



surround region

Figure 1: Receptive field of discrete neurons with center ¢, center radius a, and
surround radius b. Output values A = 0, B = 1 correspond to a binary CSRF
neuron, A = —1, B = 1 yields a ternary CSRF neuron, and a binary RBF neuron
is given by A = B = 1. Outside the regions labelled A or B the output is always
0.

Finally, a binary radial basis function (RBF) neuron computes the function
gvreF : R¥"T1 — {0, 1} satisfying

gvrer(c, b, T) 0 otherwise.

{ 1 if ||l —c]| <b,

Figure 1 shows the receptive field of these neurons for the case n = 2. We
emphasize that the output values in these definitions are meant to be symbolic
and represent discrete levels of neural activity. So, a 1 corresponds to a state
where the neuron is highly active, whereas —1 indicates low activity. The value 0
signifies that the neuron is silent. Furthermore, the specific assignment of values
to the activity levels is not relevant for the results derived in this article. For
instance, any two distinct non-zero values A < B instead of —1,1 can be chosen
for the ternary CSRF neuron without affecting the validity of the lower bounds.
The same holds for the binary CSRF and binary RBF neuron, where the value
1 can be replaced by any other non-zero value.

We further remark that the assignment of output values to points lying on
a radius also allows some freedom. For instance, we could alternatively require
that for ||z — ¢|| = a we have gycsrr(c,a,b,z) = 0 or gicsrr(c,a,b,z) = —1.
Similarly for ||z — ¢|| = b. The VC dimension bounds do not rely on the values
for the radii and hence still hold for these and other cases.



We have defined here only off-center on-surround variants of CSRF neurons.
In neurobiology models of on-center off-surround cells are equally important (see,
e.g., Tessier-Lavigne, 1991; Nicholls et al., 1992). In these neurons the activity in
the surround region is lower than in the center. Since we are considering networks
that are weighted combinations of neurons, such a definition is redundant here.
An on-center off-surround neuron in a network can be replaced by an off-center
on-surround neuron, and vice versa, by simply multiplying the weight outgoing
from it with a negative number.

The two types of continuous local receptive field neurons considered in this
article are defined as follows. A Gaussian radial basis function neuron computes
the function gggr : R***! — R defined as

x — c||?
grer(C,0,2) = exp <_u)’

o2

with input variables zi,...,x,, and parameters c;,...,c, and ¢ > 0. Here
(c1,...,cpn) is the center and o > 0 the width.

A difference-of-Gaussians (DOG) neuron is defined as a function gpog :
R27+4 — R computed by the weighted difference of two RBF neurons with equal
centers, that is,

gDOG(CaUaTaaa/Bax) = agRBF(CaO-a'T)_BgRBF(CaTaI)a

where o, 7 > 0. Examples of grgr and gpog for input dimension 2 are shown in
Figure 2.

The neural networks we are studying are of the feedforward type and have
one hidden layer. They compute functions of the form f : R¥™"® — R, where
W is the number of network parameters, n the number of input nodes, and f is
defined as

f(w,y,x) = wo+ wlhl(yaw) +ee+ wkhk(ya :I?)

The k hidden nodes may compute any of the functions defined above, that is,

hi,.... hy € {gbCSRFa JtCSRF; JbRBF) JRBF, QDOG}-

The parameters of the hidden nodes are gathered in y from which each node se-
lects its own parameters. The network has a linear output node with parameters
wy, - - ., Wy, also known as the output weights. The parameter —wy is also called
the output threshold. For simplicity we sometimes refer to all network parame-
ters as weights. If h; = grpr for ¢ = 1,... &k, we have the standard form of a
Gaussian radial basis function neural network.
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Figure 2: Receptive field functions computed by a Gaussian radial basis function
neuron (left) and a difference-of-Gaussians neuron (right).

2.2 Vapnik-Chervonenkis Dimension of Neural Networks

A dichotomy of a set S C R" is a pair (Sp,S;) of subsets such that SpN.S; = 0
and Sy U S; = S. A class F of functions mapping R” to {0,1} is said to shatter
S if every dichotomy (Sp, S1) of S is induced by some f € F, in the sense that f
satisfies f(Sp) C {0} and f(S;) C {1}. The function sgn : R — {0, 1} satisfies
sgn(z) =1 if x > 0, and sgn(z) = 0 otherwise.

Definition 1. Let N be a neural network and F be the class of functions com-
puted by N'. The Vapnik-Chervonenkis (VC) dimension of N is the cardinality
of the largest set shattered by the class {sgno f: f € F}.

The pseudo dimension and the fat-shattering dimension are generalizations
of the VC dimension that apply in particular to real valued function classes.
The lower bounds for local receptive field networks presented in this article are
stated for the VC dimension, but they also hold for the pseudo dimension and
the fat-shattering dimension. The bound on the pseudo dimension follows from
the fact that the VC dimension of a neural network is by definition not larger
than its pseudo dimension. The bound on the fat-shattering dimension is im-
plied because the output weights of the neural networks considered here can be
scaled arbitrarily. The definition of the pseudo dimension will be given in Sec-
tion 5.2 where we establish a linear upper bound for the single Gaussian RBF
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neuron. We refer the reader to Anthony and Bartlett (1999) for a definition of
the fat-shattering dimension and results about the relationship between these
three notions of dimension.

2.3 Further Concepts and Notation

An (n—1)-dimensional hyperplane in R is represented by a vector (wy, - .., w,) €
R**! and defined as the set

{z e R" : wy + w1 + - - - + wpz,, = 0}.

An (n — 1)-dimensional hypersphere in R" is given by a center ¢ € R* and a
radius r > 0, and defined as the set

{z eR": ||z —c|]| =71}
We clearly distinguish the hypersphere from a ball, which is defined as the set
{zeR": ||z — || <r}.

We also consider hyperplanes and hyperspheres in R” with a dimension k& <
n— 1. In this case, a k-dimensional hyperplane is the intersection of two (k+ 1)-
dimensional hyperplanes, assuming that the intersection is non-empty. Similarly,
the non-empty intersection of two (k + 1)-dimensional hyperspheres yields a k-
dimensional hypersphere, provided that the intersection is not a single point.

We use “In” to denote the natural logarithm and “log” for the logarithm to
base 2.

3 Swuperlinear Lower Bounds for Networks of
Discrete Neurons

In this section we establish superlinear lower bounds for networks consisting of
discrete versions of local receptive field neurons. Crucial is the result for binary
CSRF networks, presented in Section 3.2, from which the bounds for ternary
CSRF networks and binary RBF networks in Sections 3.3 and 3.4, respectively,
follow straightforward. First, however, we introduce a geometric property of
certain finite sets of points.

