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Abstract

Analysis of genomes evolving by inversions leads to a general combina-
torial problem of Sorting by Reversals, MIN-SBR, the problem of sorting a
permutation by a minimum number of reversals. T'his combinatorial problem
has a long history, and a number of other motivations. It was studied in a
great detail recently in computational molecular biology. Following a series
of preliminary results, Hannenhalli and Pevzner developed the first exact
polynomial time algorithm for the problem of sorting signed permutations
by reversals, and a polynomial time algorithm for a special case of unsigned
permutations. The best known approximation algorithm for MIN-SBR, due
to Christie, gives a performance ratio of 1.5. In this paper, by exploiting the
polynomial time algorithm for sorting signed permutations and by devel-
oping a new approximation algorithm for maximum cycle decomposition of
breakpoint graphs, we improve the performance ratio for MIN-SBR, to 1.375.
Besides its biological and combinatorial importance, better approximation
algorithms for MIN-SBR have become particularly challenging recently be-
cause this problem has been proven to NP-hard by Caprara, and MAX-SNP
hard by Berman and Karpinski, excluding thus an existence of a polynomial
time approximation scheme (PTAS) for that problem.
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1 Introduction

A reversal p = p(i,7) applied to a permutation 7 = my ... m_m .. T T4 . T,
reverses the order of elements m;...7; and transforms 7 into permutation m - p
= My TeATj .. TTjg1 ... Tn. Reversal distance d(m,0) is defined as the min-
imum number of reversals pi,...,p; needed to transform 7 into the permuta-
tion o, 1.e., m-py---pr = 0. Let 1d = 12..n be the identity permutation, then
d(m,0) =d(m - 07" id). The problem of computing the reversal distance for given
two permutation is equivalent to the problem of Sorting by reversal, MIN-SRB,
where for a given m we compute d(m,1d). This problem received a lot of attention
because it models global genome rearrangements. The importance of computa-
tional methods to analyze genome rearrangements was first recognized by Sankoff
et al. [SCA90]. See Sankoff et al. [ST.A92], Hannenhalli et al. [HCK95] and
Bafna and Pevzner [BP95a] for applications of MIN-SBR to analyze genome re-
arrangements. Similar combinatorial problems were investigated by Gates and
Papadimitriou [GP79], Amato et al. [ABIR89] and Cohen and Blum [CB95].

Biologists derive gene orders either by sequencing entire genomes or by com-
parative physical mapping. Sequencing provides information about directions of
genes and allows one to represent a genome by a signed permutation (Kececioglu
and Sankoff [KS93]). Most of currently available experimental data on gene orders
are based on comparative physical maps. Physical maps usually do not provide
information about directions of genes and, therefore lead to representation of a
genome as an unsigned permutation 7.

Kececioglu and Sankoff [KS93] gave the first algorithm with a proven perfor-
mance guarantee for MIN-SBR by giving a 2-approximation algorithm and conjec-
tured that the problem is NP-hard. They were first to exploit the link between the
reversal distance and the number of breakpoints in a permutation. Since Sorting
by Reversals as well as other genome rearrangements problems were believed to be
NP-hard, most of the efforts in analyzing gene orders were directed towards approx-
imation algorithms. Bafna and Pevzner [BP93] improved the performance ratio to
1.75 for unsigned permutations and 1.5 for signed permutations. Hannenhalli and
Pevzner [HP95] found however an exact polynomial algorithm for sorting signed
permutations by reversals, a problem which also was believed to be NP-hard (see
[BH96] and [KST97| for faster algorithms). However, MIN-SBR, the problem of
sorting an unsigned permutation, was shown to be NP-hard by Caprara [C97] thus
proving the conjecture. Later, this problem was also shown to be MAX-SNP hard
by Berman and Karpinski [BK99], while Christie [Ch98] improved the performance
ratio for MIN-SBR to 1.5.

In this paper, by exploiting a polynomial time algorithm for sorting a signed
permutation by reversals, and by developing a new approximation algorithm for



maximum cycle decomposition of breakpoint graphs, we design a 1.375-approxima-
tion algorithm for sorting by reversals. This improvement over 1.5 ratio of Christie
is obtained here by a different method and a substantially more complicated algo-
rithm.

Kececioglu and Sankoff [KS94], Kececioglu and Gusfield [KG95], Hannenhalli
and Pevzner [HP95] and [HP96], Kececioglu and Ravi [KR95], and Bafna and
Pevzner [BP95b] provide other computational studies of genome rearrangements
and Pevzner and Waterman [PW95] gave a survey of combinatorial problems mo-
tivated by genome rearrangements.

Bafna and Pevzner [BP93| revealed important links between the breakpoint
graph of a permutation and the reversal distance. In particular, they showed a
strong correspondence between the maximum cycle decomposition of the break-
point graph of the permutation and its reversal distance. Moreover, for all known
biological instances, it was observed that the maximum cycle decomposition is suffi-
cient to estimate the reversal distance exactly. Although, in general, the maximum
cycle decomposition does not suffice to compute the reversal distance precisely, it
does suffice to compute the reversal distance approximately with a guaranteed
performance.

This paper is organized as follows. In Section 2 we reduce the approximating
of MIN-SBR to GEDSAC, a problem of finding a sufficiently large disjoint set of
alternating cycles in the breakpoint graph of a given permutation. In Section 3 we
reduce GEDSAC to GEIS, a problem of finding a sufficiently large independent set
in a special variety of graphs. Finally, Section 4 describes an algorithm for GEIS.

2 From MIN-SBR to Alternating Cycles

Solving MIN-SBR problem directly does not seem feasible, because as yet it is
not known how to evaluate individual reversals, and sequences of reversals form
exponentially large searching space. Fortunately, Hannenhalli and Pevzner found
a reduction of this problem to the one of finding an optimal decomposition of a
certain graph with two edge colors. Without going into details yet, we will have
two goals: finding a maximally large family of edge-disjoint cycles, while in the
same time minimizing the number of so-called hurdles that this family of cycles
defines.

At first the new task does not appear to be any easier to solve. However, as
we shall see, because we only want to approximate the optimal solution, we will
be able to simplify the task dramatically. To begin with, we will be searching for
cycles that consists of at most 6 segments. Moreover, we will be able to eliminate
the explicit counting of the hurdles altogether.



We start from precise definitions and then proceed with an amortized analysis
that will reveal the relative importance of various cycles and hurdles from the
point of view of approximation. Importantly, we will show that we can neglect
the existence of certain classes of objects, and eliminate another class of objects
by applying certain kinds of greedy choices. We will conclude this Section with
an algorithm for approximating MIN-SBR that uses as a subroutine the algorithm
for certain simpler problem which is provided in the remaining sections.

2.1 Definitions and graph-theoretic background

Bafna and Pevzner [BP93], Hannenhalli and Pevzner [HP95, HP96] have described
how to reduce the MIN-SBR to a purely graph-theoretic problem, Maximum De-
composition into Alternating Cycles, or MDAC in short. In this section, we will
paraphrase the results in [HP96], where they describe an exact algorithm for MIN-
SBR problem that is polynomial in certain cases that are important in estimating
evolutionary distances.

We use [i, 7] to denote the set of integers {7,7+ 1,...,7}. A permutation 7 is
a 1-1 mapping of [1,n] onto itself, and 7; is the value or 7 for an argument i. We
extend 7 to one extra argument by setting 7o = 0. To avoid modulo notation, we
will assume m; = 74,41 for every integer i.

A breakpoint graph of m, G, has a node set [0, n] and two sets of edges:

breaks = {{mi,miz1}: 1 € [0,n]};
chords = {{1,1+ 1} : 1 €[0,n]}.

If a chord happens to be a break, we count it as a separate object, and say that
this is a short chord. For that reason, our edge sets can be actually multisets. An
alternating cycle, AC for short, is a connected set of edges €' with the following
property: if a node belongs to ¢ breaks of ', than it also belongs to ¢ chords of C.
A decomposition into alternating cycles, DAC for short, is a partition of the edges
of GG into ACs.

A DAC C of G can be represented by the following consecutive relation: edges
e and €’ are consecutive edges on a cycle; here cycle is identified with its traversal.
In turn, this relation uniquely determines a spin of 7, a signed permutation 7’ such
that 7! = £+m; (see [BP93, HP96]); a sequence of reversals that sorts 7’ obviously
sorts m as well, and any sequence of reversals that sorts 7 sorts one of its spins.
Because we can find an optimum reversal sequence for a spin of 7 in polynomial
time [HP95], the seatch for an optimal reversal sequence for 7 is equivalent to the
search for an optimal spin of 7, and, in turn, the search for an optimal DAC of

Gr.



A given cycle decomposition C defines a set of hurdles (defined later). The
following theorem of Hannenhalli and Pevzner [HP96] is crucial:

Theorem 1 Given a cycle decomposition of the breakpoint graph of w, there exists
a polynomial time algorithm that finds a sequence of n — ¢+ h + [ reversals that
sorts permutation 7, where ¢ s the number of cycles in the decomposition, h is the
number of hurdles and f € [0,1]. Moreover, the minimum length sequence can be
computed in that fashion.

The above theorem is actually a joint corollary of Lemma 3.1 and Theorem
2.1 of [HP96]. Because we are interested in an approximation algorithm, we will
ignore the small term f. Our goal in this section is to show how to handle the
minimization of h so we will later maximize ¢ in a separate problem. To define
hurdles, we need some more definitions.

We will use the following geometric representation of G: the nodes mg, ..., 7,
are placed counter-clockwise on a circle C, each break {m;, m;41} is a C-arc segment,
and a chord {i,7 + 1} is the line segment that joins points ¢ and i + 1. Note that
in this representations numbers are viewed as node names, moreover, if 7,41 =
m; &= 1, then the break {m;, 11} and the short chord {m;, m;41} are indeed two
different objects. To avoid confusion, we will apply the word chord exclusively to
the representations of the chords of G, while a chordal segment is any line segment
that connects two (representations of) nodes of G.

If two chords ey and e, intersect in the interior of C, they form an interleaving
pair.

A chord component is a connected component of the graph < chords, inter-
leaving pairs >. We will assume that there is more than one chord component;
otherwise we will have a trivial case for the algorithm of this section.

We define the area of a chord component C, denoted by A(C), as follows: for
each chord e € C (viewed as a line segment) we remove the endpoints, then we
take the union of these chords, and finally we take the smallest convex set that
contains that union.

Observation 1 A(C') is a convex polygon and its sel of nodes is the the sel of
endpoints of the chords of C. Moreover, the chords of C subdivide A(C') into
convex polygons that either have the entire boundary covered by the chords of C,
or the entire boundary with the exception of a single segment.

