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Abstract

We show that recognizing the Ks-freeness and K4-freeness of graphs is hard, respectively,
for two-player nondeterministic communication protocols with exponentially many partitions
and for nondeterministic read-s times branching programs.

The key ingradient is a generalization of a coloring lemma, due to Papadimitriou and
Sipser, which says that for every balanced red-blue coloring of the edges of the complete
n-vertex graph there is a set of en? triangles, none of which is monochromatic and no tri-
angle can be formed by picking edges from different triangles. We extend this lemma to
exponentially many colorings and to partial colorings.
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1 Introduction

Triangle-freeness is a major property of graphs and its communicational as well computational
complexity deserves attention. One of the first results in this direction was obtained almost 20
years ago by Papadimitriou and Sipser [13] who proved that recognizing the triangle-freeness
of graphs on n vertices requires (2(n?) bits of communication in nondeterministic best-partition
two-party communication games. Since nondeterministically, graphs that contain a triangle can
be recognized by communicating only O(logn) bits (just guess a potential triangle), this first
showed that NP#co—NP in the context of best partition communication protocols.

The main step in Papadimitriou—Sipser’s proof was a combinatorial lemma about the number
of mixed (non-monochromatic) triangles under balanced red-blue colorings of edges of a complete
n-vertex graph K. Given such a coloring x, one looks for a large set A of triangles such that: (i)
each triangle in A is mized under x (not all edges of the same color), and (ii) A is collision-free
(no new triangle can be formed by picking edges from different triangles).

The first condition (i) is easy to ensure: if r; is the number of red edges incident to the
i-th vertex then 23" | r;(n — 1 —r;) triangles will be mixed under x. If x is strongly balanced
in that the number of red edges is equal to the number of blue edges +1 then at least (n?)
of the triangles will be mixed. More interesting (and important for applications) is condition
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(ii). An easy argument shows (see, for example, the first paragraph of the next section) that
no collision-free set can have more that (g) triangles. What Papadimitriou and Sipser proved
is that for any strongly balanced coloring x of K,, there exists a collision-free set A, of 2(n?)
triangles, all of which are mixed under this coloring.

A natural question is whether a similar result holds for more than one coloring. That is,
given a set C of balanced colorings of K, the problem is to find a large collision-free set A of
triangles, a constant fraction of which is mixed under each x € C. For different colorings x the
sets A, of mixed triangles, guaranteed by Papadimitriou and Sipser, may be (and, actually, are)
rather different, and taking just their union might produce a lot of collisions. So, in the case of
more than one coloring, the choice of a large collision-free set of triangles is a far more subtle
task.

In [8] this task was solved under the additional requirement that all the colorings in C are
balanced on a fized bipartition K, , of Ks,. Although the number of allowed colorings in [8] is
25"2, the requirement itself is crucial and forbids a lot of colorings: for every bipartition K, 5,
allmost all balanced colorings of Ky, are not balanced on it.

In this paper we solve this problem in the case of arbitrary balanced colorings of K,,, as well
as in the case of partial colorings; moreover, we allow the colorings to be only “almost balanced”
(Lemmas 2.1, 2.2 and 2.3). This is the main combinatorial contribution of this paper. Then we
present several applications of the extended coloring lemmas: we show that detecting the absence
of t-cliques for t = 3,4 is hard for nondeterministic communication protocols with exponentially
many partitions and for nondeterministic syntactic read-s times branching programs.

The model of syntactic nondeterministic read-s times branching programs (s-n.b.p.) was
introduced in [6]. These are the usual nondeterministic branching programs with the restriction
that along each path (be it consistent or not) each variable can be tested at most s times.

The model of nondeterministic multi-partition communication protocols is a strengthening of
Papadimitriou—-Sipser’s model where instead of just one partition of input variables we allow the
players to use different partitions for different inputs. The cost of such an extended protocol is
the maximum over all inputs of the number of communicated bits plus the number of binary bits
required to specify a particular partition used for this input. The multi-partition communication
complezity of a boolean function f is the minimum cost of a multi-partition protocol for f; hence,
as in the case of one partition, the communication complexity of any function does not exceed
the number of its variables (see Section 3.2 for more precise definitions). As shown in [8], using
more partitions may drastically decrease the communication complexity: for every k = k()
there exist (rather artifical but explicit) boolean functions f in N variables whose multi-partition
communication complexity with & partitions drops from Q(N) to O(logk) by taking just one
more partition. On the other hand, in this paper we show that for some natural graph-theoretic
functions, using many partitions does not help much.

Given a set A of triangles in K,,, let A-FREE,, be a boolean function in (72‘) variables (cor-
responding to edges of K,,) which, given a subgraph G of K, outputs 1 if and only if none of
the triangles from A is present in G. Let also K;-FREE,, be a boolean function which, given a
subgraph of K,,, outputs 1 if and only if it contains no clique on ¢ vertices. Our main results
are the following.



1. The multi-partition communication complexity of K3-FREE, is Q(n®?), and is ©(n?) if the
number of partitions does not exceed k = 2°(") (Theorem 3.2).

2. There exists a set A of triangles in K,, such that the multi-partition communication com-
plexity of A-FREE,, is ©(n?) (Theorem 3.1).

3. The 4-clique-freeness function K4-FREE,, requires an s-n.b.p. of size at least 29("2), as long
as s = o(logn) (Theorem 3.3).

The first result extends the lower bound of Papadimitriou and Sipser to the case of exponen-
tially many partitions. The second gives a truly linear (in the number of variables) lower bound
on the nondeterministic multi-partition communication complexity. The third result also gives
the first truly erponential lower bounds for syntactic nondeterministic read-s times branching
programs computing a natural combinatorial function. In the case of deterministic read-once
branching programs (s = 1) such a (truly exponential) lower bound was earlier obtained in [2]
for the @ CLIQUE,, 3 function which, given a graph G, outputs the parity of triangles in G. In
the case of nondeterministic read-once branching programs such lower bounds for & CLIQUE,, 3,
as well as for K3-FREE,,, were proved in [8]. In the case of larger values of s, the only known
truly exponential lower bounds were obtained in [6, 4, 1, 5] for boolean functions based on some
special quadratic forms; the proofs employ non-trivial probabilistic and algebraic arguments.
Our method for the K4-FREE,, function is different, and requires only simple probabilistic rea-
soning. Of course, being syntactic is a rather severe restriction on the computational power of
s-n.b.p. On the other hand, this model is nondeterministic and, so far, no lower bounds are
known for non-syntactic s-n.b.p. even for constant s. Recent lower bounds for the non-syntactic
model, proved by Ajtai [1], hold only for deterministic branching programs. As shown in [5],
Ajtai’s method can be extended to yield lower bounds also for randomized branching programs if
the error probability is small enough. But the case of nondeterministic non-syntactic s-n.b.p.’s
remains open.