3.1 Geometric Preliminaries

Definition 2. A set S of m points in R™ s said to be in spherically general
position if the following two conditions are satisfied:

10
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Figure 3: Positive and negative examples for sets in spherically general position
(Definition 2). The set {z1, z2, 23} has a line passing through its points, and the
set {1, xs2, 4, x5} lies on a cirlce. Hence, any set that includes one of these sets
(or both) is not in spherically general position since they violate condition (1)
and (2), respectively. A positive example is the set {zs, 23, 24, Z5, T}

(1) For every k < min(n, m—1) and every (k+1)-element subset P C S, there
is no (k — 1)-dimensional hyperplane containing all points in P.

(2) For everyl < min(n,m — 2) and every (I + 2)-element subset Q C S, there
is no (I — 1)-dimensional hypersphere containing all points in Q.

The definition is illustrated by Figure 3 showing six points in R?. The entire
set is not in spherically general position, as witnessed by the line and the circle.
It is easy, but may take a while, to verify that the set {z2, z3, x4, z5,z¢} indeed
is in spherically general position.

Sets satisfying only condition (1) are commonly referred to as being “in gen-
eral position” (see, e.g., Cover, 1965; Nilsson, 1990). Thus, a set in spherically
general position is particularly in general position. (The converse does not always
hold, as can bee seen from Figure 3: The set {z1, z2, x4, 5} meets condition (1)
but not condition (2).) For establishing the superlinear lower bounds on the VC
dimension we require sets in spherically general position with sufficiently many
elements. It is easy to show that for any dimension n there exist arbitrarily
large such sets. The proof of the following proposition provides a method for
constructing them.

Proposition 1. For every n,m > 1 there exists a set S C R® of m points in
spherically general position.

Proof. We perform induction on m. Clearly, every single point trivially satisfies
conditions (1) and (2). Assume that some set S C R" of cardinality m has been

11



constructed. Then by the induction hypothesis, for every k& < min(n,m), every
k-element subset P C S does not lie on a hyperplane of dimension less than
k — 1. Hence, every P C S, |P| < k, uniquely specifies a (k — 1)-dimensional
hyperplane Hp that includes P. The induction hypothesis implies further that
no point in S\ P lies on Hp. Analogously, for every ! < min(n, m — 1), every
(I4+1)-element subset @ C S does not lie on a hypersphere of dimension less than
[—1. Thus, every @ C S, |Q| < 1+1, uniquely determines an (! —1)-dimensional
hypersphere B containing all points in ) and none of the points in S\ Q.

To obtain a set of cardinality m+ 1 in spherically general position we observe
that the union of all hyperplanes and hyperspheres considered above, that is,
the union of all Hp and all By for all subsets P and @, has Lebesgue measure
0. Hence, there is some point s € R® not contained in any hyperplane Hp and
not contained in any hypersphere Bg. By adding s to S we then obtain a set of
cardinality m + 1 in spherically general position. O

3.2 Networks of Binary CSRF Neurons

The following theorem is the main step in establishing the superlinear lower
bound.

Theorem 2. Let h,q,m > 1 be arbitrary natural numbers. Suppose N is a
network with one hidden layer consisting of binary CSRF neurons, where the
number of hidden nodes is h+29 and the number of input nodes is m—+q. Assume
further that the output node is linear. Then there exists a set of cardinality
hq(m + 1) shattered by N'. This even holds if the output weights of N are fized
to 1.

Proof. Before starting with the details we give a brief outline. The main idea
is to imagine the set we want to shatter as being composed of groups of vec-
tors, where the groups are distinguished by means of the first m components
and the remaining ¢ components identify the group members. We catch these
groups by hyperspheres such that each hypersphere is responsible for up to m+1
groups. The condition of spherically general position will ensure that this opera-
tion works. The hyperspheres are then expanded to become surround regions of
off-center on-surround neurons. To induce a dichotomy of the given set, we split
the groups. We do this for each group using the ¢ last components in such a way
that the points with designated output 1 stay within the surround region of the
respective neuron and the points with designated output 0 are expelled from it.
In order for this to succeed, we have to make sure that the displaced points do
not fall into the surround region of some other neuron. The verification of the
split operation will constitute the major part of the proof.

Let us first choose the vectors. By means of Proposition 1 we select a set
{s1,---,8hm+1)} € R™ in spherically general position. Let ey,...,e, denote

12



the unit vectors in R?, that is, those with a 1 in exactly one component and 0
elsewhere. We define the set S by

S = {s;zi=1,...,h(m+ 1)} x{ej:j=1,...,q}

Clearly, S is a subset of R™™ and has cardinality hg(m + 1). It remains to show
that S is shattered by N.

Let (Sp,S1) be some arbitrary dichotomy of S. Consider an enumeration
M, ..., Msq of all subsets of the set {1,...,¢}. Let the function f : {1,..., h(m+
1)} — {1,...,29} be defined by

Myay = {j:siej € Si},

where s;e; denotes the vector resulting from the concatenation of s; and e;. We
use f to define a partition of {si,..., Sp(m+1)} into sets T for k =1,...,27 by

We further partition each set T}, into subsets T}, for p = 1,..., [|Tx|/(m + 1)],
where each subset T}, has cardinality m+1, except if m+1 does not divide |Ty|,
in which case there is exactly one subset of cardinality less than m + 1. Since
there are at most h(m + 1) elements s;, the partitioning of all T}, results in no
more than A subsets of cardinality m + 1. Further, the fact & < 27 permits at
most 27 subsets of cardinality less than m 4 1. Thus, there are no more than
h + 2% subsets T, ;.

We employ one hidden node Hj, ), for each subset T} ,. Thus we get by with
h 4 27 hidden nodes in N as claimed. Since {si,...,Spm+1)} is in spherically
general position, there exists for each Ty, an (m — 1)-dimensional hypersphere
containing all points in T , and no other point. If |T}, ,| = m+1, this hypersphere
is unique; if |Ty,| < m+1, there is a unique (|7} ,| — 2)-dimensional hypersphere
which can be extended to an (m — 1)-dimensional hypersphere that does not
contain any further point. (Note that we require condition (1) of Definition 2,
otherwise no hypersphere of dimension |T ,| —2 including all points of T , might
exist.) Clearly, if |T} ,| = 1, we can also extend this single point to an (m — 1)-
dimensional hypersphere not including any further point.