This observation leads to the next one:

Observation 2 A(C') cannot intersect a chord e if e & C.



To see that, consider a chord e that shares a point, say x, with A(C); if z does not
lie on one of the chords of €, it must belong to the interior of one of the convex
subdivisions of A(C) that is surrounded on all sides, except one, by segments of
chords from C'. Since e extends from z in two directions up to the circle C; in at
least one of these two directions e intersects one of these surrounding segments,
and hence e € C.

A crescent Cr(i, 7) is an area bounded by counter-clockwise arc from ¢ to j and
the chordal segment {i,7}. If the counterclockwise listing of the nodes of A(C)
is ig,41,...,15 = g, then interior(C) — A(C') is a disjoint union Cr(ig,1),. ..,
Cr(ik—1,15); we call them the neighbor crescents of C.

The relative positions of different chord components are described in the next
observation.

Observation 3 A(C') is a subset of one of the neighbor-crescents of C for each
chord component C' # C.

To see that, note that a chord e ¢ C' must be contained in one of the neighbor-
crescents of C', as it is disjoint with A(C). By definition, chords contained in
different neighbor-crescents cannot interleave (intersect in the interior of C'), so
the entire chord component of e most be contained in a single neighbor-crescent.

Lemma 1 If Cr(i,7) is a neighbor-crescent of a chord component C, and there
exists a chord contained in that crescent, then the chords contained in Cr(i,y ),
together with the breaks on the C-arc extending from 1 to j, form an AC.

Moreover, {i,j} is a chord only if it is a short chord, in which case the AC of
Cr(i,7) consists of exactly one chord and exactly one break.

Proof. We need to show that every node on the C-arc from 1 to j belongs to the
same number of breaks of this arc and the chords contained in Cr(7, 7). This is
obvious for nodes different than ¢ and j: they belong to breaks of this arc, and to
two chords that are at least partially contained in C'r(i,7), and we have observed
that if a chord is partially contained in a neighbor-crescent, then it is completerly
contained.

The endpoints of the arc, 7 and j, each belong to exactly one break of the arc, so
we need to show that they are contained in exactly one chord contained in C'r (4, 7).
This follows from the fact that all the chords form a single simple cycle, exactly like
the breaks. Because there exists chords both inside C'r(1, j) and outside, the cords
contained inside form a collection of (node disjoint) simple paths. Our previous
arguments show that ¢ and j are the only possible endpoints of these paths, and
therefore there exists exactly one such path, from ¢ to j.



In particular, if {7, 7} is a chord, it forms a one-edge path of chords from i to j.
Since there exists only one such path, there are no other chords contained in the
crescent C'r(z,7), and this {7, 7} is a short chord that forms a cycle together with
the break (arc) {i,j}.

O

The last lemma characterizes neighbor-crescents of C' that contain some chords.
We say that other neighbor-crescents are empty. Obviously, if C'r(i, j) is an empty
neighor crescent, the C-arc from ¢ to j forms a single break, we say that that break
is associated with C'. We define edge component of (' as the set consisting of the
chords of C' and the breaks associated with C.

Lemma 2 Fdge components of chord components form a DAC decomposition.

Proof. By the definition, edge components are pairwise disjoint and together
they contain all the edges. Thus it suffices to show that each edge component is
an AC.

To see that, observe that we can form the edge component of C' by starting
with the set of all edges — chords and breaks — and then removing, one by one,
the ACs of non-empty neighbor cycles. From the definition, if we remove AC from
an AC, what remains is an AC as well.

O

Given a fixed DAC D of the edge set of G, into cycles, we define a cycle
component as a connected component of the graph where the nodes are the edges
(chords and breaks) and a pair of edges is connected if either 1) they are in the
same edge component, or 2) they belong to the same cycle from D.

Observation 4 The union of chords of a cycle components, including their end-
poinls, forms a connecled set.

Proof. By the definitions of edge components and chord components the union
of chords that belong to one edge component is connected even without includ-
ing their endpoints. Now consider two consecutive edges on a cycle, say a break
{mi_1,m} € Cy and a chord {m;,m; + 1} € C,, where C and C, are edge compo-
nents. Then chord {m;, m; — 1} belongs to Cy, so after including the point 7; the
union of the chords of € and C; is connected.

O

This observation allows us to apply Observations 1, 2, 3, and Lemma 1 to chord
set of a cycle component in the same way as to a chord component. In particular,



for a chord component C' we can define A(C') = A(C' N chords) and the neighbor-
crescents. If C,Cy, Cy are cycle components and A(Cy) and A(C3) are contained
in two different neighbor-crescents of ', then we say that C' separates Cy and Cj.

A cycle is oriented if it contains a chord {7,724 1} and in each of the crescents
Cr(i,i4+1), Cr(i+1,1) it contains a break incident to {7,i+1}. A cycle component
is oriented if it contains an oriented cycle, or if it consists of two edges only. Note
that a cycle of two edges is always a separate singleton cycle component—this is
the case when its chord is short.

A hurdle is an unoriented cycle component that does not separate two other
unoriented cycle components.

2.2 Breaking cycle components into edge components

Our cost is the number of breaks minus the number of ACs plus the number of
hurdles. To minimize the cost, we need to maximize the number of ACs in our
DAC, while simultaneously minimizing the number of hurdles. We would like to
separate those two tasks as much as we can.

In our quest for a small number of reversals, we will first maximize the number
of cycles found in each edge component. We will show soon that by restricting
ourselves to ACs contained in a single edge component, we are not decreasing the
number of ACs in a decomposition, and sometimes we can even increase that num-
ber. However, this restriction may increase the number of hurdles. The amortized
analysis introduced in the next subsection shows how to take care of these extra
hurdles. In at account the increase in the number of cycles that may result from
our restriction.

Let us consider now an optimum DAC C and a neighbor-crescent Cr(i,j) of a
chord component X. By Lemma 1 we can partition all edges into two ACs A and
B, where A is the set of edges contained in Cr(i,j). We will modify C so that
every cycle C' € C will satisfy C' C Aor C C B.

By definition, 7 and j are the only nodes that belong simultaneously to edges
of Aand B. Consider C' € C such that C N A # 0 and C'N B # U. Because C is
connected, without loss of generality we may assume that both C N Aand C N B
contain at least one edge that contains .

We will distinguish now between several cases.

Odd case. Suppose that i belongs to exactly one edge of C'N A. Because every
node in C'r(i,7) other than ¢ and 7 must belong to an even number of edges of C,
this means that j also belongs to exactly one edge of C'N A. Note that ¢ belongs to
two other edges that in turn belong to another cycle of D € C, and D has exactly
the same properties: i.e. for C € {C, D}, A € {A, B} and i € {i,7} there exists

exactly one edge of A N C that is incident to i. We consider two subcases.



Odd Group case. For some k > 2 there exists a cycle of nodes 1 = 19,11 =
Jy -y tp = 1o and a sequence of chord components Xo, ..., Xi, such that Cr(i;,441)
is a neighbor-crescent of X;. Let Y; be an AC formed from the edge component of
X, and other edge components that are not contained in Cr(i,7;41). By applying
above argument inductively, one can see that for C € {C, D}, A € {Yy,...,Y:}
and 1 € {ig,...,7;} there exists exactly one edge of A N C that is incident to i.

Thus we can replace cycles C' and D with k cycles of the form (C U D) N Y.
We associate k — 2, the resulting increase in the number of cycles with the convex
polygon bounded by the polyline (g, ¢1, .. .1 = o).

Odd Pair case. Same as the Odd Group case, but for & = 2, so we have no
assured increase in the number of cycles.

Even case. When the premise of the Odd Case does not hold, then both
CNAand CNBisan AC (or a union of ACs, because such an edge set may
be disconnected). Therefore we can replace C' with these intersections and the
modified DAC surely has more cycles. We can associate 1 with node ¢ as the lower
bound on the increase in the number of cycles.

2.3 Amortized analysis

Throughout the paper, we will use potential analysis to assure that we obtain the
promised approximation ratio. For every unit of the cost of the optimum solution
we can place 11/g of the potential units, and for every unit of the cost of our
solution, we place —1 of the potential units. We deliver a desired solution if the
sum of the placed potential units is non-negative. At many stages of the analysis,
we add and subtract the potential units in various parts of our structure; such a
move is valid if we assure that the sum of additions does not exceed the sum of
subtractions.

Each break contributes 1 both to the cost of the optimum solution and the cost
of the solution obtained by our algorithm. Thus we can place 11/g — 1 = 3/g on
each break.

Each AC of the optimum solution contributes —1 to the optimal cost, so we
can place —11/g on this cycle. However, when the ACs of the optimum solution
span more than one edge component, we break them as described in the previous
subsection.

After the break-up, the maximal number of cycles misrepresents the true num-
ber in the optimum, to account for that we place the corrective amounts of units.
Initially, we place them as follows: in Odd Group case with £ chord components
we place 11/g(k —2) on the polygon that separates these components, in Odd Pair
case that increases the number of cycles we place 11/g on the chord separating the
two components, and in Even Case we place 11/g on a separating node. Once the
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break-up is complete, edge components incident to objects with corrective units
share those units evenly. The least possible share occurs for Odd Group case with
k = 3 and it equals to 11/94.

Because of the break-up, we lost the account of the hurdles in the optimum
solution, so we do not take them into account, this can only decrease the total
balance of the potential. At each edge component that we estimate to be a hurdle
we place —1 unit. The estimation method does have to be correct, the only re-
quirement is that we will have at least as many estimated hurdles as we have the
actual ones. In particular, we will estimate every edge component with at least 5
breaks to be a hurdle.

2.3.1 Small edge components

We first analyze the case when C contains only a few edges, in which case our
algorithm can find a maximum DAC of this edge component. As a result, on
every cycle from the modified optimum solution we may place 1. We will establish
the situations when such a maximum DAC of C is not good enough to assure
our approximation ratio, t.e. when the resulting balance of the potential in C is
negative when we estimate that C is a hurdle.

An AC with 1 breaks will be called an i-cycle. On each cycle of C we have put
—1Vg and 1 for the balance of — 3/g; because each break has a balance of 3/g,
the balance of an i-cycle C'is 3/g(i — 1) = 3/gw(C).

The overall balance of C equals the sum of its cycle balances 3/gw(C). From
this sum we subtract 1 when we estimate C to be a hurdle.

Observe that a 1-cycle forms an edge component by itself (let us call it a em 1-
component ), and this component cannot be a hurdle, because this cycle is oriented.
Thus the balance of such a component is 0. Later we may assume that C contains
no 1-cycles.