The paper is organized as follows. In Section 2 we state our main combinatorial results—
the coloring lemmas for triangles and 4-cliques. In Section 3 use them to prove lower bounds
for multi-partition communication complexity and for nondeterministic read-s times branching
programs of the corresponding boolean functions. The rest is devoted to the proof of the coloring
lemmas. We conclude the paper with several remarks and open problems.

2 Coloring lemmas

A triangle in K, is just a set T' = {z,y, z} of three vertices. A set A of triangles is collision-free
if no triangle outside A can be formed by taking edges from three triangles in A. The reason
why the collision-freeness property is important is roughly as follows. Distinguish one edge in
each of the triangles from A, and construct a set G of graphs by taking from each triangle its
distinguished edge and precisely one of the remaining two edges. Since A is collision-free, we
obtain |G| = 22l graphs, none of which contains a triangle, but the union of any two of them
already has a triangle. This, in particular, implies that no collision-free set can have more that
(g) triangles. On the other hand, it is easy to construct a collision-free set A of £2(n?) triangles
in K,, by taking a matching on n/2 vertices, and joining the endpoints of its edges with all the



remaining vertices. However, we need the triangles in A to be mixed under given colorings of
K,,, which requires extra efforts.

Given a (partial) red-blue coloring of some set of points, we will say that it is A-balanced if
at least a A-fraction of points are colored red and at least A-fraction of points are colored blue.
If not stated otherwise, the balance parameter A = A(n) may be an arbitrary function such that
0 < A(n) <1/2. A coloring is balanced if it is y-balanced where 0 < v < 1/2 is an arbitrary small
(but fixed) constant. We will assume that the number n of vertices in the considered graphs is
sufficiently large.

For the ease of counting, it will be convenient to specify a triangle 7' = {z,y, 2z} by a pair
(e,v) where e = zy is the fized edge and v = z the top vertex of the triangle; the two edges zz
and yz joining v with the endpoints of e are the free edges. A triangle (e,v) is mized under a
given coloring if its free edges receive different colors.

For a set E of edges in K, let Ag be the set of all |E|(n — 2) triangles whose fixed edges
belong to E, that is,

Ag={(e,v) : e€c E,v&e}.

Given a set of edges F, we say that a pair of triangles in Ag locally collide if either they share
a free edge, or they share an edge which is free in one of them and fixed in the other, or these
two triangles together with an edge from F produce a new triangle (see Fig. 1).

Say that a set E of edges in K, is sparse if |[E| = ©(n), the edges in E form no triangles,
and at most O(n) paths of length two or three in E. If not stated otherwise, ¢ > 0 will stand
for a sufficiently small constant depending only on the balance parameter.

Lemma 2.1 There exists a sparse set E of edges in K, with the following property. For every
set of at most 2°°" balanced colorings of K, there is a subset A C Ag of |A| = ©(n?) triangles
such that A has no local collisions, and a constant fraction of triangles in A is mized under each
of the given colorings.

In this lemma the sets A are large, but they may be not collision-free. That is, they may
have some global collisions: a triangle can be formed by taking edges from some three triangles
in this set. The next lemma, gives us collision-free sets.

Lemma 2.2 There exists a sparse set E of edges in K, with the following property. For every
set of k balanced colorings of K, there exists a collision-free set A C Ag of triangles such that
a constant fraction of them is mized under each of the given colorings, and

(i) |A]=Q@¥?) if k<27
(ii) |A| = Qn?) if k < 2¢n.

We postpone the proof of these lemmas to Sections 4.1-4.3.

In the lemmas above the colorings are “total”—each edge receives one of the two colors. In
applications, however, we often have colorings which are only “partial”—some edges may be
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left uncolored. To obtain a similar result also in the case of partial colorings, we will consider
4-cliques instead of triangles.

Fix a partition V = V1 U V5 of the vertex set V of K, into two disjoint parts of the same size
+1. By a square in K,, we will mean a 4-clique with one edge e; drawn in Vj, and the second
edge es drawn in V5. These two edges are the fized edges of the square; the four remaining edges
joining the endpoints of e; and ey lie in Vi X V5, and we call them bipartite. For each square
(e1,e2) we fix two of its disjoint bipartite edges and call them free edges of the square. A square
is mized under a coloring of K, if its free edges receive different colors.

A set S of squares is collision-free if no two of them share a common bipartite edge. As in
the case of triangles, the reason why this property is important for applications is the following.
If S is collision-free then we can form a set of 2/5| graphs, by picking from each of the squares
all its edges, except precisely one of the two free ones. None of these graphs contains a 4-clique
(because of their bipartite structure), but the union of any two of them already contains at least
one 4-clique.

Lemma 2.3 If n='/8 « X\ < 1 then there exists an absolute constant ¢ > 0 and a collision-free
set S of squares in K, with the following property. For every set of at most 20X\ _balanced
partial colorings of Vi x Va, at least Q(A\8n?) squares in S are mized under each of them.

We postpone the proof of this lemma, to Section 4.4.

3 Applications

In this section we apply the coloring lemmas to prove lower bound on the nondeterministic multi-
partition communication complexity of the K;-FREE,, functions for t = 3,4. As a consequence
we derive lower bounds for s-n.b.p. recognizing the K,-freeness of graphs.

3.1 Multi-partition communication

Perhaps, the best way to view a nondeterministic communication protocol between two parties,
Alice and Bob, is a scheme by which a third party, Carole (a “superior being”), knowing the
whole input a, can convince Alice and Bob what the value of f(a) is. Hence, we have three
players, Alice, Bob and Carole. Before the game starts, Carole chooses some partition of the set
X of variables into disjoint blocks X4 and X p; the partition must be strongly balanced in that
both blocks have the same size 1. After that the first two players have only partial information
about the input: Alice can see only the bits in X 4, and Bob can see only the bits in Xg. Given
an input a € f~1(1), Carole’s goal is to convince Alice and Bob that f(a) = 1. For this purpose,
she announces to both players some binary string W, a certificate for (or a proof of) the fact
that “f(a) = 1.” Having this certificate, Alice and Bob verify it independently and respond
with either Yes or No. Alice and Bob agree that f(a) =1 (and accept the input a) if and only
if they both replied with Yes. If f(a) = 0 then Alice and Bob must be able to detect that the
certificate is wrong no matter what Carole says. The protocol is correct if, for every input a,
Alice and Bob accept it if and only if f(a) = 1. The communication complexity of this game is
the length of the certificate W, in the worst case (see, e.g., Sect. 2.1 in [11]).



For example, Carole can easily convince Alice and Bob that a graph G has a triangle: using
only 3[log, n| bits she announces the binary code of a triangle in G; Alice and Bob can locally
check whether the edges of this triangle she/he should see are indeed present. On the other
hand, Papadimitriou and Sipser [13] show that to convince the players that a graph has no
triangles, Carole must announce almost entire graph.

Let us stress that in this game Carole can choose an arbitrary balanced partition of the
variables X, but after that she must use this partition for all inputs. In this paper we consider
the generalization of this game where Carole is allowed to change her opinion and use “most
appropriate” partitions for different inputs. Such a strengthening of Papadimitriou—Sipser’s
model was (more or less explicitely) used by several authors as a tool of proving lower bounds
on different types of branching programs (see, e.g., [6]).

