Electronic Colloquium on Computational Complexity, Report No. 50 (2001)

Black-Box Concurrent Zero-Knowledge

Requires 2(log n) Rounds

Ran Canetti* Joe Kilianf Erez Petrank? Alon Rosen$

June 24, 2001

Abstract

We show that any concurrent zero-knowledge protocol for a non-trivial language (i.e., for a
language outside BPP), whose security is proven via black-box simulation, must use at least
Q(logn) rounds of interaction. This result achieves a substantial improvement over previous
lower bounds, and is the first bound to rule out the possibility of constant-round concurrent
zero-knowledge when proven via black-box simulation. Furthermore, the bound is polynomially
related to the number of rounds in the best known concurrent zero-knowledge protocol for

languages in N'P.

*IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. E-mail:
canetti@watson.ibm.com.

"Yianilos Labs. Yianilos Labs 707 State Rd., Rt. 206, Suite 212, Princeton, NJ 08540, USA. E-mail:
joe@pnylab.com.

iDept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. E-mail:
erez@cs.technion.ac.il.

$Dept. of Computer Science and Applied Math., Weizmann Institute of Science, Rehovot 76100, Israel. E-mail:
alon@wisdom.weizmann.ac.il. Part of this work was done while visiting the IBM T.J. Watson Research Center.

ISSN 1433-8092

Contents

1

Introduction

1.1 Previous Work L e e e e e e
1.2 Our Result e e e e
1.3 Techniques e e e
1.4 Organization Lo e e e

Preliminaries

2.1 Probabilistic Notation

2.2 Imteractive proofs L Lo e

2.3 Concurrent zero-knowledge oo

2.4 Black-box concurrent zero-knowledge L o oL
2.4.1 Additional conventionso Lo Lo e e

Proof outline

3.1 The high-level framework
3.2 The schedule and additional ideas
3.3 The actual analysis Lo

Proof of Theorem 1

4.1 The concurrent adversarial verifier
4.1.1 Theschedule e e
4.1.2 The verifier strategy Vg,o o oo o oL

4.2 The decision procedure for Lo

Proof of Lemma 2 (performance on NO-instances)

5.1 The cheating prover Lo

5.2 The success probability of the cheating prover oL,

5.3 Proof of Lemma 4 (existence of useful block-prefixes)
5.3.1 Proof of Lemma 5 (existence of potentially-useful block-prefixes)
5.3.2 Back to the Proof of Lemma 4 (existence of useful block-prefixes)

Conclusions
6.1 Alternative models e e e e e e e e
6.2 Alternative simulation techniqueso Lo L.

Detailed Description of the Recursive Schedule

B Solving the Recursion

19
20
24
26

32

37
37
37

40

40

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [16] are efficient
interactive proofs that have the remarkable property of yielding nothing beyond the validity of
the assertion being proved. The generality of zero-knowledge proofs has been demonstrated by
Goldreich, Micali and Wigderson [14], who showed that every NP-statement can be proved in zero-
knowledge provided that one-way functions exist [18, 21]|. Since then, zero-knowledge proofs have
turned out to be an extremely useful tool in the design of various cryptographic protocols.

The original setting in which zero-knowledge proofs were investigated consisted of a single
prover and verifier which execute only one instance of the protocol at a time. A more realistic
setting, especially in the time of the Internet, is one which allows the concurrent execution of zero-
knowledge protocols. In the concurrent setting (see Feige [9], and more substantial treatment by
Dwork, Naor and Sahai [7]), many protocols (sessions) are executed at the same time, involving
many verifiers which may be talking with the same (or many) provers simultaneously (the so-called
parallel composition considered in [13, 10, 12, 4, 2] is a special case). This setting presents the
new risk of a coordinated attack in which an adversary controls many verifiers, interleaving the
executions of the protocols and choosing verifiers’ messages based on other partial executions of
the protocol. Since it seems unrealistic (and certainly undesirable) for honest provers to coordinate
their actions so that zero-knowledge is preserved, we must assume that in each prover-verifier pair
the prover acts independently.

Loosely speaking, a zero-knowledge proof is said to be concurrent zero-knowledge if it remains
zero-knowledge even when executed in the concurrent setting. Recall that in order to demonstrate
that a certain protocol is zero-knowledge it is required to demonstrate that the view of every
probabilistic polynomial-time adversary interacting with the prover can be simulated by a prob-
abilistic polynomial-time machine (a.k.a. the simulator). In the concurrent setting, the verifiers’
view may include multiple sessions running at the same time. Furthermore, the verifiers may have
control over the scheduling of the messages in these sessions (i.e., the order in which the interleaved
execution of these sessions should be conducted). As a consequence, the simulator’s task in the
concurrent setting becomes considerably more complicated. In particular, standard techniques,
based on “rewinding the adversary”, run into trouble.

1.1 Previous Work

Constructing a “round-efficient” concurrent zero-knowledge protocol for all languages in NP, or
even nontrivial languages (outside of BPP) seems to be a challenging task. Intuition on the
difficulty of this problem is given in [7], where it was argued that for a specific recursive scheduling
of n sessions, the straightforward adaptation of the simulator to the concurrent setting requires time
exponential in n. The first lower bound demonstrating the difficulty of concurrent zero-knowledge
was given by Kilian, Petrank and Rackoff [20] who showed, building on the techniques of [13],
that for every language outside BPP there is no 4-round protocol whose concurrent execution is
simulatable in polynomial-time by a black-boz simulator. (A black-box simulator is a simulator
that has only black-box access to the adversarial verifier. Essentially all known proofs of security
of zero-knowledge protocols use black-box simulators. An exception is the protocol of [17].) This
lower bound was later improved by Rosen to seven rounds [23].

Indeed, even ignoring issues of round efficiency, it was not clear whether there exists a con-
current zero-knowledge protocol for nontrivial languages, without modifying the underlying model.
Richardson and Kilian [22] exhibited a family of concurrent zero-knowledge protocols (parameter-
ized by the number of rounds) for all languages in NP. Their original analysis showed how to

simulate in polynomial-time n®() concurrent sessions only when the number of rounds in the pro-
tocol is at least n¢ (for some arbitrary e > 0). This result has recently been substantially improved
by Kilian and Petrank [19], who show that the [22] protocol remains concurrent zero-knowledge
even if it has O(g(n)-log? n) rounds, where g(-) is any non-constant function (e.g., g(n) = loglogn).
Note that there was previously a considerable gap between the known upper and lower bounds on
the round-complexity of concurrent zero-knowledge (i.e., [19, 23]): the best known protocol has
O(log? n) rounds whereas the lower bound necessitates 7.!

1.2 Our Result

We substantially narrow the above gap by presenting a lower bound on the number of rounds
required by concurrent zero-knowledge. We show that in the context of black-box concurrent zero-
knowledge, Q(logn) rounds of interaction are essential for non-trivial proof systems.? This bound
is the first to rule out the possibility of constant-round concurrent zero-knowledge, when proven
via black-box simulation. Furthermore, the bound is polynomially related to the number of rounds
in the best known concurrent zero-knowledge protocol for languages outside BPP ([19]). Our main
result is stated in the following theorem.

Theorem 1 Letr: N — N be a function so that r(n) = o(log)ﬁ)gn). Suppose that (P,V') is an r(-)-
round proof system for a language L (i.e., on input x, the number of messages exchanged is at most
r(|z|)), and that concurrent executions of P can be simulated in polynomial-time using black-box
simulation. Then L € BPP. The theorem holds even if the proof system is only computationally-
sound (with negligible soundness error) and the simulation is only computationally-indistinguishable

(from the actual executions).

1.3 Techniques

The proof of Theorem 1 builds on the works of Goldreich and Krawczyk [13], Kilian, Petrank and
Rackoff [20], and Rosen [23]. On a very high level, the proof proceeds by constructing a specific
concurrent schedule of sessions, and demonstrating that a black-box simulator cannot successfully
generate a simulated accepting transcript for this schedule unless it “rewinds” the verifier many
times. The work spent on these rewindings will be super-polynomial unless the number of rounds
used by the protocol obeys the bound, or L € BPP. While the general outline of the proof remains
roughly the same as in [13, 20, 23], the actual schedule of sessions, and its analysis, are new. One
main idea that, together with other ideas, enables the bound is to have the verifier abort sessions
depending on the history of the interaction. A more detailed outline, presenting both the general
structure and the new ideas in the proof, appears in Section 3.

Remark: For simplicity of exposition, we fix the number of sessions in the concurrent schedule
that is used to prove Theorem 1 to be n? (where n is the size of the common input x). We would
like to stress that the above choice is indeed arbitrary, and that our proof can be easily extended
in order to demonstrate the triviality of black-box concurrent zero-knowledge for every choice of
the schedule’s size (provided that it is polynomial in n, and that the protocol has o(logn/loglogn)
rounds). Furthermore, since the concurrent schedule in our proof is fixed and known to everybody,
Theorem 1 is actually stronger than stated. It will hold even if the simulator knows the schedule
in advance (in particular, it knows the number of concurrent sessions), and even if the schedule of
the messages does not change dynamically (as a function of the history of the interaction).

1 f(n) = O(h(n)) if there exist constants c1,co > 0 so that for all sufficiently large n, f(n) < e1- (log h(n))? - h(n)).
2 f(n) = Q(h(n)) if there exist constants c1,c2 > 0 so that for all sufficiently large n, f(n) > c1 - h(n)/(log h(n))“2.

1.4 Organization

A detailed outline of the proof, presenting both the general structure and the new ideas, appears
in Section 3. The proof of Theorem 1 appears in Section 4. Section 4.1 describes the strategy of
the adversarial verifier, including the adversarial scheduling of messages. Section 4.2 describes the
decision procedure for L given a black-box simulator for the proof-system (P, V). The decision
procedure is analyzed in Sections 4.2 and 5.

2 Preliminaries
2.1 Probabilistic Notation

Denote by < X the process of uniformly choosing an element z in a set X. If B(-) is an
event depending on the choice of z < X, then Pr,_ x[B(z)] (alternatively, Pr,[B(x)]) denotes the
probability that B(z) holds when z is chosen with probability 1/|X|. Namely,

Pr,x [B(z)] =Y % - x(B(2))

where x is an indicator function so that x(B) = 1 if event B holds, and equals zero otherwise. This
notation extends in the natural way for events B(-,...,-) that depend on k variables z1,x9, ...,z
that are uniformly chosen in k (possibly different) sets X1, Xy,...,X,. That is, we denote by
Pry, 2o, . [B(Z1,%2,...,2;)] the probability that B(z1,x,...,2) holds when z1,z9,...,z; are
chosen with probability 1/(|X1|-|Xz|---|Xk]).

2.2 Interactive proofs

We use the standard definitions of interactive proofs (interactive Turing machines) [16, 11] and
arguments (a.k.a computationally-sound proofs) [3]. Given a pair of interactive Turing machines,
P and V, we denote by (P, V)(x) the random variable representing the (local) output of V' when in-
teracting with machine P on common input z, when the random input to each machine is uniformly
and independently chosen. We consider interactive proof systems in which the soundness error is
negligible. The term negligible is used for denoting functions that are (asymptotically) smaller than
one over any polynomial. More precisely, a function v from non-negative integers to reals is called

c

negligible if for every constant ¢ > 0 and all sufficiently large n, it holds that v(n) < n~°.

Definition 1 (Interactive Proof System) Let v : N — R be a negligible function. A pair of
interactive machines (P, V) is called an interactive proof system for a language L if machine V is
polynomaial-time and the following two conditions hold:

o Completeness: For every xz € L,

Pr(P,V)(z) =1] 21 —v(|z])

e Soundness: For every x & L, and every interactive machine B,

Pr(B,V)(z) =1] < v(lz)

In the case of unconditional soundness (i.e., in case soundness holds against all powerful provers),
Definition 1 can be relaxed to require only soundness error that is bounded away from 1 — v(|z|).

This is so, since the soundness error can always be made negligible by sufficiently many parallel
repetitions of the protocol (as such may occur anyhow in the concurrent model). However, we do
not know whether this condition can be relaxed in the case of computationally sound proofs. In
particular, in this case parallel repetitions do not necessarily reduce the soundness error (cf. [1]).

2.3 Concurrent zero-knowledge

Let (P,V) be an interactive proof (resp. argument) for a language L, and consider a concurrent
adversary (verifier) V* that, given input z € L, interacts with an unbounded number of independent,
copies of P (all on common input). The concurrent adversary V* is allowed to interact with the
various copies of P concurrently, without any restrictions over the scheduling of the messages in
the different interactions with P (in particular, V* has control over the scheduling of the messages
in these interactions). The transcript of a concurrent interaction consists of the common input z,
followed by the sequence of prover and verifier messages exchanged during the interaction. We
denote by viewl«(x) a random variable describing the content of the random tape of V* and the
transcript of the concurrent interaction between P and V* (that is, all messages that V* sends and
receives during the concurrent interactions with P, on common input x).

Remark: The “typical” definition of concurrent zero-knowledge requires that the concurrent ad-
versary V* explicitly specifies to which session the next scheduled message belongs. However, in
the proof of Theorem 1 we consider a “weaker” concurrent adversary V*, that is only running a
fixed scheduling of sessions (and so cannot change the schedule dynamically). In particular, there
will be no need to use formalism for specifying to which session the next scheduled message belongs.

Definition 2 (Concurrent Zero-Knowledge) Let (P,V) be an interactive proof system for a
language L. We say that (P,V) is concurrent zero-knowledge, if for every polynomial-time con-
current adversary V* there exists a probabilistic polynomial-time algorithm Sy~ such that for every
x € L, the distribution viewy(x) is computationally indistinguishable from the distribution Sy~(z).

2.4 Black-box concurrent zero-knowledge

Loosely speaking, the definition of black-box zero-knowledge requires that there exists a “universal”
simulator, S, so that for every x € L and every probabilistic polynomial-time adversary V*, the
simulator S produces a distribution that is indistinguishable from view{.(z) while using V* as an
oracle (i.e., in a “black-box” manner). We assume concurrent adversaries V* are modeled by ¢(-)-
sized circuits (capturing non-uniform, deterministic verifiers viewed as an oracle, cf. [13, 11, 20]).