Consider that C consists of k& cycles Cy,---,Cy. When we estimate C to be a
hurdle, its balance is 3/gw(C) — 1, so it is negative only if w(C) < 2. Clearly, it
suffices to consider the following cases:

(a) k = 1,w(Cy) = 1, balance equals — 5/g;
(b) k=1, w(Cy) = 2, balance equals — 1/4;
(¢) k = 2,w(Cy) = w(ey) = 1, balance equals — 1/4.

Case (a): C consists of a single 2-cycle C. Then the two chords of C' must
interleave (they form an edge component), it is easy to see that in this case each
of two chords of C' has one break of C' contained in each of its two sides. We
conclude that C' (and C) is oriented, so it cannot be a hurdle, and we do not have
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to subtract 1.

Case (c¢): C consists of two 2-cycles. If one of the 2-cycles is oriented, the entire
C is oriented and we do not estimate it to be a hurdle.

Fig. 2.3.1! shows that is these two cycles have two nodes in common, there exists
an alternative decomposition which changes C into two oriented cycle components
therefore we can assume that the two 2-cycles of C share at most one node.

(i) unoriented (1) oriented (ii) unoriented (ii) oriented

Figure 1: Examples of an unoriented cycle component of weight 2 and
of oriented cycle components formed from the same edge sets.

One can show that in this case we can give C a part of positive potential created
when we broke cycle components of the optimum solution into edge components.
Suppose that C is also cycle component in the optimum solution — then this is an
unoriented component of the optimum solution, so we do not attribute creating
a hurdle in our DAC to C. Otherwise, consider the last component breaking step
involving C, if this was not an Odd Pair case, C has received at least 11/94 corrective
units and its total potential balance is 194 — 1/4 > 0. Now consider Odd Pair
Case. C was intersected by two ACs from the optimum solution, say C' and D,
and we replaced them by another two cycles, one being £ = (CU D)NC. A
brief inspection shows that in this case we have F = C, and thus we can further
decompose D into two cycles, which provides a corrective term of 11/g and thus
the total balance of C is positive.

We can formulate our rule for estimating hurdles: (i) if w(C) > 2, we estimate
C to be a hurdle (and we count them as unoriented). Apart from that, we estimate
hurdles according to the definition.

If estimated hurdle falls in case (b) or (c¢) and we can show that either it is
also an cycle component of the optimum solution, or it receives corrective units of
potential when we account for the increased number of cycles, then the balance of
C is positive. We have just shown that case (c) is always in this situation.

Case (c): if the balance of C is negative, it is a hurdles and it does not receive
any corrective units.

'In our figures, we place the nodes on a straight line, so that the breaks become short straight
segments and the chords become arcs.
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Figure 2: Unoriented cycle components of weight 2. In case (b), if one
of the outer sides of the component contains only one 1-component,
then we can turn these two components into one oriented component
of weight 2

Component C has three neighor crescents and at most one neighbor contains
an estimated unoriented component.

We total the balance of C and its neigbor crescents that contain oriented com-
ponents only. If even one of these components, say D, has w(D) > 0, then the
sum of balances is at least 3/g— 1/4 > 0. IN this case we say that C is rich. Thus
we can assume that the "oriented” neighbor-crescents contain only 1-components.
If an oriented neighbor-crescent contains exactly one such component, we change
the solution as shown in Fig. 2.3.1bc. If this change turns another component, say
D, into a hurdle, than clearly D is rich.

We are left with the case when each oriented neighbor-crescent contains mul-
tiple 1-components. In this case there exists an optimum solution where no cycle
overlaps both C and one of this 1-components (this fact follows from the discus-
sion of the Odd Group case and Even Case). If all three neighbor-crescents are
oriented, we actually get an optimal solution. Thus were can additionally assume
that C has one unoriented neighbor-crescent Cr(7, j) which forms Odd Pair case
with C, hence the chordal segment {i,j} separates the area of C from the area of
another edge component, say D. We say that C is a child of D.

If w(D) =1, then D has but one child, and we add the balances of C and D.
If w(D) = 2, then D has at most 4 sides, thus at most 3 children, the balance of
D is 3/4 and each child has balance — 1/4, so again, we add the balance of D to
the balances of its children. Thus it remains to consider the case when w(D) > 2
and thus D is unconditionally estimated to be a hurdle.

Within that parent component D we must have a plausible single cycle F that
was created in D during the breaking step of Cr(1, j).

We introduce the following terminology for such a situation: cycle £ is a ab-
sorber and the cycle/component C is a little hurdle. We say that absorber F absorbs
little hurdle C.
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2.3.2 Catalogue of cycles with negative potential

We transfer the negative potential of the little hurdles to the respective absorbers.
Now the entire potential is contained in the cycles contained in the chord com-
ponents that are estimated to be hurdles. Our task is to find enough ACs and
to absorb enough little hurdles to create the nonnegative balance of the potential.
Obviously, we can ignore the cycles of the optimum solution that have non-negative
potential. Therefore we need to establish which ACs have negative potential.

Consider an i-cycle from the optimum solution. If it is not an absorber, then
its potential is 3/g(i —1)—1, so for i = 2,3,4,5 this potential is — 5/g, — 2/g, 1/g
and 4/g respectively. Thus only 2-cycles and 3-cycles have negative potential.

Now cousider a (1, j)-absorber which we define to be an (i+7)-cycle that absorbs
J little hurdles. Tts balance is 3/g(i4+j—1)— 1/45—1= 3/g(: = 1)+ 1/gj — 1.
Note that this covers the case of ordinary i-cycles that will be considered as (0, 1)-
absorbers.

Since (1, j)-absorber of the optimum solution has potential balance 3/g(i —
1)+ 1/gj —1, the absorbers with negative potential are (1,j)-absorbers for j < 7,
(2,7)-absorbers for j < 4 and (3,1)-absorbers. As we will show, only (2,1)- and
(3,1)-absorbers actually exist.

Consider absorber C' of j little hurdles Hy,..., H; there exists a DAC of C'U
H,U...H; into 7 +1 ACs, each of them intersecting both €' and one or more of
the little hurdles. We say that this is a decomposition into good ACs.

Consider a good AC D that intersects a little hurdle H. One can see that DN H
must be a path of three edges, which we will call a long segment. The edges of C
shall be called short segments.

The variety of possible absorbers is restricted by the following two lemmas.

Lemma 3 A good cycle must contains both kinds of short segments, i.e. at least
one break and atl least one chord.

Proof. Consider a little hurdle that is contain in the crescent Cr(k,l) of the
absorber. One cans see that at every node inside C'r(k,) there are two incident
chords that are contained in C'r(k,l), and that at k and [ there is exactly one; thus
chords form a simple path from & to [. The same holds for the breaks. Thus a
long segments that go from k to [ can be replaced by a path within the crescent
that contains only chords (or only breaks).

Suppose now that there exists a good cycle where each short segment is a chord.
Then the long segments can be replaced by the path that consists of chords only,
which yields a cycle of chords. Because not all nodes lie on this cycle, this is a
contradiction. The same holds if all short segments are breaks.
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Observation 5 A good AC with k long segments contains at least k + 2 short
segments.

Indeed, the number of segments has to be even, and the long segments cannot be
consecutive, as they are never incident to each other. Thus were there only & short
segments, every stretch of short segments would have but one edge, thus all these
edges would be of the same kind.

From that we immediately deduce

Observation 6 An absorber of j hurdles contains at least 25 + 1 breaks.

Indeed, such an absorber C' together with its little hurdles can be decomposed
into 7 + 1 good cycles that together have 2j long segments, thus according to the
previous observation these good cycles must contain at least 45 42 short segments,
and since half of these short segments are breaks, 25 + 1 breaks.

Now we can show

Observation 7 (1, j)-absorbers exist only for j = 0 and (2, 7)-absorbers exist only
for 3 <1.

Indeed, for j > 1 a (1, j)-absorber would have j + 1 < 2j 4 1 breaks, and for
J > 2 a (2, j)-absorber would have j + 2 < 2j + 1 breaks, a contradiction.

It 1s worthwile to note that besides the fact that the variety of possible ab-
sorbers is quite restricted, the shapes of (2,1)-absorbers and (3,1)-absorbers are
quite restricted as well, as we can see in Fig. 2.3.2.

—e g . I o
| <> I
g_zc b ¢ ._oc

(o)

(a) (b) ()

Figure 3: Conceivable (2,1) absorbers, the hexagons indicate the posi-
tion of the little hurdle, edge colors indicate chords and breaks. Only
(a) can exist, (b) and (c¢) cannot be decomposed into 2 good cycles.
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2.3.3 When DAC of a large edge component is good enough

DAC found by our algorithm is good enough if it assures that the balance of
the component in question is nonnegative. In a large component, we will require
that the sum of balances of ACs of the optimum solutions and ACs found by our
algorithm 1s at least 1, so we can create a hurdle and still have a nonnegative
potential.

We define function ¢ such that if €' is an AC from the optimum solution,
then —¢(C) is the potential that C' contributes to the overall balance of its edge
component. We can view a regular i-cycle as a (z,0)-absorber, in the previous
subsection we calculated that

H(C)=1— 3/gi+ 1/gj for an (i, j)-absorber C.

In turn, when our algorithm finds an (i, 7)-absorber C' for its solution, this
decreases the resulting cost by 14 j: 1 for the AC in the decomposition and j for
the decrease in the estimate on the number of hurdles in its solution. Thus we can

define
Y(C)=1+7.

Consequently, if Z 1s a DAC of the edge component under discussion that is
found by our algorithm, and Z* is an optimal DAC of that component, the condition
by sufficiently good Z is

NI) > H(I7) +1

Let n; ; be the number of (i, 7) absorbers in the optimum DAC. We can rewrite
the above condition as follows:

Y(Z)>1+ 5/8712,0+ 2/8713,0-1- 4/8”2,1-*- 1/8713,1-

Finding DAC T for a given edge component with the above property is Good
Decomposition of a Component problem, or GDoaC for short.

2.3.4 When a non-overlapping collection of ACs is good enough
We will solve GDoaC problem usining somewhat simpler GEDSAC problem:

given: an edge component C;
find: a good edge disjoint set of ACs, where a set Z is good if it satisfies
g(I) = 5/gna0+ 2[gnso+ 4/gnas+ 1/gns.

A solution Z of GEDSAC may provide a solution of GDoaC: if Z does not cover
all the edges of the considered edge component C, then the remaining edges form
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an extra AC, and thus we are getting a DAC that solves GDoaC. So it remains
to consider when Z covers all the edges of C, so it is a DAC, and yet fails to be a
good decomposition. Assuming that the component contains m breaks, we have
Y(Z) > 1/3m (this inequality is tight if all ACs in Z are 3-cycles). On the other
hand, ¢(7*) < 5/16m (this inequality is tight if all ACs in Z* are 2-cycles). Thus

YZ) > (/3= 5/16)m + H(Z7) = 1/agm + &(T7).