Suppose that (cgp, 7% p) with center ¢, and radius ry, represents the hy-
persphere associated with subset T} ,. It is obvious from the construction above
that all radii satisfy 7, > 0. Further, since the subsets T} , are pairwise disjoint,
there is some € > 0 such that every point s; € {s1,..., Shm+1)} and every just
defined hypersphere (ck p, 7k,p) Satisfy

if s; & Typ then |||s; — crpll — Tep| > €. (1)

In other words, ¢ is smaller than the distance between any s; and any hypersphere
(Ckp, Tr,p) that does not contain s;. Without loss of generality we assume that ¢

13



is sufficiently small such that

e < minrg,. (2)
k.p

The parameters of the hidden nodes are adjusted as follows: We define the
center Cp = (Ckp1s- - - » Ckpm+q) Of hidden node Hy, by assigning the vector ¢y,
to the first m components and specifying the remaining ones by

kpmts = —g2/4 otherwise,

for j =1,...,q. We further define new radii 7, by

~ £\*
Tkp = \/’/‘%,p—f—(q—‘Mk‘) (5) +1

and choose some v > 0 satisfying

52

v < min ——.
k,p SIrk’p

(3)

The center and surround radii Ek,p,?)\k,p of the hidden nodes are then specified as

Ukp = Thp =7
bk’p = ?kyp + Py
Note that @y, > 0 holds, because £ < 7, implies 7 < 7.
This completes the assignment of parameters to the hidden nodes Hy,. We

now derive two inequalities concerning the relationship between ¢ and « that we
need in the following. First, we estimate £2/2 from below by

2

e e e
2 4 64
g? gt
> 4 ¢ for all k, p,
4 + (87“k,p)2 or a p

where the last inequality is obtained from £ < 7 . Using (3) for both terms on
the right-hand side, we get

2
S > W +9? forallk,p. (4)
Second, from (2) we get
g? 2

—TkpE + 5} < —gz for all &, p,
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and (3) yields
2

—% < %,y forall kp.

Putting the last two inequalities together and adding 2 to the right-hand side,
we obtain

2
rppE + % < 2,y +72 forall k,p. (5)
We next establish three facts about the hidden nodes.

Claim (i). Let s;e; be some point and Ty, some subset where s; € Ty, and
J € My. Then hidden node Hy, outputs 1 on s;e;.

According to the definition of ¢y, if j € M}, we have

Isiej — Cupll® = llsi = crpll® + (@ — | Mi]) <§) +L

The condition s; € Ty, implies [|s; — cxpl|* = 77, and thus

~ g\4
lsie = upll® = 78,+(a— M) (5) +1

- 72

It follows that ||s;e; — Crpl| = Tkp, and since @y p < Tkp < brp, point s;e; lies
within the surround region of node Hy,. Hence, Claim (i) is shown.

Claim (ii). Let s;e; and Ty, satisfy s; € Ty, and j ¢ M. Then hidden node
Hy , outputs 0 on s;e;.

From the assumptions we get here

Isie; — Cepll” = lsi — crypll® +

Ha-aal-n (5)'+ 1+ =)

9
- ri,,,+<q—|Mk|)(5) +1+5
2
~ 9

Employing (4) on the right-hand side results in
Isie; — Cpll® > Tip+ 2Pk + 7"

Hence, taking square roots we have |[s;e; — Crp|| > Tkp + 7, implying that s;e;
lies outside the surround region of Hy ,. Thus, Claim (ii) follows.

15



Claim (iii). Let s;e; be some point and Ty, some subset such that s; € Tj,.
Then every hidden node Hy » with (k',p') # (k,p) outputs 0 on s;e;.

Since s; € T and s; is not contained in any other subset T} s, condition (1)
implies

||3i — Ckl’pl||2 > (Tkl’pl -+ 8)2 or ||Sz — Ckl,pI”Z < (/rkl’pl — 8)2. (6)
We distinguish between two cases: whether j € My or not.

Case 1. If j € My then by the definition of ¢} ,» we have
A2 2 €\*
Isies — Bl = lisi = currl®+ (a = 1Ma)) (5) +1.

From this, using (6) and the definition of 74, we obtain

Isie; — Cwprll® > Ty +2rwpe + 62
or (7)
||3i6]’ — /c\kl,plllz < ?]%I,pl — 27‘]‘,/71,18 + 52.

We derive bounds for the right-hand sides of these inequalities as follows. From

(4) we have
62 > 4’//"\]{,171,1’)/ + 2’}/2,

which, after adding 274 e to the left-hand side and halving the right-hand side,
gives

2rype+et > 2Wpyy+97 (8)

From (2) we get €2/2 < rg e, that is, the left-hand side of (5) is negative.
Hence, we may double it to obtain from (5)

— 21 e + 2 < — 27 Y + 72
Using this and (8) in (7) leads to
lsie; = Gewll? > oy + 1?2 or  sies = G l? < (Fivwr — 7)™
And this is equivalent to
Isie; = Bugrll > Buryr or  lsie; = Gl < By,
meaning that Hy , outputs 0.
Case 2. If j € My then

62

P+ ta— M) (5) +1+ 5

Isie; —Copll® = llsi — cup
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As a consequence of this together with (6) and the definition of 7y ,» we get

2
g
-~ 2 ~2 2
||S,'€j — Ckl,pl” > Tkt pr —+ 27”kl,pl6 4“4+ E
or
52
~ 2 ~2 2
||S,'€j — Ckl,pI” < Tt pt — 27‘kl,pl€ +e° + 5,

from which we derive, using for the second inequality & < 7y, from (2),

2
~ ~ 9
||Si€j — Ckl,pl||2 > T,%/,p: + T € + 5
or (9)
2
~ ~ 9
||8,'€j — Ckl7pl||2 < ’l“,%,’p: — T p€ + 5

Finally, from (4) we have

g2 N 5
Tt pt€ + 5 > 2Tkl,pl + 77,

and, employing this together with (5), we obtain from (9)
Isie; — Gl > Fop +7)° or  llsiej = Copll® < Frw — )%
which holds if and only if
Isie; = Brll > Brryr or  lsie; = Gl < B

This shows that Hy , outputs 0 also in this case. Thus, Claim (iii) is established.

We complete the network N by connecting every hidden node with weight
1 to the output node, which then computes the sum of the hidden node output
values.

We finally show that we have indeed obtained a network that induces the
dichotomy (Sp, S1). Assume that s;e; € S;. Claims (i), (ii), and (iii) imply that
there is exactly one hidden node Hy,, namely one satisfying k¥ = f(¢) by the
definition of f, that outputs 1 on s;e;. Hence, the network outputs 1 as well. On
the other hand, if s;e; € Sy, it follows from Claims (ii) and (iii) that none of the
hidden nodes outputs 1. Therefore, the network output is 0. Thus, A shatters
S with output threshold 1/2 and the proof is completed. O

The construction in the previous proof was based on the assumption that
the difference between center radius and surround radius, given by the value 27,
can be made sufficiently small. This may require constraints on the precision of
computation that are not available in natural or artificial systems. It is possible,
however, to obtain the same result even if there is a lower bound on the difference
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of the radii. One simply has to scale the elements of the shattered set by a
sufficiently large factor.