Before we proceed with the formal definition, we will have to overcome a technical difficulty
arising from an inherent difference between the concurrent setting and “stand-alone” setting. In
“stand-alone” zero-knowledge the length of the output of the simulator depends only on the protocol
and the size of the common input z. It is thus reasonable to require that the simulator runs in
time that depends only on the size of z, regardless of the running time of its black-box. However,
in black-box concurrent zero-knowledge the output of the simulator is an entire schedule, and its
length depends on the running time of the concurrent adversary. Therefore, if we naively require
that the running time of the simulator is a fixed polynomial in the size of =, then we end up with an
unsatisfiable definition. (As for any simulator S there is an adversary V* that generates a transcript
that is longer than the running time of S.)

One way to solve the above problem is to have for each fixed polynomial ¢(-), a simulator S, that
“only” simulates all g(-)-sized circuits V*. Clearly, the running time of the simulator now depends
on the running time of V* (which is an upper bound on the size of the schedule), and the above

problem does not occur anymore. Another (more restrictive) way to overcome the above problem
would be to consider black-box simulators S that receive in advance a parameter K denoting the
number of sessions that the adversary will use in its execution (we stress that K is chosen after the
protocol is determined). Such simulators should run in worst-case time that is a fixed polynomial
in K and in the size of the common input z. (Note that by letting S have K as input we actually
strengthen the lower bound.) In the sequel we choose to adopt the latter formalization. We stress
that both formalizations are general enough to include all known black-box zero-knowledge proofs.

Definition 3 (Black-Box Concurrent Zero-Knowledge) Let (P,V) be an interactive proof
system for a language L. We say that (P,V') is black-box concurrent zero-knowledge, if for every
polynomial q(-), there exists a probabilistic polynomial-time algorithm Sg, so that for every x € L
and for every concurrent adversary circuit V* (running at most q(|z|) concurrent sessions), Sq(z)
runs in time polynomial in q(|z|), and satisfies that the distribution viewy.(z) is computationally
indistinguishable from the distribution S(Y* (z).

The deviation gap of a simulator S for a proof-system (P, V) is defined, somewhat informally, as
follows. Consider a distinguisher D that is required to decide whether its input consists of a
transcript of a real interaction of (P, V*) for some cheating verifier V*, or to a transcript that was
produced by S. The deviation gap of D is the difference between the probability that D outputs 1
given an output of S, and the probability that D outputs 1 given a transcript of a real interaction
of (P,V*). The deviation gap of S is the deviation gap of the best polynomial time distinguisher
D. We consider simulators that run in strict (worst case) polynomial time, and have deviation gap
at most 1/4. Using a standard argument, a lower bound on such simulators extends to a lower
bound on simulators running in expected polynomial time.

2.4.1 Additional conventions

By k-round protocols we mean protocols in which 2k 4 2 messages are exchanged subject to the fol-
lowing conventions. The first message is a fixed initiation message by the verifier, denoted v1, which
is answered by the prover’s first message denoted p;. The following verifier and prover messages
are denoted va,p2, ..., Vk+1, Pk+1, Where vgi1 is an ACCEPT/REJECT message indicating whether the
verifier has accepted its input, and the last message (i.e., px+1) is a fixed acknowledgment message
sent by the prover.®> We impose the following technical restrictions on the simulator (but claim
that each of these restrictions can be easily satisfied): First we assume that the simulator never
repeats the same query twice. (We refer to the messages sent by the simulator to the adversary
as queries and to the adversary’s messages as answers.). As in (cf. [13]), the queries of the sim-
ulator are prefixes of possible execution transcripts (in the concurrent setting).* Such a prefix is
a sequence of alternating prover and verifier messages (which may belong to different sessions as
determined by the fixed schedule) that ends with a prover message. The answer to the queries
made by the simulator consists of a single verifier message (which belongs to the next scheduled
session). Secondly, we assume that before making a query ¢ = (b1, a1,...,b:, at), where the a’s are
prover messages, the simulator has made queries to all relevant prefixes (i.e., (b1, a1,...,b;,a;), for
every i < t), and has obtained the b;’s as answers. Finally, we assume that before producing output
(b1,a1,...,br,ar), the simulator makes the query (b1, a1,...,br,ar).

3The pgy1 message is an artificial message included in order to “streamline” the description of the adversarial
schedule (the schedule will be defined in Section 4.1.1).

4 For sake of simplicity, we choose to omit the input & from the transcript’s representation (as it is implicit in the
description of the verifier anyway).

3 Proof outline

This section contains an outline of the proof. To facilitate reading, we partition the outline into
two parts: The first part reviews the general framework. (This part mainly follows previous works,
namely [12, 20, 23].) The second part concentrates on the actual schedule and the particularities
of our lower bound.

3.1 The high-level framework

Consider a k-round Concurrent Zero Knowledge proof system (P, V) for language L, and let S be
a black-box simulator for (P, V). We use S to construct a BPP decision procedure for L. For this
purpose, we construct a family {V}} of “cheating verifiers”. To decide on an input z, run S on
an interaction with a cheating verifier Vj, that was chosen at random from the constructed family;
decide that z € L iff S outputs an accepting transcript of Vj.

The general structure of the family {V}} is roughly as follows. A member V} in the family is
identified via a hash function h taken from a hash-function family H having “much randomness”
(or high independence). Specifically, the independence of H will be larger than the running time
of S. This guarantees that, for our purposes, a function drawn randomly from H behaves like a
random function. We define some fixed concurrent schedule of a number of sessions between V},
and the prover. In each session, V} runs the code of the honest verifier V on input z and random
input h(a), where a is the current history of the (multi-session) interaction at the point where the
session starts. Vj, accepts if all the copies of V' accept.

The proof of validity of the decision procedure is structured as follows. Say that S succeeds if
it outputs an accepting transcript of V3. It is first claimed that if € L then a valid simulator S
must succeed with high probability. Roughly speaking, this is so because each session behaves like
the original proof system (P, V'), and (P,V) accepts x with high probability. Demonstrating that
the simulator almost never succeeds when z ¢ L is much more involved. Given S we construct a
“cheating prover” P* that makes the honest verifier V accept & with probability that is polynomially
related to the success probability of S. The soundness of (P, V) now implies that S succeeds only
with negligible probability.

In order to complete the high-level description of the proof, we must first define the following
notions, that play a central role in the analysis. Consider the conversation between V; and a
prover. A session-prefix a is a prefix of this conversation, that ends at the point where some new
session starts. (Recall that V’s random input for that new session is set to h(a).) Next, consider
the conversation between S and V} in some run of S. (Such a conversation may contain many
interleaved and incomplete conversations of V;, with a prover.) Roughly speaking, a message sent
by S to the simulated V}, is said to have session prefix a if it relates to the session where the verifier
randomness is h(a). A session-prefix is called useful in a run of S if it was accepted (i.e., V}, sent an
accepting message for that session-prefix), and if V}, has sent exactly k£ messages for session-prefix
a, where k is the number of rounds in the protocol (i.e., S did not “fork” that session-prefix, where
forking session-prefix a is an informal term meaning that S rewinds V}, to a point where V}, provides
a second continuation for session-prefix a).

Returning to the proof, we sketch the construction of P*. It first randomly chooses a function
h & H and an index i. It then simulates an interaction between S and V3, with the exception that
P* uses the messages sent by S that have the i*? session-prefix in that interaction as the messages
that P* sends to the actual verifier it interacts with; similarly, it uses the messages received from
the actual verifier instead of V},’s messages in the i*P session-prefix in the simulated interaction. It
can be seen that whenever the session-prefix chosen by P* is useful, then (P*, V') accepts. Since the

number of session-prefixes in an execution of S is bounded by a polynomial, it follows that if the
conversation between S and V}, contains a useful session-prefix with non-negligible probability, then
(P*,V)(x) accepts with non-negligible probability. It is left to demonstrate that if S succeeds with
non-negligible probability then the conversation between S and V} contains a useful session-prefix
with non-negligible probability. The above reasoning reduces the proof of the theorem to coming
up with a construction of {V}}, including the schedule of sessions, and demonstrating that {V}}
satisfies the following two properties:

1. In an interaction between the honest prover P and V},, the latter accepts with high probability.

2. If S succeeds with non-negligible probability then with non-negligible probability the conver-
sation between S and V}, contains a useful session-prefix.

3.2 The schedule and additional ideas

We have seen that, using the above framework, the crux of the lower bound is to come up with a
schedule that allows demonstrating properties (1) and (2). We describe our schedule. Our starting
point is the schedule used in [20] to demonstrate the impossibility of black-box concurrent zero-
knowledge in 2 rounds (namely, 4 messages). In that schedule there are n levels (n is polynomially
related to the security parameter), where each level consists of a single session. The (£ + 1)t-level
session starts and ends in between the two rounds of the £*P-level session. Furthermore, V3 halts
as soon as some session ends in V rejecting the input. That schedule suffices for demonstrating
that any forking of an ¢-level session past the “midpoint” (i.e., the point between the two rounds
of that session) will cost the simulator work that is exponential in £. More specifically, let W (£)
denote the work incurred by the simulator for a schedule of ¢ levels; Then, roughly speaking, it is
demonstrated that if the simulator violates condition (2) then W ({) > 2- W (£ — 1) holds for all ¢,
with the implication that W (n) > 271

A first attempt to generalize this schedule to the case of k rounds may proceed as follows. Start
with a single session at level 1. Then, continue recursively where between any two consecutive
rounds in a session at level £ start a new session at level £ + 1. The schedule ends when all n
sessions were used. However, this schedule does not guarantee property (2): It can only be shown
that a simulator that violates property (2) will satisfy W (£) = poly(k) - W (£ — 1). Furthermore,
since the number of sessions in each level is £ times the number of sessions in the previous level,
there are only O(logy, n) levels. Thus the bound only requires that the work done by the simulator is
kOUogin) — ,O0(1): this does not contradict the requirement that the simulator is poly-time. Indeed,
this particular schedule can be efficiently simulated.

One method to circumvent this difficulty was used in [23]. However, that method extends the
lower bound only up to 3 rounds (more precisely, 7 messages). Here we use a different method. We
first add another, binary hash function, g, to the specification of V3. This hash function is taken
from a family G with sufficient independence, so that it looks like a random binary function. Now,
before generating the next message in some session, V, j, first applies g to some predetermined part
of the conversation so far. If g returns 0 then V; ; aborts the session by sending an “abort” message.
If g returns 1 then V}, is run as usual. In addition, we replace each session in the above schedule (for
k rounds) with a “block” of, say, n sessions. We now have n? sessions in a schedule. (This choice
of parameters is made for convenience of presentation.) V ; accepts a block of n sessions if at least
1/2 of the non-aborted sessions in this block were accepted (and not too many of the sessions in
this block were aborted). Once a block is rejected, V,j halts. At the end of the execution, V,
accepts if all blocks were accepted.

The rationale behind the use of aborts can be explained as follows. Recall that a session-prefix
a stops being useful only when V, ;, sends more than k messages whose session-prefix is a. This
means that a stops being useful only if S forks a and in addition g returns 1 in at least two of the
continuations of a. This means that S is expected to fork session-prefix a several times before it
stops being useful. Since each forking of a involves extra work of S on higher-level sessions, this
may force S to invest considerably more work before a session stops being useful.

A bit more specifically, let p denote the probability, taken over the choice of g, that g returns
1 on a given input. In each attempt the session is not aborted with probability p. Thus S is
expected to fork a session prefix 1/p times before it becomes non-useful. This gives hope that,
in order to make sure that no session-prefix is useful, S must do work that satisfies a condition
of the sort W(¢) > Q(1/p) - W(£ — 1). This would mean that the work to simulate n sessions is
at least Q(p~'°8x™). Consequently, when the expression p~!°8™ is super-polynomial there is hope
that condition (2) above is satisfied.

Clearly, the smaller p is chosen to be, the larger p is. However, p cannot be too small,
or else the probability of a session to be ever completed will be too small, and condition (1) above
will not be satisfied. Specifically, an k-round protocol is completed with probability p*. We thus
have to make sure that p* is not negligible.

In the proof we set p = n~'/2%. This will guarantee that a session is completed with probability
p* = n~1/2 (thus property (1) has hope to be satisfied). Furthermore, since p~'°8+" is super-
polynomial whenever k£ = o(logn/loglogn), there is hope that property (2) will be satisfied for
k = o(log n/loglogn).

—log, n

3.3 The actual analysis

Demonstrating property (1) is straightforward. Demonstrating property (2) requires arguing on
the dependency between the expected work done by the simulator and its success probability. This
is a tricky business, since the choices made by the simulator (and in particular the amount of
effort spent on making each session non-useful) may depend on past events. We go about this task
by pinpointing a special property that holds for any successful run of the simulator, unless the
simulator runs in super-polynomial time (Lemma 5). Essentially, this property states that there
exists a block of sessions such that none of the session-prefixes in this block were forked too many
times. Using this property, we show (in Lemma 4) that the probability (over the choices of V4
and the simulator) that a run of the simulator contains no useful session-prefix is negligible.

4 Proof of Theorem 1

Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-
rem 1 exists, we will describe a probabilistic polynomial-time decision procedure for L, based on
S. The first step towards describing the decision procedure for L involves the construction of an
adversary verifier in the concurrent model.

4.1 The concurrent adversarial verifier

The description of the adversarial strategy proceeds in several steps. We start by describing the
underlying fixed schedule of messages. Once the schedule is presented, we describe the adversary’s
strategy regarding the contents of the verifier messages.

4.1.1 The schedule

For each z € {0,1}", we consider the following concurrent scheduling of n? sessions, all run on
common input z.> The scheduling is defined recursively, where the scheduling of m < n? sessions
(denoted R,,) proceeds as follows:®

1. If m < n, sessions 1,...,m are executed sequentially until they are all completed;
2. Otherwise, for j =1,...,k+ 1:

Message exchange: Each of the first n sessions exchanges two messages (i.e., vj,p;);
(These first n sessions out of 1,...,m will be referred to as the main sessions of R,,.)

Recursive call: If j < k + 1, the scheduling is applied recursively on | ™| new sessions;

(This is done using the next | ™"] remaining sessions out of 1,...,m.)

