Electronic Colloquium on Computational Complexity, Report No. 48 (2001)

BRANCHING PROGRAM, COMMUTATOR, AND
ICOSAHEDRON, PART 1

JUI-LIN LEE

ABSTRACT. In this paper we give a direct proof of No = N, i.e., the equiva-
lence of uniform NC? based on different recursion principles: one is OR-AND
complete binary tree (in depth logn) and the other is the recursion on notation
with value bounded in [0, k] and |z|(= n) many steps. A byproduct is that the
multiple product of p(log n) many Boolean matrices with size g(logn) x g(logn)
(where p, ¢ are polynomials and n is the input size) is computable in uniform
NC'. We also investigate the computational power of LR(f), RL(f), DC(f)
according to the associativity and commutativity of f and the size of B.

1. INTRODUCTION

In this paper we will focus on uniform parallel complexity classes within NC?.

Consider the following two types of computational schemes: Divide-and-Conquer
and sequential recursion. Apply them on a simple binary operation f : Bx B — B
with a nonempty finite domain B, i.e., for input sequence b = biby...b, € B*,
the scheme Divide-and-Conquer computes the following:

for n = 2, DC(f)[b1b2] = f(b1,b2);

for n = 27+, DC(f)[by ... bams1] = F(DC(f)[by .. .bam], DC(f)[bams1 - . . bymss]).

And the from-left-to-right sequential recursion computes the following:

for n =2, LR(f)[biba] = f(b1,b2);
forn>2, LR(f)br.. ba] = F(LR(F)Br - bo_i], bu)-

The dual from-right-to-left sequential recursion RL(f)[b; ... by] is defined similarly.

The Boolean formula depths for DC(f) and LR(f) are O(logn) and O(n) respec-
tively. Though these two schemes seem different, they have the same computational
strength, i.e., uniform NC'= uniform AC°+{DC(f) | f is a finite function} = uni-
form AC® + {LR(f) | f is a finite function}. It is shown that No(= A + tree) =
ALOGTIME in [6] and N)(= Ao + k-BRN) = ALOGTIME in [7]. Here A, is
the function algebra for uniform AC?, tree(z) is the OR-AND complete binary tree
applying to the first 4™ bits of z where 4™ < |z| < 4™+ (actually tree(z) = DC(]),
where | is the Sheffer’s stroke), and k-BRN is the recursion on notation with value
bounded in [0, k] and |z| many steps of recursion.

In this paper we first prove Ny = N| directly. In Section 2 we introduce func-
tion algebras which characterize uniform AC?, AC°(Mody), NC*. In Section 3 we
introduce the notion of expressibility. We prove that Nj C Ny in Section 4. To
compute k-BRN by tree(zx), the idea is straightforward: instead of computing k-
BRN iteratively, we express each step of recursion, which is a finite function (for k

Date: May 31, 2001.
This research was supported by the NSC 88-2411-H-194-027.

1

ISSN 1433-8092

2 JUI-LIN LEE

is a constant), as a Boolean matrix of size (k + 1) x (k+ 1). Since the composition
of functions (or Boolean matrix product) is associative, one can use Divide-and-
Conquer to compute k-BRN in depth O(logn). Note that we still need to check
the uniformity, i.e., what kind of computation will suffice to arrange the bits in x
to plug into tree for simulating k&-BRN by tree.

We apply this technique to get the following result: The product of p(logn)
many Boolean matrices with size g(logn) x g(logn) (where p,q are polynomials
and n is the input size) is computable in uniform NC' (see Theorem 4.10).

In Section 5 we prove that No C Nj. The converse direction is based on [2].
Barrington used the simple group As to simulate logic connective A by branching
program. The crucial part is the existence of three 5-cycles o, §, T with 0do 1571 =
T, i.e., 5-cycles do not degenerate in commutator operation. Again we need to check
the uniformity.

The uniformity we use here is actually quite restricted. To use LR(f) (or DC(flz
to simulate other function (say, g(x)), we need to generate an input sequence b
to plug into LR(f) (or DC(f)). T is of polynomial size (with respect to |z|), and
its bits are from {0,1,z;,...,x;,...}. During the arrangement of b, we know
nothing about x except its length (actually only knowing an upper bound of the
length will be enough).

We are interested in the computational power of uniform AC® + LR(f) (or
DC(f)) with a single f. That is because somehow the proof of Ny = Nj is based
on NC! complete functions tree(= DC(|)) and LR(o)(= DC(o), where o is the
group multiplication on Aj).

We investigate the computational power of LR, RL, DC according to the as-
sociativity and commutativity of f and the size of B, and we have the following
results:

(1) If |B| < 4, then AC°(LR(f)) C AC°(Modg): In Section 6, we actually prove
that the composition of functions f, o---o f; with each f; : B — B and |B| <4 is
computable in uniform AC°(Mods). This method also classifies the computational
strength of 1-BRN, 2-BRN, and 3-BRN.

(2) If f is associative and commutative, then AC°(LR(f)) C ACC: Since f is
associative and commutative, and its domain is finite, for each a € Dom(f) we
may use modular counting according to the behavior of powers of a (with respect
to f). (Note that the power of a is periodic and the length of its period < |Dom/(f)|.)
(3) If f is associative and |B| < 60, then AC°(LR(f)) C ACC: This is based on a
result of [4]. See Section 7.

(4) There is a nonassociative, commutative f with |B| = 2 such that AC°(DC(f)) =
NC*: That is because DC(|) = tree.

(5) There is a nonassociative, commutative f with |B| = 5 such that AC°(LR(f)) =
NC*: With |B| = 5 (say, B = {a,b,c,d,e}), one can construct a commutative
multiplication table for f, such that f(-,a) performs a 5-cycle permutation (abcde),
and f(-,b) performs a 2-cycle (ac):

fla,a) =b, f(a,b)=c, f(a,c)=d, f(a,d) =€, [f(ae)=a,
f(,a) =c, f(b,b) =0, f(b,c)=a, f(b;d)=d, f(be)=c,
fle,a)=d, f(c,b)=a, flc,c)=¢e, flc,d)=e, f[f(ce)=p,
f(daa):ea f(dab):) f(d,c)ze, f(dad):ea f(dae):ea
f(eaa):aa f(eab):e; f(eac):ea f(ead):ea f(eae):e'

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 3

Since one 5-cycle and one 2-cycle will generate S5, we have AC?(LR(f)) = NC.

Finally in Section 8 we consider the commutator operation ., on a subset of As
(twelve 5-cycles and one identity element). This operation *. is not associative. We
then describe the computing power of LR(*.) and DC(%.), and explain how it is
related to icosahedron.

2. FUNCTION ALGEBRAS

In this section we define function algebras Ao, Ag(k), Ny, N§. Roughly speaking,
a function algebra is the smallest class of functions containing some basic functions
and closed under some schemes. Examples of schemes are composition, iteration,
recursion with some limitation. The advantage of function algebraic approach is
that it is not machine dependent. We will define the function algebras Ag, Ag(k), To
which characterizes uniform AC?, AC°(Mody,), TCP respectively. (For details see
[6].)

In function algebras all functions have domain and codomain N = {0,1,2,3,...}.
Definition 2.1. zero(z) = 0; so(z) = 2x; s1(x) = 2z+1; i} (21,...,2Tn) = Tp; |2| =
Mogy(z + 1)]; z#y = 21211¥; (z)mod2 = x — 2 - |x/2]; Bit(i,z) = (|z/2!]) mod2;
|22 = ||]]; for k > 2, [2|k41 = [lz]]-

Definition 2.2. Suppose that ho(n, @), hi(n, @) < 1. The function f is defined
by CRN (concatenation recursion on notation) from g, ho, hy if

£0,7) = 9(),
f(So(TL), ?) = Sho(n,?) (f(na ?)) for n >0,
f(Sl(TL), ?) = Shy(n,7) (f(n: ?))