We apply the result now to obtain a superlinear lower bound for the VC
dimension of networks with center-surround receptive field neurons. By |z| we
denote the largest integer less or equal to .

Corollary 3. Suppose N is a network with one hidden layer of k binary CSRF
neurons and input dimension n > 2, where k < 2", and assume that the output
node is linear. Then N has VC dimension at least

o C)) (b))

This even holds if the weights of the output node are not adjustable.

Proof. We use Theorem 2 with h = |k/2], ¢ = |log(k/2)], and m = n —
|log(k/2)|. The condition k < 2" guarantees that m > 1. Then there is a set of
cardinality

i = 3] p ()] (- s §)) )

that is shattered by the network specified in Theorem 2. Since the number of
hidden nodes is h + 29 < k and the input dimension is m + g = n, the network
satisfies the required conditions. Furthermore, it was shown in the proof of
Theorem 2 that all weights of the output node can be fixed to 1. Hence, they
need not be adjustable. O

VC dimension bounds for neural networks are often expressed in terms of the

number of weights and the network size. In the following we give a lower bound
of this kind.

Corollary 4. Consider a network N with input dimension n > 2, one hidden
layer of k binary CSRF neurons, where k < 22, and a linear output node. Let
W =k(n+2)+k+1 denote the number of weights. Then N has VC dimension

at least
5 8\1)

This holds even in the case when the weights of the output node are fixed.

Proof. According to Corollary 3, N has VC dimension at least | k/2]-|log(k/2)]-
(n — [log(k/2)] + 1). The condition k < 2™? implies

n— \}og(%)J +1 > n—2|-4'
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We may assume that & > 5. (The statement is trivial for £ < 4.) Tt follows,
using |k/2] > (k—1)/2 and k/10 > 1/2, that

-
p(8)] =) 1< el

Hence, N has VC dimension at least (n + 4)(k/5)log(k/4), which is at least as
large as the claimed bound (W/5)log(k/4). O

Finally, we have

In the networks considered thus far the input dimension was assumed to be
variable. It is an easy consequence of Theorem 2 that even when n is constant,
the VC dimension grows still linearly in terms of the network size.

Corollary 5. Assume that the input dimension is fixed and consider a network
N with one hidden layer of binary CSRF neurons and a linear output node.
Then the VC dimension of N is Q(k) and Q(W), where k is the number of
hidden nodes and W the number of weights. This even holds in the case of fixed
output weights.

Proof. Choose m,q > 1 such that m 4+ ¢ < n, and let h = k — 29. Since n is
constant, hg(m + 1) is Q(k). Thus, according to Theorem 2, there is a set of
cardinality (k) shattered by A/. Since the number of weights is k(n + 3) + 1,
which is O(k), the lower bound Q (W) also follows. O

3.3 Networks of Ternary CSRF Neurons

The results from the previous section now easily allow to derive similar bounds for
ternary CSRF neurons. The following statement is the counterpart of Theorem 2.

Theorem 6. Suppose N is a network with one hidden layer consisting of ternary
CSRF neurons and a linear output node. Let 2(h + 29) be the number of hidden
nodes and m+ q the number of input nodes, where h,m,q > 1. Then there exists
a set of cardinality hgq(m + 1) shattered by N'. This even holds for fized output
weights.

Proof. The idea is to use the same set S as in the proof of Theorem 2 and to
simulate the behavior of a binary neuron by two ternary neurons. Let N be
the network constructed in the proof of Theorem 2. Assume first that we have
off-center on-surround neurons available for the construction of N. For every
hidden node H of N we introduce two hidden nodes H, H' for N’ defining their
parameters as follows: Node H gets the same center and radii as H. Node H’
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also gets the same center, but for the center radius we choose 0 and the surround
radius is defined to be the center radius of H. Formally, H' can be regarded as
an off-center on-surround neuron without center region.

It is easy to see that on any input vector from S the sum of the output values
of H and H' is equal to the output value of H. ‘Here we use the fact that no
point in S lies on the radii of any hidden node of N'. Hence, by what was shown
in Theorem 2, a dichotomy (Sy, S1) is accomplished by the sum of the output
values of the hidden nodes, being 0 for elements of Sy and 1 for elements of S;.

In case that we are dealing with on-center off-surround neurons we use the
property that they are negatives of off-center on-surround neurons. Thus, defin-
ing the corresponding output weight to be —1 instead of 1 we obtain the same
result. O

In analogy to the previous section, we are now able to infer three lower
bounds: A superlinear bound in terms of input dimension and network size, a
superlinear bound in terms of weight number and network size, and a linear
bound for fixed input dimension.

Corollary 7. Suppose N is a network with input dimension n > 2, one hidden
layer of k < 2"*1 ternary CSRF neurons, and a linear output node. Then N has
VC dimension at least

i) o)) (e e ()] )

even for fized output weights.

Proof. From k < 2"*! follows that |log(k/4)| < n — 1. Hence, applying Theo-
rem 6 with h = |k/4], ¢ = |log(k/4)|, m = n — |log(k/4)|, and observing that
2(h + 27) < k we immediately obtain the claimed result. O

Corollary 8. Consider a network N with input dimension n > 2, one hidden
layer of k ternary CSRF neurons, where k < 20"2/2 and a linear output node.
Let W = k(n+ 3) + 1 denote the number of weights. Then N has VC dimension

at least
12 %8\

Proof. Since k < 2("t2)/2 we have (n — |log(k/4)| + 1) > (n + 4)/2. Further,
|k/4] > (k — 3)/4 implies for k > 9 that |k/4]| > k/6. (The statement is trivial
for k£ < 8.) Using these estimates in the bound of Corollary 7 together with
|log(k/4)] > log(k/8) gives the result. O

even for fized output weights.
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Corollary 9. Assume that the input dimension n > 2 is fized and consider a
network N with one hidden layer of ternary CSRF neurons and a linear output
node. Then the VC dimension of N is Q(k) and Q(W), where k is the number
of hidden nodes and W the number of weights. This holds even for fized output
weights.

Proof. The result can be deduced from Theorem 6 by analogy with Corollary 5.
O

3.4 Networks of Binary RBF Neurons

Finally, we consider the third variant of a discrete local receptive field neuron and
show that networks of binary RBF neurons also respect the bounds established
above for ternary CSRF neurons.

Theorem 10. Suppose N is a network with one hidden layer consisting of bi-
nary RBF neurons and a linear output node. Let n > 2 be the input dimension,
k the number of hidden nodes, and assume that k < 2"*'. Then N has VC

dimension at least EJ | {log (g) J | (n i Pog (;)J N 1) .

Let W denote the number of weights and assume that k < 2"t2/2_ Then the VC
dimension of N is at least

Wiee (F

12 %5\8)

For fized input dimension n > 2 the VC dimension of N satisfies the bounds
Q(k) and Q(W). All these bounds are valid even when the output weights are
fized.