The schedule is depicted in Figure 1. We stress that the verifier typically postpones its answer (i.e.,
v;) to the last prover’s message (i.e., pj—1) till after a recursive sub-schedule is executed, and that
in the j™ iteration, |”"| new sessions are initiated (with the exception of the first iteration, in
which the first n (main) sessions are initiated as well). The order in which the messages of various
sessions are exchanged is fixed but immaterial. Say that we let the first session proceed, then the

1 M (n) (n) (i)(Q)

second and so on. That is, we have the order v;*/,p,”,..., v, ", p; ’, where v,” (resp., p;) denotes
the verifier’s (resp., prover’s) j** message in the i*" session.

The set of n sessions that are explicitly executed during the message exchange phase of the
recursive invocation (i.e., the main sessions) is called a recursive block. (Notice that each recursive
block corresponds to exactly one recursive invocation of the schedule.) Taking a closer look at the
schedule we observe that every session in the schedule is explicitly executed in exactly one recursive
invocation (that is, belongs to exactly one recursive block). Since the total number of sessions in
the schedule is n2, and since the message exchange phase in each recursive invocation involves the
explicit execution of n sessions (in other words, the size of each recursive block is n), we have that the
total number of recursive blocks in the schedule is equal to n. Since each recursive invocation of the
schedule involves the invocation of k£ additional sub-schedules, the recursion actually corresponds
to a k-ary tree with » nodes. The depth of the recursion is thus |log,((k — 1)n + 1)], and the

number of “leaves” in the recursion (i.e., sub-schedules of size smaller that n) is at least L@k"ﬂj

Identifying sessions according to their recursive block: To simplify the exposition of the
proof, it will be convenient to associate every session appearing in the schedule with a pair of
indices (£,i) € {1,...,n} x {1,...,n} (rather than with a single index s € {1,...,n%}). The
value of £ = {(s) € {1,...,n} will represent the index of the recursive block to which session s
belongs (according to some canonical enumeration of the n invocations in the recursive schedule,
say according to the order in which they are invoked), whereas the value of i = i(s) € {1,...,n}
will represent the index of session s within the n sessions that belong to the ¢! recursive block (in
other words, session (£,4) is the i*® main session of the £*® recursive invocation in the schedule).
Typically, when we explicitly refer to messages of session (¢,7), the index of the corresponding
recursive block (i.e., £) is easily deducible(fr)om the context. In such cases, we will so(n)letimes o(n)lit

0 i (z)

the index £ from the “natural” notation v; (resp. ng,i))’ and stick to the notation v’ (resp. p;

"Recall that each session consists of 2k + 2 messages, and that k Lef k(n) = o(log n/loglogn).

%In general, we may want to define a recursive scheduling for sessions i1,...,%» and denote it by R;, ... i, (see
Section A in the Appendix for a more formal description of the schedule). We choose to simplify the exposition by
renaming these sessions as 1,...,m and denote the scheduling by R.,.

10

Note that once the schedule is fixed (which is clearly the case in our proof), the values of (¢,7) and
the session index s are completely interchangeable (in particular, £ = s div n and i = s mod n).

Definition 4 (Identifiers of next message) The schedule defines a mapping from partial ez-
ecution transcripts ending with a prover message to the identifiers of the next verifier message;
that is, the session and round number to which the next verifier message belongs. (Recall that
such partial execution transcripts correspond to queries of a black-box simulator and so the map-

ping defines the identifier of the answer:) For such a query g = (b1,a1,...,bs, ar), we denote by
en(@) = (6,1) € {1,...,n} x {1,...,n} the session to which the next verifier message belongs, and
by Tmsg(q) = j € {1,...,k + 1} its index within the verifier’s messages in this session.

We stress that the identifiers of the next message are uniquely determined by the number of messages
appearing in the query (and are not affected by the contents of these messages).

1 2 n n+1 m
v1 =
P1 = P
=
<“~=
=
Rm—n
13
vg =
P2 = -
=
<~
=
j—1 &
Pj—1 = -
=
<~
=
Rm—n
E
s
J N
Pj =
<=
=
~=
=
Vi <=
Pk = -
=
<<=
=
Rm—n
E
k41 &
Pr41 =
=
=
<~
=

Figure 1: The recursive schedule R,, for m sessions. Columns correspond to m individual sessions
and rows correspond to the time progression.

Once the identifiers of the next verifier message are deduced from the query’s length, one has to
specify a strategy according to which the contents of the next verifier message will be determined.
Loosely speaking, our adversary verifier has two options: It will either send the answer that would

11

have been sent by an honest verifier (given the messages in the query that are relevant to the current
session), or it will choose to deviate from the honest verifier strategy and abort the interaction in
the current session (this will be done by answering with a special ABORT message). Since in a
non-trivial zero-knowledge proof system the honest verifier is always probabilistic, and since the
“abort behaviour” of the adversary verifier should be “unpredictable” for the simulator, we have
that both options require a source of randomness (either for computing the contents of the honest
verifier answer or for deciding whether to abort the conversation). As is already customary in works
of this sort [13, 20, 23|, we let the source of randomness be a hash function with sufficiently high
independence (which is “hard-wired” into the verifier’s description).

Determining the randomness for a session: Focusing (first) on the randomness required to
compute the honest verifier’s answers, we ask what should the input of the above hash function
be. A naive solution would be to let the randomness for a session depend on the session’s index.
That is, to obtain randomness for session ({,7) = 7s,(q) apply the hash function on the value
(£,7). This solution will indeed imply that every two sessions have independent randomness (as
the hash function will have different inputs). However, the solution seems to fail to capture the
difficulty arising in the simulation of multiple concurrent sessions. What we would like to have is
a situation in which whenever the simulator rewinds a session (that is, feeds the adversary verifier
with a different query of the same length), it causes the randomness of some other session (say, one
level down in the recursive schedule) to be completely modified. To achieve this, we must cause
the randomness of a session to depend also on the history of the entire interaction. Changing even
a single message in this history would immediately result in an unrelated instance of the session,
and would thus force the simulator to redo the simulation work on this session all over again.

So where in the schedule should the randomness of session (£,7) be determined? On the one
hand, we would like to determine the randomness of a session as late as possible (in order to
maximize the effect of changes in the history of the interaction on the randomness of the session).
On the other hand, we cannot afford to determine the randomness after the session’s initiating
message is scheduled (as the protocol’s specification may require that the verifier’s randomness is
completely determined before the first message in the protocol is exchanged). The point in which
we choose to determine the randomness of session (£, %) is the point in which recursive block number
{ is invoked. That is, to obtain the randomness of session (£,7) = msn(g) we feed the hash function
with the prefix of query g that ends just before the first message in block number £ (remember
that queries correspond to partial execution transcripts and thus contain the whole history of the
interaction so far).” This prefix is called the block-prefix of query g and is defined next.

Definition 5 (Block-prefix) The block-prefix of a query g satisfying msn(q) = (¢,1), is the pre-
fix of g that is answered with the first verifier message of session (£,1) (that is, the first main
session in block number £). More formally, bp(q) = (b1,a1,...,by,ay), is the block-prefiz of
g = (bi,a1,...,b,a¢) if Ten(bp(Q)) = (4,1) and Tmeg(bp(q)) = 1. The block-prefizx will be said
to correspond to recursive block number £.8 (Note that i may be any index in {1,...,n}, and that
at need not belong to session (4,1).)

"In order to achieve independence with other sessions in block number £, we will also feed the hash function with
the value of 7. This (together with the above choice) guarantees us the following properties: (1) The input to the
hash function (and thus the randomness for session (£,)) does not change once the interaction in the session begins.
(2) For every pair of different sessions, the input to the hash function is different (and thus the randomness for each
session is independent). (3) Even a single modification in the prefix of the interaction up to the first message in block
number £, induces fresh randomness for all sessions in block number £.

8In the special case that £ = 1 (that is, we are in the first block of the schedule), we define bp(g) =L.

12

Determining whether and when to abort sessions: Whereas the randomness that is used
to compute the honest verifier’'s answers in each session is determined before a session begins, the
randomness that is used in order to decide whether to abort a session is chosen independently every
time the execution of the schedule reaches the next verifier message in this session. As before, the
required randomness is obtained by applying a hash function on the suitable prefix of the execution
transcript. This time, however, the length of the prefix increases each time the execution of the
session reaches the next verifier message (rather than being fixed for the whole execution of the
session). This way, the decision of whether to abort a session also depends on the contents of
messages that were exchanged after the initiation of the session has occurred. Specifically, in order
to decide whether to abort session (£,1) = ms,(q) at the j'B message (where j = Tmsg(7)), we feed
the hash function with the prefix of query g that ends with the (j —1) prover message in the n't
main session of block number £. This prefix is called the iteration-prefix of query g and is defined
next (see Figure 2 for a graphical description of the block-prefix and iteration-prefix of a query).?

Definition 6 (Iteration-prefix) The iteration-prefix of a query g satisfying msn(q) = (¢,4) and
Tmsg(q@) = J > 1, is the prefix of G that ends with the (j —1)%* prover message in session (£,n)
(that is, the n'" main session in block number £). More formally, ip(q) = (b1, a1,...,bs,as), is
the iteration-prefix of § = (b1,a1,...,b,a¢) if as is of the form pyi)l (where pg-n)
(j—1)% prover message in the n'™ main session of block number £). This iteration-prefiz is said to
correspond to the block-prefix of . (Again, note that ¢ may be any index in {1,...,n}, and that a,
need not belong to session (£,7). Also note that two queries g,y that satisfy bp(g,) = bp(q,), and
Tmsg(T1) = Tmsg(Jo) may have the same iteration-prefix (even if 7s,(q;) # 7sn(Qy)). Finally, note
that the iteration-prefix is defined only for mmeg(q) > 1.)

1 denotes the

1 2 n n+1 m
v (a) &
P1 L=
: N
: =
B <
: =
B Rm—n
: 13
vy <
P2 =
: N
: =
: N
. =
vi—l <=
Pj—1 =
P
=
=
= (b)
Rm—n
13
v <
Pj E

Figure 2: Determining the prefixes of query g (in this example, query g ends with a pg-l) message):

(a) The block-prefix of § - messages up to this point are used by Vj 5 to determine the randomness

(2
e
used by Vj 5 to determine whether or not message v§-2) will be set to ABORT.

to be used for computing message v (b) The iteration-prefix of g - messages up to this point are

9 As before, the hash function is also fed with the value of 7 (in order to achieve independence with other sessions).

13

Motivating Definitions 5 and 6: The choices made in Definitions 5 and 6 are designed to cap-
ture the difficulties encountered whenever many sessions are to be simulated concurrently. As was
previously mentioned, we would like to create a situation in which every attempt of the simulator
to rewind a specific session will result in loss of work done for other sessions, and will cause the sim-
ulator to do the same amount of work all over again. In order to force the simulator to repeat each
such rewinding attempt many times, we make each rewinding attempt fail with some predetermined
probability (by letting the verifier send an ABORT message instead of a legal answer).!”

To see that Definitions 5 and 6 indeed lead to the fulfillment of the above requirements, we
consider the following (informal) example. Suppose that at some point during the simulation, the
adversary verifier aborts session (£,4) at the 5! message (while answering query g). Further suppose
that (for some unspecified reason) the simulator wants to to get a “second chance” in receiving a
legal answer to the j™ message in session (¢,4) (hoping that it will not receive the ABORT message
again). Recall that the decision of whether to abort a session depends on the outcome of a hash
function when applied to the iteration-prefix ip(q), of query g. In particular, to obtain a “second
chance”, the black-box simulator has no choice but to change at least one prover message in the
above iteration-prefix (in other words, the simulator must rewind the interaction to some message
occurring in iteration-prefix ip(q)). At first glance it may seem that the effect of changes in the
iteration-prefix of query g is confined to the messages that belong to session (£,7) = msn(q) (or at
most, to messages that belong to other sessions in block number £). Taking a closer look at the
schedule, we observe that every iteration-prefix (and in particular ip(g)) can also be viewed as the
block-prefix of a recursive block one level down in the recursive construction. Viewed this way, it is
clear that the effect of changes in ip(g) is not confined only to messages that correspond to recursive
block number £, but rather extends also to sessions at lower levels in the recursive schedule. By
changing even a single message in iteration-prefix ip(q), the simulator is actually modifying the
block-prefix of all recursive blocks in a sub-schedule one level down in the recursive construction.
This means that the randomness for all sessions in these blocks is completely modified (recall that
the randomness of a session is determined by applying a hash function on the corresponding block-
prefix), and that all the simulation work done for these sessions is lost. In particular, by changing
even a single message in iteration-prefix ip(q), the simulator will find himself doing the simulation
work for these sessions all over again.

Having established the effect of changes in iteration-prefix ip(g) on sessions at lower levels in the
recursive schedule, we now turn to examine the actual effect on session (£,7) = 7, (q) itself. One
possible consequence of changes in iteration-prefix ip(g) is that they may also effect the contents
of the block-prefix bp(q) of query g (notice that, by definition, the block-prefix bp(g) of query g
is contained in the iteration-prefix ip(g) of query §). Whenever this happens, the randomness
used for session (/,7) is completely modified, and all simulation work done for this session will be
lost. A more interesting consequence of a change in the contents of iteration-prefix ip(q), is that
it will result in a completely independent decision of whether session (¢,4) is to be aborted at the
j*® message (the decision of whether to abort is taken whenever the simulator makes a query g
satisfying e (q) = (£,1), and Tmsg(q) = j)- In other words, each time the simulator attempts to get
a “second chance” in receiving a legal answer to the j'® message in session (£,4) (by rewinding the
interaction to a message that belongs to iteration-prefix ip(q)), it faces the risk of being answered
with an ABORT message independently of all previous rewinding attempts.

Indeed, as we shall see in the sequel, the choices made in our definitions lead to the fulfillment
of the requirements that we would like to meet.

10Recall that all of the above is required in order to make the simulator’s work accumulate to too much, and
eventually cause its running time to be super-polynomial.

14

4.1.2 The verifier strategy V

We consider what happens when a simulator S (for the above schedule) is given oracle access to a
verifier strategy Vj 5 defined as follows (depending on hash functions g, h and the input z). Recall
that we may assume that S runs in strict polynomial time: we denote such time bound by tg(-).
Let G denote a small family of ¢g(n)-wise independent hash functions mapping poly(n)-bit long
sequences into a single bit of output, so that for every o we have Pry_glg(a) =1] = n~Y/2% Let H
denote a small family of ¢g(n)-wise independent hash functions mapping poly(n)-bit long sequences
to py(n)-bit sequences, where py(n) is the number of random bits used by an honest verifier V on
an input € {0,1}". We describe a family {Vyn}tgeq nem of adversarial verifier strategies (where
x is implicit in Vg 3). On query § = (b1, a1,...,a;—1, b, ar), the verifier acts as follows:

1. First, Vj, checks if the execution transcript given by the query is legal, and halts with a
special ERROR message if the query is not legal.!!