Definition 2.3. Ag is the smallest class of functions containing the basic functions
zero, so, 51,1y, ||, #, Bit(i, z), and closed under composition and CRN.

In [9] Immerman developed the notion of first order definability which captures
uniform circuits without involving sequential or alternating Turing machines. Be-
cause of the robustness of this class, people believe that this notion is the right
notion of uniform AC?. In [6] Clote proved that Ag = FO, where FO is one ver-
sion of uniform AC? defined by first order definability. (We will not use this result
later.)

Definition 2.4. Let @ = 21,25, ...,%,, be a sequence of natural numbers, | 7| =
maz(|z1, ..., |Tm|), and || 7] = maz(||z1]],-..,||zm|]). A function f is sharply
bounded (or doubly sharply bounded) if there is a polynomial p (or a constant c)

such that f(7) < p(|Z|) (or f(7) < ¢||Z]|) for all 2.

Now we recall some useful results from [3], [7], [8], [11]. While checking unifor-
mity in Sections 4,5, we will use Lemmas 2.5, 2.7,2.10,2.13,2.16, CRN, Seg(z, 1, j),

Sharply bounded quantifiers are of the forms 3z < [¢|, Vz < |t|. Lemma 2.5
shows that Ag is closed under sharply bounded quantification.

Lemma 2.5. If g,h € Ag and [is defined by
f(z) = {1 if 3i < |g(@)|[h(i,z) = 0];

0 else,

then f € Ag.

4 JUI-LIN LEE

Definition 2.6. The function f is defined from g, h by sharply bounded p-operator
if

lg(z)| else.
This is denoted by f(z) = pi < |g(z)|[h(i,z) = 0].
Since in such case “h(f(z),z) = 0?7” can be easily checked, we also call it sharply
bounded search.

fa) = {@'0 if ip < |g(z)| A hlio, z) = 0 A Vi < ig (h(i,) # 0);

Lemma 2.7. A is closed under the sharply bounded p-operator.
Definition 2.8.

pad(z,y) = 2¥ - z;
z *xy = pad(x,y) +y (Concatenation of z,y);

j
Seg(zx,i,j) = ZZk_iBit(k,m) for i < j (Segment of x from bit 4 to bit 7).
k=i
Obviously z xy, Seg(x,i,j) are computable in Ag.
Definition 2.9. Mazindex(f,z) = pi < |z|Vk < |z| (f(k) < f(i)).
It is clear that Maxindex searches the maximum of f(i) for 1 <i < |z|.
Lemma 2.10. If f € Ay, then Maxindex(f,x) is in Ao.

Proof. See [11] for a direct proof. O

Definition 2.11. F is definable from g, ho, h1 by k-BRN (k-bounded recursion on
notation) for k € N if
F(0,7) =g(7),
F@2n,2) = ho(n, @,F(n,2))if n >0,
F2n+1,7)=h(n,2,F(n, 7)),
and 0 < F(n, @) <k for all n, Z.

Definition 2.12. The function f is defined from g, hg, h1, by weak k-BRN (weak,
k-bounded recursion on notation) if f(z, @) = F(|z|,¥) and F(z, @) is definable
from g, ho, h1 by k-BRN.

Note that the number of steps in iterated recursions of k-BRN and weak k-BRN
are |z|(= n) and ||z||(= logn) respectively.
Lemma 2.13. Ay is closed under weak k-BRN.

We now use the following notation for extension of function algebras: Consider
a function algebra A, a function f, and a formation rule R, then A(f) denote the
function algebra which has basic functions of A and a new basic function f, and
its formation rules are the same as A. Similarly A(R) denote the function algebra
which has basic functions of A, and its formation rules are the formation rules of
A and a new formation rule R.

Definition 2.14. count(z) is the number of 1’s in the binary expression of z, i.e.,
count(0) =0,
count(so(x)) = count(z), provided z > 0,

count(si(z)) = count(z) + 1.

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 5

And T is the smallest class containing basic functions zero, so, s1, i}, |z|, #,
Bit(i, z), count, and closed under composition and CRN. (That is, To = A¢(count).)

Definition 2.15. Sharply bounded counting function sbcount(z,y) is defined as
follows:
count(z) if z <|y|;

sbecount(z,y) = {0 X
else.

sbeount(x,y) means count(z) for small z.
Lemma 2.16. sbcount(z,y) € Ao.
Definition 2.17. The modular counting function is defined as

1 if ;
Mody(z) = { if k|count(x);

0 else.
Function algebra Ao (k) is Ao(Mody), i.e., the smallest class of functions containing

the basic functions zero, so, 1,14}, ||, #, Bit(i,), Mody, and closed under compo-
sition and CRN.

Note that Ag(k) is the uniform AC®(Mody). For any two distinct primes p,q,
AC®(Mod,,) = AC®(Mod,)(Mod,) and AC°(Mod,), AC®(Mod,) C AC®(Mod,,).
Definition 2.18. The function tree(z) taking values 0,1 is defined from the aux-
iliary functions and(z), or(z) as follows:

and(0) =0,
and(l) =1,
and(2) =1,
and(3) =1,
and(so(so(x))) = so(and(z)) if z > 0,
and(so(s1(x))) = so(and(z)) if z > 0,
and(s1(so(x))) = so(and(z)) if x > 0,
and(s1(s1(x))) = s1(and(z)) if x > 0,
or(0) =0,
or(l) =1,
or(2) =1,
or(3) =1,
or(so(so(7))) = so(or(z)) if z >0,
or(so(s1(z))) = s1(or(z)) if z > 0,
or(s1(so(z))) = s1(or(z)) if z > 0,
or(s1(s1(z))) = s1(or(z)) if z > 0,
x—2-|z/2] if z < 16,

tree(x) = {

The function tree(z) actually does the following computation. Suppose that
=02z, x; € {0,1} for 0 < i < n—1. Let 4™ < n < 4™+, Then we
compute AND, OR alternatively on those 4™ bits x4m 1,...,%o. Consider that

tree(or(and(z))) else.

6 JUI-LIN LEE

there are 2m + 1 levels. At level 0 we have 22™(= 4™) many bits: L(0,4™ —
1) = Tgm_1, L(0,4m — 2) = Tgm_92, ..., L(O7 1) = I, L(0,0) = Zg- At level 1
we define L(1,5) = L(0,25 + 1) A L(0,2j), the conjunction of L(0,2j + 1) and
L(0,2j). Therefore we have 22™~1 many bits at level 1. At level 2 we use OR:
L(2,5) = L(1,2j+ 1) vV L(1,2j). In general, L(2k +1,j) = L(2k,2j + 1) A L(2k, 2j)
and L(2k,j) = L(2k — 1,25 + 1) V L(2k — 1,2j). At level 2m there is only one bit,
and we denote this by tree(z).

For example, if m = 1, then 4 < |z| < 4? and tree(z) = (z3 A z2) V (1 A zo). If
m = 2, 42 < |z| < 43, then first compute

y3= (T Az14) V (T13AT12),
y2= (11 Az1o) V (z9 Azg),
= (zrAzg) V(25 A\T4),
Yo = (.'173 N IL'Q) \% (112'1 N $0),

and tree(x) = (y3 Ay2) V (y1 A yo).