We conclude that if an edge component has at least 48 breaks, then a solution
of GEDSAC immediately yields of solution of GDoaC, and as we have already
established, for 2 < m < 48 breaks it suffices to solve GDoaC problem exactly.

2.4 Algorithm

We can summarize this section in the form of an algorithm for MIN-SBR problem.

1. Input permutation .
2. Form graph G,.

3. Decompose G into edge components, establish which consti-
tute small hurdles.

4. For each large edge component

(i) Establish (2,1)- and (3,1)-absorbers.

(ii) If the component has fewer than 48 breaks, solve exactly

GDoaC problem, else
(iii) Solve GEDSAC problem and add the cycle formed from

edges not covered by the solution.

5. Combine DACs of edge component into a single DAC of G,
re-partition the absorbers and their little hurdles to decrease
the number of hurdles.

6. Use this DAC to define a spin 7’ of m and apply the algorithm
of Hannenhalli and Pevzner [HP95] to ='.
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3 Simplifying the input of GEDSAC

Let V; ; be the set of (7, j)-absorbers, Vo = Vo oU Va1, Vs = V30U Vs, V =V, U Vs
and let &€ be the set of edge overlapping pairs of cycles from V. Then a solution
of GEDSAC is an independent set in G =< V,& >. Thus GEDSAC is a kind of
maximum independent set problem.

In general, we can easily approximate an maximum independent set in two
situations: there is a bound on the number of neighbors that a node may have, or
there is a bound on the number of independent neighbors. In this section we will
describe an algorithm that simplifies G so that later independent set techniques
will be easier to apply.

In the remainder of the paper, we will use the following set-theoretic notation.
We use N(a) to denote the set of neighbors of node a, N(a, B) to denote N(a)N B,
and N(A, B) to denote U,e4N(a, B). We also use G[U] to denote a subgraph of
G that is induced by the node set U.

Given a subset U of V we we define ((U) to be the maximum value of ¢(Z)
where Z C U is an independent set. If Z* is an independent set and ¢(Z*) = +(G),
we say that Z7* is an ¢-MIS (a Maximum weighted Independent Set when ¢ is the
weight function).

A graph < V, E, x > is a abstract breakpoint graphif x : E — {b,g} is an edge
coloring function (we choose our colors to be black and gray) and the following
two conditions are satisfied:

1. < V,x '(¢) > is a collection of simple paths for ¢ = g, b;

2. every node has the same number of neighbors in < V,x7!}(b) > and in <
Vix~'(g) >.

Moreover, we have a set H of disjoint pairs of nodes from V' that have degree 2,
these pairs are the abstract little hurdles.

It is easy to see that an edge component, as introduced in the previous section,
forms an abstract breakpoint graph if we refer to the breaks as the black edges
and to the chords as the gray edges. Note that now we do not have the case when
the same node pair is a gray edge and a black edge (it is unnecessary, because it
such edge/pair of edges forms a separate edge component).

We define alternating cycles, i-cycles and DAC for abstract breakpoint graphs
in the same manner as before. We distinguish a set V; ; of (1 4+ 1)-cycles as abstract
(,1)-absorbers, these cycles must contain a pair of nodes that belong to an abstract
little hurdle, and are separated by a path of 3 edges. We use V; 1 to denote the set
of (abstract) (1, 1)-absorbers.
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We define the overlap graph < G, & > as before, however, we change the func-
tions v and ¢ by multiplying them with 8, so they will have integer values. In
terms of the new terminology, the task of GEDSAC is to find an independent set
T such that v(Z) > (V).

3.1 Simplifications of V,

The goal of this section is to reduce GEDSAC to the case when G, = G[V,] is a
graph of degree 4.

We will simplify the overlap graph by selections and eliminations.

A selection is to to pick a small independent set Zy and define V' =V — I, —
N(Zy,V); afterwards we will find an independent set Z in G[V'] and return Zy U Z.
A selection is valid if y(Zg) > «(V) — (V).

An elimination removes a set § from V and is valid if «(V — 5) = (V).

When we prove validity of a selection or an elimination, we may apply the
following game. The opponent chooses Z*, an independent set in G. We modify
Z* so that ¢(Z*) does not decrease, and then we show J* such that 7* — J* is an
independent set in the reduced G. Our score is v(Zy) (or 0 in elimination case).
The opponent’s score is ¢(J*).

3.1.1 Simplifying V,,

Consider a cycle u € V,;, we may assume that w is (a,b,c,d, e, f 9) from Fig.
2.3.2a. The simplest selection rule is

Single selection rule: if ((N(u,V)) < v(u), make the selection of

{u}.

In our case, y(u) = 16.
We prove the following

Lemma 4 Afler applying Single selection rule, each u € V,1 has at most | neigh-
bors in V.

Proof. Cycle u has two node that have degree 2 that form an abstract little
hurdle, namely b and e. Suppose that another node on this cycle has degree 2, say
¢. Then an overlap of u with another AC is one of the paths (a,b, ¢, d), (d, e, f) and
(a, f), or a union of these paths. Clearly, in this case ¢«(N(u, V)| < 5|N(u, V)| <
15 < 16 = y(u). Thus in V after applying Single selection rule, then only b and e
have degree 2.
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More precisely, we may assume that v has 4 non-overlapping neighbors in V,
and that these neighbors have the following overlaps with u: (a,b,¢), (¢,d), (d, e, f)
and (a, f), let us call these neighbors v, ¢, ved, v4,f and v, ;.

Now suppose that there exist a gray edge (a,d). This edge must belong to v, 4
and to vy, a contradiction because these two ACs were assumed not to overlap.
Non-existence of other diagonal edges follows from symmetric arguments.

Consequently no AC from V; can overlap u on two of the paths (a,b,¢), (¢,d),
(d,e, f) and (a, f). A 2-cycle would have to have a 4th edge forming a diagonal,
and diagonals do not exist. A 3-cycle from V,; would contain either b or e as its
third degree 2 node, and this is not possible either.

At this point, we can conceive one possibility for u to have more than 4 neigh-
bors in Vy: two of them have the same overlap with u. Suppose that (a,b,c) is
this overlap. Then none of the two neighbors can be a (2,1)-absorber, because b
would be its third node of degree 2. Thus we got that 2-cycles, (a,b, ¢, g (9) and
(a,b,c,h ). Because a is incident to two gray edges only, g = h, so this is one
and the same cycle.

Suppose that (a, f) is this overlap. If one of the neighbors is a (2,1)-absorber,
it must have the form (a,t',¢,d’ €', f ) where &' and d' are dgree 2 nodes, in
this case both neighbors must share the path (¢,b,a, f,¢',d') and thus they are
identical. If both neighbors are 2-cycles, the argument is similar.

O

3.1.2 Double tangles

Simplification of Vs requires the use of several rules. In this subsection we will
show the validity of the first one.

Double tangle selection rule: If ¢ contains an induced subgraph
as shown in Fig. 3.1.2, make selection of Zy = {(a,b,a,b), (b, ¢, b, c

), (e, d, e, d )}

a b ¢ d a b ¢ d
XXX,
(& o e o )
a b ¢ d a b ¢ d

Figure 4: A double tangle, note two possible representations.
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Before we prove the validity of Single selection rule, we will prove a lemma that
makes this proof simpler and which is also used later.

Lemma 5 Assume that (i) Z* CV is an independent set that mazimizes ¢(I), (ii)
a 2-cycle u contains no nodes of degree 2 and (iii) u is contained in a union of two
elements of T*. Then there exists an independent set ' C 'V that also maximizes

&(Z) such that u € T'.

Proof. Assume that u C vy U v; (here we view the cycles as edge sets). We
can modify Z* by replacing vy and vy with v and u; = (vg U v1) — u. Because the
value of ¢ is a linear combination of the numbers of cycles, breaks and absorbed
little hurdles, we have ¢({vg, v1}) = ¢({u, u;}) unless the number of absorbed little
hurdles changes in the process. Obviously, we worry only in this number decreases,
which means that {vg, v} contains more absorbers than {u;}.

Consider the case when vy € V3, and v1 € V, and to show that u; € Vs;.
Clearly, u; is a 4-cycle, and we need to show only that u; absorbs the little hurdle
of vg. Let h be the abstract little hurdle absorbed by vy; none of the nodes of A
belongs to u because u has no nodes of degree 2, thus both of them are in vg—wu. As
a result, one of the paths that connects h inside u; is contained in vy and therefore
it has a correct length. We conclude that w; absorbs h.

The case when vy € V31 and v; € Vs is similar (we need to observe that
u Ny is a single edge). When vy € V,1 and vy € Vs then ¢(u) = ¢({vo,v1})
so I' = I* — {vg, v1 feup{u}. The case vg,v; € Vy; is not possible because an
intersection of u with an element of V,; can have one edge only.

O

When we apply Lemma 5, we say that cycle u is forced.
Lemma 6 Double tangle selection rule is valid.

Proof. Let vy = (a,b,a,b0), vy = (b,¢,b,c), vg = (¢,d,c,d ) and Iy = vy U
v1Uvz. Let J* be the set of those cycles in Z* that overlap Iy, i.e. J* = N(Zy, Z*).
It suffices to show that ¢(J*) < 24 = ~(Iy).

First we show that |7*| < 5. Note that |ly] = 12. An intersection of an AC u
with I is either u itself, or a path between two contact nodes a,a,d,d. One can
see that such an intersection has at least 2 edges, and the that there are only 4
paths of 2 edges. Thus 4(|J*| —4) <12 —4 x 2, implying |J*| < 5.

Since |J*| < 5, the only possibility for ¢(J*) > 24 is when |J*| = 5 and
J* C Vapo.

One can see that a 2-cycle that contain edge (b, ¢) must be contained in Iy: the
only conceivable 2-cycle not contained in Iy is (a, b, ¢, d(9), but it would imply that
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(a,d) is a black edge and thus we have a black cycle, a contradiction. Thus the
intersection of u € N (I, V2,0) with Iy that contains (b, ¢) must have 4 edges. If we
another intersection of 4 edges, 2|7*| + 4 < 12 and |J*| < 4.

Because we can apply the same argument to all edges of vy, this cycle must be
contained in Z.

We are left with 8 edges of Z, that belong to exactly 4 intersections, thus (a, b, a)
and (a,b, a) are among these intersections. By Lemma 5, this implies that we can
force vy, and, by symmetry, we can do the same with v,. Thus we can reduced the
problem to the case when J* = T,.