2. Next, V; 5 determines the block-prefix, bp(q) = (b1, a1,--.,by,a), of query g. It also deter-

mines the identifiers of the next-message (¢,i) = msn(q) and j = Tmsg(q), the iteration-prefix
ip(q) = (b1,a4,..., ba,pg-ri)l), and the j—1 prover messages of session 7 appearing in query g
(which we denote by p(f), . ,pg-zzl).
(Motivating discussion: The value of the block-prefix, bp(q), is used in order to determine the
randomness of session (£,1), whereas the value of the iteration-prefix, ip(q), is used in order to determine
whether session (£,i) is about to be aborted at this point (i.e., j*® message) in the schedule (by
answering with a special ABORT message).)

(i)).

3. If j =1, then V, ;, answers with the verifier’s fixed initiation message for session i (i.e., vj

4. If j > 1, then Vjj, determines b; ; = g(4,ip(q)) (as a bit deciding whether to abort session 4):

(a) If b ; = 0, then V5, sets vgi) = ABORT (indicating that V; aborts session 7).
(b) Ifb; ; = 1, then V5, determines r; = h(7,bp(q)) (as coins to be used by V'), and computes

the message vg-i) = V(x,r; pgi), eee ,pg-izl) that would have been sent by the honest verifier
() @

on common input z, random-pad r;, and prover’s messages p;’,...,p; ;.
(c) Finally, Vg 5 answers with vg-i).
Dealing with ABORT messages: Note that, once V,; has aborted a session, the interaction in
this session essentially stops, and there is no need to continue exchanging messages in this session.
However, for simplicity of exposition we assume that the verifier and prover stick to the fixed
schedule of Section 4.1.1 and exchange ABORT messages whenever an aborted session is scheduled.

On the arguments to g and h: The hash function h, which determines the random input for
V in a session, is applied both on ¢ (the identifier of the relevant session in the current block) and
on the entire block-prefix of the query g. This means that even though all sessions in a specific
block have the same block-prefix, for every pair of two different sessions, the corresponding random
inputs of V' will be independent of each other (as long as the number of applications of & does not

"1n particular, V; 5 checks whether the query is of the prescribed format (as described in Section 2.4.1, and as
determined by the schedule), and that the contents of its messages is consistent with Vg »’s prior answers. (That is,
for every proper prefix ¢ = (b1,a1,...,by,as) of query g = (b1,a1,...,bt,at), the verifier checks whether the value
of b, 41 (as it appears in q) is indeed equal to the value of V, 4(g').)

15

exceed tg(n), which is indeed the case in our application). The hash function g, which determines
whether and when the verifier aborts sessions, is applied both on ¢ and on the entire iteration-prefix
of the query g. As in the case of h, the decision whether to abort a session is independent from
the same decision for other sessions (again, as long as ¢ is not applied more than tg(n) times).
However, there is a significant difference between the inputs of A and g: Whereas the input of
h is fized once (£,1) is fixed (for every possible value of the message number index j), the input
of g varies depending on the value of j. In particular, whereas the randomness of a session is
completely determined once the session begins, the decision of whether to abort a session is taken
independently each time that the schedule reaches the next verifier message of this session.

On the number of different prefixes that occur in interactions with V; ;: Since the num-
ber of recursive blocks in the schedule is equal to n, and since there is a one-to-one correspondence
between recursive blocks and block-prefixes, we have that the number of different block-prefixes
that occur during an interaction between and honest prover P and the verifier V, j is always equal
to n. Since the number of iterations in the message exchange phase of a recursive invocation of
the schedule equals £ + 1, and since there is a one-to-one correspondence between such iterations
and iteration-prefixes'? we have that the number of different iteration-prefixes that occur during
an interaction between and honest prover P and the verifier V; 3, is always equal to k-n (that is, k
different iteration-prefixes for each one of the n recursive invocations of the schedule). In contrast,
the number of different block-prefixes (resp., iteration-prefixes), that occur during an execution of a
black-box simulator S that is given oracle access to Vj », may be considerably larger than n (resp.,
k- n). The reason for this is that there is nothing that prevents the simulator to feed V; ; with
different queries of the same length (this corresponds to the so called rewinding of an interaction).
Still, the number of different prefixes in an execution of S is always upper bounded by the running
time of S; that is, tg(n).

On the probability that a session is never aborted: A typical interaction between an
honest prover P and the verifier V; ;, will contain sessions whose execution has been aborted prior
to completion. Recall that at each point in the schedule, the decision of whether or not to abort the
next scheduled session depends on the outcome of g. Since the function g returns 1 with probability
n~1/?* a specific session is never aborted with probability (n~'/?¥)¥ = n='/2, Using the fact that
whenever a session is not aborted, V, , operates as the honest verifier, we infer that the probability
that a specific session is eventually accepted by V5, is at least 1/2 times the probability that the
very same session is never aborted (where 1/2 is an arbitrary lower bound on the completeness
probability of the protocol). In other words, the probability that a session is accepted by V4 is

at least ”_21 2 In particular, for every set of n sessions, the expected number of sessions that are
eventually accepted by V, j, (when interacting with the honest prover P) is at least n- ”_21 2 %/2,

and with overwhelming probability at least "zl sessions are accepted by Vj 5.

A slight modification of the verifier strategy: To facilitate the analysis, we slightly modify
the verifier strategy so that it does not allow the number of accepted sessions in the history of the
interaction to deviate much from its “expected behavior”. Loosely speaking, given a prefix of the
execution transcript (ending with a prover message), the verifier will check whether the recursive
block that has just been completed contains at least %/2 accepted sessions. (To this end, it will be
sufficient to inspect the history of the interaction only when the execution of the schedule reaches

12The only exception is the first iteration in the message exchange phase. Since only queries g that satisfy Tmsg(q) >1
have an iteration-prefix, the first iteration will never have a corresponding iteration-prefix.

16

the end of a recursive block. That is, whenever the schedule reaches the last prover message in the
last session of a recursive block (i.e., some pggl message).) The modified verifier strategy (which
we continue to denote by V1), is obtained by adding to the original strategy an additional Step

1’ (to be executed after Step 1 of V 3):

1. If a; is of the form pg_?l (i.e., in case query ¢ = (b1,a1,...,b,a;) ends with the last prover
message of the n'™ main session of a recursive block), Vg,n checks whether the transcript

_ (n) : . . nl/2 . .

g = (b1,a1,...,b,p; +1) contains the accepting conversations of at least ®;— main sessions
in the block that has just been completed. In case it does not, V, ; halts with a special
DEVIATION message (indicating that the number of accepted sessions in the block that has
just been completed deviates from its expected value).

(Motivating discussion: Since the expected number of accepted sessions in a specific block is

at least #, the probability that the block contains less than %/2 accepted sessions is negligible.

Still, the above modification is not superfluous (even though it refers to events that occur only with
negligible probability): It allows us to assume that every recursive block that is completed during

the simulation (including those that do not appear in the simulator’s output) contains at least
n

% accepted sessions. In particular, whenever the simulator feeds V,; with a partial execution

transcript (i.e., a query), we are guaranteed that for every completed block in this transcript, the

simulator has indeed “invested work” to simulate the %/2 accepted sessions in the block.)

A slight modification of the simulator: Before presenting the decision procedure, we slightly
modify the simulator so that it never makes a query that is answered with either the ERROR or
DEVIATION messages by the verifier V. Note that this condition can be easily checked by the
simulator itself,!3 and that the modification does not effect the simulator’s output. From this point
on, when we talk of the simulator (which we continue to denote by S) we mean the modified one.

4.2 The decision procedure for L

We are now ready to describe a probabilistic polynomial-time decision procedure for L, based on
the black-box simulator S and the verifier strategies V4. On input x € {0,1}", the procedure
operates as follows:

1. Uniformly select hash functions ¢ <&~ G and h & H.

2. Invoke S on input z providing it black-box access to Vy; (as defined above). That is, the
procedure emulates the execution of the oracle machine S on input z along with emulating
the answers of V, .

3. Accept if and only if S outputs a legal transcript (as determined by Steps 1 and 1’ of Vg,h).14

By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze its
performance.

13We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict whether its query
is about to be answered with the ABORT message.

!Recall that we are assuming that the simulator never makes a query that is ruled out by Steps 1 and 1’ of V.
Since before producing output (b1,a1,...,br,ar) the simulator makes the query (b1,a1,...,br,ar), Step 3 is not
really necessary (as, in case that the modified simulator indeed reaches the output stage “safely”, we are guaranteed
that it will produce a legal output). In particular, we are always guaranteed that the simulator produces execution

1/2
transcripts in which every recursive block contains at least % sessions that were accepted by Vj 1.

17

Lemma 1 (performance on YES-instances): For all but finitely many x € L, the above procedure
accepts x with probability at least 2/3.

Proof Sketch: Let z € L, g & G, h < H, and consider the honest prover P. We show below
that, except for negligible probability (where the probability is taken over the random choices of g,
h, and P’s coin tosses), when Vj 5 interacts with P, all recursive blocks in the resulting transcript

contain the accepting conversations of at least %/2 main sessions. Since for every g, h the simulator
SVe.h(z) must generate a transcript whose deviation gap from (P, V, ,)(z) is at most 1/4, it follows

that SYo(z) has deviation gap at most 1/4 from (P,V,)(z) also when g <~ G and h < H.
Consequently, when S is run by the decision procedure for L, the transcript SVg,h(ac) will not be
legal with probability at most 1/3. The lemma follows.

Let 7 denote the random variable describing the transcript of the interaction between the honest
prover P and V5, where the probability is taken over the choices of g, h, and P. Let s € {1,..,n*}.
We first calculate the probability that the s session in 7 is completed and accepted (i.e., Vg, sends

the message vgfil = ACCEPT), conditioned on the event that Vj; did not abandon the interaction

beforehand (i.e., V, , did not send the DEVIATION message).' For uniformly selected g & @, the
probability that V; ;, aborts the session in each one of the k£ rounds, given that it not already aborted,
is 1 —n~'/?*. Thus, conditioned on the event that V; ; did not output DEVIATION beforehand, the
session is completed (without being aborted) with probability (n~"/ 2’“)k =n"12,

The key observation is that if A is uniformly chosen from H then, conditioned on the event that
Vg,» did not output DEVIATION beforehand and the current session is not aborted, the conversation
between V; and P is distributed identically to the conversation between the honest verifier V
and P on input . By the completeness requirement for zero-knowledge protocols, we have that V'
accepts in such an interaction with probability at least 1/2 (this probability may actually be made
much higher, but 1/2 is more than enough for our purposes). Consequently, for uniformly selected
g, h, and conditioned on the event that V, ; did not output DEVIATION beforehand, the probability

that a session is accepted by V, 5, is at least "721 2

n12

We calculate the probability that 7 contains a block such that less than T/ of its sessions are
accepted. Say that a block B in a transcript has been completed if all the messages of sessions
in B have been sent during the interaction. Say that B is admissible if the number of accepted
sessions that belong to block B in the transcript is at least %/2. Enumerating blocks in the order
in which they are completed (that is, when we refer to the ¢! block in 7, we mean the £** block
that is completed in 7), we denote by 7, the event that all the blocks up to and including the
£'h block are admissible in 7. For i € {1,...,n} define a boolean indicator af to be 1 if and
only if the i*" session in the ¢! block is accepted by Vg,n- We have seen that, conditioned on the

n—1

event v, 1, each of is 1 w.p. at least 2/2. As a consequence, for every £, the expectation of

S . af (i.e., the number of accepted main sessions in block number £) is at least %/2 Since,
conditioned on ~yy_1, the af’s are independent of each other, we can apply the Chernoff bound,
and infer that Pr[vye|ve—1] > 1 — e=Un'?), Furthermore, since no session belongs to more than
one block, we have: Pr[y,] > Pr[y|ve1] - Pr[yv,—1]. It follows (by induction on the number of
completed blocks in a transcript), that all blocks in 7 are admissible with probability at least

(1- e*Q("l/Z))” >1-n-e A" The lemma follows. N

5Note that, since we are dealing with the honest prover P, there is no need to consider the ERROR message at all
(since in an interaction with the honest prover P, the adversary verifier V, , will never output ERROR anyway).

18

Lemma 2 (performance on NO-instances): For all but finitely many x ¢ L, the above procedure
rejects x with probability at least 2/3.

We can actually prove that for every polynomial p(-) and for all but finitely many x ¢ L, the above
procedure accepts x with probability at most 1/p(|z|). Assuming towards contradiction that this
is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheating prover
that fools the honest verifier V' with success probability at least 1/poly(n) (in contradiction to the
computational-soundness of the proof system).

5 Proof of Lemma 2 (performance on NO-instances)

Let us fix an z € {0,1}" \ L as above.'® Denote by AC = AC,, the set of triplets (o, g, k) so that on
input z, coins o and oracle access to V, 5, the simulator outputs a legal transcript (which we denote

by Syt (2)). Recall that our contradiction assumption is that Pr, 4 [(0,g,k) € AC] > 1/p(n), for
some fixed polynomial p(-). Before proceeding with the proof of Lemma 2, we formalize what we
mean by referring to the “execution of the simulator”.

Definition 7 (Execution of simulator) Let z,0 € {0,1}*, g € G and h € H. The execution of
simulator S, denoted EXECy(0,g,h), is the sequence of queries made by S, given input x, random
coins o, and oracle access to Vy p(x).

Since the simulator has the ability to “rewind” the verifier V,; and explore V,;’s output on
various execution prefixes (i.e., queries) of the same length, we allow the number of distinct block-
prefixes that appear in EXEC(0,g,h) to be strictly larger than n (remember that the schedule
consists of n invocations to recursive blocks, and that in an interaction between the honest prover
P and V,, there is a one-to-one correspondence between recursive blocks and block-prefixes).!”
As a consequence, the (" distinct block-prefix appearing in EXEC,(c,g,h) does not necessarily
correspond to the /" recursive block in the schedule. Nevertheless, given EXEC,(c,g,h) and ¢,
one can easily associate the /" distinct block-prefix in the execution of the simulator with the
index of its corresponding block in the schedule (say, by extracting the ¢! distinct block-prefix in
EXECg(0, g, h), and then analyzing its length).