Proof. The main idea is to employ two binary RBF neurons for the simulation
of one binary CSRF neuron. This is easy to achieve. Given a neuron of the
latter type we provide the two RBF neurons with its center and assign its center
radius to the first and its surround radius to the second neuron. If we give output
weights —1 and 1 to the the first and second neuron, respectively, then it is clear
that on points not lying on the radii the summed ouptut of the weighted RBF
neurons is equivalent to the output of the CSRF neuron.

Thus, we can do a similar construction as in the proof of Theorem 6 obtaining
a network of size twice the original network such that both networks shatter the
set from Theorem 2. We recall that the networks have the property that the
parameters can be chosen such that no point of this set lies on any radius. The
consequences stated in Corollaries 7 to 9 for ternary CSRF neurons then follow
immediately for binary RBF neurons. O
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4 Superlinear Lower Bounds for Networks of
Continuous Neurons

We now turn toward networks of continuous local receptive field neurons. In
this section we first establish lower bounds for networks of DOG neurons. Their
derivation mainly builds on constructions and results from the previous section.
The bounds for RBF networks are then easily obtained.

4.1 Networks of DOG Neurons

We begin by deriving a result in analogy with Theorem 2.

Theorem 11. Let h,q,m > 1 be arbitrary natural numbers. Suppose N is a
network with m + q input nodes, one hidden layer of h+ 27 DOG neurons, and a
linear output node. Then there is a set of cardinality hq(m + 1) shattered by N

Proof. We use ideas and results from the proof of Theorem 2. In particular, we
show that the set constructed there can be shattered by a network of new model
neurons, the so-called extended Gaussian neurons which we introduce below.
Then we demonstrate that a network of these extended Gaussian neurons can be
simulated by a network of DOG neurons, which establishes the statement of the
theorem.

We define an extended Gaussian neuron with n inputs to compute the func-
tion g : R2"*2 — R with

( ) = 1— _M -1 i
g(c,0,a,z) = o exp = ,

where z4,...,x, are the input variables and ¢y,...,c¢c,, «, and o > 0 are real-
valued parameters. Thus, the computation of an extended Gaussian neuron is
performed by scaling the output of a Gaussian RBF neuron with «a, squaring the
difference to 1, and comparing this value with 1.

Let S C R™"? be the set of cardinality hg(m + 1) constructed in the proof of
Theorem 2. In particular, S has the form

S = {sie;:i=1,...,h(m+1);5=1,...,q}

We have also defined in that proof binary CSRF neurons Hj, as hidden nodes
in terms of parameters ¢, € R™, which became the centers of the neurons,
and 7, € R, which gave the center radii @y, = 7, — 7 and the surround radii
/b\k,p = T}p + 7 using some v > 0. The number of hidden nodes was not larger
than h + 29. We replace the CSRF neurons by extended Gaussian neurons Gy,
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with parameters cy p, 0k p, 0 p defined as follows. Assume some o > 0 that will
be specified later. Then we let

ck,p = ck:F’
Ogp — O,

~2
o = exp [ kP
k,p - p 0_2 .

These hidden nodes are connected to the output node with all weights being 1.
We call this network N’ and claim that it shatters S.

Consider some arbitrary dichotomy (Sy, S1) of S and some s;e; € S. Then
node Gy, computes

2
= si€j — Crpl?

2
Tkp

72 a2
= 1- (exp (%) - exp (_—Hs,e] 2ck’p“ ) — 1)
g g

Isie; — Cupll® — 72 ?
= 1—[exp|— 5 Pl —1) . (10)
g

Suppose first that s;e; € S;. It was shown by Claims (i), (ii), and (iii) in the
proof of Theorem 2 that there is exactly one hidden node Hy,, that outputs 1 on
s;e;. In particular, Claim (i) established that this node satisfies

2

[sie; — Cupll®> = T2,

Hence, according to (10) node Gy, outputs 1. We note that this holds for all
values of 0. Further, the derivations of Claims (ii) and (iii) yielded that those
nodes Hy, that output 0 on s;e; satisfy

Isie; — Crpll> > (Frp +7)°  or  |Isie; — Cupll® < (Frp — 7). (11)

This implies for the computation of Gy, that in (10) we can make the expression

( Isiej — Crpll” — 7“7?,,;)
exp | —

o2

as close to 0 as necessary by choosing o sufficiently small. Since this does not
affect the node that outputs 1, network N’ computes a value close to 1 on s;e;.

On the other hand, for the case s;e; € Sy it was shown in Theorem 2 that all
nodes Hy, output 0. Thus, each of them satisfies condition (11), implying that
if o is sufficiently small each node Gy, and hence N, outputs a value close to
0. Altogether, S is shattered by thresholding the output of N' at 1/2.
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Finally, we show that S can be shattered by a network N of the same size
with DOG neurons as hidden nodes. The computation of an extended Gaussian
neuron can be rewritten as

G ) = 1— _M ~1 :
glc,o,a,x) = o exp >
2|z — cl|? —cl|?
= 1-— <a2 exp (—M) — 2 exp <—M) + 1)
o o

— |2 9 a2
= taeny (L) g (2 )
g g

= gDOG(c’ g, J/\/Ea 20(, a2a ZE)

Hence, the extended Gaussian neuron is equivalent to a weighted difference of two
Gaussian neurons with center ¢, widths o, 0/4/2 and weights 2a, a?, respectively.
Thus, the extended Gaussian neurons can be replaced by DOG neurons, which
completes the proof. O

We note that the network of extended Gaussian neurons constructed in the
previous proof has all output weights fixed, whereas the output weights of the
DOG neurons, that is, the parameters « and 3 in the notation of Section 2.1, are
calculated from the parameters of the extended Gaussian neurons and, therefore,
depend on the particular dichotomy to be implemented. (It is trivial for a DOG
network to have an output node with fixed weights since the DOG neurons have
built in output weights.)

We are now able to deduce a superlinear lower bound on the VC dimension
of DOG networks.

Corollary 12. Suppose N is a network with one hidden layer of DOG neurons
and a linear output node. Let N have k hidden nodes and input dimensionn > 2,
where k < 2™. Then N has VC dimension at least

) (2] (- (2]

Let W denote the number of weights and assume that k < 2"/2. Then the VC
dimension of N is at least

Woioe (£

5 o\4)

For fized input dimension the VC dimension of N is bounded by Q(k) and Q(W).

Proof. The results are implied by Theorem 11 in the same way as Corollaries 3,
4, and 5 follow from Theorem 2. O
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4.2 Networks of Gaussian RBF Neurons

We can now give the answer to the question of Anthony and Holden (1994)
quoted in the introduction.