More formally, in the multi-partition communication game the players act as follows. Given
an input a € f~!(1), Carole announces a pair (W,, P,) of binary strings where, as before, W,
is a certificate for the input a, and P, is the binary code of a partition of input variables to be
used by Alice and Bob on this input. The partition does not need to be strongly balanced—we
only require that each block contains a 7y-fraction of all variables where 0 < y < 1/2 may be an
arbitrarily small (but fixed) constant; for ease of notation we don’t show 7y explicitly. The multi-
partition communication complezity C(f) of f is the sum |W,| + |P,| of the lengths of strings
W, and P, on the worst case input a. In the case when Carole can use at most k different
partitions, the corresponding measure is denoted by k-C (f). In these terms, the result from [13]
says that 1-C (K3-FREE,) = 2(n?) in the case of strongly balanced partitions.

3.2 Communication complexity of triangle-freeness

Recall that, given a set A of triangles in K,,, A-FREE,, is a boolean function which, given a graph
G, outputs 1 if and only if none of the triangles from A is present in G. In the communication
game for A-FREE,, the set A of triangles is known to all three players, and Carole’s goal is to
convince Alice and Bob that none of the triangles from A is present in a given graph G.

Theorem 3.1 There exists a set A of triangles in K, such that C (A-FREE,) = O(n?).

Proof. Let E be a set of edges guaranteed by Lemma 2.1. The set Ar has ©(n?) triangles.
Say that a triangle is chordal if all its three vertices belong to some path of length three in E.
Remove from Apg all such triangles, and let A* be the resulting set. Since the set of edges F is
sparse, we only have a linear number (in n) paths of length three, and hence, we have removed
at most O(n) triangles. Our goal is to show that A* is the desired set of “hard” triangles.

Consider the communication game for f = A*-FREE,. If Carole uses k = 2Un?) partitions,
we are done. So, assume that she uses k < 20(n?) partitions. Our goal is to show that then
Carole must use a certificate of length Q(n?).

To show this, let C be the set of |C| = k balanced colorings of K, corresponding to the
partitions used by Carole. Since A* was obtained from Ag by removing a negligible number of
triangles, Lemma 2.1 gives us a subset A C A* of t := |A] = (n?) triangles such that A has
no local collisions, has no chordal triangles, and for every coloring x € C there exists a subset
A, C A of h:=|A,| = Q(n?) triangles, all of which are mixed under .



Let z;y;z; be the triple of variables where z;y; correspond to the free edges and z; to the
fixed edge of the i-th triangle in A, 7 =1,... ,¢. Since A has no local collisions, no two triangles
from A share a free edge, implying that all the variables x1,y1,%2,¥2,--- , %,y are distinct.
Moreover, no two triangles in A share an edge which is free in one of them and fixed in the
other, implying that these variables are different from the variables z1,...,z; (although z;’s
themselves may be not distinct). Hence, we can form a set G of |G| = 2 graphs by picking from
each of the triangles in A its fixed edge and precisely one of its free edges. That is, in the binary
code of every graph in G each of the triples z;y;z; has one of the two values 011 or 101; all the
remaining variables are set to zero.

We claim that none of the graphs in G has a triangle from A*, and hence, must be accepted.
To see this, take a graph in G, and suppose that it contains a triangle T = {z,y,z}. If this
triangle does not belong to Ag, there is nothing to prove. If it belongs to Ag then it must have
at least one edge from FE and, since E is triangle-free, at most two such edges. If only one edge
of T would belong to E, then the remaining two edges of T" would be free edges of some two
triangles from A, and we would have a local collision between these two triangles (cf. the last
three situations in Fig. 1(C)). So, the only possibility is that some two edges of T, say, ry and
yz belong to E (cf. the first two situations in Fig. 1(C)). In this case the edge xz must be a
free edge of some triangle (e, v) from A, implying that v must be an endpoint of zz, say, v = z.
But then the edges zy, yz and e form a path of length three in E, meaning that the triangle 7'
is chordal, and hence, cannot belong to A*.

Thus, all the graphs from G must be accepted. Since we only have k colorings (partitions),
Carole must use some one coloring x for a set G’ C G of |G'| > |G|/k > 2!/k graphs from
G. We know that there is a subset A, C A of h = Q(n?) triangles, all of which are mixed
under x. Assume w.l.o.g. that these are the first h triangles, hence, x(z;) # x(y;) for all
1 = 1,...,h. That is, for each of the first h triangles, each of its two free edges is seen by
precisely one of the players, Alice and Bob. Let G, C G’ be a maximal set of graphs in G’ such
that every two graphs from G, differ in the free edges of at least one triangle from A,. Since
at most 2/~" of the graphs in G’ can coincide on all the variables z1,Ys11,--- , T, Y, We have
G| > 1G'|/20" > 2t /k2!=h = 2k [k, which is 2%("") because h = Q(n?) and k = 2°("").

We claim that for every graph from G,, Carole must use a different certificate, implying that
the binary length of a certificate must be at least log, |A, | = Q(n?).

To show this, assume that Carole uses the same certificate for two different graphs G and
G2 in G,. By the construction of G,, the union G = G'1 U G2 of these graphs contains at least
one triangle T' € A, C A*, and must be rejected. But each of the players, Alice and Bob, can
see only one of its two free edges, and each of them replied with Yes on both G; and Go. Since
the players have to verify the certificate independently, and each of the two free edges of T is
present in only one of the graphs G or G, the players are forced to reply with Yes also on G,
thus (wrongly) accepting the graph G with a triangle in A*, a contradiction. |

In Theorem 3.1 the set A of triangles is not specified. However, using the second coloring
lemma, we can obtain the following lower bounds for the “pure” version K3-FREE,, of the triangle-
freeness property.

Theorem 3.2 Let f = K3-FREE,,. Then C(f) = Q(n®2). Moreover, there is a constant ¢ > 0
such that k-C (f) = ©(n?) as long as k < 2°".



Proof. The proof is precisely the same as that of Theorem 3.1 with only one difference: this
time we take the set A of triangles, guaranteed by Lemma 2.2. The fact that this set is free not
only from local collisions but also from global ones, implies that the graphs in the constructed
set G have no triangles at all, and hence, must be accepted by K3-FREE,,. O

In the proof of Therem 3.1 it was sufficient to work with local collisions only. The absence
of such collisions in A guarantees that no new triangle from A* can be formed by triangles
in A. However, triangles outside of A* may be formed, because of possible global collisions.
Demanding the absence of such collisions is a severe requirement and reduces the lower bound
from Q(n?) to Q(n3/2). At the moment we don’t know whether such a drastical jump is an
inherent property of the triangle-freeness function K3-FREE,, itself, or it is just a weakness of
our argument. Although we cannot refute the second, it may well be that the former is true.
Triangle-free graphs have many specific structural properties which Carole could try to encode
in her certificates. In particular, in every triangle-free graph the neighborhoods of their vertices
span at least n2/4 non-edges, and Carole could try, say, to encode a large fraction of non-edges
using much fewer than n? bits (see Section 5 for a discussion).