In the sequel, given a specific block-prefix bp, we let £(?) € {1,...,n} denote the index of its
corresponding block in the schedule (as determined by bp’s length). Note that two different block-
prefixes bp; and bp, in EXEC,(0,g,h) may satisfy £(1) = ¢(tP2) (as they potentially correspond
to two different instances of the same recursive block). In particular, session (£(%"1)4) (having the
same index as session (£(°?2), {)) may have more than a single occurrence during the execution of the
simulator (whereas in an interaction of the honest prover P with V, j each session index will occur
exactly once). This means that whenever we refer to an instance of session (4,4) in the simulation,
we will also have to explicitly specify to which block-prefix this instance corresponds. In order to
avoid cumbersome statements, we will abuse the notation ¢®P) and also use it in order to specify
to which instance recursive block ¢®?) corresponds. That is, whenever we refer to recursive block
number £(%?) we will actually mean: “the specific instance of recursive block number £ (= £(P)) that
corresponds to block-prefix bp in EXEC, (0, g,h)”. Viewed this way, sessions (£(P1) i) and (£(72) 4)
(as above) actually correspond to two different instances of the same session in the schedule.

16 Actually, we need to consider infinitely many such ’s.
17Still, as we have already mentioned, we have that ts(n) is an upper bound on the number of (different block-
prefixes induced by) the queries that appear in EXEC; (0, g, h).

19

5.1 The cheating prover

The cheating prover (denoted P*) starts by uniformly selecting a triplet (¢, g,h) while hoping
that (o,9,h) € AC. It next selects uniformly a pair (¢,7) € {1,...,qs(n)} x {1,...,n}, where
gs(n) < ts(n) is a bound on the number of (different block-prefixes induced by the) queries made

by S on input z € {0,1}". The prover next emulates an execution of S:;’ ») (z) (where ("), which
is essentially equivalent to h, will be defined below), while interacting with V(z,r) (that is, the
honest verifier, running on input z and using coins 7). The prover handles the simulator’s queries
as well as the communication with the verifier as follows: Suppose that the simulator makes query
g = (b1,a1,...,bt,at), where the a’s are prover messages.

1. Operating as V; , the cheating prover determines the block-prefix bp(q) = (b1, a1, ..., by, ay).

It also determines (£,%) = men(q), j = Tmsg(q), the iteration-prefix ip(q) = (b1, a1, ..., b,s,pgtzl),
and the j—1 prover messages pgi), O 5121 appearing in the query g (as done by V, 5, in Step 2).
(Note that by the modification of S there is no need to perform Steps 1 and 1’ of V 3.)

2. If j = 1, the cheating prover answers the simulator with the verifier’s fixed initiation message
for session i (as done by V5, in Step 3).

3. If j > 1, the cheating prover determines b; ; = g(4,ip(q)) (as done by V, 5, in Step 4).

4. If bp(q) is the ' distinct block-prefix resulting from the simulator’s queries so far and if, in
addition, ¢ equals 7, then the cheating prover operates as follows:

(a) If b; ; = 0, then the cheating prover answers the simulator with ABORT.

(b) If b; ; = 1, and the cheating prover has already sent j—1 messages to the actual verifier
then it retrieves the (j—1) answer it has received and feeds it to the simulator.

(We comment that this makes sense provided that the simulator never makes two queries with
the same block-prefix and the same number of prover messages, but with a different sequence of
such messages. However, for j > 2 it may be the case that a previous query regarding the same
(3)

block-prefix had a different p’;

;—1 message. In such a case the cheating prover may fail to conduct

Step 4b (see discussion below for further details).)

(c) If b; ; = 1, and the cheating prover has only sent j—2 messages to the actual verifier, the

©)

cheating-prover forwards p;”; to the verifier, and feeds the simulator with the verifier’s

response (i.e., which is of the form vg-z)).

(We comment that by our conventions regarding the simulator, it cannot be the case that the
cheating prover has sent less than j—2 prover messages to the actual verifier. The prefixes of
the current query dictate j—2 sequences of prover messages with distinct lengths, so that none
of these sequences was answered with ABORT. In particular, the last message of each one of these
sequences was already forwarded to the verifier.)

5. If either bp(q) is NOT the &' distinct block-prefix resulting from the queries so far, or if 4 is
NOT equal to 7, the prover emulates V5, in the obvious manner (i.e., as in Step 4 of Vj 3):
(a) If b; ; = 0, then the cheating prover answers the simulator with ABORT.
(b) If b; ; = 1, then the cheating prover determines r; = h(i,bp(q)), and then answers the

simulator with V(x,r;; pgi), ...,p§?1), where all notations are as above.

20

Defining 2(") (mentioned above): Let (c,g,h) and (£,7) be the initial choices made by the
cheating prover, let Eg be the £ block-prefix appearing in EXEC, (0, g,), and suppose that the
honest verifier uses coins r. Then, the function h(" = R®9m&M) s defined to be uniformly
distributed among the functions h’ which satisfy the following conditions: The value of A’ when
applied on (n,bp;) equals 7, whereas for (7,&') # (1,€) the value of h' when applied on (7', bp:)
equals the value of h on this prefix. (Here we use the hypothesis that the functions are selected
in a family of tg(n)-wise independent hash functions. We note that replacing h by R does not
effect Step 5 of the cheating prover, and that the cheating prover does not know A("). In particular,
whenever the honest verifier V' uses coins r, one may think of the cheating prover as if it is answering
the simulator’s queries with the answers that would have been given by Vq,h(”')

Claim 1 For every value of 0,9, and 1, if h and r are uniformly distributed then so is h(").

Proof Sketch: Fix some o € {0,1}*, g € G, £ € {1,...,9s(n)}, and n € {1,...,n}. The key for
proving Claim 1 is to view the process of picking a function h € H as consisting of two stages. The
first stage is an iterative process in which up to tg(n) different arguments are adversarially chosen,
and for each such argument the value of i on this argument is uniformly specified in its range. In
the second stage, a function h is chosen uniformly from all A’s in H under the constrains that are
introduced in the first stage.

The iterative process in which the arguments are chosen (that is, the first stage above) corre-
sponds the simulator’s choice of the various block-prefixes bp (along with the indices i), on which
h is applied. At first glance, it seems obvious that the function A("), which uniformly distributed
amongst all functions that are defined to be equal to h on all inputs (except for the input (7),@5)
on which it equals r) is uniformly distributed in H. Taking a closer look, however, one realizes that
a rigorous proof for the above claim is more complex than one may initially think.

The main difficulty in the proof lies in the fact that the simulator’s queries may “adaptively“
depend on previous answers it has received (which, in turn, may depend on previous outcomes of
h). Thus, in order to give a rigorous proof for the claim we first have to show that the two-stage
process described above is indeed equivalent to the process of uniformly picking a function in H.
Loosely speaking, this is proved inductively on the number of input/output pairs that have already
been determined so far in the first stage (here we use the tg(n)-wise independence of functions in
H), and is shown to hold regardless of the simulator’s “adaptivity”. The key point is that for every
family of tg(n)-wise independent functions and for every sequence of at most tg(n) arguments (and
in particular, for an adaptively chosen sequence), the values of a uniformly chosen function when
applied to the arguments in the sequence are uniformly and independently distributed.

Once this is proved, the above two—stage process is modified so that the outputs of the hash
function in the first (iterative) stage are determined according to the outputs of a uniformly dis-
tributed function h € H (rather than being uniformly specified), with the exception of the output
that is associated with the input (77,%5) that is chosen to be equal to a uniform r. Clearly, the
values assigned in the “modified” first stage are still uniformly and independently chosen (since
r and h are uniformly and independently distributed), and so the constrains introduced in the
“modified” first stage are equally distributed to the ones introduced by the “original” first stage.
In particular, both the “original” and “modified” processes produce the same distribution. The
claim now follows, since the “modified” two—stage process can be shown to be equivalent to the
process of uniformly producing the desired functions h(" (the way this is shown is analogous to the
way the “original” two-stage process is shown to yield a uniform function in H). [l

21

The cheating prover may fail to conduct Step 4b: The cheating prover is hoping to convince
an honest verifier by focusing on the " session in recursive block number ¢(bpe) (where %g denotes

the £™ distinct block-prefix in the simulator’s execution). Messages in session (£(P¢) 7)) are received
from the (multi-session) simulator and are forwarded to the (single-session) verifier. The honest
verifier’s answers are then fed back to the simulator as if they were answers given by V, ;). For
the cheating prover to succeed in convincing the honest verifier the following two conditions must
be satisfied: (1) Session (£(P¢)) is eventually accepted by Vi, n- (2) The cheating prover never
fails to conduct Step 4b during its execution.

One main problem that the cheating prover is facing while conducting Step 4b emerges from the
following fact: Whereas the black-box simulator is allowed to “rewind” V, (impersonated by the
cheating prover) and attempt different execution prefixes before proceeding with the interaction
of a session, the prover cannot do so while interacting with the actual verifier. In particular, the
cheating prover may reach Step 4b with a p§-’7_)1 message that is different from the p§-’7_)1 message
that was previously forwarded to the honest verifier (in Step 4c). Given that the verifier’s answer

(m)
Pj

to the “recent” p:"; message is most likely to be different than the answer which was given to the

(m)

“previous” p,”’; message, the cheating prover is bound to fail in conducting Step 4b.'®
The punchline of the analysis is that with noticeable probability (over choices of (o, g, h)), there

exists a choice of (£,7) so that the above “bad” event will not occur for session (E(Eﬁ).m). That is,
using the fact that the success of a “rewinding” also depends on the output of g (which determines

whether and when sessions are aborted) we show that, with non-negligible probability, Step 4b is

never reached with a different P§@1 message. Specifically, for every j € {2,...,k+1}, once a P§@1
message has been forwarded to the verifier (in Step 4c), all subsequent pg-"_)l messages are either

equal to the forwarded message or are answered with ABORT (here we assume that Condition (1)

(m)

above is satisfied, and every p,”; message has indeed been forwarded to the verifier at least once).

A technical convention (grouping queries according to their iteration-prefixes): In the
sequel, it will be convenient to group the queries of the simulator into different classes based on
different iteration-prefixes. That is, we choose to view two queries as being different if and only
if they have different iteration-prefixes. (Recall that the iteration-prefix of a query g (satisfying
Tsn(q) = (£,4) and Tmeg(q) =4 > 1) is the prefix of g that ends with the (j—1) prover message in
session (£,m).). Such a convention particularly makes sense in the case that two queries are of the
same length (see discussion below). Nevertheless, by Definition 6, two queries may have the same
iteration-prefix even if they are of different lengths (in particular, it may very well be the case that
we will end up treating two queries of different lengths as if they were equal).

Definition 8 (ip-different queries) Two queries, §; and Gy (of possibly different lengths), are
said to be ip-different, if and only if they have different iteration-prefizes (that is, ip(q,) #ip(qs)).

Clearly, there exist pairs of queries of different lengths that cannot have the same iteration-prefix (in
particular, whenever 7me(q1) 7 Tmsg(q2) queries g; and g, will have a different iteration-prefix).
Still, if two queries, g; and @y, satisfy bp(q;) = bp(qy) and Tmsg(q;) = Tmsg(q2), then even if

18\We stress that the cheating prover does not know the random coins of the honest verifier, and so it cannot compute
the verifier’s answers by himself. In addition, since P* and V are engaging in an actual execution of the specified
protocol (P, V) (in which every message is sent exactly once), the cheating prover cannot forward the “recent” PJ(‘W_)1
message to the honest verifier in order to obtain the corresponding answer (as it has already forwarded the “previous”

PJ(‘Z)1 message to the verifier).

22

Tsn(q1) 7# Tsn(Qy) (implying that the queries are of different length), it may very well be the case
that ip(q;) = ip(qy)-

Motivating Definition 8: Recall that a necessary condition for the success of the cheating prover
is that for every j, once a p(-")

Jj—1
pg-ri)l messages (that are not answered with ABORT) are equal to the forwarded message. In order to

satisfy the above condition it is sufficient to require that the cheating prover never reaches Steps 4b
and 4c¢ with two ip-different queries of equal length. The reason for this is that if two queries of the
same length have the same iteration-prefix, then they contain the same sequence of prover messages
for the corresponding session (since all such messages are contained in the iteration-prefix), and so
(m)

they agree on their pg-ri)l message. In particular, once a p,”’; message has been forwarded to the
verifier (in Step 4c), all subsequent “recent” queries that reach Step 4b and are of the same lenght

message has been forwarded to the verifier (in Step 4c), all subsequent

will have the same pg-?l)l messages as the “previous” query (since they have the same iteration-prefix).

In light of the above discussion, it is only natural to require that the number of ip-different
queries that reach Step 4b of the cheating prover is exactly one (as, in such a case, the above
necessary condition is indeed satified).!® Jumping ahead, we comment that the smaller is the
number of ip-different queries that correspond to block-prefix %5, the smaller is the probability
that more than one ip-different query reaches Step 4b. The reason for this lies in the fact that
the number of ip-different queries that correspond to block-prefix %f is equal to the number of
different iteration-prefixes that correspond to @5. In particular, the smaller is the number of such
iteration-prefixes, the smaller is the probability that g will evaluate to 1 on more than a single
iteration-prefix (thus reaching Step 4b with at most one ip-different query).

Useful block-prefix: The probability that the cheating prover makes the honest verifier accept
will be lower bounded by the probability that the &% distinct block-prefix in EXEC,(c,g,h) is
n-useful (in the sense hinted above and defined next):

Definition 9 (Useful block-prefix) A specific block-prefiz bp = (b1, ay, ... ,by,ay), appearing in
EXECy(0, g, h), is called i-useful if it satisfies the following conditions:

1. For every j €{2,..,k+1}, the number of ip-different queries q in EXEC, (0, g, h) that correspond

to block-prefiz bp and satisfy Tsn(q) = ((OP)0), Tmsg(@) =4, and g(i,ip(q))=1, is ezactly one.