Definition 2.19. Nj is the smallest class of functions which contains the basic
functions zero, so, s1,i}, |z|, #, Bit(i,), tree, and is closed under composition and
CRN.

Definition 2.20. NN is the smallest class of functions containing the basic functions
zero, so, 51,1y, ||, #, Bit(i,) and closed under composition, CRN, and k-BRN for
any constant k£ > 0.

3. EXPRESSIBILITY

Remark 3.1. The concept “expressibility” is similar to Karp reduction, and actually
the same as “projection” (developed by Valiant). To show that tree is complete in
NC?, it suffices to show that for any Boolean function g in NC* there is an input
sequence b (constructed from the original input) of polynomial size such that

_)
tree(b) = g(x).
Definition 3.2. Let f: {0,1}" — {0,1} be a Boolean function. f is called m-tree
expressible if there exists an input sequence Gym 1, Gqm_s,...,Go(= 8) such that

4m 1
... 2n) =tree(2'” + Z 2t . G))
=0

where the input sequence Gym _1,Gym _o,...,Go is a sequence with elements from
{0,1} U {z;,~z; : 1 < j < n}. Note that if G; = —z;, then the value of G; is 0 if
and only if z; is assigned to 1. We call G; as the i-th position of the input sequence
8. The length of 8 is 4™.

We call z; a positive atom, —z; a negative atom, and we identify ——2 with =.
We also use the following notation

f@r,o2) = (VN (Gamor,Gim_a, ..., Go)

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 7

to denote that f is m-tree expressible with input sequence Gym _1,Gam _2,...,Gp.

For example,
VN @1,22,23,50) = \/(\(@1,22,23,24))
= \/((961 A x2), (23 A 24))

= ((x1 Az2) V (3 A 24))-

If f is m-tree expressible with input sequence 8, then we may denote the input
sequence G by sqtree[f] (sequence of tree of f). Note that G is not unique.
The following remark shows that we may describe 8 by some functions hy, ho, h3.

Remark 3.3. Suppose that f : {0,1}" — {0,1} is m-tree expressible, then there
exist hi, ha, hs with domain {0,1}?™ such that these functions characterize the
behavior of the input sequence Gym_1,Gym _3,...,Go(= sqtree[f]). For example,

0 if the I-th position of sqtree[f] is a constant 0;
hi(l) =< 1 if the I-th position of sqtree[f] is a constant 1;
2 else.
- if the I-th position of sqtree[f] is a negative atom;
ha(l) =< —— if the I-th position of sqgtree[f] is a positive atom;
0 else.
j if the I-th position of sqtree[f] is either a positive atom z;
hs(l) = or a negative atom —z;;
—1 else.

Then hy, ha, hg express the constant, sign, index condition of sqtree[f] respectively.
When n is fixed, hy, ha, hs are obviously in Ag. Later we will consider the case
f:{0,1}* — {0,1}. In such case we expect that m(z) < p(|z|) for some polynomial
p and hy, ha, hg € Ag. Here we abuse the definition of Ay by allowing =, -, —1 as
outputs.

Remark 3.4. For | = ayp—1Gm—2...a9 € {0,1}™, we identify the binary sequence !
m—1

with the number n =)" j=o0 @5 2/, When we say “the I-th position” we actually
mean “the n-th position where n = Z;n:_ol aj - 27 and I = am_1am_2-..a9 €
{0,1}™.” Also “n =[” means “n = Z;":_Ol a;j-2 and | = am—_1am—2...ap.”

Later on, we will express function f : {0,1}* — {0,1} by tree and investigate
the constant function, sign function, and index function for f. Note that these
functions are not obviously in Agp.

We need to build up some basic tools.

Lemma 3.5. x1 ® 2 is I-tree expressible.
Proof. 1 ® xo = (1 A—=x2) V (mz1 Ax2) = (V N) (21, ~22, 721, 22). O

Convention. We use the following abbreviation for input sequences: Let 0(F) =
k times k times

——— ——— m m m m
0,0,...,0, 1) =7 1,..., 1, 04" = (\V A)™(04™)), and 1147 = (\/ A)™(1(47)).

Lemma 3.6. If f(z1,...,2,) is m-tree expressible, then —f(x1,...,zy) is (m+1)-
tree expressible.

Proof. By De Morgan’s law. |

8 JUI-LIN LEE

Lemma 3.7. If f is m-tree expressible and | > m, then f is l-tree expressible.

Proof. Induction on (I —m). O

Lemma 3.8. If f : {0,1}} — {0,1} is m-tree expressible and g; : {0,1}' — {0,1}
are all k-tree expressible for 1 < i < I, then f(g1,...,91) is (m + k + 1)-tree
expressible.

Proof. Since ¢1,...,91,791,---,7g; are all (k + 1)-tree expressible, we may sim-
ply substitute input sequences sqtree[g1], .. ., sqtree[gi], sqtree[—gi1], . .., sqtree[—gi]
(each with size 4¥*1) into sqtree[f]. Then f(gi,...,q) is (m+ k + 1)-tree express-
ible. O

Lemma 3.9. If f,g are m-tree expressible, then (f A g),(fV g) are (m + 1)-tree
expressible.

Proof. (f Ag)=(fAg)V (O™ I AQH™]) and (£ V g) = (f A1H™)) v (g A147)). OO

Definition 3.10. Function f is called Ag-tree expressible if there exist a polynomial
p(z), a constant ¢, constant function hy € Ag, sign function hy € Ag, and index
function hs € Ag such that the following conditions hold:

(1) |f(=@)| < p(l2])-

(2) For any j < p(|z|) and =z,

gelzl2 _q

Bit(j, f(z)) = tree@*"" + S 20 G(i,j,2)),

i=0
where the input sequence G(i, j,) has range C {0,1}, and it is character-
ized by functions hi(i, 7, 247"%), ha(i, 4,24 %), h3(4, j,24°""%).
Similarly we can define Ny-tree expressibility, etc.

Remark 3.11. Intuitively “f is Ag-tree expressible” means: to compute any bit
of f(z), it suffices to construct an input sequence, whose range is {~ Bit(i,z) :
0 <i<|z|} U{0,1}, and then we substitute this sequence into tree. Note that the
construction of the input sequence should be computable in Ag. We give this defini-
tion without rigorously restricting the form of hq, ha, h3 for flexibility. (Remark 3.3
shows how we may define hq,hs, h3.)

Remark 3.12. The denotation of input sequence G (4, j, x) does not well characterize
the way we use information from x. For hq, h2, hy we only need to know |z|2 (we

use 24" to preserve the size of input.)
Theorem 3.13. If f(x) is No-tree expressible, then f € Ny.

Proof. By CRN,

qgclzla _q

9(.0)=2""" + 37 2-G(i.j.x) € No.
=0

So tree(g(j,x)) € No. Then by CRN we have

p(|z)
f@) =Y 2 -tree(g(j,z)) € No.
j=0

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 9

4. k-BRN 1s Ag-tree EXPRESSIBLE

In this section we show how to convert k-BRN to tree by tree expressibility. Since
any function f : {0,...,k} = {0,...,k} can be represented by a (k +1) x (k+1)
matrix, the bounded recurrence k-BRN can be simulated by a multiple product
of the corresponding Boolean matrices. Therefore to simulate k-BRN by tree it
suffices to show that such a product is computable in Ny. Note that Boolean
multiplication of matrices is associative (see Lemma 4.3).