3.3 Branching programs for K,-freeness

The model of syntactic nondeterministic read-s times branching programs (s-n.b.p.) was in-
troduced in [6]. These are the usual nondeterministic branching programs with the restriction
that along each path (be it consistent or not) each variable can be tested at most s times. The
size of a branching program is the number of edges in the underlying graph. Using the coloring
lemma, for 4-cliques one can prove the following lower bound on the size of s-n.b.p. recognizing
the K4-freeness of graphs.

Theorem 3.3 The 4-clique-freeness function K4-FREE,, requires s-n.b.p. of size 22(n%) as long
as s = o(logn).

To prove Theorem 3.3, we first recall one known fact (Lemma 3.4 below) relating the size
of an s-n.b.p. computing a boolean function f with the so-called overlapping multi-partition
communication complexity Cy (f) of f. This measure is an extension of C (f) where the blocks of
input variables X4 and Xp Carole gives to Alice and Bob need not be disjoint: we only require
that both | X4 — Xp| and | Xp — X 4| are at least A - |X|. Put otherwise, instead of partitions of
X into disjoint blocks, Carole chooses a balanced partial coloring of X in red and blue. Having
such a coloring, Alice can see only blue variables, and Bob only red variables; the uncolored
variables are seen by both players.

The following lemma is a direct consequence of Theorem 1 from [6] and Lemma 4 from [16]:
it is enough to observe that the logarithm of the number of “rectangles” (a notion used in these
papers) covering a boolean function f is an upper bound on the multipartition communication
complexity of f.

Lemma 3.4 There is an absolute constant D > 0 such that for every s > 1, every boolean
function f requires an s-n.b.p. of size exponential in Cy (f) - D™° where A = 1/25F1.



Proof of Theorem 3.3. Set A := 1/2°"!. By Lemma 3.4, it is enough to show that there exists
a subfunction f of K;-FREE, such that Cy (f) = Q(\¥n?). To define the desired subfunction, fix
a partition of the vertex set of K, into two parts Vi, Vs of size |Vi| = |Vo| = n/2, and let S be
a collision-free set of squares, guaranteed by Lemma 2.3. Set all fixed edges (i.e., the variables
corresponding to these edges) of these squares to the constant 1, and set to 0 all the remaining
edges in V7 and in V5. The obtained subfunction f of K;-FREE,, depends only on n?/4 variables
X, corresponding to bipartite edges in V7 X Va.

Consider a A-overlapping multi-partition communication game for this subfunction, and let
C be the set of A-balanced partial colorings of Vi x V5 used by Carole. If |C| > 220\*n?) then
Cy (f) = Q(A%n?), and we are done. So assume that |[C| < 200°n%) - Gince s = o(logn), the
balance parameter A is much larger than n~1/6. and Lemma 2.3 gives us a collision-free set S
of squares, at least Q(A\®n?) of which are mixed under each of the given colorings. Since no two
squares in S share a free edge, we can construct a set G of 2/8| graphs, by picking from each of
the squares all its edges, except precisely one of the two free ones. Since none of squares in S
share a bipartite edge, none of the graphs in G contains a square. But the union of any two of
them already has a square. Arguing as in the proof of Theorem 3.2 we conclude that Carole
must use a certificate of length at least log, |S| = Q(A\8n?). O

4 Proofs of coloring lemmas

The proofs of all three coloring lemmas follow the same general frame: we first use so-called
“joining lemma” to produce a large set of triangles (or 4-cliques) so that a large fraction of them
is mixed under every balanced coloring. After that we use so-called “collision lemma” to remove
possible collisions between triangles (or 4-cliques). We first prove these two simple lemmas. In
their proofs we use the following simplest version of Chernoff’s inequality: if X is the sum of
n independent Bernoulli random variables each with success probability p then X < np/2 with
probability at most e /8 and X > 2pn with probability at most e Pm/12,

Given two subsets of vertices A and B, we say that an edge joins this pair if one its endpoint
belongs to A and the other to Bj; in particular, both endpoints may belong to A N B. We say
that a set F of edges in K, is an e-expander with expansion D if every two sets of at least en
vertices are joined by at least Dn edges from E; an e-ezpander is an expander with expansion
D > 1. (Note that our definition of an expander is slightly different from the standard notion
where instead of pairs of sets one is interested in the number of edges joining a set with its
complement.) An e-expander E is sparse if |[E| = O(n/€?), the edges in E form no triangles and
at most O(n/e?) paths of length [ = 2, 3.

Joining Lemma. If n=1/6

exist.

& € < 1 then sparse e-expanders with arbitrary constant erpansion

Proof. Let D > 4 be an arbitrary constant, and n be sufficiently large, n > 40D/e? is
enough. Consider a random subset E of edges in K, each edge in which appears indepen-
dently and with equal probability p := 40D/e?>n. Chernoff’s and Markov’s inequalities imply
that, with probability > 1/2, the set E has at least n/e? edges, at most p'n!*! = O(n/e?)



paths of any constant length I/, and at most p3n® = O(1/€%) triangles. We also claim that
Prob [E is an e-expander with expansion 2D] > 1/2.

To show this, let A and B be two sets of at least m = en vertices, and F' be the set of all
edges joining these two sets. If |A N B| < 2m/3 then we have at least (m/3)? > 0.1m? bipartite
edges in (A—B) x (B—A), and if |[ANB| > 2m/3 then at least least 0.2m? edges join the vertices
in AN B. Hence, |F| > 0.12n?, and the expected number of edges in EN F is p - |F| > 4Dn.
By Chernoff’s inequality, the actual number of edges in this intersection is smaller than 2Dn
with probability at most e PIFI/8 < g=4Dn < =21 Gince the total number of large pairs A, B
does not exceed 22" we conclude that, with probability at least 1 — 22" - ¢ 2" > 1/2, E is an
e-expander with expansion 2D.

Thus, there exists a set E of edges with both properties. That is, £ is an e-expander with
expansion 2D, has |E| = O(n/e?) edges, at most O(n/e?) paths of length [ = 2,3, and at most
O(1/€5) triangles. Since € 3> n~/6, the number of triangles is o(n), and we can safely remove
one edge from each of them without destroying any of the remaining properties. In particular,
the expansion of the obtained set of edges is still at least 2D — o(1) > D. O

To remove the possible collisions between cliques we need the following property of indepen-
dent sets in sparse hypergraphs. Recall that a hypergraph over a set V of vertices is a family
F of subsets of V, called hyperedges. The rank of the hypergraph is the minimum cardinality
of its edge. As in the case of graphs (where F consists of two-element subsets, edges) a set of
vertices is independent if it contains no hyperedge of . We will consider hypergraph whose
vertices are some configurations (edges, triangles, squares, etc.) and each hyperedge corresponds
to a “collision” between these configurations. Hence, being independent in such a hypergraph
is equivalent to being collision-free.