Theorem 13. Suppose N is a network with one hidden layer of Gaussian RBF
neurons and a linear output node. Let k be the number of hidden nodes and n
the input dimension, where n > 2 and k < 2"*'. Then N has VC dimension at

)

Let W denote the number of weights and assume that k < 2"t2/2_ Then the VC
dimension of N is at least

W1 k

—log | =].

12 °%\3

For fized input dimension n > 2 the VC dimension of N satisfies the bounds
Q(k) and Q(W).

Proof. Clearly, a DOG neuron can be simulated by two Gaussian RBF Neurons.
Thus, by virtue of Theorem 11 there is a network A/ with m + ¢ input nodes
and one hidden layer of 2(h + 29) Gaussian RBF neurons that shatters some
set of cardinality hq(m + 1). Choosing h = |k/4],q = |log(k/4)|, and m =
n — |log(k/4)| we obtain similarly to Corollary 7 the claimed lower bound in
terms of n and k.

Furthermore, the stated bound in terms of W and & follows by analogy to the
reasoning in Corollary 8. Finally, the bound for fixed input dimension is obvious,
as in the proof of Corollary 5. O

Some radial basis function networks studied theoretically or used in prac-
tice have no adjustable width parameters (for instance Broomhead and Lowe,
1988; Powell, 1992). Therefore, a natural question is whether the previous result
also holds for networks with fixed width parameters. The values of the width
parameters for Theorem 13 arise from the widths of DOG neurons specified in
Theorem 11. The two width parameters of each DOG neuron have the form o
and o/ v/2 where ¢ is common to all DOG neurons and is only required to be
sufficiently small. Hence, we can choose a single o that is sufficiently small for
all dichotomies to be induced. Thus, for the RBF network we not only have
that the width parameters can be fixed, but even that there need to be only
two different width values—solely depending on the architecture and not on the
particular dichotomy.
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Corollary 14. Let N be a Gaussian RBF network with n input nodes and k
hidden nodes satisfying the conditions of Theorem 13. Then there exists a real

number oy, > 0 such that the VC dimension bounds stated in Theorem 13 hold
for N with each RBF neuron having fized width oy, or o/ V2.

With regard to Theorem 13 we further remark that k& has been previously
established as lower bound for RBF networks by Anthony and Holden (1994).
Further, also Theorem 19 of Lee et al. (1995) in connection with the result of
Erlich et al. (1997) implies the lower bound Q(nk), and hence Q(k) for fixed
input dimension. By means of Theorem 13 we are now able to present a lower
bound that is even superlinear in k.

Corollary 15. Let n > 2 and N be the network with k = 2"t hidden Gaussian
RBF neurons. Then N has VC dimension at least

koo (®
3 %\38)"

Proof. Since k = 2"*! we may substitute n = logk — 1 in the first bound of
Theorem 13. Hence, the VC dimension of A is at least

k k k k k
. S - il > 2. 1.
i) Lo (5] Qe[ (5)]) = 23] s (5)]
As in the proof of Corollary 8 we use that |k/4| > k/6 and |log(k/4)| > log(k/8).
This yields the claimed bound. 0J

5 Bounds for Single Neurons

In this section we consider the three discrete variants of a local receptive field
neuron and the Gaussian RBF neuron. We show that their VC dimension is at
most linear. Furthermore, this bound is asymptotically tight.

5.1 Discrete Neurons

We assume in the following that the output of the ternary CSRF neuron is
thresholded at 1/2 or any other fixed value from the interval (0, 1], to obtain
output values in {0, 1}. Thus, we can treat the binary and ternary CSRF neuron
similarly. (If the threshold is chosen from the interval [—1, 0] this corresponds to
a negated binary RBF neuron and, hence, has the VC dimension of the latter.)

Theorem 16. The VC dimension of a binary RBF neuron with n inputs is equal
ton+ 1. The VC dimension of a (binary and ternary) center-surround neuron
with n inputs is at least n + 1 and at most 4n + 5.
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Proof. The class of functions computed by a binary RBF neuron with n inputs
can be identified with the class of balls in R". Dudley (1979) shows that the VC
dimension of this class is equal to n + 1 (see also Wenocur and Dudley, 1981;
Assouad, 1983). This gives the result for the RBF neuron.

Clearly, a binary and ternary center-surround neuron can simulate the RBF
neuron by adjusting the center radius to 0. This implies the lower bound n +
1. For the upper bound consider a center-surround neuron with n inputs and
assume, without loss of generality, that its output is binary. Let ¢ = (¢1,...,¢,) €
R™ be the center and a,b € R the radii. Then, if f : R* — {0,1} is the function
computed by the neuron, on some input vector z = (z1,...,z,) € R* it satisfies

flg)=1 < |z—c¢||>a and |z—c||<b

— (r1—c1)’+ -+ (2, —cy)?>a® and
(1 —c1)? 4+ (2n —cn)? < B

= |lz|? = 2c1x1 — - — 2pzn > @l — S — o — &2

. and

—||z|]® + 2121 + - - + 2¢,2n > b 43 4+ C2.

Each of the last two inequalities defines a halfspace in R**!, both with weights
1,—2cy, ..., —2c, or the negative thereof, and with thresholds a®? —c? —---—¢c2 or
—b%+ci+- - -+c2, respectively. Thus, we have that the number of dichotomies in-
duced by a binary center-surround neuron on some finite subset of R" is not larger
than the number of dichotomies induced by intersections of parallel halfspaces
on some subset of R"™! with the same cardinality, where the additional input
component is obtained as ||z||? for every input vector. Hence, a set shattered by
a center-surround neuron in R" gives rise to a set of the same cardinality shat-
tered by intersections of parallel halfspaces in R**1. According to Theorem 19,
which is given in the appendix, the VC dimension of the class of intersections
of parallel halfspaces in R**! is at most 4n + 5. This entails the bound for the

center-surround neuron. U

We remark that, in contrast to the RBF neuron, the exact values for the VC
dimension of center-surround neurons are not known yet.

5.2 Gaussian RBF Neurons

It is easy to see that a thresholded Gaussian RBF neuron, that is, one with a fixed
output threshold, is equivalent to a binary RBF neuron. Hence by Theorem 16,
its VC dimension is equal to the number of its parameters. The pseudo dimension
generalizes the VC dimension to real-valued function classes and is defined as
follows.
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Definition 3. Let F be a class of functions mapping R® to R. The pseudo
dimension of F is the cardinality of the largest set S C R*'! shattered by the
class {(z,y) — sgn(f(z) —y): f € F}.

The pseudo dimension is a stronger notion than the VC dimension in that an
upper bound on the pseudo dimension of some function class also yields the same
bound on the VC dimension of the thresholded class, whereas the converse need
not necessarily be true. Thus, there is no general way of inferring the pseudo
dimension of a Gaussian RBF neuron from the VC dimension of a binary RBF
neuron. Nevertheless, the pseudo dimension of a single Gaussian RBF neuron is
linear as we show now.