Definition 4.1. A is called an m x n Boolean matrix if 4 : {0,1,...,m — 1} x
{0,1,...,n =1} — {0,1}. We denote A by (as),,,,, Where a;; = A(i,j) € {0,1}.

Bmxndif{A A is an m x n Boolean matrix}. I, € Bpxn, In(i,j) = 1iff i = j.

Definition 4.2. Let C' = (¢ij)mxn, D = (dij)nxi, then the Boolean multiplication
of C' and D is defined as follows:
n—1

CogD = (V Cik /\dkj)mxl-
k=0

In this section, we will just write C'D instead of C op D.
The following lemma is obvious.
Lemma 4.3. Boolean multiplication is associative.
Let A(t) be an m; X ny Boolean matrlx for 1 <t < s, and ng_; = my for

2 <t <s. Then H A(t) makes sense. If H A(t) (4,) 1, then there exists a path

function g such that 9(0) =1, g(s) = 7, 1 < g(t) < ng, A(t)(g(t —1),9(t)) =1 for
1 <t <s,i.e., there is a path from i to j.
Now we work on the case 7-BRN. The other cases are similar to this.

Theorem 4.4. If A(?,t) € Ag is a function with range Bgxs, then the Boolean

ly]—1
product [] A(?,t)](i,j) is Ag-tree expressible for 0 <i,5 < 7.
£=0

Proof. We may assume that |y| = 2™ for some m. If not, we may define

AI(?,t) :{ 2(?7'” ift < |y|7

else.
Then
ly|—1 ollyll _q
IIAZ.n=] 4&,».
t=0 t=0

Since Boolean multiplication is associative, we will use DC(op) to compute the
product.

7
Claim 1: (\/ ag A byj)sxs is 3-tree expressible.
=0

Proof of Claim 1.

7
VaigANby; = (V AN)(aio, boj, ain, bi;) V (V N (aiz, baj, ais, bsj)

=0
V(V A) (@ia, baj, ais, bsi) vV (V A) (ais, bej» airs b72j)
(V A)2(@io, boj, air, bij, 1, aza, by, azz, bsj, 14,147
@ia, baj, a5, bsj, 1, aie, bej, air, brj, 14, 149),

10 JUI-LIN LEE

We call this input sequence sqtree[op]. End of Claim 1. O

Now we define the Boolean products level by level. Let S(0; Z,t) = A(Z,t) €
Bsys for 0 < t < 2™. Define 8 x 8 Boolean matrices S(k+1; 2, t) = S(k; 7, 2t) o
S(k; @2t +1) for 0 < t < 2™ F=1 0 < k < m.

The following claim is proved by induction.

Claim 2: S(k;?,t)(i,j) is (3k)-tree expressible for 0 < 4,5 < 7,0 <k <m.

Since S(k; 2,1)(,) is 3k-tree expressible, we define

G(S(k; 7, 1) (i, j); l)défthe I-th position of sqtree[S(k; @, t)(i, j)]

for 0 <1< 4% —1.
In order to handle the behavior of DC(og), we define

COH(OB;) : {07 1}6 - {07 1}7
0 if the [-th position of sqtree[op] is an atom;

Con(op;1) = { 1 else. ezl

Ind(os) : {0,1)° > {0,1}4,
0000 if the I-th position of sqtree[op] is a constant;
0s1s283 if the I-th position of sqtree[og] is ais,

Ind(op;l) = s§=151-22+55-24s3, and 0 < 51, 89,53 < 1;
1sisps3 if the I-th position of sqtree[op] is bs;,

§=2%4+51-2245,-2+ 53, and 0 < s1,89,53 < 1.

Note that in this case the sign function is useless and constant 0 does not appear.
Claim 3: The function

.« ndef [O if the I-th position of sqtree[S(k; Z,t)] is an atom
Con(sths)0 { § St atrecS(k:)

is in Ag.

Proof of Claim 3. Given [€ [0,4%F), it can be expressed by Yx_1 * Vr—_2 * - - - * Yo,
where 7, € {0,1}% for 0 < v < k. According to Con(og;-), if Con(og;yk—1) *
Con(op; Yr—2) * - -- x Con(op; o) is zero, then G(S(k; Z,t)(i,7);1) is an atom.
Else G(S(k;2,t)(i,4);1) is constant 1. It is clear that to determine whether
“Con(op;Yk—1) * Con(op;yk—2) * - - * Con(op;yo) = 0” is computable in Ag. End
of Claim 3. O

Claim 4: The function

4 (t,3,7) if the I-th position of sqtree[S(k; ?, t)(4,)]
Ind(S(k; @,)(6,);)Y is A(7,1)(7,J)
(0,0,0) else

isin Ag for 0 < 4,5 < 7.

Proof of Claim 4. Given | € [0,4%%), 1 =y 1 % -+ % 79,7, € {0,2}6 for 0 < v < k.
Since S(k; @,t) = S(k—1;7,2t) o S(k — 1; 7,2t + 1), S(k; @, t) can be seen as
sqtree[op] with elements from 1[43(k_1)], S(k—-1; z, 2t)(i, s), S(k—1; 2+ 1)(s,7)
for some s with 0 < s < 7. Note that all of these are 3(k — 1)-tree expressible.
For simplicity, let G, = G(S(k; @,t)(i,j);1). We only need to consider the case
Con(S(k; 2 ,t)(3,5);:1) = 0 (else G; = 1).

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 11

Now assume that Con(S(k; ', t)(i,4);1) = 0. First we consider k > 1. According
to sqtree[op], if Bit(3,Ind(op;vk—1)) = 0, then G; comes from a;; where s =
Ind(op;vk—1). In this case

G(S(k; T, 1)(6,4);1) = G(S(k = L7, 20)(i, 5); ')
where I' = y_g % -- - % .
If Bit(3, Ind(op; vk—1)) = 1, then G; comes from by;, where s = Ind(op; yk—1) — 23.
In this case
G(S(k; @, 1)(i,5);: 1) = G(S(k = 1; T, 2t + 1)(s,4); 1)
where I' = yg_o x - - % 0.
The case k = 1 is similar. Let | = o € {0, 1}°.
If Bit(3, Ind(op;v)) = 0, then
G(S(1; 7,)(i,);1) = S(0; 7, 2t) (i, 8)

where s = Ind(op;Y0)-
If Bit(3, Ind(op;70)) = 1, then

G(S(LZ,1)(0,4);1) = S(0;F, 2t +1)(s,4)
where s = Ind(op;v0) — 2°.

By induction, £ = t * Bit(3,Ind(og;yx_1)) * - -+ * Bit(3,Ind(op;v0)). This is
computable in Ag.

To determine 7, j, we define the following Ag function:

f:[0,2% = {0,1,2,3,4,5,6,7}
and f(0) =i, f(2") = j.

Let a, = Ind(op;v,) — Bit(3,Ind(op; 7)) - 2% for 0 < v < k, then 0 < a,, < 7.

Define f((2u+1)-2°) = a, for 0 < (2u+ 1) -2 < 2. Then f is totally defined
on [0,2*] and f € Ao.

Let t =t x 1, i.e., t = Bit(3, Ind(og; yk—1)) * - - - * Bit(3, Ind(op;%)).