O

3.1.3 Tangles

Our subsequent two rules deal with smaller induced subgraphs called tangles. In
this subsection we will formulate these rules and show their validity. We assume
that the elimination rule can be applied only when selection rules cannot be.

Tangle selection rule: If (G contains an induced subgraph as shown
in Fig. 3.1.3, and node a has degree 2, then make selection of Z, =
{(aabagab(D)a (b,g,b,C(D)}-

Tangle elimination rule: If G contains an induced subgraph as
shown in Fig. 3.1.3, then remove the cycles (a, b, a,b(9) and (b, ¢,b,c )}
from V.

a b ¢

°‘°‘°°‘°‘°>¢<><><
O Qmeel) O
a b ¢

Figure 5: A tangle, note four possible representations.

Let Iy be the edge set of the tangle. As before, J* is the set of the ACs from
T* that overlap ly. We start from the observation that any intersection of an AC
with [y forms consists of one or of the following two alternating paths: (a,b,¢),
(a,b,g), (CL,Q, <), (avbv Q)? (Qv b,c), (Qv éva)v (C,Q, c), (97 b, C).

Let ug and u; be the cycles selected by the Tangle selection rule. If a is a node
of degree 2, than any AC that contains a must contain two of the above paths,
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one that starts with (a,b) and another that starts with a,b. Thus |J*| < 3 and
y({uo,u1}) = 16 > 15 > ¢(J*), which shows that the Tangle selection rule is
valid.

It is easy to see that if two different tangles are not edge disjoint, then together
they form a double tangle, thus this is never the case when we apply Tangle
elimination rule, so it cannot happen that different applications of this rule remove
different cycles from the same tangle. It remains to show that we can modify Z*
without decreasing ¢(Z*) in such a way that neither ug nor u; belongs to Z*.

Let vg = (a,b,¢,b09) and vy = (a, b, ¢,a)) be the 2-cycles contained in /; that
are still in V after the application of the Tangle elimination rule. Suppose first
that Z* contains both ug and u;, then we can force vg and v;. Finally to consider
the case when Z* contains exactly one of the removed cycles, say ug. Then wuy is
contained in the union of two cycles of Z* and because we did not apply Tangle
selection rule, none of the nodes of u; has degree 2. Consequently, we can force
uy, and later we can again force vy and v;.

3.1.4 Possible sets of neighbors of a 2-cycle in G[V]

Now we will inspect possible sets of neighbors inside G[C'V]. in G[V2,0]. A neighbor
can share one edge, and then we will call it a straight neighbor at this edge, or
two adjacent edges, and then we will call it a corner neighbor at this corner (the
node where the common edges meet). Fig. 3.1.4a shows the straight neighbor of a
2-cycle u = (a,b,c,d ) at edge (a,b) and the corner neighbor at ¢. We start with

Observation 8 A 2-cycle can have al most one straight neighbor al each edge and
at most one corner neighbor at each corner.

b b
b C ¢ C
O0——0—0 b Q@O
a d
a d a d

(a) (b) ()

Figure 6: Various neighbor sets of 2-cycle (a,b, ¢, d ().

As it suffices to discuss eight possible neighbors, we can denote the corner
neighbors with v,,vs, v, vg and the straight neighbors vay, vie, Vo4, vea. We will
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show that not all combinations of these neighbors are possible. First we add the
following selection rule.

Double selection rule: if w Uz is connected, w and x do not overlap

and ((N({w,z},V)) < v({w, z}), make the selection of {w,z}.

The next two observations restrict the possible neighbors if one of the neighbors
is an absorber.

Observation 9 [fwv, is a (2,1)-absorber, then vy, v., vy, vy and vy do not exist.

Proof. From the only possible form of a (2,1)-absorber (see Fig. 2.3.2), one can
see that a must be one of the nodes of the abstract little hurdle, so it has degree
2. The existence of vy, v4q, as well as the corner neighbors v,, vg would require
a to have some other neighbor besides b and d. It remains to discuss v.. We will

Yarm & b i°- h
=)
e _oa, g e _oa, d
g f g f
(a) (b)

Figure 7: Various corner neighbors of (a,b,c,d (%), nodes of degree 2
have the little circles missing.

show that if v. exists, we can apply the Double selection rule to v, and v.. Fig.
3.1.4 illustrates two possible situations. An AC containing a black edge incident
to b must also overlap a gray edge incident to that node, and an AC containing a
black edge incident to d must also contain a gray edge adjacent to that node.

Let Zy = {v,,v.} and J* = N(Zy,Z*). In case (a) this means that an AC
overlapping Z, must contain one of the following 4 segments: (e, g, f), b,a,d),
(b,h) and (d,h), hence ¢(J*) < 5|T* < 20 < 24 = 4(Zy). In case (b) this
means that an AC overlapping Z, must contain one of the following 4 segments:
(e,9,f),(bya,d),(b,1),(d,j) and (i, h, ), hence ¢(T*) < 5|T*| < 25 < 32 = ~4(Ly).

O

Observation 10 If vy, is a (2,1)-absorber then there are no corner neighbors v,
and vy.
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This observation follows from the fact that v, or vy would share three edges with
the absorber v,;, which would imply a diagonal edge of the absorber, and that
means that vy s eliminated by the Single selection rule.

In the next three observations it will be sufficient to consider exclusively neigh-
bors of u that belong to V,, as the cases involving V,; are already discussed.

To make Observation 11, suppose that u has corner neighbors at to corners
forming a diagonal pair, e.g., v, and v, as in Fig. 3.1.4b. One can see that the the
edges of v, and v, form a tangle. Because we have performed Tangle elimination,
and we assume that u is still a node of G[V; |, we can conclude that v, and v,
were both eliminated and they are not neighbors of u anymore. Thus

Observation 11 If a 2-cycle has a corner neighbor at some corner, il does not
have one at the diagonal corner,

Observation 12 is similar. Suppose that « has straight neighbors at two con-
secutive edges, and a corner neighbor adjacent to the same pair of edges. One
can see (comp. Fig. 3.1.4c) that in this case the edges of these neighbors form a
tangle. As a result, if G contains the corner neighbor, it does contains neither of
the straight neighbors, and vice versa. Thus

Observation 12 [f a 2-cycle has a neighbor at some corner, it does not have a
straight neighbor at one of the two edges adjacent to this corner.

Now suppose that u has corner neighbors at b and ¢, (a,b,¢,b(%) and (b, ¢, d, c(9)
respectively (see Fig. 3.1.4d). Then, if we add a straight neighbor at {b, ¢} we will
close black cycle (b, a,d,c(9) which is not possible in a breakpoint graph. Thus

Observation 13 If a 2-cycle has corner neighbors at two adjacent corners, it does
not have a straight neighbor at the edge that joins these corners.

While it is still possible for a 2-cycle u to have five neighbors in G[V, ], we can
restrict this situation to one case only. First, it is necessary that u has at least
one corner neighbor, because there can be only four straight ones (Observation 8).
However, if there is a corner neighbor, there are at most three straight neighbors
(Observation 12), so it is necessary that u has at least two corner neighbors. How-
ever, a corner neighbor excludes another corner neighbor at the diagonal corner
(Observation 11), so the only way to have at least two corner neighbors is to have
exactly two, at adjacent corners, say v, and v,. Because there is no v, (Obser-
vation 13), the other straight neighbors, vs, v.4 and v, must exist. Fig. 3.1.4a
shows this situation.

Note that v, can be a (2,1)-absorber, but vy, vs, vs. and v,q cannot, because
each of them has a corner neighbor.
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Figure 8: 2-cycle (a,b,c,d(9) with five neighbors. Solid lines indicate

possible commitments.

3.1.5 Eliminating 2-cycles with five neighbors

To eliminate a 2-cycle with five neighbors, we asume that it is v = (a,b,c,d O)
and that N(u, V) = {v4, Vb, Vad, Vbe, Vea}. We will formulate three selection rules
in terms of this notation. The first one is the following:

Fig. 3.1.4 absorber selection rule: if v,y € V,,, select Z, =
{4, Ve, Veq } selection of {w, x,y}.

To argue the validity of this rule, we can assume that v., = (¢,d, ¢, g,h,h" O)
where {¢',h'} is the abstract little hurdle of (2,1)-absorber v.y. Consider a non-
overlapping set J C N(Zy, V). Observe that every element of J must contain
either (g, h) or an edge of the path (b, k,d,c,i,7). For example, if an AC contains
(b,7), then it either contains (b, k) — and we are done, or (b,c). In the later case
this AC must contain one of the edges of (d, ¢,i). We conclude that || < 6. Thus
Fig. 3.1.4 absorber selection is valid: v(Zy) =32 > 6 x 5 > ¢(J).

If v.g € Va0, we have y(Zy) = 24. We could also apply Fig. 3.1.4 absorber
selection rule, and start the argument in the same way, but 24 < 30 and the
argument may fail. Nevertheless, we will establish that there is only one case
when such a rule would fail, and the will lead to the formulation of two valid rules.
In other words, we want to find out when for every non-overlapping set Z* such
that ¢(Z*) is maximal we have ¢(J*) > 25 for J* = N(Zo, V).

Suppose that there exists a black edge (j,h). Then we cannot have a black
edge (e,g) as it would close a black cycle. We will assume that the black edge
(e,g) does not exists, otherwise we would swap node names a <+ b, ¢ ¢+ 7, etc.

In our case analysis we use a notion of a portal, a node incident both to edges
from Iy and to other edges, and of a crossing, a pair of edges that are incident to
the same portal, with different colors, one in Iy and one not. A crossing is used if
it is contained in a cycle from Z*.
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Case 1: |J*| = 6.
Case 1.1: all 6 cycles of J* overlap Iy but none is contained in .

In this case at least 6 cycles contain two crossings each for the total of 12
crossings; because each portal is in the middle of exactly two crossing and there
are 6 portals—mnodes a, k, g, h,1 and j—every crossing must be used. Consider edge
(a,i), it is contained in crossings (a,,¢) and (b, a, i), thus a cycle from J* contains
path (b,a,1,¢) and we can force cycle v, = (b,a,i,¢ (9). Now consider crossing
(e,a,d); if the cycle of J* that contains (e, a, d) contains (e, a, d, k), another cycle of
J* contains path (g, d, ¢, h), which means that we can force cycle v.g = (g,d, ¢, h O
)) and thus exit Case 1. On the other hand, if the cycle containing (e, a, d) contains
(e,a,d,c), we can force u = (a,b,c,d () and exit Case 1.1 in this way.