2. The (only) query § in EXECy(0,g,h) that corresponds to block-prefiz bp and that satisfies

Ton (@) = (£OP))4), Tmeg(q) = k+1, and g(4,ip(q)) = 1, is answered with ACCEPT by V, j,.
If there exists an i1 €{1,...,n}, so that a block-prefix is i-useful, then the block-prefiz is called useful.

Loosely speaking, Condition 1 in Definition 9 implies that for every fixed value of j there exists
exactly one iteration-prefix, ip, that corresponds to queries of block-prefix bp (and message j)
so that g(i,ip) evaluates to 1. By Condition 2 we have that the last verifier message in the *?
main session of recursive block number ¢ = £®P) is equal to ACCEPT. It follows that if the cheating
prover happens to select (o, g, h,&,n) so that block-prefix @5 (i.e., the ¢ distinct block-prefix in
EXEC, (0, g, h{"))) is n-useful, then it convinces V(z,); the reason being that (by Condition 2)
the last message in session (6(55),77) is answered with ACCEPT,?Y and that (by Condition 1) the

19Tn order to ensure the cheating prover’s success, the above requirement should be augmented by the condition
that session (E(bpﬁ),n) is accepted by V, .
2ONotice that V(z,r) behaves exactly as V, n(» behaves on queries that correspond to the ¢*™h distinct iteration-

prefix in EXEC, (g, g, h(").

23

emulation does not get into trouble in Step 4b of the cheating prover (to see this, notice that each

prover message in session (E(bpf), n) will end up reaching Step 4b only once).

Let (P*,V)(z) = (P*(0,9,h,&,m),V(r))(x) denote the random variable representing the (local)
output of the honest verifier V when interacting with the cheating prover P* on common input x
(where o, g, h,&,n are the initial choices made by the cheating prover P*, and r is the randomness
used by the honest verifier V). Adopting this notation, we will say that the cheating prover
P* = P*(z,0,9,h,&,n) has convinced the honest verifier V = V(x,r) if (P*,V)(xz) = ACCEPT.

Claim 2 If the cheating prover happens to select (o, g, h,&,n) so that the £ distinct block-prefiz in
EXEC, (0, g, h")) is n-useful, then the cheating prover convinces V(x,r) (i.e., (P*,V)(x)=ACCEPT).

Proof: Let z € {0,1}", 0 € {0,1}*, g€ G, D) e H,ne {1,...,n},and £ € {1,...,qs(n)}. We
show that if the £ distinct block-prefix in EXEC,(0, g, h(r)) is n-useful, then the cheating prover
P*(z,0,9,h,&,m) convinces the honest verifier V(x,r).

By definition of the cheating-prover, the prover messages that are actually forwarded to the
honest verifier (in step 4c) correspond to session (E(bp 2 n). Specifically, messages that are forwarded
by the cheating prover are of the form pg-"_)l, and correspond to queries g, that satisfy 7s,(q) =

(E(EE),U), Tmsg(@) = j and g(n,ip(7)) = 1. Since the &M distinct block-prefix in EXEC, (0, g, h(")
is n-useful, we have that for every j € {2,..,k+1}, there is exactly one query g that satisfies the
above conditions. In particular, for every j € {2, .., k+1}, the cheating prover never reaches Step 4b

with two different pg-@l messages. (Here we use the fact that if two queries of the same length
are not ip-different then the answers given by Vi, n(n to these queries are identical, see discussion
above). Put in other words, whenever the ¢ distinct block-prefix in EXEC,(0, g, h(T)) is n-useful,
the emulation does not get into trouble in Step 4b of the cheating prover.

At this point, we have that the cheating prover never fails to perform Step 4b, and so the
interaction that it is conducting with V(z,r) reaches “safely” the (k+1)* verifier message in the
protocol. To complete the proof we have to show that at the end of the interaction with the cheating-
prover, V(z,r) outputs ACCEPT. This is true since, by Condition 2 of Definition 9, the query g, that
corresponds to block-prefix bp,, satisfies men(7) = (t2e)), Tmsg(q) = j and g(n,ip(q)) = 1, is
answered with ACCEPT (here we use the fact that V(z,r) behaves exactly as V, ,) behaves on
queries that correspond to the ¢ distinct block-prefix in EXEC, (0, g, h(T))). [|

5.2 The success probability of the cheating prover

The following lemma (Lemma 3) establishes the connection between the success probability of the
simulator and the success probability of the cheating-prover. Loosely speaking, the lemma asserts
that if S outputs a legal transcript with non-negligible probability, then the cheating prover will
succeed in convincing the honest verifier with non-negligible probability. Since this is in contradic-
tion to the computational soundness of the proof system, we have that Lemma 3 actually implies
the correctness of Lemma 2 (recall that the contradiction assumption of Lemma 2 is that the success
probability of the simulator is non-negligible).

Lemma 3 Suppose that Pry q4[(0,9,h) € AC| > 1/p(n) for some fized polynomial p(-). Then
the probability (taken over o,g,h,&,n,7), that (P*,V)(x) = ACCEPT is at least m (where
gs(n) < tg(n) is a bound on the number of different block-prefizes that appear in EXEC.(c,g,h)).

24

Proof: Define a Boolean indicator useful¢ ,(c, g, h) to be true if and only if the ¢™ distinct block-
prefix in EXEC, (0, g, h) is n-useful. Using Claim 2, we have:

Progh e (P, V) (@) = ACCEPT] 2 Py g,0,r [usefuly(a, 9, h)] (1)

where the second probability refers to an interaction between S and V, ;). Since for every value

of o,¢g,m and &, when h and r are uniformly selected the function h(") is uniformly distributed (see
Claim 1), we infer that ¢ and 7 are distributed independently of (o, g, A(")). Thus:

Proghenr [”SerIE,W(U’% h(r))] = Progn ¢ [usefulg (0, g, h')] (2)
On the other hand:

Pr0-7g7h:£1n [userIfﬂY(U7 g7 h)]

QS(”) n
= Z Z Pro—’g,h,g’n [Llse]culd,i(o'7 g, h) & (5 = d & 7’, — Z)]
d=1 =1
QS(n) n
= Y > Prygplusefulyi(o,g,h)] - Prey[€ =d & n =]
d=1 2=1
qsz(n) i 1
= Pra—’g7h [userIdyi(o-J g, h)] TN
d=1 i—1 gs(n)-n
1
> Pr,,p|3d,is.t. usefulg;(o,9,h)] - ———— 3
o il) gs(n)-n (3)

where gg(n) is the bound used by the cheating prover (for the number of distinct block-prefixes in
EXEC;(0,g,h)). Combining Eq. (1), (2), (3) we get:
1

_ 4
O (4)
Recall that by our hypothesis, Pr[(o,g,h) € AC] > 1/p(n) for some fixed polynomial p(-). We can
thus rewrite and lower bound the value of Pr, 41, [3d, 1 s.t. usefulg;(o, g, k)] in the following way:
Pr[3d,i s.t. usefuly;(o, g, h)]

= 1—Pr[Vd,i —usefulg;(o,g,h)]

= 1-Pr[(Vd,i —usefuly;(o,9,h)) & (0,9, h) ¢AC|—Pr|[(Vd,i —usefuly (o, g,h)) & (0,9, h) €AC]
> 1—-Pr(o,9,h) & AC] — Pr[(Vd,i ~usefulg;(c,g,h)) & (0,9,h) € AC]

Pro g henr [(P*,V)(x) = ACCEPT| > Prg g5, [3d, i s.t. usefulg;(o, g, h)] -

> 1/p(n) — Pr((Vd,i —usefulg;(o,9,h)) & (0,g,h) € AC]
where all the above probabilities are taken over (o,g,h). It follows that in order to show that
Pro g henr [(P*,V)(x) = ACCEPT] > it will be sufficient to prove that for every fixed
polynomial p(-) it holds that:
Pry g1 [(Vd, i ~usefuly;(o,g,h)) & (0,9,h) € AC] < 1/2-p(n)

thus, Lemma 3 is satisfied provided that Pr, ¢ 5 [Vd, i —usefuly;(o, g, h) & (o, g, h) € AC] is negligible.
Consequently, Lemma 3 will follow by establishing Lemma 4, stated next.

1
2-p(n)-gs(n)n’

Lemma 4 The probability (taken over o, g,h), that for all pairs (d,%) usefuly;(o, g, h) does not hold
and that (0,g,h) € AC, is negligible. (i.e., the probability that EXEC, (o, g,h) does not contain a
useful block-prefix while S outputs a legal transcript is negligible.)

This completes the proof of Lemma 3. The sequel is devoted to proving Lemma 4. [l

25

5.3 Proof of Lemma 4 (existence of useful block-prefixes)

The proof of Lemma 4 will proceed as follows. We first define a special kind of block-prefixes, called
potentially-useful block-prefixes. Loosely speaking, these are block-prefixes in which the simulator
did not make too many “rewinding” attempts (each “rewinding” corresponds to a different iteration-
prefix).2! The basic idea will be to show that:

1. In every “successful” execution, the simulator generates a potentially-useful block-prefix. This
is done by demonstrating, based on the structure of the schedule, that if no potentially-useful
block-prefix exists, then the simulation must take super-polynomial time.

2. Any potentially-useful block-prefix is in fact useful with considerable probability. The argu-
ment that demonstrates this claim proceeds basically as follows. Consider a specific block-
prefix bp, let £ = £®P) and focus on a specific instance of session (£,4) (that is, the specific
instance of session (£,4) that corresponds to block-prefix bp). Suppose that block-prefix bp
is potentially-useful and that the above instance of session (¢,%) happens to be accepted by
Vgn- This means that there exist k£ queries with block-prefix bp that consist of the “main
thread” that leads to acceptance (i.e., all queries that were not answered with ABORT). Recall
that the decision to abort a session (4,7) is made by applying the function g to ¢ and the
iteration-prefix of the corresponding query. Thus, if there are only few different iteration-
prefixes that correspond to block-prefix bp (which, as we said, is potentially-useful), then
there is considerable probability that all the queries having block-prefix bp, but which do
not belong to that “main thread”, will be answered with ABORT (that is, g will evaluate to 0
on the corresponding input). If this lucky event occurs, then block-prefix bp will indeed be
useful (recall that for a block-prefix to be useful we require that there exists a corresponding
session that is accepted by V; j, and satisfies that for every j € {2,...,k+1} there is a single
iteration-prefix that makes g evaluate to 1 at the j*® message of this session).

Returning to the actual proof, we start by introducing the necessary definition. Recall that, for
any g € G and h € H, the running time of the simulator S with oracle access to Vjj is bounded
by ts(n). Let ¢ be a constant such that tg(n) < n¢ for all sufficiently large n.

Definition 10 (Potentially-useful block-prefix) A specific block-prefiz bp= (b1, a1, ..., by, ay),
appearing in EXEC;(0, g, h), is called potentially-useful if it satisfies the following conditions:

1. The number of ip-different queries that correspond to block-prefiz bp, is at most k1.

2. The execution of the simulator reaches the end of the block that corresponds to block-prefiz bp.
(That is, EXEC4(0, g, h) contains a query q, that ends with the (k-+1)* prover message in the
h

(e%))

n main session of recursive block number £P) (i.e., some Pii1 message).)

We stress that the bound k°t! in Condition 1 above refers to the same constant ¢ > 0 that is used
in the time bound ts(n) < n° Using Definition 8 (of ip-different queries), we have that a bound
of k°t1 on the number of ip-different queries that correspond to block-prefix bp induces an upper
bound on the total number of iteration-prefixes that correspond to block-prefix bp. Note that this
is in contrast to the definition of a useful block-prefix (Definition 9), in which we only have a bound
on the number of ip-different queries of a specific length. Query g from Condition 2 above ends

2Mntuitively, the larger the number of “rewindings” is, the smaller is the probability that a specific block-prefix is
useful. A block-prefix with a small number of “rewindings” is thus more likely to cause its block-prefix to be useful.

26

(®p) _
with a p%ﬂf) message (i.e., the last prover message of recursive block number E(bp)). Technically

speaking, this means that § does not actually correspond to block-prefix bp (since, by definition of
the recursive schedule, the answer to query 7 is a message that does not belong to recursive block
number K(bp)). Nevertheless, since before making query g, the simulator has made queries to all
prefixes of g, we are guaranteed that for every i € {1,..,n} and j € {1,..,k+1}, the simulator has
made a query g, ; that is a prefix of g, corresponds to block-prefix bp, and satisfies 7, (7) = (K(E), i)

and Tmsg(q) =7. (In other words, all messages of all sessions in recursive block number ¢?) have
occurred during the execution of the simulator.) Furthermore, Since the (modified) simulator does
not make a query that is answered with a DEVIATION message (in Step 1’ of V, 3), we are also
guaranteed that the partial execution transcript induced by the query g contains the accepting
conversations of at least %/2 sessions in recursive block number £(°?). (The latter observation will
be used only at a later stage (while proving Lemma 4).)

It is worth noting that whereas the definition of a useful block-prefix refers to the contents
of iteration-prefixes (induced by the queries) that are sent by the simulator, the definition of a
potentially-useful block-prefix refers only to their quantity (neither to their contents nor to the
effect of the application of g on them). It is thus natural that statements referring to potentially-
useful block-prefixes tend to have a combinatorial flavor. The following lemma is no exception. It
asserts that every “successful” execution of the simulator must contain a potentially-useful block-
prefix (or, otherwise, the simulator will run in super-polynomial time).

Lemma 5 For all (0,9,h) € AC,, EXEC,(0,g,h) contains a potentially-useful block-prefiz.

5.3.1 Proof of Lemma 5 (existence of potentially-useful block-prefixes)

The proof of Lemma 5 is by contradiction. We assume the existence of a triplet (o,g,h) € AC so
that every block-prefix in EXEC,(0, g, h) is not potentially-useful, and show that this implies that
SV () made strictly more than n¢ queries (which contradicts the explicit assumption that the
running time of S is bounded by n¢).