The idea we design f is to assign f(2¥~1) = s. If Bit(3, Ind(op;yk—1)) = 0, then
(f(0), F2*1)) = (i,). T Bit(3, Ind(op: ve—1)) = 1, then (f(2t=1), £(29)) = (s.J).
In both cases f(2F~!) = s and the difference shrinks from 2* to 2¥~1. Therefore it
suffices to find the right interval [w,w + 1] such that f(w) =17 and f(w +1) = j.
By induction 7 = f(t),7 = f(t + 1) are computable in Ay. End of Claim 4. O

ly| -1
Now S(m; ,0)(i,5) = [[] A(Z,1)](,5) is Ao-tree expressible since the con-
t=0
stant function and index function for S(k; @, t)(i, j) are in Ay. O
Corollary 4.5. If A(?,t) € Ny is a function with range Bsxs, then the Boolean

ly|—=1
product [[] A(Z,1)](i,7) is Ao(tree)-tree expressible for 0 <i,j < 7.
=0

Proof. Same as Theorem 4.4 except that now all functions are in Ng. |
Theorem 4.6. If f : N — N is Ny-tree expressible, then f € Ny.

Proof. Similar to Theorem 3.13. a
Theorem 4.7. If f € Ao(7-BRN), then f € Ny.

12 JUI-LIN LEE

Proof. By Theorems 4.4 and 4.6, 7-BRN can be translated into Ny computation.
Hence by induction and Theorem 4.6 any f € Ap(7-BRN) is computable in Ng. O

By showing that k-BRN for £ = 2™ — 1 are Ap-tree expressible, this implies
N§ € No.
Corollary 4.8. N} C Np.

Now we can get more from above technique. Consider the Boolean product of m
many Boolean matrices, each with size s X s. Then the length of its input sequence
is 4(1085)™ Assume that the input z has |z| = n. Then we can set s = O(logn) and
m = O(logn/(loglogn)) and we still have the input sequence with a polynomial
size. Let o1og, be the corresponding Boolean product operator, then it can be easily
checked that Con(ojog n;-) and Ind(ojegy;-) are in Ag. Furthermore, what we have
checked in the claims of Theorem 4.4 still works in this case. We then have the
following result.

Theorem 4.9. If A(?,t) € Ap is a function with range Biognxiogn with |7| =n

and z = (logn/loglogn), then the Boolean product [[] A(Z,1)](i,7) is Ao-tree
=0

expressible for 0 <1i,j <logn.

Proof. (Sketch) Assume that logn = 2". We define the Boolean products level by
level in the same way. We have:
logn
(1) (V ai Abij)iognxlogn is (loglogn)-tree expressible.
=0
(2) S(k; @, t)(i,7) is (k- (loglogn))-tree expressible for 0 < i,j < logn, 0 <
k < (logn/loglogn).
What is different from the previous case is that ojz, is not a finite function.
Therefore we need to verify that Con(oiog n,), Ind(010gn,) are computable in Ao.
We design the input sequence inductively:

2r+1 gr 2r+1
V aa by =\ NV aa Abig, 100, N/ a Aby, 110).
=1 =1 1=274+1

Then Con(oiogn;-), Ind(logn,-) can be defined similarly. According to this con-
struction, Con(oiogn,), Ind(olegn,-) are obviously computable in Ag.

Then one can easily run through the proofs of Claims 3,4. Note that the auxiliary
function f is also computable in Ag. |

Since the Boolean product is associative, we can even multiply (logn)* many
Boolean matrices with size p(logn) in k + 1 levels (each time with (logn/loglogn)
many matrices). Finally we have:

Theorem 4.10. For any polynomials p,q, the product of p(logn) many Boolean
matrices with size q(logn) is computable in Ny, where n = |z| is the input size.

Remark 4.11. While analyzing the uniformity of an input sequence, we can apply
multiple products and powering. That is because multiple products and powering
with sharply bounded values are computable in Ag. (For details see [11].)

Remark 4.12. The tree constructions in Theorems 4.4, 4.10 are monotone, i.e.,
no negation atoms are used in the construction. It seems possible to apply The-
orem 4.10 for a monotone uniform construction of the majority gate in uniform
NC*. The known monotone construction of the majority gate is given in [12] by

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 13

probabilistic method. But the uniform construction is either monotone but quite
complicated (in [1]) or nonmonotone (in [5] or [10]).

5. PERMUTATION BRANCHING PROGRAM FOR tree

In this section first we introduce the concept of (permutation) branching pro-
grams. Then we prove that tree is computable in Ag(k-BRN) for k£ > 4. We follow
the setting in [2]: For product in S,, we use the convention “from left to right,” i.e.,
ifo:z—yand 7:y+— 2, then o7 : — 2. Let e be the identity element in S,,.
We use (i) to denote the image of i for 0 € S;, and 1 < i < n. Sometimes we use
o - T to denote the product o7 in S,,.

Definition 5.1. Let [w] = {1,...,w}, Z = (zo,...,Zn_1),2; € {0,1} for 0 < i <
n — 1. We abuse the notation 7() = z; and T (i,) = (zi, Tig1, - - . x5) for i < j.

An instruction is a triple (j, f, g) in which f, g € Sy,. The meaning of the instruction

(4, f,9) is “evaluate to f if Bit(j, ?)difa:] =0, else evaluate to g.”

A width-w branching program (a w-BP) P oflength lis a sequence (5 (i), f(4), g(7)),

for 1 <i <1, such that j: {1,...,1} - {0,.. —1}, and f,g:{1,...,1} = Su.
Given 7 = (2q,...,Tn_1), We deﬁne
N[FO) iEZGE) =
Tz (0) _{ g(1) else.

Then the branching program P yields the function

l
=[Ir=0) € Su
i=1

We use P = P(j, f,g,1) or P = P(j, f,g) to denote the corresponding j, f, g, .

Actually the branching program we just defined is called permutation branching
program. (For simplicity we abuse the term.) The general case is that f,g are
functions, which may not be permutations. However, we shall see that they have
the same computing power later.

Given P = P(j, f,g,0),and o € Sy, We define P° = oPo~! = (j,ofo~ ', 0g9071),
i.e., the i-th instruction is (j(i),of(i)o~!,0g(i)o™!) for 1 <i <.

The concatenation of two branching programs can be naturally defined as follows:
Given two branching program P (ji, f1,91,01), P2(j2, f2,92,12), we have a length
(I3 + I2) branching program

PxP = <(j1(1)7f1(1)591(1))5) <j1(l1)7f1(ll)agl(ll));
<j2(1)5 f2(1)7g2(1)>7] <j2(l2)7f2(l2)7g2(12))>'

Definition 5.2. Consider a € Sy, a # e, and a Boolean formula ¢ = ¢(Z), we say
that branching program P computes ¢ by « iff

a ife(?)=1;
P(¥) = { e ife(?)=0.

We denote this by ¢&P.

Let P = P(j, f,g,1), define

Pt(a) = ((J(l)af(]-)ag(]-))a R <.7(l -]-)a f(l - l)ag(l - 1))5 (J(l),f(l)a,g(l)a))
Note that P;(q) (Z) = P(?) - a. (This means “add a tail a to P.”)

Lemma 5.3. If P computes c by «, then Pyo-1) computes —c by o L.

" JUL-LIN LEE
Proof. Since ¢(7) =1 ¢ —¢(7) =0,
Pya—)(Z) = P(Z) a7 = { a-ail=e o) =0

e-a - =a - else.

Lemma 5.4. Let P be a w-BP, a,f8 € Sy, \{e}, then

(1) (Pt(a))B = (Pﬁ)t(ﬁaﬁ_l);
(2) (P*)F = PPe,

(3) (Pr* P)" = P+ P,
(4) (P1 * P2)t(= P1 * (PQ)

a) t(a)"

Proof. By definition. O

In the rest of this section we will focus on branching programs with width= 5.
To deal with this we need to name some elements in Sj.
Let 01 =(12345), 0o = (13542), then

0 10007 05t = (13254).