Case 1.2: exactly 5 cycles from J* overlap Iy but are not contained in Iy. Then
they leave only one portal to be used by the cycle that is contained in Iy (the
sixth element of J*), and because we must use b, ¢, d and one other node, cycle
u = (a,b,c,d ) is the only possibility. Since we eliminated crossings centered
at portal a, the remaining 10 crossings must be used. The cycle of J* containing
crossing (a, i, ¢) must contain path (e, a, 1, ¢, h) and it cannot be a 2-cycle (otherwise
e = h and we have a gray cycle). The cycle of J* that contains crossing (e, k, d)
must contain path (e, k,d,g) and it cannot be a 2-cycle either, because {e, g} is
not a black edge. Because we have found two 3-cycles in J*, ¢(J*) < 24.

Case 2: |J*| = 5. Then ¢(J*) > 25 only if J* C Vyp.

Case 2.1: u € J*. Then the cycle containing (g, d) also contains path (g,d, k),
and because (g, €) is not a black edge, it cannot contain (g, d, k, €¢) and be a 2-cycle;
thus it continues as (g,d, k, b, 7). If this is a 2-cycle, we have g = 7, and hence gray
cycle (7,7,a,d ), a contradiction.

Case 2.2: u ¢ J*. Because a 2-cycle containing (¢, d) belongs to J*, we must
have ve,g € J*. J* also contains a 2-cycle with edge (a,b). If this is v,, then edges
of vy must belong to three cycles, impossible. Thus v, € J*, and {a,d} must
be contained in v,q. The remaining two 2-cycles must contain paths (f,b,7) and
(1,7), let us call them w and z, and their existence implies the configuration from
Fig. 3.1.4b.

Our conclusion is that the following rule is valid:

Fig. 3.1.4a selection rule: if configuration from Fig. 3.1.4a is not a
part of a configuration from Fig. 3.1.4b, select Zy = {v,, Vpe, Veg }-

To complete the elimination of 2-cycles with 5 neighbors in Vs, it remains to show
the validity of our final rule

Fig. 3.1.4b selection rule: if there exists a configuration from Fig.
3.1.4b, select Iy = {vad, Vb, Ved, w, x }.



27

We have y(Z;) = 40, so to show that ¢(J*) < v(Zy) it suffices to prove that
|7*| < 8. Let I be the edge set of Z;. We have two cases.
Case 1: at least six cycles of J* are not contained in [;. Because I; has six portals,
as in case 1.1, there must be exactly six such cycles, and the remaining cycles can
use only edges between the inner nodes, a, b, 5 and k,d, ¢,7. There are at most two
of them, because they must overlap path (a,b, 7).
Case ii: exactly m <5 cycles of J* are not contained in I;. Then the cycles of
J* that are contained in I together have at most 20 — m edges, hence there are
at most [(20 — m)/4| of them. Therefore | 7*| < m+ 5 —[m/4] < 8.

We can summarize this section with the following theorem.

Theorem 2 Given Vi, V21, V3o and Vs, defining an instance of GEDSAC prob-
lem, we can in linear time find an equivalent instance for which G[Vy] is a graph

of degree /.

3.1.6 Simplification of G[V; ]

Suppose that a 3-cycle w contains three edges of some 2-cycle u. Then given a
non-ovelapping set Z* such that w € I*, we can insert v and remove w, plus
possibly another AC, say z, that overlaps the fourth edge of u. If z does not exists
or x € Vs, then ¢(Z*) increases. Because we do not have to consider cycles that
do not belong to some Z* with maximal ¢(Z*), the following rule is valid:

3-cycle elimination rule: if w € Vs, u € Vs, w and u share three

edges and N(u,V;) C N(w,V,), then remove w from V.

3.2 GEIS — Good enough independent set problem

Our goal is to form a more abstract problem in which we do not know that a
selected set of objects consists of cycles and that the dependency edges are cycle
overlaps. The input to this problem will be a graph G with the following basic
properties:

1. set of nodes V has four parts, V2o, Va1, Vs, Va1 (where V; = Vo UV, 1);
2. ([V4] is a graph of degree 4;
3. if S is an independent set, u € V; and S C N(u, V) then |S]| < 21;

4. if u € V;j, then y(u) =8(j 4+ 1) and ¢(u) =8 —=3(: — 1) — 5.
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The goal is to find an independent set I such that for every other independent set
I* we have v(I) > ¢(I).

Unfortunately, we did not succeed in that goal, and we need to require that an
abstract overlap graph satisfies all the basic properties and two additional properties
that are more complex. In this section we will formulate this property and then we
will show that the overlap graphs resulting from the applications of the selection
and elimination rules of the previous section indeed satisfy this property,

We start from the following definition:

Definition 1 Assume that I CV is an independent set.
o miz([,[*) = {{u,w} e E: uelnNVooandw e I*NVao};

o A pair (u,u) is dangerous for I if for some I* with mazimal ¢(I*), and,
under this restriction, with minimal miz(I, I*) we have

LuelnVyg, ue I*NVyp; 3. |N(u, V2)| =4; and
2. N(u,T) = {u}; 4. IN(u, I" N V)| = 3;

The motivation to consider the danerous pairs is the following: the amortized
analysis of our algorithm for GEIS breaks down when there exist a dangerous pair
for the analyzed solution.

We say that a pair (u,u) is flipped if we change I into I' = [ — {u} U {u}.
We can always flip a dangerous pair, because condition 2 says that w is the only
neighbor of uw in /. We say that a flip is safe if (u,u) is not dangerous for I'.
Note that a flip can be safe even if (u, u) is not dangerous for I. We need to show
that (a) we have a condition that a dangerous pair must satisfy, and (b) if (u,u)
satisfies this condition for I then (u,u) does not satisfy this condition for I’. In
other words, our flips will destroy all dangerous pairs, without decreasing (7).

Our condition will consist of two three parts..

We say that (u,u) is awkward for I if u € ITNVy, u € Vo — 1T and (u,u)
satisfies properties 2 and 3 of a dangerous pair. Clearly, a dangerous pair must be
awkward, so if (u,u) is not awkward for I’ the flip of (u,u) is safe. This happens
if |N(u, Va)| < 4.

If (u,u) is awkward and |N(u,V,)| = 4, then we say that A is a trouble for
(u,u) if A C N(u,V), Aisindependent, ANV, = {u} and |[AN V30| = 3. Set A is
a plausible N(u, V)N I*) from the definition of a dangerous pair.

However, it may happen that it is impossible that A = N(u, V) N I*) for an
independent set with maximal ¢(/*) and minimal miz((1, I*). Thus we say that
an independent set B is a solution for trouble A if BU N(B,V) C AUN(A,V)
and either ¢(B) > ¢(A) or ¢(B) > ¢(A) and muiz(I, B) < miz(I, A).
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Figure 9: Corner neighbors in a dangerous pair.

If A= N(u,V)N I* than I* — AU B is also an independent set with maximal
o(I*), but miz(I,I* — AU B) < miz([,1*) and thus A does not corroborate the

fact that (u,u) is dangerous. We can conclude that

Observation 14 Pair (u,u) is dangerous for I only if it is awkward for I and it
has a trouble with no solution.

If a pair satisfies the above condition, we say that it is troublesome for I. Now
we can phrase the fifth desired property of the inputs to GEIS problem:

5. If I is an independent set and (u,u) is troublesome for 7, then (u,u) is not

troublesome for I — {u} U {u}.

We can postulate that the GEIS input satisfies property 5 because we can prove
the following theorem.

Lemma 7 After applications of the rules of selection and elimination the overlap
graph of an abstract breakpoint graph satisfies properties 1-5.

Proof. Conditions 1-4 are obvious, so we will be proving only condition 5.
Consider a troublesome pair (u,u).

If [N(u,V,)| < 4, then (u,u) is not awkward, and as such, not troublesome.
Therefore we may assume that u has 4 neighbors in ;. We will also assume that
u=(a,b,e,d), u=(a,b,c,d). The trouble for (u,u) is an independent set of
4 neighbors of u, thus each of these neighbors overlaps u on exactly one edge. We
may assume that A = {u, w,q, wpe, weq}, where each w is a 3-cycle that overlaps u
on the indicated edge.

The form of the neighbors of w in V; is also restricted, as we show below.

Lemma 8 If (u,u) is troublesome for I, then w has no neighbors in V, 1 and no
corner neighbors in Vs .
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Figure 10: Neighbors of a troublesome pair (u, u).

Proof. Supose first that u has a neighbor in Vs, say v. If v and u share two
edges, say (b,¢,d), then node ¢ has degree 2 and that precludes the existence of
wye and w.g. If v and u share one edge, say (b, ¢), then wy. and v share at least 5
edges, not possible.

Now suppose that u has a corner neighbor at d, for some e this 2-cycle equals
v=(a,d,c,e) (see Fig. 3.2a). Then w,q contains path (d,a,e) and w,4 contains
(d,c,e). This means that B = {u,ws.,v} uses only the cycle edges of A, while
¢(B) =12 > 11 = ¢(11); thus B is a solution to trouble A, a contradiction.

Finally suppose that u has a corner neighbor at . One can see that this 2-
cycle must contain the path (¢, b, a,d) so it equals v = (¢, b,a,d ) (see Fig. 3.2b).
Then wy. must contain the path (b, ¢,d) while u contains (b,a,d). In this case
B ={v,w=uUuwy —v,w,,we} is a solution to trouble A: it uses the same set
of cycle edges, ¢(B) = ¢(A) and miz(B,I) = miz(A, I) — {{wp, u}}.

O

Because each neighbor that u has in V; shares exactly one edge with u, we can
US€ Ugd, Upe, Ueq to denote these neighbors (while wu,, = u).

If (u, u) is also troublesome, we would be able to define, by analogy, the neigh-
bors of u denoted w, 4, up,, U.g, Woq, Wy and w ;. Fig. 3.2a without the dashed edges
shows u and u together with their neighbors in V.

Consider 3-cycle wp,, it clearly shares three edges with uy. = (b, ¢, e, f (9) and
because it is not a subject of 3-cycle elimination rule, there must exist a cycle
v € V, that does not overlap wy. but uses cycle edge (e, f).

Suppose that v € Vy 1, as in Fig. 3.2b where v = (¢, f,g,h,1,70), where {g,7}
is a little hurdle. Because wy, is not a subject of 3-cycle elimination rule, there
must exist 2-cycle (e, f, g, h ), thus (e, h) is a black edge. Cycle w,, must contain
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path (e, ¢, b, f,e). If it contains also (e, j) then it contains path (¢, ¢, b, f, €, 7,7) but
that means that e = j, a contradiction, because edge (e, f) becomes a diagonal of
v, and that makes v a subject of Single selection rule. Thus has to use edge (e, c),
so its 6th edge is gray edge (c,¢e).