The query—and—answer tree: Throughout the proof of Lemma 5, we fix an arbitrary (o, g,h) €
AC as above, and study the corresponding EXEC, (0, g, h). A key vehicle in this study is the notion
of a query-and-answer tree introduced in [20] (and also used in [23]).22 This is a rooted tree
(corresponding to EXEC, (0, g, h)) in which vertices are labeled with verifier messages and edges are
labeled with prover’s messages. The root is labeled with the fixed verifier message initializing the
first session, and has outgoing edges corresponding to the prover’s messages initializing this session.
In general, paths down the tree (i.e., from the root to some vertices) correspond to queries. The
query associated with such a path is obtained by concatenating the labeling of the vertices and
edges along the path in the order traversed. We stress that each vertex in the query—and—answer
tree corresponds to a query actually made by the simulator.

The index of the verifier (resp., prover) message labeling a specific vertex (resp., edge) in the
tree is completely determined by the level in which the vertex (resp., edge) lies. That is, all vertices
(resp., edges) in the w'™ level of the tree are labeled with the w'® verifier (resp., prover) message
in the schedule (out of a total of n?-(k+1) scheduled messages). For example, if w = n?-(k+1)
all vertices (resp., edges) at the w'™ level (which is the lowest possible level in the tree) are labeled

(n (n,n)

with vy, +’1") (resp., py, el). The difference between “sibling” vertices in the same level of the tree lies

22The query—and-answer tree should not be confused with the tree that is induced by the recursive schedule.

27

in the difference in the labels of their incoming edges (as induced by the simulator’s “rewindings”).
Specifically, whenever the simulator “rewinds” the interaction to the w' verifier message in the
schedule, the corresponding vertex in the tree (which lies at the w' level) will have multiple
descendants one level down in the tree (i.e., at the (w+1) level). The edges to each one of these
descendants will be labeled with a different prover message.??> We stress that the difference between
these prover messages lies in the contents of the corresponding message (and not in its index).

By the above discussion, the outdegree of every vertex in the query—and—answer tree corresponds
to the number of “rewindings” that the simulator has made to the relevant point in the schedule
(the order in which the outgoing edges appear in the tree does not necessarily correspond to the
order in which the “rewindings” were actually performed by the simulator). Vertices in which the
simulator does not perform a “rewinding” will thus have a single outgoing edge. In particular, in
case that the simulator follows the prescribed prover strategy P (sending each scheduled message
exactly once), all vertices in the tree will have outdegree one, and the tree will actually consist of
a single path of total length n?- (k+1) (ending with an edge that is labeled with a pg_’l") message).

Recall that, by our conventions regarding the simulator, before making a query g the simulator
has made queries to all prefixes of g. Since every query corresponds to a path down the tree,
we have that every particular path down the query—and—answer tree is developed from the root
downwards (that is, within a specific path, a level w < W’ vertex is always visited before a level
W' vertex). However, we cannot say anything about the order in which different paths in the tree
are developed (for example, we cannot assume that the simulator has made all queries that end at
a level w vertex before making any other query that ends at a level w’' > w vertex, or that it has
visited all vertices of level w in some specific order). To summarize, the only guarantee that we
have about the order in which the query—and—answer tree is developed is implied by the convention
that before making a specific query, the simulator has made queries to all relevant prefixes.

Satisfied path: A path from one node in the tree to some of its descendants is said to satisfy
session i if the path contains edges (resp., vertices) for each of the messages sent by the prover
(resp., verifier) in session i. A path is called satisfied if it satisfies all sessions for which the verifier’s
first message appears along the path. One important example for a satisfied path is the path that
starts at the root of the query—and—answer tree and ends with an edge that is labeled with a pgci’ln)
message. This path contains all n? - (k+1) messages in the schedule (and so satisfies all n? sessions
in the schedule). We stress that the contents of messages (occurring as labels) along a path are
completely irrelevant to the question of whether the path is satisfied or not. In particular, a path

may be satisfied even if some (or even all) of the vertices along it are labeled with ABORT.

Good sub-tree: Consider an arbitrary sub-tree (of the query—and—answer tree) rooted at a vertex
corresponding to the first message in some session so that this session is the first main session of a
recursive invocation of the schedule. The full tree (i.e., the tree rooted at the vertex labeled with
the first message in the schedule) is indeed such a tree, but we will need to consider sub-trees which
correspond to m sessions in the recursive schedule construction (i.e., correspond to R,,). We call
such a sub-tree m-good if it contains a satisfied path starting at the root of the sub-tree. Since
(0,9,h) € AC, we have that the simulator has indeed produced a “legal” transcript as output. It
follows that the full tree contains a path from the root to a leaf that contains vertices (resp., edges)
for each of the messages sent by the verifier (resp., prover) in all n? sessions of the schedule (as

23In particular, the shape of the query—and—answer tree is completely determined by the contents of prover messages
in EXECg (0, g, h) (whereas the contents ov verifier answers given by V; , have no effect on the shape of the tree).

28

otherwise the transcript S(Yg’h(:v) would have not been legal). In other words, the full tree contains
a satisfied path and is thus n2-good. The crux of the proof is given in the following lemma.

Lemma 6 Suppose that every block-prefix that appears in EXEC.(c,g,h) is not potentially-useful.
Then every m-good sub-tree contains at least k°T' disjoint =t -good sub-trees.

Denote by W(m) the size of an m-good sub-tree. (That is, W (m) actually represents the work
performed by the simulator on m concurrent sessions in our fixed scheduling.) It follows (from
Lemma 6) that any m-good sub-tree must satisfy:

1 ifm<n
Wim) > <
(m) —{ KW () ifm > (5)

Since for all but finitely many n, Eq. (5) solves to W(n?) > n° (see Section B in the Appendix),
and since every vertex in the query—and—answer tree corresponds to a query actually made by the
simulator, then the assumption that the simulator runs in time that is bounded by n¢ (and hence
the tree must have been of size at most n°) is contradicted. Thus, Lemma 5 will actually follow
from Lemma 6.

Proof (of Lemma 6): Let T be an arbitrary m-good sub-tree of the query-and-answer tree.
Considering the m sessions corresponding to an m-good sub-tree, we focus on the n main sessions
of this level of the recursive construction. Let B denote the recursive block to which the indices
of these n sessions belong. A T-query is a query g so that ms,(g) belongs to Br, and whose
corresponding path down the query—and—answer tree ends with a node that belongs to T (recall
that every query g appearing in EXEC,(o,g,h) corresponds to a path down the full tree).2* We
first claim that all T-queries § in EXECy(0,g,h) have the same block-prefix. This block-prefix
corresponds to the path from the root of the full tree to the root of T, and is denoted by bpy-.

Fact 1 All T-queries in EXEC(0, g, h) have the same block-prefiz (denoted bpy).

Proof: Assume, towards contradiction, that there exist two different T-queries q;,q, so that
bp(q,) # bp(gy). In particular, bp(g,) and bp(g,) must differ in a message that precedes the first
message of the first main session in By (as otherwise they would have been equal). This means
that the paths that correspond to §; and g, split from each other before they reach the root of T
(remember that 7" is rooted at a node corresponding to the first main session of recursive block
Br). But this contradicts the fact that both paths that correspond to these queries end with a
node in 7', and the fact follows. O

Claim 3 LeiT be an m-good sub-tree. Then the number of ip-different queries that correspond to
block-prefix bpy is at least k1.

Proof: Since all block-prefixes that appear in EXEC,(0,g,h) are not potentially-useful (by the
hypothesis of Lemma 6), the same must be true for block-prefix bpy. Let £ = (1) be the index
of the recursive block that corresponds to block-prefix bp; in EXEC,(0,g,h). Since block-prefix
bpr is not potentially-useful, at least one of the two conditions of Definition 10 is violated. In

*Note that queries g that satisfy 7..(g) € Br do not necessarily correspond to a path that ends with a node in T
(as EXEC (0, g, h) may contain a different m-good sub-tree T" that satisfies By = Byr). Also note that there exist
queries g, whose corresponding path ends with a node that belongs to T, but satisfy 7sn(q) & Br.

29

other words, one of the following two conditions is satisfied: (1) The number of ip-different queries
that correspond to block-prefix bpy is at least k°T1. (2) There is no query in EXEC,(a,g,h) that
ends with a pgfﬁ) message (i.e., the execution of the simulator does not reach the end of the block
that corresponds to block-prefix bp;). Now, since T is an m-good sub-tree, then it must contain
a satisfied path. Such a path starts at the root of T and satisfies all sessions whose first verifier
message appears along the path. The key observation is that every satisfied path that starts at the
root of sub-tree 7' must satisfy all main sessions in By (to see this, notice that the first message of
all main sessions in By will always appear along such a path), and so it contains all messages of all
main session in recursive block Br. In particular, sub-tree T' contains a path that starts at the root
of T and ends with an edge that is labeled with the last prover message in session number (£, n)

(&n)

(ie., a pyy; message). But this means that the full tree contains a path that starts at its root and

ends with an edge that is labeled with a pgfﬁ) message (this path is obtained by concatenating the

path that starts with the root of the full tree and ends with the root of 7" with the above satisfied
path). In other words, EXEC,(0, g, h) contains a query g (corresponding to the above path in the

full tree) that ends with a pgfﬁ) message, and so Condition 2 above does not apply. The only reason

which may cause block-prefix bpy not to be potentially-useful is Condition 1. We conclude that the
number of ip-different queries that correspond to block-prefix bp; is at least k°*!, as required. O

The following claim establishes the connection between the number of ip-different queries that
correspond to block-prefix bpy and the number of ™ "-good sub-trees contained in T. Loosely
speaking, this is achieved based on the following three observations: (1) Two queries are said to

be ip-different if and only if they have different iteration-prefixes. (2) Every iteration-prefix is a

m—n

block-prefix of some sub-schedule one level down in the recursive construction (consisting of ™z
m—

sessions). (3) Every such block-prefix yields a distinct ™z"-good sub-tree.

Claim 4 Let T be an m-good sub-tree. Then for every pair of ip-different queries that correspond
m

to block-prefiz bpr, the sub-tree T contains two disjoint = -good sub-trees.

Once Claim 4 is proved, we can use it in conjunction with Claim 3 to infer that 7" contains at least
k<t! disjoin f=-good sub-trees. Thus, Lemma 6 will actually follow from Claim 4.

Proof: Before we proceed with the proof of Claim 4, we will need to introduce the notion of an
iteration-suffix of a query g. This is the suffix of § that starts at the ending point of the query’s
iteration-prefix. A key feature satisfied by an iteration-suffix of a query is that it contains all the
messages of all sessions belonging to some invocation of the schedule one level down in the recursive
construction (this just follows from the structure of our fixed schedule).

Definition 11 (Iteration-suffix) The iteration-suffix of a query § (satisfying j = Tmsg(q) > 1),
denoted is(q), is the suffiz of § that begins at the ending point of the iteration-prefiz of query g.?

Let § be a query, and let (£,7) = 7sn(q), j = Tmsg(7). Let P(g) denote the path corresponding to
query ¢ in the query-and-answer tree. Let P(ip(q)) denote the sub-path of P(g) that corresponds
to the iteration-prefix ip(q) of g, and let P(is(q)) denote the sub-path of P(g) that corresponds to
the iteration-suffix ¢s(g) of g. That is, sub-path P(ip(q)) starts at the root of the full tree, and
ends at a pg-lﬁ) message, whereas sub-path P(is(q)) starts at a pg-eﬁ) message and ends at a ng,z)
message (in particular, path P(g) can be obtained by concatenating P(ip(q)) with P(is(7))).

2Specifically, is(g) = (as, bs+1,- .. ,at,bt) is the iteration-suffix of query ¢ = (b1, a1,...,as,b:) if as is of the form

{7 (where (£,1) =7an(7), and j=1Tmag()).

30

Fact 2 For every query G, the sub-path P(is(q)) is satisfied. Moreover:

1. The sub-path P(is(q)) satisfies all ™5™ sessions of a recursive invocation one level down in
the recursive construction (i.e., corresponding to R%)

2. If g corresponds to block-prefiz bpr, then the sub-path P(is(q)) is contained in T.

Proof: Let (£,i) =7 (q) and j =7msg(7). By nature of our fixed scheduling, the vertex in which
sub-path P(is(q)) begins precedes the first message of all (nested) sessions in the (j—1)%* recursive
invocation made by recursive block number £ (i.e., an instance of RmT_n which is invoked by R.,).

Since query g is answered with a wib) message, we have that sub-path P(is(g)) eventually reaches

j
a vertex labeled with vg-l’z). In particular, sub-path P(is(g)) (starting at a p(-l’n)

7j—1
at a vge,z) vertex) contains the first and last messages of each of the above (nested) sessions. (And

so contains edges (resp., vertices) for each prover (resp., verifier) message in these sessions.) But
this means (by definition) that all these (nested) sessions are satisfied by P(is(g)). Since the above
(nested) sessions are the only sessions whose first message appears along the sub-path P(is(q)), we

have that P(is(q)) is satisfied. To see that whenever g corresponds to block-prefix bp, sub-path
)

edge and ending

P(is(g)) is contained in the sub-tree T', we observe that both its starting point (i.e., a pg-eff
(£4)

and its ending point (i.e., a v’ vertex) are contained in 7. O

edge)

Fact 3 Let g,y be two ip-different queries. Then sub-paths P(is(q,)) and P(is(qy)) are disjoint.

Proof: Let g; and g, be two ip-different queries, let (£1,41) = msn(qy), (l2,72) = 7sn(qs), and let
J1 = Tmsg(T1), J2 = Tmsg(qo)- Recall that queries §; and g, are said to be ip-different if and only if
they have different iteration-prefixes. Since g; and g, are assumed to be ip-different , then so are
iteration-prefixes ip(q;) and ip(gy). In particular, paths P(ip(g,)) and P(ip(q,)) are different. We
distinguish between the following two cases:

1. Path P(ip(q,)) splits from P(ip(7,)): In such a case, the ending points of paths P(ip(gq,))
and P(ip(g,)) must belong to different sub-trees of the query-and-answer tree. Since the
starting point of an iteration-suffix is the ending point of the corresponding iteration-prefix,
we must have that paths P(is(g;)) and P(is(g,)) are disjoint (as their starting points belong
to different sub-trees of the query—and—answer tree).

2. Path P(ip(q;)) is a prefix of path P(ip(gy)): That is, both P(ip(g,)) and P(ip(g,)) reach
a vg-fl_”f) vertex, while path P(ip(g,)) continues down the tree and reaches a vg-?_’?) vertex.
The key observation in this case is that either ¢; is strictly smaller than £5, or j; is strictly
smaller than jy. The reason for this is that in case both £; = £ and j; = j9 hold, iteration-
prefix ip(q;) must be equal to iteration-prefix ip(gy),2® in contradiction to our hypothesis.