Define 7,71 ,72, 01,02 which satisfy the following equalities: 7017~ = 6, 16+, !
o1, 2075t = 09, 81007 = 071, 6,005, = 05 . (There are more than one 7 satis-
fying above condition. Anyway we just choose one and name it 7. In the same way
we choose 71,72,01,02. Note that the existence of 6 plays a key role in [2].)

Remark 5.5. Note that o1,02,0 € A5. We may choose 7,71, Y2, 01,02 € As:

T=(25)(34),
"= (23)(45)7
Y2 = (245)7
01 = (35)(24),
5y = (234).

Since tree is complete in NC!, this implies that “the word problem for Aj is
complete in NC1.”

Lemma 5.6. If cl(ﬁ>P1, czﬁ>P2, then
¢ A 02(2>P1'Y1 x PY? x PO« PY2.
Proof. Let P' = PJ* « P « P2 « P2 If ¢ () = 1 and ¢(7) = 1, then
P'(Z) = (mOy; ") (12675 1) (81067 1)(6208,) = 010207 Loy = 6.
Otherwise, P'(Z) = e. O
Lemma 5.6 is the key part of Theorem 1 in [2], Section 3.

Ezxample 5.7. Let ¢, = x;, then P = (i,0,e) and c1<£>P.
Ezample 5.8. Let ¢; = x; and ¢ = z;, then
a & p= (i,0,e),

C2 (ﬁ) Q=<j7076>'

By Lemma 5.6, ¢1 A cals P™ + Q72 % P91 % Q%

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 15

Ezxample 5.9. Let co<£>P0, cl(g)Pl, cz<£>P2, and C3<£>P3. Ifd = (coAc1) V(ca Acg),
then ¢/ = —(—(co A c1) A—(c2 Acg)). From Lemma 5.3 and Lemma 5.6,

cohcy & Py «P)2« P« P,
exhes & PPy« Pk P2
-
9—1
~(co A1) «— (Pt xP” *Pgl *P162)t(0—1)=
9—1
“(caNez) = (P Py? *Pzél *P?ib)t(e—l)'
——
0
“(coAhe) & (P« P2« Pt x PP),p 0],
0
~(caAes) & [(PY« PP« PP« PP)y 0]

— —|(C() A Cl) N —|(CQ A 03)(2)

[(P)* % PP x Pg* % sz)t(g_l)]’“T x [(P)* % PJ? « Py x sz)t(g_l)]WT
x (P * PP« Pgt s P?),) |7 % [(B" % P2 % P P2), 0 1))
(= P').

= —(~(co Aer) A(ca Aes)) & (Ppm))
We may rewrite this by the following way:

& RO P RO (P00
h(4 h h h
* P2() * Py (%) * P,) *(Py 7)t(u(l))
« BMO PO ph0 phOD)
S S *(P;L(15))t(u(3))7
where
h(O) =T71T71, h(l) =TY1T72, h(2) —T’)’lT(sl, h(3) =T’)’1T(52,
h(4) = T7Y2T71, h(5) = T7Y2T72, h(6) = 772751, h(7) = T’)’QT(SQ,
h(8) :7'617'71, h(g) :7'517'72, h(].(]) = T61T61, h(].].) —T(51T(52,
h(12) = T(SQT’)’l, h(13) = T(SQT’)/Q, h(14) = T62T61, h(15) = T62T62,

u(0) = (rnm)f H(rn)t, u(l) = (r721)8 Hryper)
uw(2) = (t6:17)0 L (1o17) L, w(3) = (1027)0 L(rda7) 1O 17t

Note that in Example 5.8 we always convert the permutation to 8 at each stage
of construction. This will simplify the construction of branching program for tree.

Remark 5.10. In order to be consistent with the convention in branching program,
we reverse the order of input sequence. Anyway they are equivalent:

(V /\)m(x07 . -71'4”—1) = (\/ /\)m($4m_1, . ,.Z'()).

Ezample 5.11. (Branching Program for (\/ A\)™)

16 JUI-LIN LEE

Now we can use Example 5.8 to construct (\/ A\)™(=o,...,2Z4m_1) recursively.
The branching program P((\/ A)™; Z(0,4™ — 1)) is defined as follows:

P((V N\)% @) = (i, 0,e),

P(VA™ L ZGi+4amt —1) = Bp@ «p wp® (P, o
Py PO (PP,)
G N
fPPID L phD phOD (phs)

where Py = P((\/ A)s 7 (i, i+47—1)), Py = P((\/ A" Z (i-+47,i+2-47—1)), P, =
P((V N\ 2 (i+2-4™,i4+3-4"—1)), Ps = P((\V \)"; 7 (i+3-4™,i+4-47—1)), and
h(0),...,h(15),u(0),...,u(3) are defined in Example 5.8. (To avoid ambiguity, we
may define Z as an infinite sequence Bit(0, z), Bit(1, z), Bit(2,z), ..., Bit(i,z), .. .)
In P((\V \)™; 2 (i,i + 4™ — 1)), the number i is called the starting point of 7.
Lemma 5.12. The length of P(\V \)™; 2 (i +4™,i+ 2-4™ — 1)) is 42™,

Proof. By induction. O

Recall that F is definable from p, go,¢1 by k-BRN (k-bounded recursion on no-
tation) for k € N if

F(Oa?) = p(?)a
F(2n,7) = qo(n,Z,F(n, 7)) ifn>0,
F2n+1,7) = qn,2,F(n, 7)),

and 0 < F(n, @) <k for all n, Z.
We will use a variation of k-BRN by restricting 1 < F(n, Z) < k + 1 instead.
Note that the variation is equivalent to the original one. Since we treat ¢ € S,, as a

bijective map from {1,...,n} to {1,...,n}, it would be better to use the variation.
Lemma 5.13. If g € Ag(k-BRN), q: {0,1} xNxN — Sjy1, then for1 <s < k+1,
In|]—1
F(n,j, @) =[] a(Bit(i,n), [n/2'], 2))(s) (€{1,2,...,k+1})
i=0

is in Ag(k-BRN).
Proof. Note that [---](s) means the image of s by the product [-- -] in Sg4+1. Define

F(O,s,?) = s,
F(2n,s,7) = q0,n, Z)(F(n,s,2)) ifn>0,
F@2n+1,57) = q(,n,7)(F(n,s 7))

Then1 < F(n,s, @) < k+1and F(n,s, 7) € Ag(k-BRN). The equality F(n,s, 2) =
|n|—1

[TI 9(Bit(i,n), [n/21], 2)](s) can be easily verified by induction. O
i=0
We encode z € N into 7 as follows:

Z = {(z0,...,Zn_1) = (Bit(0,z), ..., Bit(n — 1,z))

where n = |z|. Note that tree(z) = (\/ A)™(Z(0,4™ —1)) where 4™ < |z| < 4™+1,
From Lemma 5.12, we may assume that the branching program P((\/ A)™; 7(0, 4m_—
) = (i, T), £(5,), (i, F)) for 1 < i < 42™.

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 17

Lemma 5.14. Suppose that P((\/ \)™; Z(0,4™ —1)) = (j(i, Z), f(i, Z), g(i, 2))
for 1 <i<42m_ Ifj(i,2),f(i,2), gti, @) € Ag, then tree(z) € Ay(4-BRN).