Consider wp.: it contain path (e, ¢, b, f,€), if it also contain (e, h) then its 6th
edge is (e, h), a diagonal of v, a contradiction. Thus wy. is closed with two edge
path (e, ¢, €), so (¢, €) is a gray edge. Contradiction: we have obtained a gray cycle
(e,b,¢ ¢, f,e0).

It remains to consider the case when the cycles that assure that neither wj. nor
w,, 1s subject of 3-cycle elimination are both 2-cycles, as in Fig. 3.2c. We again
consider the possibilities for wy. and w,,; the former must use a gray edge from
e to h or ¢, and the latter must use a gray edge from e to h or ¢. To avoid a
gray cycle, we must have a pair of gray edges as in Fig. 3.2c or a symmetric one.
Therefore we can assume two gray edges (h,¢e) and (e,¢), and thus a new 2-cycle
z = (e,¢e,h (). This cycle shares 3 edges with w,,. Because w,, is not a subject
of 3-cycle elimination, there must exist a -cycle y that uses (e,gj, the single edge
of + — w,,. and non-overlapping with w,.. One can see that y must contain gray

edge (¢, d).
We have a contradiction, because w_, must contain path (h, e, ¢, d, ¢, d), which
implies that (d, h) is a gray edge and that (d, h,e, f,e,¢,b,¢,d,a () is a gray cycle.
O

The final property is a bit simpler. Let A C V, be an independent set. We
define set K to be an A-butterfly with center u € A if there exist L C N(u, V') such
that LU A — {u} is independent, |H| >3, K = HN V3o and |K| > 2. A-butterfly
K touches A-butterfly K a times if there are a edges between elements of K and
K'. A set of butterflies independent of no two elements touch each other.

6. If K is an A-butterfly, and K is an independent set of butterflies, K" may touch
elements of K at most 5| K| times.

Lemma 9 The overlap graph of an overlap graph of an abstract breakpoint graph
satisfies property 6.

Proof. FEach element of an A-butterly K with center u is a cycle of 6 edges, of
which 1 or 2 belong to u — otherwise K would not be a subset of an independent set
from N(u,V) with at least 3 elements. Moreover, at most one butterfly element
shares 2 edges with wu.

One can see that K has at most 15 edges that do not belong to u. If K touches
another A-butterly K’ then they share one of these edges. This claim is obvious
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if w is not a center of K. Otherwise both K and K’ contain at least 4 out of 8
edges that are incident to u but do not belong to u. The proof can be completed
with a simple case analysis.

O

We can conclude this section with the following theorem.

Theorem 3 Afiter applications of the rules of selection and elimination the overlap
graph of an abstract breakpoint graph satisfies properties 1-6.

4 Small improvements and complements

4.1 The method

In this section we will describe 5 algorithms for various versions of Independent Set
problem. The first 4 form a sequence, as each invokes the previous as a subroutine,
and the last algorithm in that sequence, called Main, finds a solution to GEIS
problem, or, to be a bit more precise, almost a solution, as the condition that GEIS
solution must satisfy may be still unfulfilled. However, this "almost solution” will
have properties that allow The fifth algorithm, which we call Postprocessing, to
improve it so that GEIS condition is assured.

The reason for splitting our algorithm into Main and Postprocessing is that
all five algorithms have a similar nature: apply a single set of rules as long as
possible to improve the tentative solution, and then perform the analysis under
the assumption that none of the rules apply. Main and Postprocessing use different
sets of rules, and even have different sets of objects among which the search for
the solution is conducted.

We introduce new graph notation. If X is a set of nodes, X(¢) is the set of
those elements of X that have exactly 7 neighbors (or, degree equal 1), X(< 1) =
U;zoX(j) Each of the first three problems will have a fixed weight function
¢, ¢(X) is the maximum value of ¢(/) for an independent subset of X, [* is an
independent set such that [/*| = (V') and the goal is to find an independent set .J
such [J| > o(V).

The common outline of our algorithms is the following. Initially, we use a num-
ber preprocessing rules that replace the given graph with a smaller one; once not
preprocessing rule can be applied, we form an empty candidate set J. Afterwards,
we perform, as long as possible, two kinds of operations that increase the size of the
candidate: small improvements and complement improvements. More formally,

1. A preprocessing rule r has condition %, instance translation o, and solution
translation 7. If the condition v, (p) holds for some parameter p, we replace
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G with G' = o0,(p, ) and later look for a solution in G. Once we select such
a solution .J, we return an independent set of G equal to 7.(p, J).

2. If we are given a list of preprocessing rules, we always apply the first possible
rule. This way the condition of a rule tacitly assumes that the conditions of
the previous rules do not hold.

3. A possible small improvement is an independent set X of size at most k,
where k is a constant. Applying X means that J is replaced with J —
N(X,J)UX. X is an improvement if applying X increases the size of J. We
may also specify an objective function £; in such a case X is an improvement
if applying X increases h(.J).

4. To attempt a complement improvement, we are finding an independent set
J' in the graph G[V — J] using the complement algorithm A. 1f |J'| > |J|,
we apply this improvement by replacing J with J'. Before we attempt a
complement improvement, we make sure that no small improvements apply.
Thus if we attempt a complement improvement and it cannot be applied,
the algorithm terminates.

4.2 Algorithm 1

The first algorithm will be used in the graphs where V = V(< 3). We define
o(u) = 1/9 if u € V(3), otherwise ¢(u) = 1.

This algorithm was studied already by Halld6rsson and Yoshikara [HY99] who
proved 9/7 approximation ratio. Unfortunately, it is not clear how to adapt their
analysis for our purpose.

We use four preprocessing reductions, simplicial, branchy, 2-greedy, and greedy.

The condition t,(u) of the simplicial reduction is that the set N(u,V) is a
clique; o5(u, G) = G[V — N(u, V) — {u}] and 75(u,J) = J U {u}.

The condition 9,(u,v,w,z) of the branchy reduction holds if {v,w} C V/(2)
and (u,v,w,z) is a path. We form o}(u,v,w,z,G) by adding the edge {u,z} to
GV — {v,w}]; in turn, n(u,v,w,z,J) equals J U {u} if JU {u} is independent
and J U {v} otherwise.

The condition of 2-greedy reduction, t,z(u), holds if u € V(2), and the con-
dition of the greedy reduction, t,(u), holds if v € V. The instance and solution
translations of these reductions are the same as for the simplicial reduction.

The validity of the first three rules is easy to see. When we can apply the
greedy rule, we have V' = V/(3), thus a maximum independent set has size at most
|V|/2 and () < |V|/4. Because each preprocessing step decreases |V| by at most

4, we must obtain an independent set of size at least |V|/4.
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4.3 Algorithm 2

The second algorithm will be used in the graphs where V = V(3) U V(4). We
define ¢(u) = 2/3 if u € V(3) and ¢(u) = 1/3if u € V(4).

We have no preprocessing in this algorithm. We use small improvements with
size bound 2 and objective function ¢.

As a complement algorithm we use Algorithm 1. We can do it because when
there are no small improvements, every node in V' — .J has a neighbor in J, as a
result in G[V — J] a node has at most 3 neighbors.

Consider now independent sets J computed by Algorithm 2 and J*. We define
C=JnJ*" A=J—J*and B = J* — J. Moreover, we define B' as the set of
these nodes of B that have exactly one neighbor in J and B* = B — B'.

On each node of .J we put potential 6, and on each node u of J* we put potential
—6¢(u) (=4 if u € J*(3) and =2 if u € J*(4)). It suffices to prove that the total
potential is not negative.

Because we cannot apply small improvements anymore, each node in V' — .J
has a neighbor in J, and thus at most three neighbors in V' — J. Moreover, if
u € B?, then u has at least two neighbors in JJ, and thus at most two neighbors
in V —J. A node in B'(3) also has at most two neighbors in V — .J. Thus
we can guarantee that the complement algorithm can find a set of size at least
|B*U BY(3)| 4+ |B*(4)|/2 < |J|, where the inequality is implied by the fact that
we cannot apply the complement algorithm anymore. Thus we do not increase the
total potential when we increase it by 1 for each node in B(4), by 2 for each node
in B*U B'(3) and decrease by 2 for each node in .J.

Later, for brevity, we will say that we increase [the potential of] a node or
decrease [the potential of] a node.

Next, for every edge {u, v} such that u € A and v € B we decrease u by 1, and
decrease v by 1. The table below shows the potentials at the beginning, and after
each of the two changes.

AB) [ AM) | B'(3) | B'(4) | B23) | B(4) [ C03) | C(4)
6 6 —4 -2 —4 -2 6—41]6—2
4 4 -2 —1 -2 0 0 2
1 0 —1 0 0 2 0 2

Note that the only nodes with negative values are in B'(3), and this value is
—1. To finish the argument, we define n : B'(3) — A such that N(u,J) = {n(u)}.
Because we do not have small improvements with objective function ¢, ¢(n(u)) >
¢(u), thus n(u) € A(3) and n(u) has potential 1. Moreover, because we do not
have improvements of size 2, the function n is 1-1. We can conclude that the total
potential is non-negative.
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4.4 Algorithm 3

Like Algorithm 1, Algorithm 3 will be used in the graphs where V = V(< 3). We
define ¢(u) = 2/3 if u € V(3), otherwise ¢(u) = 1.

The preprocessing uses four reductions: simplicial, branchy, almost-greedy and
make-V(4). When we can apply neither the simplicial reduction, nor the branchy
one, V =V (2) UV(3) and V(2) is an independent set. To describe the remaining
two reductions, define E’ to be the set of edges incident to V(2), and consider a
connected component of (V, E’), say C. Observe that |C(3)| < |C(2)] + 1.

The almost greedy reduction has condition t,,(C') that holds if |C'(2)] > 1;
04y(C,G) =GV = C] and 7,,(C, J) = JUC(2).

The make-V(4) has condition t,,4(C) holds if C'(2) # O. Because the other
reduction do not apply, |C(2)| = 1, C(3) = 2 and C(3) is independent. We form
oma(C, G) from G[V — C] by adding a new node n, and edges that connect n with
nodes in N(C,V — C). We define 7,,4(C,.J) to be J —{n} UC(3) if n € J and
J U C(2) otherwise. Note that usually the new node will belong to V' (4), and this
motivates the name of this reduction.

Once no preprocessing reduction is applicable, we apply Algorithm 2. The
validity of the above reductions is easy to show and we leave it to the reader.

4.5 Algorithm Main

In this section we describe the main part of our algorithm that solves GEIS prob-
lem. Our input is an abstract interleaving graph 3, i.e. a graph with node set
V' partitioned into four parts Vi, V51, Vs and V3 with properties 1-6 described
in 3.2. We will analyze Main in a similar manner as Algorithm 2, i.e. we will be
eliminating negative potential from the graph until it remains only in few cases
of nature that is easy to determined. The elimination of this remaining negative
potential is the problem solved by Postprocessing.