As in the case of graphs, we assume that the number of vertices in a hypergraph is sufficiently
large. The hypergraph F is sparse is |F| < C|V| for some absolute constant C > 0. A family
Vi,...,Vj of subsets of V is large if there exists an absolute constant x4 > 0 such that |V;| > u|V|
foralle=1,... k.

Collision Lemma. Let F be a sparse hypergraph of rank r > 2 over a set V. of N wvertices.
Then there ezxists a constant ¢ > 0 such that for every family of up to 2°V large subsets of V
there exists an independent set which contains at least cN wvertices in each of these sets.

This lemma is a very special (but handy) version of the following more general fact.

Lemma 4.1 Let F be a hypergraph of rank r > 2 over a set V of N vertices. Let u > 0 and

N )1/<r—1>

p=p(F):= (ﬁ

Then, for any family Vi,... Vi of k < 2MPN/8 subsets of V of size at least uN there exists an
independent set S CV such that |[V; N S| > ppN/4 foralli=1,... k.

Proof. If p > 1 then |F| < pN/8, and the desired independent set S can be obtained by
deleting one vertex from each hyperedge. So, assume that p < 1, and let S be a random set
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of vertices where each vertex is picked independently and with equal probability p. For every
i=1,...,k, the expected number of vertices in V;NS is p-|V;| > upN. By Chernoff’s inequality,
the probability that |[V;NS| > upN/2 foralli =1,... ,k, is at least 1—k-e~#PN/8 which is > 1/2
because k < 2#PN/8_ On the other hand, the expected number of hyperedges of F lying entirely
in S does not exceed p"|F|, and by Markov’s inequality, the actual number of such hyperedges
does not exceed 2p"|F| with probability greater than 1/2.

Fix a set satisfying both these conditions, and remove one vertex from each hyperedge lying
within this set. The resulting set S is independent and
|7

Vi S| > upN/2 —2p"|F| = pN (g _QPHW> = upN/4

for every 1 =1,... k. O

4.1 Proof of Lemma 2.1

Let 0 < v < 1/2 be the balance parameter of the colorings considered, and apply the Joining
Lemma with € := y2/5. This gives us a sparse e-expander E. Being an expander means that at
least n edges of E join each pair of vertex sets of size at least en. Our first goal is to use this
property to show that a constant fraction of triangles in Ag = {(e,v) : e € E, v ¢ e} is mixed
under every y-balanced coloring of K.

Claim 4.2 At least en? of triangles in Ap are mized under every balanced coloring of K,.

Proof. Take an arbitrary such coloring, and call a vertex red (blue) if more that c¢in of its
incident edges are red (blue) where ¢; := 1 —+/3 and =y is the balance parameter of x. A vertex
is mized if it is neither red nor blue.

Our first goal is to prove that at least en vertices must be mixed (a similar fact was proved
in [13] for the case v = 1/2). To show this, let R, B and M be the sets of red, blue and
mixed vertices, respectively. Let r be the sum over all vertices v € R, of the number of red edges
incident to v. By Euler’s theorem, r is at most two times the total number of red edges, implying
that 7 < 2(1—+7) (72‘) < (1—+)n?. Since r > c¢;n-|R|, this implies that |R| < (1—7)n?/c1n = con
where co := (1 — 7)/c1. The same argument yields that |B| < con. Now suppose to the
contrary that we have fewer than dn mixed vertices where d:=2c; —1—cp =2v%/(9 —3v) >
v2/5 = €. As ¢; > 1/2, all three sets B, R and M are disjoint, and cover all n vertices. Since
|B|, |R| < cgn this, together with our assumption |M| < dn, implies that |B|,|R| > c3n where
c3:=1—(d+ c2) > 2(1 — ¢1). Hence, for every vertex v € R we have |{v} x B| = |B| > c3n
edges going to the vertices in B. As v is red, fewer than (1 — ¢;)n of these edges can be blue;
hence, more than |B| — (1 — ¢1)n > |B|/2 of these edges must be red. Thus, more than half of
edges in R X B must be red. Symmetrically, more than half of edges in R x B must be blue, a
contradiction.

Thus, at least en vertices are mixed. For each such vertex, at least (1 —¢;) = yn/3 of its
incident edges are blue and at least (1 —¢1) = yn/3 of its incident edges are red. Select [en] of
these mixed vertices and call them top vertices. As 2¢ < «y/3, each top vertex v has at least en
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Figure 1: All types of local collisions; bold lines correspond to fixed edges

red edges and en blue edges to bottom (non-top) vertices. Since E is an e-expander, the pair of
sets of bottom vertices, connected to v by red and blued edges, are large enough to be joined by
at least n edges from E. Together with v, every such edge e € E produces the triangle (e,v) in
Ap which is mixed under . Since we have en top vertices, the total number of mixed triangles
in Ag is at least en?. O

To finish the proof of Lemma 2.1 we have to remove all possible local collisions between the
triangles in Ag. Recall that a local collision between two triangles occurs if either:

(A) the triangles share an edge which is free in one of them and fixed in the other, or
(B) the triangles share a common free edge, or

(C) a triangle can be formed by taking a free edge from the first triangle, an edge from the
second triangle and an edge from F.

To eliminate such collisions, we first estimate their number. Let P, be the number of paths
of length [ in E. Since the expander F is sparse, P, = O(n) for [ =1,2,3.

Claim 4.3 There are at most O(n?) local collisions in Ag.

Proof. Let (e1,v1) and (e, v2) be two triangles in Ag. Fig. 1 depicts all possible local collisions
between these triangles. For a collision of type (A) to occur, the fixed edges e, e2 must form a
path of length two, and the top vertex of at least one triangle must be an endpoint of the fixed
edge of the other one. In this case we have at most O(n - P;) = O(n?) possibilities.

If the collision is of type (B) but not of type (A) then either the fixed edges form a path of
length two and the top vertex is the same, or the fixed edges are disjoint and the top vertex v;
of the triangle (e;, v;) must be an endpoint of the second edge e3—;. In the first case we have at
most O(n - P;) = O(n?) possibilities, and in the second at most 2P? = O(n?) possibilities.

In the case of type (C) but neither (A) nor (B) collision, a triangle 7' is formed by an edge
e € E, and two edges of the colliding triangles. Since E has no triangles, at least one of the edges
ey or ey does not belong to T'; say, es € T. If the second edge e; belongs to T then the edges
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Figure 2: Global collisions; bold lines correspond to fixed edges.

e,e; and ey form a path of length three, and the top vertex ve of the second triangle (ez,vs)
belongs to this path. Hence, in this case we have at most n - Py possibilities. If neither of the
edges e1, ez belongs to T' then either the edges e, e, es for a path of length three and v; = vy (at
most n - Py possibilities), or each of the top vertices v, v is an endpoint of some of the edges
e, e1, ez, some two of whom form a path of length two (at most O(P; - P») possibilities). Hence,
the number of type (C) collisions is also at most O(n?). ]

Now we are ready to finish the proof of Lemma 2.1. Fix an arbitrary set C of at most
27" balanced colorings of K, where ¢ > 0 is sufficiently small constant. Claim 4.2 gives a
family {A, : x € C} of large subsets of Ag such that all the triangles in A, are mixed under
x- Consider a graph F whose vertices are triangles from Apg, and edges are pairs of triangles
forming a local collision. Since, by Claim 4.3, F is sparse, we can apply the Collision Lemma,
and obtain an independent set A C Ap such that all the intersections A N A,, x € C, are still
large. Since independence of A in F is equivalent to having no local collisions, we are done.