Theorem 17. The pseudo dimension of a Gaussian RBF neuron with n inputs
15 at least n + 1 and at most n + 2.

Proof. The lower bound easily follows from the facts that a thresholded Gaussian
RBF neuron can simulate any binary RBF neuron, that a binary RBF neuron
has VC dimension n + 1 (see Theorem 16), and that the VC dimension is a lower
bound for the pseudo dimension.

We obtain the upper bound as follows: According to a well known result (see,
e.g., Haussler, 1992, Theorem 5), since the function z — exp(—z) is continuous
and strictly decreasing, the pseudo dimension of the class

{a:l—>exp (—”30;720”2) : ceR",aeR\{O}}

is equal to the pseudo dimension of the class
lz —c]l? n
{w—)T cceR' oeR\{0},,

which is, by Definitions 1 and 3, equal to the VC dimension of the class

lz—cl®> '\ . n
(z,y) —sgn | ——5——y) : ceER", 0 € R\ {0} ;.
o
This class can also be written as
{(:c,y) — sgn(||:1:||2 —2c-z+ ||c||2 — 02y) :ceR o eR)\ {0}} .

Each function in this class has the form (z,y) — sgn(f(z)+g(z,y)) with f(z) =
||z||? and g being an affine function in n + 1 variables. Hence, the VC dimension
of this class cannot be larger than the VC dimension of the class

{sgn(f +g) : g affine,g: R**!' — R}.

Wenocur and Dudley (1981) show that if G is a d-dimensional vector space of
real-valued functions then {sgn(f +g) : g € G} has VC dimension d (see also
Anthony and Bartlett, 1999, Theorem 3.5). Thus the upper bound follows since
the class of affine functions in n + 1 variables is a vector space of dimension
n+ 2. 0
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6 Upper Bounds for Networks of Discrete Neu-
rons

The following result shows that one-hidden layer networks of discrete local re-
ceptive field neurons have a VC dimension bounded by O(W log k). This implies
that the lower bounds established in Section 3 are asymptotically tight. For the
proof we employ a method from a similar result for threshold networks.

Theorem 18. Suppose N is a network with one hidden layer of binary RBF
neurons and a linear output node. Let k denote the number of hidden nodes and
W = nk+2k+1 the number of weights. Then the VC dimension of N is at most
2W log((2k+2)/1n2). If the hidden nodes are binary or ternary CSRF neurons,
the VC dimension is at most 2W log((4k + 2)/1n 2).

Proof. A binary RBF neuron with n inputs has VC dimension n + 1 (see The-
orem 16). The output node of N is a linear neuron with k£ inputs, thus it has
VC dimension k + 1. Since each node of N' has a VC dimension equal to the
number of its parameters, it follows by reasoning similarly as in Theorem 6.1 of
Anthony and Bartlett (1999) that the number of dichotomies induced by N on
a set of cardinality m, where m > W, is at most (em(k + 1)/W)W. (Note that
N has k+ 1 computation nodes.) This implies that the VC dimension is at most
2W log(2k + 2)/1In2).

Consider now the case that the hidden nodes are CSRF neurons. Clearly,
a weighted binary or ternary CSRF neuron can be simulated by a weighted
combination of two binary RBF neurons. Thus, A can be simulated by a net-
work N with 2k binary RBF neurons as hidden nodes. Now observe that each
CSRF neuron gives rise to two RBF neurons with the same center. Thus, al-
though the number of nodes and connections in N’ has increased, the number
of parameters is the same as in A/. In other words, N is a network with equiv-
alences among its weights. Combining a method due to Shawe-Taylor (1995)
for networks with equivalences with the above-mentioned derivation by Anthony
and Bartlett (1999), we obtain that A’ induces at most (em(2k + 1)/W)W di-
chotomies on a set of cardinality m. This results in a VC dimension not larger
than 2W log((4k + 2)/1n2). O

7 Conclusions

Local receptive fields occur in many kinds of biological and artificial neural net-
works. We have studied here several models of local receptive field neurons and
have established superlinear VC dimension lower bounds for networks with one
hidden layer. Although, compared with the previously known linear bounds, at
first sight the gain by a logarithmic factor seems exiguous, there are at least two
arguments showing that it constitutes a significant improvement. First, the VC
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dimension is a rather coarse measure. Increasing it by one amounts to doubling
the number of functions computed by the network. Second, in a network with
the VC dimension linearly bounded from above by the number of weights, each
weight can be considered responsible for a particular input vector. Superlinearity
implies that each weight manages to get hold of a number of input vectors that
increases with the network size. Thus, in networks with superlinear VC dimen-
sion the neurons have found a very effective way to cooperate and coordinate
their computations.

The VC dimension yields bounds on the complexity of learning for several
models of learnability. For instance, bounds on the computation time or the
number of examples required for learning can often be expressed in terms of
the VC dimension. If the VC dimension provides a lower bound in a model of
learning then the superlinear lower bounds given here yield new lower bounds on
the complexity of learning using local receptive field neural networks. Of course,
if the VC dimension serves as upper bound in a model, there is no immediate
consequence. But then one may be encouraged to find other measures that more
tightly quantify the complexity of learning in these models.

For the discrete versions of local receptive field neurons we have shown that
the superlinear lower bounds for networks are asymptotically tight. The cur-
rently available methods for RBF and DOG networks give only rise to the upper
bound O(W?2k?) for these networks. This bound, however, is also valid for net-
works of unrestricted depth and for networks of sigmoidal neurons. The problems
of narrowing the gaps between upper and lower bounds for RBF and sigmoidal
networks with one hidden layer seem therefore to be closely related. We have
also established tight linear bounds for the VC dimension of single discrete neu-
rons and for the pseudo dimension of the Gaussian RBF neuron. The VC and
pseudo dimension of the DOG neuron can be shown to be at most quadratic.
We conjecture that also the DOG neuron has linear VC and pseudo dimension,
but the methods currently available do not seem to permit an answer.

In the constructions of the sets being shattered we have permitted arbitrary
real vectors. It is not hard to see that rational numbers suffice. It would be
interesting to know what happens for even more restrictive inputs such as, for
instance, Boolean vectors. We have also allowed that the centers of the local
receptive field neurons can be placed anywhere in the input domain. We do not
know if the results hold when the centers may not freely float around.

The superlinear bounds involve constant factors that are the largest known
for any standard neural network with one hidden layer. This fact could be
interpreted as evidence that the cooperative computational capabilities of local
receptive field neurons are even higher than those of other neuron types. This
statement, however, must be taken with a pinch of salt since the constants in
these bounds are not yet known to be tight.