Proof. Define ¢(0,i,7) = f(i,) and ¢(1,i,7) = g(i, 7). By Lemma 5.13, we
have F € Ag(4-BRN). Now we use CRN and j(i, Z) to construct n(Z):
(@) = (LT * TR T+ x T (AT, D)),

(Note that 4™ < |z] is sharply bounded.) So n(7) € Ag. We can compute tree(@)
as follows:

[1 i F(n(2),s, T) =6(s) for all s € {1,2,3,4,5};
tree(7) = { 0 if F(n(7),s, @) =sforall s € {1,2,3,4,5}.

By Lemma 5.13, tree € Ag(4-BRN). O
We need two technical lemmas to complete this work.
Lemma 5.15. j(i, @) € 4.
Proof. Assume that 1 <4 < 42" then 0 <i—1<4?™ —1. Let
T —1 = Usm_1 % Vam—2 * Ugyp—3 * VUgm—4 * * + - * U3 % Vg * U] * Vg,

where v; € {0,1}. According to Example 5.11, the branching program for (\/ A\)™
with input ?(0, 4™ —1) can be constructed by concatenating 16 branching programs
for (\/ A)™~!. The indices of these 16 branching programs are: 0, 1, 0, 1, 2, 3, 2,
3,0,1,0,1, 2,3, 2, 3. Hence the i-th instruction is from P,,, _,«p,,,_,- Since the
starting point of 7 (0,4™ — 1) is 0, inductively

() = Vam—2 % Vgm—g * Vsm—6 * Vgm_g * =+ - * Vg * Vg * Vg * V.

Hence j (i) is computable in A,. O
It is not necessary to find the explicit expression for 5(i, ?)
Lemma 5.16. f(i,7),g(i, Z) € Ao.
Proof. We use the same assumption in Lemma 5.15. Let 0 < i —1 < 4>™ — 1 and
1 — 1 = Vgm_1 % Ugmn—2 * Ugm—3 * Ugmm—4q * -+ + % U3 * Uz * U1 * U,

where v; € {0,1}. According to Example 5.11, when we trace f(4), g(¢) inductively,
each time there are two parts added: the conjugate part h(-) and the tail part u(-).
First we compute the conjugate part inductively. Define

C(i,1) = h(Vgm—1 * Vam—2 * Vam—3 * Vam—4) - B(Vam—5 * Vsm—6 * Usm—7 * Usm—8)
.- h(vs * va xv1 *xvg)
m
= [I h(va—1 * vag—2 * vy_3 * Vg_4).
=1

Because P((\/ \)%; ;) = (i, 8, e), the conjugate parts for (i), g(i) are ¢ (1) eC(5:1)
respectively. Since m < |z|2, C(i,1) is computable by weak 5-BRN. Therefore
C(i,1) is computable in Ag.

Now consider the tail part. By the defining construction in Example 5.11, the
tail part will be added only when vy, 1 * U4y, 2 * U4y 3 * V44 = 0011,0111,1011,

18 JUI-LIN LEE

or 1111. We may think of the other cases as adding a trivial tail e. For 0 < j < m,
define

U(O) if Vgj—1 *¥ Vgj—2 *¥ V453 ¥ V454 = 001].7
u(l) if Vgj—1 *¥ Vgj—2 *¥ V453 ¥ V454 = 011].7

T(Z,J) = U(2) if Vgj—1 *¥ Vgj—2 *¥Vgj_3 ¥ Vgj—g = 1011,
U(3) if Vgj—1 *¥ Vgj—2 *¥Vgj_3 ¥ Vgj_g =].].].].7
e else.

By Lemma 5.4, once a tail part is added, in the rest of the whole computation it
will not be changed. For this we define the conjugate function

C(i,7) = h(Vam—1 * Vam—2 * Vam—3 * Vam—1) - M(Vsm—5 * Vam—6 * Vam—7 * Vam—g)
coo P(Vap—1 % Vap_2 * Var_3 * Var_a)
m
= H h(vag—1 % Vag—2 * Vgy_3 * Vgy—4)
I=r

for r < m. Now we can compute f(7), g(%):

fG@) = °6D . T(,1)¢6E2) . T7(,2)C6E3) . T, m - 1)°Em) - T(i,m)
m—1
= 9CGD . T TGE,DCEHD T m).
=1

Since m < |z|2, C(i,r), f(i) are computable by weak 4-BRN. Hence f(i) € Ao.
Similarly g(i) € Ag. Actually,

m—1 m—1
g(z) — eC’(i,l) X H T(i,l)c(i’l+1) — H T(’i,l)c(i’l+1).
1=1 =1
d
Theorem 5.17. tree € Ag(4-BRN). (Hence Ny C N§.)
Proof. Apply Lemmas 5.14, 5.15, 5.16. O

6. THE CASE LR(f) WITH |B| <4

Let |B| =4 and f : B x B — B. To prove that LR(f)[bob; .. .by] is computable
in Ag(6), it suffices to show that f, o f,_1 0---0 fi(bg) is computable in Ay(6),
where f; : B — B for 1 < ¢ < n and by are inputs. It is because we may set
fi(z) = f(=z,b;).

We first consider that case that |[Im(f;)| = 4 for 1 < i < n. In this case each
fi is a permutation on B. Then it suffices to prove that the group multiplication
[T, gi on the permutation group Sy is computable in Ag(6).

Lemma 6.1. The group multiplication [];_, g; in S4 is computable in the function
algebra Ao (6).

Proof. Let V = {e,(12)(34),(13)(24),(14)(23)} be the four group. Then V is
abelian and V < A4 < S;.

Let a=(12) € Sy and b= (123) € A;. Then we can express Sy and A4 by the
unions of disjoint cosets: Sy = A4 U (a-A4) and 44 =V UGB-V)UB?-V).

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 19

First we express each g; = a™ih; for some h; € A4 and m; € {0,1}. This can be
done in parallel, i.e., by CRN. Then
[lisi9i = a™hi-a™hy-...-a™"hy '
— (amlhla—ﬂ’h) e (CLE;=1 m; hia_ E;=1 mj)_
L. (azjn'=1 mj hna* i1 mj) . azjn'=1 mj
= Hin:1 b} - a2i=1 i

i

where b} = a>i=1™ hja” 2i=1™ and a>i=1™ are computable in Ay(2). And the
problem is reduced to a product []}_, b} in the group Aj4.

Similarly, we can reduce []}_, k! into a product in V' by an Ag(3) computation.
Since V is isomorphic to Zs @ Zs, the product in V is computable in Ag(2). O

Ezample 6.2. Suppose that we have fi, fa,..., fn : [k] = [k] and [Im(f;)| =k — 1,
and we want to compute f, o f,—1 0---0 fy o fi, then we can reduce this to a
composition of functions all of which has domain and range [k — 1]. First for each
fi there is a permutation g; on [k] such that Im(g;f;) = [k — 1]. Then

fnofac10-r0faofi = g;l o gnfng;il o gn—lfn—lg;iz 0---0 g2f29f1 ogifi.

Since Im(fig;"y) = Im(fi), Im(gifig;iy) = Im(gifi) = [k —1]. Define h; =
9i fig;_ll for 2 < i < n. Note that h; only depends on g;,g;—1, and then this can
be determined from f;, f;—1. (Hence this can be computed in Ag.) After the first
mapping g f1 the image is restricted to [k — 1]. Then

fnofnflo“‘°f2°f1 =g;10hn0hn710---0h2091f1
R
= gn "' 0l N—1] On 1 ljg—1j 0+~ 0 hy f[k—1]‘091f1-

The part () is a composition of functions with domain and range [k — 1].
Example 6.3. If mini<i<n|Im(f;)| = 3 and 4; < i2 < --- < 4; are all 4 such that
|Im(f)| = 3, then

fno-rofi = (fno---ofur)o(fyo---ofiipa)o---o(fizo---ofipa)o(fiyo---o fr).