4.2 Proof of Lemma 2.2(i)

Let C be any set of |C| < 2¢n°’ balanced colorings of K. Let A C Ap be the set of triangles
guaranteed by Lemma 2.1. This set has ©(n?) triangles, and has no local collisions. Still, at
least potentially, the set A may have some global collisions: it may happen that a triangle can
be formed by taking edges from some three triangles in this set. To prove Lemma 2.2(i), we
have to remove all possible global collisions. Let us first estimate their number.

Claim 4.4 There are at most O(n?®) global collisions in A.

Proof. Suppose a triangle T' can be formed by picking edges from some three triangles (e;, v;),
1 = 1,2,3 in A. Since E is triangle-free and A has no local collisions, we only have two
possibilities: either T' has precisely two of the fixed edges e; or none of them. Figure 2 depicts
the remaining types of global collisions.

If T' contains precisely two fixed edges, say, e; and ey then T is formed by ej,es and and
a free edge of the third triangle (es,v3). In this case the edges e, es, e3 form a path of length
three, and the top vertex vz must be an endpoint of e; or ey. Since we only have P3 = O(n)
paths of length three and at most n? possibilities for the choice of the top vertices v; and v,
the total number of global collisions of this type is at most O(P3n?) = O(n?).

If T contains no fixed edges then either: (a) some two of the edges e, ez, e3, say, e; and
eg, form a path of length two, the top vertex w3 coincides with one of the top vertices v1 or v,
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say, v3 = v1, and vo € e3, or (b) the edges e, es,e3 are mutually disjoint and the top vertices
v1,v2,v3 of the corresponding triangles are the endpoints of these edges. In the first case (a)
we have P» possibilities to choose the path ejes, P possibilities for the edge es, and at most
n possibilities for the top vertex v; = v3. Since the top vertex vs must belong to es, we have
at most O(n - P, - P;) = O(n3) global collisions of this type. In the second case (b) each triple
e1,e9, e3 of edges in F can form only a constant number of triangles, since in this case for each
edge e; we have at most 4 possibilities to chose the top vertex v;. Thus, in this case the number
of global collisions does not exceed O(P}) = O(n?). O

To destroy the possible global collisions between the triangles in A, we will use the assumption
that the number k of colorings x1,...,xx is at most 2e7* where ¢ > 0 is a sufficiently small
constant. By Lemma 2.1, we know that |A| = ©(n?) and for each i = 1,... ,k there is a set
A; C A of Q(n?) triangles, all of which are mixed under .

Consider the “collision hypergraph” (V, F) whose vertices are triangles in A, and hyperedges
are triples of triangles, forming a global collision. This hypergraph has N = |A| = ©(n?) vertices,
and by Claim 4.4, |F| = O(n3) hyperedges. Moreover, the sets of vertices V; = A; are large
enough, since |A;| = Q(n?) > uN for some constant y > 0 independent of k. Since F has rank
r = 3, this implies that p = p(F) = (uN/8|.7-"|)1/2 = Q(n~'/?). Hence, if the constant ¢ > 0 is
small enough to ensure the inequality cn3/2 < upN /8 then, by Lemma 4.1, there exists a subset
A’ C A such that there are no collisions between the triangles in A’, and for each i = 1,... , k,
this set contains a subset AL = A; N A/ of |All = Q(pN) = Q(n3/?) triangles, all of which are
mixed under x;. This completes the proof of Lemma 2.2(i)

4.3 Proof of Lemma 2.2(ii)

In the case small number (at most 2°"*) colorings we can find a large set of triangles with an
additional property that their fixed edges form a matching.

Claim 4.5 For every set x1,.-- ,Xg of k < 2" balanced colorings of K, there exists a matching
M of size Q(n) such that a constant fraction of the triangles in Aps is mized under each x;.

Proof. Let E be a sparse e-expander guaranteed by the Joining Lemma. When proving
Claim 4.2 we have shown that for every coloring y; there exists a set of en top vertices and a
sequence of en pairs of sets of bottom vertices of size at least en such that every edge e joining
any of these pairs, together with the corresponding top vertex, produces a triangle (e,v) which
is mixed under x;. Hence, if E;; denotes the set of edges of E joining the j-th pair of sets of
bottom vertices of the i-th coloring, it is enough to show that some matching contains Q(n)
edges in each of these sets. For this purpose, consider a “collision graph” F whose vertices are
edges from E, and where ej,e; € E are joined by an edge if and only if e; Nes = (). This
graph has |E| = ©(n) vertices and, since the expander E is sparse, at most O(n) edges (at
most so many paths of length two in E). Hence, F is sparse. On the other hand, since E is
an e-expander, the sets E; ; are large, |E;j| > n forall1 <i <k and 1 < j < en. Thus, if
the constant ¢ > 0 is sufficiently small, then the Collision Lemma gives us an independent set
M C E in F (a matching in K,) such that all intersections M N E; ; have size §2(n), as desired.

O
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Now fix a matching, given by the previous claim, and consider the set Ays of |Ays| = ©(n?)
induced triangles. We know that a constant fraction of these triangles is mixed under each of the
given 2" balanced colorings of K,,. To finish the proof of Lemma 2.2(ii), it remains to remove
possible colisions from Ajpy.

Since M is a matching, the fixed edges of the triangles from Ajs can form no path of length
two. This immediately implies that we can only have two types of possible collisions between the
triangles: type I depicted in Fig. 1(B) situation two, and type II depicted in Figure 2 situation
three. Since fixed edges cannot form any path of length two, one triangle can participate in
at most two collisions of type I. So, at least one-third of triangles in Ay is free from such
collisions. By the same reason, each of the remaing triangles can participate in at most one
triple of triangles forming a collision of type II. Removing one triangle from each such triple we
obtain a collision-free subset A C Ay of [A] > 2|Ap|/9 = Q(n?) triangles, a constant fraction
of which is mixed under each of the given colorings. This completes the proof of Lemma 2.2(ii).

4.4 Proof of Lemma 2.3

Let V1, V5 be a fixed bipartition of the vertices of K, into two disjoint parts of equal size +1.
Each pair (e1, e2) of edges where e; is drawn between the vertices in V;, defines a square. Given
a set E of such edges, let Sg be the set of squares defined by the edges in E. Recall that two
squares collide if they share an edge in Vi x V5.