Gaussian units are just one type of radial basis function neuron. The method
we have developed for obtaining superlinear lower bounds is of quite general
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nature. We expect it therefore to be applicable for other RBF networks as well.
The main clue in the result for RBF networks was first to consider CSRF and
DOG networks. With this idea we have established a new kind of link between
neurophysiological models and artificial neural networks. This link extends the
paradigm of neural computation by demonstrating that models originating from
neuroscience do not only lead to powerful computing mechanisms but can also
be essential in theory, that is, in proofs concerning the computational power of
those mechanisms.
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Appendix: A VC Dimension Upper Bound for
Intersections and Unions of Parallel Halfspaces

We consider the function classes defined by intersections and unions of parallel
halfspaces and derive an upper bound on the VC dimension of these classes. This
bound was used in Theorem 16. A general way of bounding the VC dimension
of classes that are constructed from finite intersections and unions has been
established by Blumer et al. (1989). In particular, they show that if we form a
new class having as members intersections of s functions from a class with VC
dimension d, then the VC dimension of the new class is less than 2dslog(3s)
(Blumer et al., 1989, Lemma 3.2.3). The following, new calculation for parallel
halfspaces results in a bound with improved constants.

Theorem 19. The function class consisting of intersections of parallel halfs-
paces in R* has VC dimension at most 4n + 1. The same holds for the class of
untons of parallel halfspaces.

Proof. The proof is given for intersections; the result then follows for unions
by duality. Clearly, it is sufficient to consider intersections of only two parallel
halfspaces. We use R"*2 to represent the joint parameter domain for the half-
spaces. The first n components defining the weights are shared by both, the
components n + 1 and n + 2 correspond to their separate thresholds. The main
step is to derive an upper bound on the number of dichotomies induced on any
set S C R” of cardinality m. We assume without loss of generality that S is in
general position. (If not then the elements can be perturbed to obtain a set in
general position with a number of dichotomies no less than for the original set.
See, e.g., Anthony and Bartlett, 1999, p. 34.)

First, we give an upper bound on the number of dichotomies induced by
pairs of parallel halfspaces where each halfspace is non-trivial. Here, we say
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that a halfspace is trivial if it induces one of the dichotomies (0, S) or (S,0).
Such a bound is obtained in terms of the number of connected components into
which the parameter domain is partitioned by certain hyperplanes arising from
the elements of S. Every input vector (si,...,s,) € S gives rise to the two
hyperplanes

{$ € Rn+2 1811+t SpTy — Tny1 = 0}7

{z eR"™2 : 5121 + -+ + 8Ty, — Tpy2 = 0},
that is, their representations in R**? are the vectors
(s1,---,80,—1,0) and (s1,...,84,0,—1),

respectively. All hyperplanes are homogeneous, that is, they pass through the
origin. It is clear that for every connected component of R**? arising from this
partition, the two functions induced on S by the pair of halfspaces represented
in this way are the same for all vectors belonging to this component. Thus, the
number of connected components provides an upper bound on the number of
induced dichotomies.

A well-known result attributed to Schlafli (1901) states that m homogeneous
hyperplanes in general position partition R" into exactly

22 (m Z.‘ 1) (12)

connected components (see also Anthony and Bartlett, 1999, Lemma 3.3). Hence,
the set S, giving rise to 2m hyperplanes, partitions R**2 into at most

27:2; <2mz__ 1) (13)

connected components. Not all of them, however, represent pairs of non-trivial
halfspaces. For every trivial dichotomy of the first halfspace we can have as many
dichotomies induced by the second halfspace as there are dichotomies possible
by a single halfspace in R*™*! on a set of cardinality m; and likewise for every
trivial dichotomy of the second halfspace. Hence, using Schlafli’s count (12) we
may subtract from (13) the amount of

<4§<m;1>>+<4§0:<m;1>>‘4' (14)

The term —4 at the end results from the fact that the four combinations of trivial
halfspaces are counted by both sums. Note also that the number given in (14) is
not a bound, but is precise since S is in general position. Up to this point, the
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pairs of halfspaces also include redundant combinations where the intersection is
empty or one halfspace is a subset of the other. Clearly, for every non-redundant
pair there are three redundant ones. Therefore, we can exclude the latter dividing
the number by 4. Thus, an upper bound for the number of pairs of non-trivial
halfspaces with non-empty intersections is obtained by subtracting one fourth
of (14) from (13) giving

(1%(%—1)) (2i<m—1)>+1 s
24 i IR i ‘ (15)
=0 =0

That the intersection of two halfspaces is non-empty does not imply that the
dichotomy induced on S is non-empty. Therefore, we are allowed to exclude these
cases. Each pair of non-trivial halfspaces with empty intersection on S gives rise

to two non-trivial dichotomies that can be induced by a single halfspace. Thus,
we may subtract half the number of non-trivial dichotomies induced by a single

halfspace, which is
a -1
<§ (m ))—1. (16)
i
i=0

Finally, we take those pairs into account where at least one halfspace induces
a trivial dichotomy. In this case the dichotomy can be induced by a single
halfspace, that is, we may add the amount given by (12). All in all, an upper
bound is provided by (15) minus (16) plus (12), yielding

n+1 n
1 2m —1 m—1
- — 2. 17
) () ()
=0 =0
Assuming 1 < n+ 1 < 2m — 1 without loss of generality, we use the estimates
1"531 2m—1\ _ 1 (e(2m-1) ntl
2 P 1 2 n+1
(see, e.g., Anthony and Bartlett, 1999, Theorem 3.7) and
& -1
(") =
: i
=0

whence we obtain that the number of dichotomies is less than
1 (e(2m—1)\"""
2 n+1 )
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Now suppose that S is shattered. Then all 2™ dichotomies must be induced,

which implies that
_ n+1
om L 9on M )
2(n+1)

Taking logarithms, this is equivalent to

m < n+(n+1)log (%) (18)

It is well known that all real numbers «, 8 > 0 satisfy the inequality
Ina < af+In(1/6)-1

(see, e.g., Anthony and Bartlett, 1999, Appendix A.1.1). Substituting a = (2m—
1)/2 and = (In2)/(2(n + 1)) yields

n(251) < Gnom ey

2 4(n+1) eln2
implying
2m —1 m 1 2(n+1)
(n+1)log< 5 ) < E—Z-l—(n-i—l)log(e]ﬁ).

Using this in inequality (18), it follows that

< Iy +(n+1)1 2 :
m g TR % 2/ 71

which is equivalent to

2 2 1
m < n|2+log ™ + log ms) " 2

This implies that m < 4n + 1. Hence, the cardinality of any set shattered by
intersections of parallel halfspaces, and thus the VC dimension of this class, is
not larger than this number. O
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