We introduce the following notation: if X is a node set, X;; = X NV, ; and
X; = X,;0UX; ;. Algorithm Main has no pre-processing and is described in Fig.
11.

Assume that algorithm Main terminated and that J* is an independent set
that maximizes ¢(.J*) and minimizes miz(.J, J*). We place potential y(u) on each
u € J and —¢(u) on each u € J*. Our task is to have non-negative sum of values.
We will be increasing and decreasing the values of the nodes until we will be left
with small negative sum —d, where d is our deficit. The structure of this deficit
will allow us to increase v(.J) by at least d/8 using a postprocessing algorithm.

We define A, B and C in terms of J and J* as in the analysis of Algorithm 2.

We will also use the following notation:
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Small improvements:
L. of size at most 8 that increase |.J3[;
2. of size at most 9 that do not change |.J,| but increase |.Js|;
3. of size 1 that change neither |.J;| nor |J3| but increase v(.J);
4. safe flips (as described in 3.2).

Complement algorithm: run Algorithm 3 in G[V,—.J], take the result
if it increases J;.

Figure 11: Algorithm Main.

By ={u € By: |N(u,Ay)| =1} and A} = N(B;, As);

By ={u€ B): |[N(u,By)| =4} and By’ = B} — B,

if N(u, Ay) ={v} for u € By, then n(u) = v;

322232—321 and Angg—Aé;

B = {u€ B [N(u A~ Aby)| = i}

if N(u, A3) = {v} for u € 5’22’1, then n(u) = v;

B} ={u€ Bs: |N(u,A)| =1} and B} = B; — B'.

a(u) = |N(u, A3)|; b(u) = |N(u, B)|;

We observe first that in G[V, — J]| Algorithm 3 can find an independent set .J’/

of size at least |B2U B)”| + 2/3|By"|. Because |.J/| < |J5|, we do not increase the
total potential when we increase each node in B U B, 4 by 3, increase each node

in BQI’4 by 2, and decrease each node in A, U Cy by 3. The table below shows lower
estimates of the potential of nodes before and after in this redistribution.

veE... | Byo | Bat | BPUBS| Oy | Ay | Asa
‘—5‘—4 -5 ‘—54—8‘8‘16

before

-3 | -2 -2 —-9+5] 5 13

after

Observe that we can remove from consideration 5, because the total potential
of (5 is non-negative. Moreover, u € Ay, has 13, at most 4 neighbors in B, and
each such neighbors has at least —3; thus we can remove from consideration A, ,

and N(Ay;, B). Later, A, will denote A, .
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In our second redistribution we inspect every edge {u,v} such that u € A and
v € B; we decrease u by 1, and increase v by the same amount.

Elements of B U B3 start the second redistribution with potential —2 and gain
at least 2, so the potential becomes nonnegative. Elements of Bs; start the second
redistribution with —1 and gain at least 1, so they also get nonegative potential.

The table below provides remaining lower estimates of potential values.

Bio | BPUBY | By | Ay | Asp | Asy
-2 —2 -3 5} 8 16
—1 | —1+4a(u) | =24 a(u) | 5 —b(u) 2 10

Before we rearrange the potential again, we need two lemmas.
Lemma 10 Function n is an injection from By, U B3, to A,.
k)

Proof. Assumethat u # vand n(u) = n(v) = z. Ifu,v € B}, then N({u,v},J) =
{z}, so we could apply {u,v} to increase J, impossible after the termination of the
algorithm. If uw € B} and v € B}, then n(u) € A} and n(v) € A3, so n(u) # n(v).
If u,v € 322,1’ then for z = u,v we define A(z) = N(z, A}), and because n is a
bijection between B, and Aj, we can also define B(z) = n7'(A(z)). We can ap-
ply {u,v} U B(u)U B(v) to increase |.J5|, because |N({u,v} U B(u) U B(v), J;)| =
{z}Un(B(u)Un(B(v))| < {u,v}Un(B(u) Un(B(v))|, and again, this is impos-
sible.

O

Lemma 11 B’ =0.

Proof. Suppose u € BQQ’O. We can define A(u) and B(u) as in the proof of Lemma
10. We can apply {u} U B(u) to increase Jy, because [{u} U B(u)| =1+ |B(u)| =
L[ AG)] = 1+ IN(u} U B(a), )]

O

Our goal is to eliminate the negative potential except for the following situation:
u € B3, has potential —1 and its sole neighbor in A, has potential 1. We define
sets A_ = A} and B. = N(A_, B}) for i = 1,2. Our third redistribution is a series
of rules.
Rule 1: v € B! and the potential of u is nonnegative; remove u from B! and
n(u) from A_.
Rule 2: v € B?, |N(u,A—A_)| > 2 and v € N(u, A_); undo the second operation

for {v,u}, i.e. add 1 to v and subtract 1 from wu, then remove u from BZ.
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Rule 3: v € B? and |N(u, A — A_)| <2 (by Lemma 11 N(u, A — A_) = {n(u)})
and N(n(u), Bi,) = O; subtract 1 from the potential of n(u) and add 1 to the
potential of u, then perform the actions of Rule 2.
Rule 4: u € BZ; define Ay(u) = N(u, A_) U{n(u)}, Ba(u) = n~'(Ay(u)) and
Bs(u) = N(A(u), B}), change the potential of all nodes in these three sets to 0,
remove Ay(u) from A_ and B;(u) from Bt for 1 =2,3..

While the validy if the first three rules is obvious, for Rule 4 we need a proof.

Lemma 12 Rule 4 is valid.

Proof. We need to show that the sum of the potential of Ay(u)U Bz(u)U Bs(u)
is nonnegative. Define As(u) = N(Bz(u), As), let a = |Az(u)|, b = |Bs(u)| and
¢ = |Ay(u)|. By Lemma 10, |By(u)| = ¢. Clearly, ¢ < 4 and, because we have
applied Rules 1 and 2, a < ¢. Suppose that b > a, then we can find a subset
B’ C Bj(u) such that |B| = a4+ 1 and the set By(u)U B’ forms an improvement
that does not change |J;|, increases |.J5] and has size 8 at most, a contradiction
because Main has terminated.

Note that after the first operation that redistributed the potential, the po-
tential of By(u) has at least —3¢ 4+ 1, in the second operation this potential in-
creased by 2¢ — 1 + a, the potential of Az(u) after the second operation is at least
¢ and the potential of Bs(u) is at least —b > —a. Therefore the potentials of
Ay(u) U By(u) U Bs(u) is nonnegative.

O

Observe that once we cannot apply rules 1-4 anymore, B? = [0. Below, for
v € A_let B*(u) be the set of neighbors of v in B3 that took a unit of the potential
from v, and have not returned it in while we have applied one of the rules.
Rule 5: v € A_, |B*(v)| < 2, We can use the definitions, actions and reasoning
as for Rule 4, except that Ay(v) = {v}.
Rule 6: v € A_, v € B*(v)N B3y and N(u, A — A_) # O; undo the second
operation for {v,u}, i.e. add 1 to v and subtract 1 from u, then remove u from
Bg_.
Rule 7: v € u,A_, u € B*(v)N B3 and N(u, A— A_) = O; We can use identical

definitions, actions and reasoning as for Rule 4.
Lemma 13 Once we cannot apply any of the Rules 1-7, A_ = [.

Proof. The only configuration with negative potential that is neither eliminated
by Rules 1-7 nor allowed be the claim is v € A_, |B*(v)| = 3 and the potential of
u = n~'(v) is —2. This implies that (v,u) is a dangerous pair for .J, and thus our
algorithm would perform a safe flip. Importantly, this safe flip decreases neither
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|.Ja| nor |.J3|, because u has exactly one neighbor in A. By the property 5 of ab-
stract overlap graphs safe flips can liquidate the existence of dangerous pairs.

O

4.6 Postprocessing algorithm

We can add the following two rules to the third potential redistribution:
Rule 8: u € B; has negative potential, N(u, A) = {v} and v € As; take one unit
of the potential from v and give it to u.

An application of Rule 8 results in u having potential 0. This rule is valid if the
potential of v does not drop below 0. This is not possible, because after the second
potential redistribution v has potential 2, and if would subtract from this potential
twice, then v would have two neighbors in B3, say ug and uy, and {ug, u;} would
form an improvement.

Rule 9: v € A3 has potential 1 and at most one u € N(v, Bs) has potential —1;
move 1 unit of potential from v to u.

Now the only nodes with negative potential form a set B’ C Bs each u € B’
has a neighbor v with potential at least 1, let A’ be the set of these neighbors.
Because of Rule 10, a node v € A’ has at least two neighbors in B, as a result, we
can partition B’ into a set of A’-butterflies.

We fist show that the following rule is valid:

Butterfly selection rule. If v € J;, K is a butterfly with center w,
|K| >3 and N(K,.J) = {u}, then change J into J — {u} U K.

One can see that the Butterfly selection rule is valid. If |K| = 4, we gain 24
potential units, and our butterfly K touches the “correct” butterflies at most 20
times, thus we can add 1 potential unit to each v € N(K, B"). If |K| = 3, we gain
16 units and we need to add 1 potential unit to at most 15 elements of “correct”
butterflies.

After applying Butterfly selection rule, we are left with 2-element Jy-butterflies
only. Fach such butterfly, together with its center, has potential —1, and selecting
a 2-element butterfly yields 8 potential units. By Property 6, a butterfly can
touch at most 10 other butterflies. However, we need to find an independent set
of butterflies of size at most 1/g times the optimum. We do it as follows.

Form a graph of all Jy-butterflies, where {b, ¢} is an edge if butterfly
b touches butterfly e.
Apply improvements of size 2 to obtain set B of butterflies.
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We can give —2 potential to each butterfly from the optimum solution and 11
units to each butterly found by this algorithm. Then we redistribute the potential
according to each edge between the optimal solution B* and our solution B, so the
potential of our butterflies remains at least 1, and the only butterflies from B* that
have negative potential have only one neighbor in B, so their potential is —1. Tt
is easy to see that if a butterfly from B touches two butterflies from B, and that
would create an improvement of size 2. Thus the overall potential is nonnegative
which means that |B| > |B*|/5.5.

We finish Postprocessing by applying all butterflies from set B. to the solution
that resulted from Main and then Butterfly selection rule. We can conclude that

Theorem 4 There exists a polynomial time algorithm that solves GEILS problem.
and by combining all the theorems together we get our main result.

Theorem 5 There exists a polynomial time approximation algorithm for MIN-
SBR problem with approzimation ratio 11/3.
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