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Triangle-Freeness is Also Hard for Read-r Times Branching Programs

S. Jukna

The K;-freeness function is a boolean function f; xy in N = (g) variables, corresponding to
the edges of a complete n-vertex graph K, such that, for every subgraph G of K,,, f; y(G) =1 if
and only if G contains no K; as a subgraph. In [1] we have shown that every r-n.b.p. (these are
usual nondeterministic branching programs with the restriction that along each path each variable
can be tested at most r times) for fi x requires size exponential in N/r2. For a constant r, this
gives the first truly exponential (in the number of variables) lower bound for a very natural graph
property.

Although not explicitly stated in [1], essentially the same argument gives the following (not
truly but still exponential) lower bound also for the triangle-freeness function.

Theorem. Every r-n.b.p. computing the triangle-freeness function f3 y has size 2UVN/r?)

The proof of this theorem is the same as (and even simpler than) that of Theorem 3.3 for fy n
in [1]: it is enough to use the following lemma instead of Lemma 2.3.

Lemma. There exists an absolute constant ¢ > 0 and a set A of edge-disjoint triangles in K11

with the following property. For every set of at most k < 207 \_balanced partial red/blue colorings
of the edges of K1, at least Q(A\*n) triangles in A are mized under each of them.

The proof of this lemma is almost identical with the proof of Lemma 2.2(ii) from [1]. For
completeness we sketch the proof.

Take an arbitrary partial red/blue coloring of the edges in K;, = {vo} x V, and say that a
vertex in V is red (resp. blue) if it is incident to a red (resp. blue) edge. These sets are disjoint.
Moreover, if the coloring is A-balanced, both sets have at least An vertices. Applying the Joining
Lemma (Lemma 4.1 from [1]) we obtain a set E of N = O(n/)\?) edges in V such that for every
A-balanced partial coloring of K ,, at least n of the edges in E connect red vertices with blue
ones. Moreover, at most L = O(n/A*) of pairs of edges in E share a common endpoint.

Fix now an arbitrary set x1,...,xx of k < 2eX"'n \_balanced partial colorings of K ,. Let E;
be the set of all edges in £ connecting the red and blue vertices of the i-th coloring x;; hence,
|E;| > n for all ¢ = 1,...,k. It remains to show that there exists a set M of mutually disjoint
edges in F (a matching in V') such that each of the sets F; N M are large enough.

To get the desired matching M C FE, consider a “collision graph” F whose vertices are edges
of E, and where two edges are adjacent if and only if they share a common endpoint. Hence,
we can apply the general version of the Collision Lemma (Lemma 4.3 from [1]) with » = 2 and
p = Q(\?). Since in our case p = p(F) = QuN/L) = Q(A\*) and upN = Q(A*n), the lemma
gives us an independent set M C E in F (a matching in V) such that |E; N M| = Q(\*n) for each
i=1,...,k. Since M is a matching, no two triangles in A = {(vg,e) : e € M} share a common
edge. Since for each 7 all the triangles in A; = {(vg,€) : e € E; N M} are mixed under y;, we are
done.
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