Claim 4.6 Let n='/6 < X\ < 1/2. There exists a set E of edges such that |Sg| = ©(n?/\*), at
most O(n?/\8) pairs of squares in Sg collide, and at least n? squares in Sg are mized under
each A-balanced partial coloring of V1 X Va.

Proof. Set e = A/4, and let E = E; U E» where E; is a sparse e-expander in V; given by the
Joining Lemma. Take an arbitrary A-balanced partial coloring of Vi x V5. For a vertex v € 1}
let its red degree (blue degree) be the number of red (blue) edges incident to it. Since the average
red (blue) degree is at least An/2, there exists a set R (B) of at least An/4 = en vertices in V;
of red (resp., blue) degree at least An/4 = en. That is, for every two vertices u € R and v € B
there exists a pair ug,vp of subsets in V5 of size en such that all edges joining u (resp., v) with
the vertices in ug (resp., in vg) are red (resp., blue). Since F is an e-expander, the pair R, B as
well as each of the pairs vg,vp with u € R and v € B, are joined by at least n edges from E.
Since each edge between u and v, together with at least n edges of E joining the sets ur and
vp, induces n squares, all of which are mixed under Yy, the total number of mixed squares in Sg
is at least n2.

Since both expanders E; and F, are sparse, each of them has P; = O(n/)\?) edges and at
most P, = O(n/A*) paths of length 2. Hence, |Sg| = ©(n%/)\?), and it remains to show that
at most O(n?/\8) pairs of squares in Sg can share a bipartite edge. If two squares share a
bipartite edge, then either they share two such edges, or they share only one such edge. In
the first case we have at most O(P; - P,) possibilities, whereas in the second we have at most
O(P, - P,) possibilities. Hence, at most O(n?/\8) pairs of squares can collide. O

Let x1,...,xx any set of k < 2¢X*n” )\ _balanced partial colorings of V; x V5 where ¢ > 0 is a
sufficiently small constant. Let Sg be a set of @(n?/\*) squares, guaranteed by Claim 4.6. We
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know that, for each i = 1,... , k, there exists a subset S; C Sg of |S;| > n? squares, all of which
are mixed under ;. It remains to destroy possible collisions between the squares in Sg.

For this purpose, let us consider the “collision graph” (V,F) whose vertices are squares in
S, and two squares are joined by an edge iff these squares share a common bipartite edge. By
Claim 4.6 we know that the collision graph has N = ©(n?/\*) vertices and at most |F| =
O(n?/A8) = O(N/X*) hyperedges. Moreover, the sets of vertices V; = S; are large, since |S;| >
n? > pN for yu = Q(\*). Since F has rank r = 2, this implies that p(F) = uN/(8|F]) = Q(A8).
If ¢ > 0 is sufficiently small to ensure cA8n? < upN/8 then k < 24PN, /8. and the Collision Lemma
gives us a subset S, C Sg such that no two squares in Sj, share a bipartite edge, and for each
i=1,...,k, this set contains a subset S! = S; N S} of |S!| > upN/4 = Q(A\8n?) squares, all of
which are mixed under x;. This completes the proof of Lemma 2.3.

5 Concluding remarks

1. Usually, a lower bound on the communication complexity of a given boolean function f
is obtained by choosing a large enough set F C f !(1) of inputs which is “hard” for every
partition of input variables. That is, given a partition of the input variables, Carole cannot
use one certificate for “too many” inputs from F without forcing Alice and Bob to (wrongly)
accept an input from f~!(0). To our knowledge, all the lower bounds on the communication
complexity of explicit boolean functions, including the highest ones proved in [6, 4, 1, 5], were
obtained in this way. In the case of K3-FREE,, and K4-FREE,, functions this approach does not
work (at least directly). We are not able to exhibit a large set F' of graphs which is hard for
every partition—the set of hard inputs F' in our proof depends on the given set of partitions
used by Carole: we are able to construct F' only after Carole has fixed her opinion about the
partitions she would like to use. This (dependency of F' on the partitions) seems to be a new
aspect in understanding the communication complexity.

2. Let us note that, although simple, the arguments we used are quite general and may be
also applied to other graph-theoretic problems. Just to mention an example, let C4-FREE,, be
a boolean function which, given a graph G on n vertices, accepts it if and only if G has no
cycle of length four. Kleitman and Winston [10]) proved that the number 4-cycle-free graphs is
20(n**) " This immediately implies that already the one-partition communication complexity of
C4-FREE,, does not exceed O(n3/2): given a Cy-free graph G, Carole just announces the entire
graph G to both players. On the other hand, essentially the same argument as in the proof of
the coloring lemma for triangles can be used to show that there is a set C of ©(n?) 4-cycles,
a constant fraction of which is mixed under each balanced coloring of K. Moreover, due the
“sparsness” of the underlying set of fixed edges given by the Joining Lemma, at most O(n*)
quartets of 4-cycles in C collide, i.e., form a new 4-cycle. Applying Lemma 4.1 in this situation,
we have a hypergraph of rank 7 = 4 on |V| = Q(n?) vertices, and with |F| = O(n?) edges.
In this case, p(F) = Q ((N/|F|)Y/3) = Q(n~%/3), and we obtain a collision-free subset C' of
IC| = Q(p- |V]) = Q(n*/?) 4-cycles. Arguing as in the proof of Theorem 3.2, this implies that
the multi-party communication complexity of C4-FREE,, is Q(n*/3).
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3. Next, we mention that the construction of mixed triangles can be used to give a lower
bound on the number f(n) of maximal triangle-free graphs on n vertices. A triangle-free graph
is mazimal if no edge can be added without forming a triangle. Erdds asked (see, e.g., [14],
Problem 10.2 or [7], Problem 48) to determine or estimate f(n). It is known (see [3]) that
f(n) < 27°/4. On the other hand, the following simple argument shows that f(n) > 27°/8. Let
n = 4m and fix a partition Vi, V5 of the vertex set into two parts of equal size. Let M be a
maximal matching in Va; [M| = m. Consider the family of 2/ViI1M| > 92m® — 9n*/8 graphs each
of which is obtained by joining every vertex in V; with precisely one endpoint of each of the
edges in M. Add to each of these graphs all the edges from M. The obtained graphs are still
triangle-free, and “maximal” in a sense that the addition of any new bipartite edge from Vi x V,
creates a triangle. In each of these graphs draw edges between the vertices in Vi and between
the vertices in V5 in an arbitrary way until the obtained graph becomes maximal triangle-free.
Since each pair of the obtained graphs differ in at least one edge from Vi x V5, we are done.