Each hj = (fi;,, ©-- o fi,+1) is computable in Aq(6). Then we can apply the trick
in Example 6.2 to compute hjo---0 hy.

We can then consider the more general case as in the following example.
Ezxample 6.4. Consider the following composition f, o---o f; with each function

A
I ~N
A

I ~
A A A

g ,_zaf_/q - ,_/H,_/H‘r P f—’H/—/R‘
fa2 fo1 fa0 fr9 fis fir fie fis fiafis fiafui1 fio fofs fr fefsfa fafafu
[ITm(fi)l="2 "3 4 4 3 4 1 2 3 4 3 4 2 343 344 344

In this example, n = 22 and every |Im(f;)| is written right below f;. Then according
to the tricks in Examples 6.3,6.2 and Lemma 6.1, we can compute the composition
“block by block” (as the way we brace them) from bottom to top in at most 4
levels.

Now the following theorem is obvious.

20 JUI-LIN LEE

Theorem 6.5. The composition of functions fn o---o fi with each f; : B - B
and |B| = 4 is computable in Ay(6).
Corollary 6.6. If f is definable from g, hg, h1 by k-BRN with g, hg, h1 € Ag, then
f € Ao(2) while k =1, and f € Ag(6) while k = 2,3.

This means: “1-BRN & AC°(Mod,)”, “2-BRN & AC°(Mod, + Mods) < 3-
BRN.”

Question. For |B| = k > 4 (here k may be equal to logn or (loglogn)), can the
composition of functions f, o---o f; be computable in ACC if (1) in each block
the computation is computable in ACC and (2) the braces are nested with depth
<loglogn?

7. THE ASSOCIATIVE CASE WITH |B| < 60

In this section we prove that LR(f) for associative f with |B| < 59 is computable
in ACC.

Recall that a monoid (M, o) consists of a nonempty set M and an associative
binary operation o : M x M — M and there is an identity element e € M, i.e.,
eox=zxoeforall z € M.

A monoid is solvable if any of its subsets which form groups under the monoid
operation are solvable groups.

Theorem 7.1. (from [4]) A language is recognizable by polynomial length NUDFA'’s
over a solvable monoid iff it is in ACC.

Here we only use the = direction. Since our concern is the word problem over a
monoid, it suffices to show that the monoids in consideration are solvable.

Theorem 7.2. LR(f) for associative f with |B| < 59 is computable in ACC.

Proof. Since the smallest nontrivial simple group is As (with 60 elements), (B, f)
is solvable if it is a monoid.

Consider the case that f : B x B — B is associative. If every element in B is
not an identity element, we can add a new identity element e to B and expand f to
f:(BU{e}) x (BU{e}) = (BU{e}): f(e,z) = f(z,e) = z for any x € (BU{e}).

If |B| < 59, then |B U {e}| < 59 and B U {e} is solvable.

If |B| = 59, then BU{e} can not be isomorphic to As: if it were, then e = f(a, b)
for some a, b € B (that is because As is a group), a contradiction (for e ¢ B). Then
B U {e} must be solvable (otherwise it is isomorphic to As). O

8. COMMUTATOR AND ICOSAHEDRON

Is the discovery of the existence of three 5-cycles o, 6, T with gdo— 16" =T a

big surprise?

One may start the investigation as what is presented in Section 6 and then
start investigating As. Let a %, 8 = afa"'B~! be the commutator operation.
By calculating *. over 5-cycles in S5, we find an interesting structure: There are 2
disjoint subsets of 5-cycles (in Ss), say, A, A, which satisfy the following conditions:
(1) |A| =]A"|=12. (2) a € A (or A") impliesa ! € A (or A"). (3) For any o, 3 € A
(or A", if a x. B # e, the identity element in S5, then a . 8 € A (or A’). By x*,
and such a, 8, AU {e} (or A’ U{e}) can be generated.

By conjugate operation it is clear that A, A’ are isomorphic. (Note that A’ =
{a? : a € A}.) We may restrict x. on AU {e}. (Therefore, if one chooses three

BRANCHING PROGRAM, COMMUTATOR, AND ICOSAHEDRON, PART I 21

different 5-cycles a, b, ¢ such that none of them is an inverse of the rest, then two
of them must be in A or A’ and these two will generate another 5-cycle by com-
mutator. Hence it seems quite natural to discover this fact!) We are interested in
the computational power of LR(x.), RL(x.), DC(%.). In Part II we will prove that
ACY%(DC(x.)) = NC! and AC°(LR(x.)) = AC°(Mod,o). To prove the second
statement, we need to visualize *. geometrically, by assigning the twelve 5-cycles in
A to the vertices of icosahedron so that a x. 8 = v is geometrically invariant, i.e.,
for any rotation R on the icosahedron, R(a) *. R(8) = R(~). In the proof we will
first show that AC°(Modyo) C AC°(LR(*.)) C AC°(Modsp), and then remove the
Mods gates.

Although Theorem 7.1 (from [4]) characterizes the solvable monoid case, it seems
not clear that “If f € AC°(Mody), then AC°(f) = AC°(Mod,,) for some m | k.”
is always true. Our case “AC°(Modyo) = AC°(LR(*.))” somehow suggests that “If
f € AC°(Mody,), then AC(f) = AC°(Mod,,) for some m | k.” may not be proved
easily. On searching any counterexample of it, what may deserve to investigate are
the case |B| < 4 and the case DC(f) for associative f with |B| < 60 (especially
|B| = 5).

REFERENCES

[1] M. Ajtai, J. Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, pages 1-9, Boston, Mas-
sachusetts, 25-27 April 1983.

[2] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC. Journal of Computer and System Sciences, 38:150-164, 1989.

[3] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC!. In SCT:
Annual Conference on Structure in Complezity Theory, pages 47-59, 1988.

[4] David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC*.
J. Assoc. Comput. Mach., 35(4):941-952, 1988.

[5] S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal of Sym-
bolic Logic, 52:916-927, 1987.

[6] P. Clote. Sequential machine independent characterizations of the parallel complexity classes
AlogTIME, AC*, NC*, and NC. In Feasible Mathematics: A Mathematical Sciences Insti-
tute Workshop held in Ithaca, New York, June 1989, pages 49-69. Birkhiuser, 1990.

[7] P. Clote. On polynomial size Frege proofs of certain combinatorial principles. In Clote &
Krajicek (Eds.), Arithmetic, Proof Theory, and Computational Complezity, pages 162-184.
Clarendon Press, 1993.

[8] P. Clote and G. Takeuti. First order bounded arithmetic and small boolean circuit complexity
classes. In Feasible Mathematics II: A Mathematical Sciences Institute Workshop, pages 154—
218. Birkhauser, 1995.

[9] N. Immerman. Expressibility and parallel complexity. SIAM Journal of Computing,
18(3):625-638, June 1989.

[10] J.-L. Lee. Count and tree in uniform NC'. PhD thesis, Department of Mathematics, Uni-
versity of Illinois at Urbana-Champaign, 1997.

[11] J.-L. Lee. Counting in uniform 7'C°. Technical Report TR97-034, Electronic Colloquium on
Computational Complexity, 1997.

[12] L. G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms,
5:363-366, 1984.

PHILOSOPHY DEPARTMENT, NATIONAL CHUNG-CHENG UNIVERSITY, TAIWAN
E-mail address: jllee@phil.ccu.edu.tw

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

