

Triangle-Freeness is Also Hard for Read-r Times Branching Programs

S. Jukna

The K_t -freeness function is a boolean function $f_{t,N}$ in $N = \binom{n}{2}$ variables, corresponding to the edges of a complete n-vertex graph K_n , such that, for every subgraph G of K_n , $f_{t,N}(G) = 1$ if and only if G contains no K_t as a subgraph. In [1] we have shown that every r-n.b.p. (these are usual nondeterministic branching programs with the restriction that along each path each variable can be tested at most r times) for $f_{4,N}$ requires size exponential in N/r^2 . For a constant r, this gives the first truly exponential (in the number of variables) lower bound for a very natural graph property.

Although not explicitly stated in [1], essentially the same argument gives the following (not truly but still exponential) lower bound also for the triangle-freeness function.

Theorem. Every r-n.b.p. computing the triangle-freeness function $f_{3,N}$ has size $2^{\Omega(\sqrt{N}/r^2)}$.

The proof of this theorem is the same as (and even simpler than) that of Theorem 3.3 for $f_{4,N}$ in [1]: it is enough to use the following lemma instead of Lemma 2.3.

Lemma. There exists an absolute constant c > 0 and a set Δ of edge-disjoint triangles in K_{n+1} with the following property. For every set of at most $k \leq 2^{c\lambda^4 n} \lambda$ -balanced partial red/blue colorings of the edges of $K_{1,n}$, at least $\Omega(\lambda^4 n)$ triangles in Δ are mixed under each of them.

The proof of this lemma is almost identical with the proof of Lemma 2.2(ii) from [1]. For completeness we sketch the proof.

Take an arbitrary partial red/blue coloring of the edges in $K_{1,n} = \{v_0\} \times V$, and say that a vertex in V is red (resp. blue) if it is incident to a red (resp. blue) edge. These sets are disjoint. Moreover, if the coloring is λ -balanced, both sets have at least λn vertices. Applying the Joining Lemma (Lemma 4.1 from [1]) we obtain a set E of $N = \Theta(n/\lambda^2)$ edges in V such that for every λ -balanced partial coloring of $K_{1,n}$, at least n of the edges in E connect red vertices with blue ones. Moreover, at most $L = O(n/\lambda^4)$ of pairs of edges in E share a common endpoint.

Fix now an arbitrary set χ_1, \ldots, χ_k of $k \leq 2^{c\lambda^4 n}$ λ -balanced partial colorings of $K_{1,n}$. Let E_i be the set of all edges in E connecting the red and blue vertices of the i-th coloring χ_i ; hence, $|E_i| \geq n$ for all $i = 1, \ldots, k$. It remains to show that there exists a set M of mutually disjoint edges in E (a matching in V) such that each of the sets $E_i \cap M$ are large enough.

To get the desired matching $M \subseteq E$, consider a "collision graph" \mathcal{F} whose vertices are edges of E, and where two edges are adjacent if and only if they share a common endpoint. Hence, we can apply the general version of the Collision Lemma (Lemma 4.3 from [1]) with r=2 and $\mu=\Omega(\lambda^2)$. Since in our case $p=p(\mathcal{F})=\Omega(\mu N/L)=\Omega(\lambda^4)$ and $\mu pN=\Omega(\lambda^4 n)$, the lemma gives us an independent set $M\subseteq E$ in \mathcal{F} (a matching in V) such that $|E_i\cap M|=\Omega(\lambda^4 n)$ for each $i=1,\ldots,k$. Since M is a matching, no two triangles in $\Delta=\{(v_0,e):e\in M\}$ share a common edge. Since for each i all the triangles in $\Delta_i=\{(v_0,e):e\in E_i\cap M\}$ are mixed under χ_i , we are done.

Reference

[1] S. Jukna and G. Schnitger, Triangle-freeness is hard to detect, *Combinatorics*, *Probability and Computing* (to appear). A preliminary version appeared as ECCC Report Nr. 49 (2001).