4. Inthe context of this paper, the most interesting open question certainly is whether the lower
bound C (K3-FREE,) = Q(n??) given in Theorem 3.2 is far from the optimum. Theorem 3.1 only
says that C (A-FREE,) = O(n?) for some set A of triangles, and its proof fails if A is the set of
all triangles. Triangle-free graphs have many interesting structural properties which (aparently)
may help Carole to convince that the input graph has no triangles at all. In particular, by
Mantel-Turan’s theorem, in every triangle-free graph the neighborhoods of its vertices span at
least n?/4 non-edges. Hence, to improve the trivial upper bound C (K3-FREE,,) < n?, one could
try to encode a non-trivial fraction of non-edges using much fewer than n? bits. Let D = D(n)
be something much smaller than y/n, say D = n® where € < 1/2 is a very small constant. In the
case of A\-balanced partitions with A — 0 the argument used in the proof of Lemma 2.2(i) and
Theorem 3.2 yields the lower bound C (K3-FREE,) = ()\cn?’/ 2) where c is an absolute constant.
Taking A = 1/D this yields C (K3-FREE,) = Q (n3/ 2/D°), which is close to n3/2 if € is sufficiently
small.

Open Problem. Does Dn3/2 bits are enough to encode n?/D non-edges in every mazimal
triangle-free graph with more than Dn®/? edges?

It is interesting that in the case of {-cycle-free graphs with ¢ > 4, a similar question has a
positive answer in a very strong sense. For example, for ¢ € {4, 6,8} it is possible to encode all
t-cycle-free graphs using only O(n'*?/*) bits (see [10, 17]).

A positive answer to the question above would imply C (K3-FREE,) = O(Dn??logn). In-
deed, triangle-free graphs G with at most Dn®/2 edges are “for free:” Carole can announce to
both players the entire graph using only O(Dn3/ 2logn) bits. If G has more edges then Carole
can use the partitions X 4, Xp with X 4’s being the sets of encoded non-edges. Given a triangle-
free graph G with more than Dn?®/? edges, Carole can choose a maximal triangle-free graph
containing G, and use the corresponding partition X 4, Xp. After that, Alice replies with Yes if
and only if she does not see any edge of GG, and Bob replies with Yes if and only if the subgraph
he can see is triangle-free.

We are able to give a positive answer only if we have some additional information about
the graph G, not just that its is a maximal triangle-free graph. A trivial case is when G has a
vertex x of degree at least n/v/D. If N, denotes the neighborhood of z then non-edges in G
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are precisely the pairs zy with N, N Ny # (. Depending on the behaviour of the degrees |N,| of
vertices and the “degrees” | N, N N,| of non-edges zy we can isolate some additional cases where
the question has a positive answer, like: (a) the graph is almost regular in that the minimum
and maximum degree of its vertices differ by a constant (greedy algorithm); (b) in average,
every non-edge has degree at most D (easy counting); (c) the degree of at least n2/D non-edges
is near to the average degree of a non-edge (another greedy algorithm); (d) for at least n?/D
non-edges zy their degree is at least logn times the “average” inersection size |Ng| - |Ng|/n (by
picking random subsets in N, and Ny of size about /n).

Let us stress that the main trouble in the problem above is with “very untypical” maximal
triangle-free graphs. To produce a “typical” maximal triangle-free graph, one may use the
following procedure. To each edge of K, independently assign its birthtime p which is uniformly
distributed in [0,1]. For p = 0 start with the empty graph on n vertices. Now increase p
gradually. Each time a new edge is born, add it to the existing graph if it does not create a
triangle. Edges with equal birthtime are considered in an arbitrary oder. Denote the graph at
time p = 1 by G. Then, with probability tending to 1, G has close to n3/2 edges [9, 15]. On
the other hand, it is known that n3/2 is a rough threshold for a triangle-free graph to exhibit
bipartite-like behavior. For example, it is shown in [12] that for M > n3/2 logl/ 2 n, almost all
triangle-free graphs with n vertices and M edges are bipartite, and hence, a large fraction of
their non-edges is easy to encode using O(nlogn) bits.

References

[1] Ajtai, M (1999): A non-linear time lower bound for boolean branching programs, in: Proc.
of 40th Ann. IEEE Symp. on Foundations of Comput. Sci., 60-70.

[2] Ajtai, M., Babai, L., Hajnal, P., Komlos, J., Pudlik, P., R6dl, V., Szemeredi, E., and
Turén, Gy. (1986): Two lower bounds for branching programs, in: Proc. of 18th Ann.
ACM Symp. on the Theory of Computing, 30-38.

[3] Barefoot, C., Casey, K., Fisher, D., Fraughnaugh, K., and Harary, F. (1995): Size in max-
imal triangle-free graphs and minimal graphs of diameter 2, Discrete Mathematics 138,
no. 1-3, 93-99.

[4] Beame, P.W., Saks, M., and Thathachar, J.S. (1998): Time-space tradeoffs for branching
programs, in: Proc. of 39th Ann. IEEE Symp. on Foundations of Comput. Sci., 254-263.

[6] Beame, P., Saks, M., Sun, X., and Vee, E. (2000): Super-linear time-space tradeoff lower
bounds for randomized computation, in: Proc. of 41st Ann. IEEE Symp. on Foundations
of Comput. Sci., 169-179.

[6] Borodin, A., Razborov, A., and R. Smolensky (1993): On lower bounds for read-k times
branching programs, Computational Complezrity 3, 1-18.

18



[7] Chung F.R.K. (1997): Open problems of Paul Erdés in graph theory, Journal of Graph
Theory 25:1, 3—-36.

[8] Duri§, P., Hromkovi¢, J., Jukna, S., Sauerfhoff, M., and Schnitger, G. (2001): On multi-
partition communication complexity, in: Proc. of 18th Int. Symp. on Theoretical Aspects

of Computer Science, Springer Lecture Notes in Comput. Sci., vol. 2010, 206-217.

[9] Erdés, P., Suen, S., and Winkler, P. (1995): On the size of random maximal graphs, Random
Structures & Algorithms, 309-318.

[10] Kleitman, D.J. and Winston, K.J. (1982): On the number of graphs without 4-cycles,
Discrete Mathematics 41, 167-172.

[11] Kushilevitz, E. and Nisan, N. (1997): Communication Complezity. Cambridge University

Press.

[12] Osthus, D., Promel, H.J., and Taraz, A. (1999): On the evolution of triangle-free graphs,

manuscript, November 1999.

[13] Papadimitriou Ch. H. and Sipser M. (1982): Communication complexity, in: Proc. of 14th
Ann. ACM Symp. on the Theory of Computing, 196-200. Journal version: Communication
complexity, J. Comput. Syst. Sci., 28:2 (1984), 260-269.

[14] Simonovits, M. (1996): Paul Erd8s’ influence on extremal graph theory, in: The Mathemat-
ics of Paul Erdés, J. Nesetfil and R. Graham (eds.), Springer-Verlag, 148-192.

[15] Spencer, J. (1995): Maximal triangle-free graphs and Ramsey R(3,t¢), unpublished

manuscript.

[16] Thathachar, J. (1998): On separating the read-k-times branching program hierarchy, in:
Proc. of 30th Ann. ACM Symp. on the Theory of Computing, 653—662.

[17] Wilson, D.B. and Kleitman, D.J.: On the number of graphs which lack small cycles, to

appear in Discrete Mathematics.

19

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