(21 ,’I’L) (Zl fil)

Since path P(is(q,)) starts at a p vertex and ends with a v; vertex, and since path

J1 7
P(is(g,)) starts with a pg‘?’n) vertex, we have that the ending point of path P(is(g,)) precedes

the starting point of path P(is(g,)). In particular, paths P(is(g;)) and P(is(g,)) are disjoint.

It follows that for every two ip-different queries, g, and g,, sub-paths P(is(q,)) and P(is(q,)) are
disjoint, as required. O

26That is, unless bp(q;) # bp(g,). But in such a case, paths P(ip(g;)) and P(ip(q,)) must split from each other
(since they differ in some message that belongs to their block-prefix), and we are back to Case 1.

31

Back to the proof of Claim 4, let g; and g, be two ip-different queries that correspond to block-
prefix bp, (as guaranteed by the hypothesis of Claim 4), and let P(is(g;)), P(is(gs)) be as above.
Counsider the two sub-trees, 77 and 75, of T' that are rooted at the starting point of sub-paths
P(is(q;)) and P(is(gy)) respectively (note that by, Fact 2, T3 and Ty are indeed sub-trees of T').
By definition of our recursive schedule, 77 and T3 correspond to ™ sessions one level down in
the recursive construction (i.e., to an instance of R%) In addition, since sub-paths P(is(q;))
and P(is(gy)) are disjoint (by Fact 3) then so are 77 and 7. Using Fact 2 we infer that sub-path
P(is(q;)) (resp., P(is(gy))) contains all messages of all sessions in Ty (resp., T3), and so sub tree
T, (resp., Ty), is ™"-good. It follows that for every pair of different queries that correspond to

k
m—

block-prefix bpy, the sub-tree T contains two disjoint --good sub-trees. W

We are finally ready to establish Lemma 6 (using Claims 3 and _4) By Claim 3, we have that
the number of different queries that correspond to block-prefix bp; is greater _than kctl. Since
(by Claim 4), for every pair of different queries that correspond to block-prefix bpy the sub-tree T’

contains two disjoint “="-good sub-trees, we infer that 7" contains a total of at least kct! disjoint
m—n_

—-good sub-trees (as otherwise there would have existed less than ket! different queries that
correspond to block-prefix bpr, in contradiction to Claim 3). W

5.3.2 Back to the Proof of Lemma 4 (existence of useful block-prefixes)

Once we have established the correctness of Lemma 5, we may proceed with the proof of Lemma 4.
Let z € {0,1}". We bound from above the probability, taken over the choices of o € {0,1}*,¢ &a
and h & H, that for all d € {1,...,q5(n)} and all i € {1,...,n}, the d'® distinct block-prefix in
EXECy(0, g, h) is not i-useful, and that (o,g,h) € AC.

Define a Boolean indicator pot—use,(c, g, k) to be true if and only if the d*® distinct block-prefix
in EXEC,(0,g,h) is potentially-useful. As proved in Lemma 5, for any (o,g,h) € AC there exists
an index d € {1,...,qs(n)}, so that the d'® block-prefix in EXEC,(0,g,h) is potentially-useful. In
other words, for every (o, g, h) € AC, pot—use, (o, g, h) holds for some value of £. Thus:

Prs o1 [(Vd, i —usefulg;(o, g, h)) & (0,9,h) € AC]
gs(n)
< Progn \/ pot—usey(o,9,h) & (Vie{l,...,n} —usefuly;(o,g,h)) (6)
d=1

Consider a specific d € {1, ..,qs(n)} so that pot—use,(c, g, h) is satisfied (i.e., the d*! block prefix in
EXEC, (0, g, h) is potentially-useful). By Condition 2 in the definition of a potentially-useful block-
prefix (Definition 10), the execution of the simulator reaches the end of the corresponding block in
the schedule. In other words, there exists a query § € EXEC(0, g, h) that ends with the (k + 1)

B main session of recursive block number £(tpa) (where bp, denotes the

prover message in the n'
d* distinct block-prefix in EXEC, (0, g, k), and ¢®a) denotes the index of the recursive block that
corresponds to block-prefix bp, in EXECy (0, g, h)). Since, by our convention and the modification of
the simulator, S never generates a query that is answered with a DEVIATION message, we have that
the partial execution transcript induced by query g must contain the accepting conversations of at
least %/2 main sessions in block number #(%P) (as otherwise query g would have been answered

with the DEVIATION message in step 1’ of V, 3).

32

Let q@d) = G(Ed)(a,g,h) denote the first query in EXEC,(o,g,h) that is as above (i.e., that
ends with the (k 4+ 1)** prover message in the n'" main session of recursive block number ¢pa) 27
Define an additional Boolean indicator accept, ;(o, g, k) to be true if and only if query q@d) containg
an accepting conversation for session (ﬁ(@d),z') (that is, no prover message in session (ﬂ(@d),i) is
answered with ABORT, and the last verifier message of this session equals ACCEPT). It follows that for
every d € {1,...,qs(n)} that satisfies pot—use;(c, g, h) (as above), there exists a set S C {1,...,n}

of size "Zl such that accept,,(o, g, h) holds for every i € S. Thus, Eq. (6) is upper bounded by:

gs(n)

Prygn \/ \/ pot—use,(o, g, h) & (Vi € S, —wusefuly;(o,9,h) & acceptd7i(o,g,h)) (7)

d=1 Sc{1,...,n}
1/2
1=

Using the union bound, we upper bound Eq. (7) by

gs(n)

Z Z Progn [pot—used(a,g, h) & (Vz’ €S, —usefulg;(o,9,h) & acceptd,i(a,g,h))] (8)
d=1 sc{1,...,n}

The last expression is upper bounded using the following claim, that bounds the probability that a
given set of different sessions corresponding to the same potentially-useful block-prefix are accepted
(at the first time that the recursive block to which they belong is completed), but still do not turn
it into a useful block-prefix.

Claim 5 For every o €{0,1}*, every h€ H, every d€{1,...,qs(n)}, and every set SC{1,...,n},
so that |S| > k:

s
Prg [pot—used(a,g, h) & (Vz’ € S, —usefuly;(o,9,h) & accept,y (o, g, h))] < (n’(l/”l/‘lk))' |

Proof: Let z € {0,1}*. Fix some o € {0,1}*, h € H,d € {1,...,qs(n)} and aset S C {1,...,n}.
Denote by bpy = bpy(g) the d*® distinct block-prefix in EXEC, (0, h, g), and by £Pa) the index of its
corresponding recursive block in the schedule. We bound the probability, taken over the choice of
g & @, that for all i € S block-prefix bp, is not i-useful, even though it is potentially-useful and
for all i € S query g®?4) contains an accepting conversation for session (E(bpd), i).

In order to prove Claim 5 we need to focus on the d' distinct block-prefix in EXEC, (0, h, g)
(denoted by bp,) and analyze the behaviour of a uniformly chosen g when applied to the various
iteration-prefixes that correspond to bp,. However, while doing so we encounter a technical problem.
This problem is caused by the fact that the contents of block-prefix bp, is determined only after g
is chosen.?® In particular, it does not make sense to analyze the behaviour of a uniformly chosen g

*TSince the simulator is allowed to feed Vj j, with different queries of the same length, we have that the execution
of the simulator may reach the end of the corresponding block more than once (and thus, EXEC, (0o, g, h) may contain

more than a single query that ends with the (k+1)** prover message in the n'" main session of block number £®?4)).
Since each time that the simulator reaches the end of the corresponding block, the above set of accepted sessions may
be different, we are not able to pinpoint a specific set of accepted sessions without explicitly specifying to which one
of the above queries we are referring. We solve this problem by explicitly referring to the first query that satisfies the
above conditions (note that, in our case, such a query is always guaranteed to exist).

28(Clearly, the contents of queries that appear in EXEC, (0, g, k) may depend on the choice of the hash function g.
(This is because the simulator may dynamically adapt its queries depending on the outcome of g on iteration-prefixes
of past queries.) As a consequence, the contents of @d = @d(g) may vary together with the choice of g.

33

on iteration-prefixes that correspond to an “undetermined” block-prefix (since it is not possible to
determine the iteration-prefixes that correspond to bp; when bp, itself is not determined).

To overcome the above problem, we rely on the following observations: (1) Whenever o, h and
d are fixed, the contents of block-prefix bp, is completely determined by the output of g on inputs
that have occurred before bp, has been reached for the first time. (2) All iteration-prefixes that
correspond to block-prefix bp, occur after bp, has been reached for the first time. It is thus possible
to carry out the analysis by considering the output of g only on inputs that have occurred after bp,
has been determined. That is, fixing o, h and d we distinguish between: (a) The outputs of g that
have occurred before the d*® distinct block-prefix in EXEC,(a, g, k) (i.e., bpy) has been reached, and
(b) The outputs of g that have occurred after bp, has been reached. For every possible outcome of
(a) we will analyze the (probabilistic) behaviour of g only over the outcomes of (b). (Recall that
once (a)’s outcome has been determined, all relevant prefixes are well defined.) Since for every
possible outcome of (a) the analysis will hold, it will in particular hold over all choices of g.

More formally, consider the following (alternative) way of describing a uniformly chosen g € G.
Let g1, g2 be two tg(n)-wise independent hash functions uniformly chosen from G and let o, h,d be
as above. We define g(91:92) = ¢(@hd.91.92) {6 he uniformly distributed among the functions ¢’ that
satisfy the following conditions: The value of ¢’ when applied to an input « that has occurred before
bp, has been reached (in EXEC, (0, g,h)) is equal to g1 (), whereas the value of g’ when applied to
an input « that has occurred after bp, has been reached is equal to g ().

Similarly to the proof of Claim 1 it can be shown that for every o, h,d as above, if g; and g
are uniformly distributed then so is ¢{9:92). In particular:

Pr, [pot—used(a,g, h) & (‘v‘i € S, —usefuly;(o,g,h) & accept,;(o, g, h))} (9)
= Prg, g, [pot—used(a, gl91:92) p) & (Vz’ €S, ﬁusefuld,i(a,g(gl’-‘”), h) & acceptd,i(a,g(gl’”), h))]

By fixing g1 and then analyzing the behaviour of a uniformly chosen go on the relevant iteration-
prefixes the above problem is solved. This is due to the following two reasons: (1) For every choice
of o,h,d and for every fixed value of g1, the block-prefix bp, is completely determined (and the
corresponding iteration-prefixes are well defined). (2) Once bp, has been reached, the outcome of
g(gl’”) when applied to the relevant iteration-prefixes is completely determined by the choice of
g2. All we need to show in order to prove Claim 5 is that for every choice of g1, the probability
in Eq. (9) is upper bounded by (n~(1/2+1/4k))IS| (over the choices of g3).

Consider the block-prefix bp,, as determined by the choices of o, h,d and g, and focus on the
iteration-prefixes that correspond to bp, in EXEC, (0, g, k). We next analyze the implications of bp,
being not i-useful, even though it is potentially-useful and for all i € S query 7(P4) contains an
accepting conversation for session (£(P), 7).

Fact 4 Suppose that pot—use,(a,g,h) & (Vi € S, —usefulq;(o,g,h) & accepty;(a,g,h)) holds. Then:
1. The number of different iteration-prefizes that correspond to block-prefiz bp, is at most k°t!,

2. For every j €{2,..,k+1}, there exists an iteration-prefiz ﬁj (corresponding to block-prefiz bp,),
so that for every i € S we have g9 (Z,EJ) =1.

—(1) (

3. For every i € S, there exist an (additional) iteration-prefiz ip
prefiz bpy), so that for every j€{2,...k + 1}, we have E(z) + Ej, and gQ(i,E(z)) =1.

corresponding to block-

34

Proof: Loosely speaking, in order to prove (1) we use the fact that block-prefix bp, is potentially-
useful. In order to prove (2) we also use the fact that for all i € S query 7®P4) contains an accepting

conversation for session (Z@d), 1), and in order to to prove (3) we additionally use the fact that for
all i € S block-prefix bp, is not i-useful. Details follow.

1. Since block-prefix bp, is potentially-useful (as pot—use4(c,g, h) holds), the number of iteration-
prefixes that correspond to block-prefix bp, is at most k°t! (as otherwise, the number of ip-different
queries that correspond to bp, would have been greater than k1).

2. Let i € S and recall that accept,;;(c,g,h) holds. In particular, we have that query 7% (as
defined in the proof of Lemma 4) contains an accepting conversation for session (f(ﬁd),z’) (that
is, no prover message in session (E(Ed),i) is answered with ABORT, and the last verifier message
of this session equals ACCEPT). Since by our conventions regarding the simulator, before making
query Q(Ed) the simulator has made queries to all relevant prefixes, then it must be the case that
all prefixes of query g(®?¢) have previously occurred as queries in EXEC;(0, g, h). In particular, for
every i € S and for every j € {2,...,k + 1}, the execution of the simulator must contain a query
g; ; that is a prefix of g*4) and that satisfies bp(T; ;) = bpa, wen(T; ;)= (¢bpa) 4), Tmsg(T; ;) =J, and
92(4,ip(q; ;)) = 1. (If g2(4,4p(g; ;)) would have been equal to 0, query 7®4) would have contained
a prover message in session (£(*?4)) that is answered with ABORT, in contradiction to the fact that
accepty (0, g,h) holds.) Since for every j € {2,...,k + 1} and for every i1,i9 € S we have that
z'p(qil,j)’ = ip(T;, ;) (as queries g; ; are all prefixes of g,), we can set ip; = ip(g; ;). It follows that
for every j € {2,...,k + 1}, iteration-prefix ip,; corresponds to block-prefix bp, (as queries g, ; all
have block-prefix bp,), and for every i € S we have that gs(i,ip;) = 1.

8. Let i € S and recall that in addition to the fact that accepty;(o,g,h) holds, we have that
usefulg;(o,g,h) does not hold. Notice that the only reason for which usefuly;(c,g,h) can be
false (i.e., the d™® block-prefix is not i-useful), is that Condition 1 in Definition 9 is violated by
EXEC;(0,9,h). (Recall that accept,;(o,g,h) holds, and so Condition 2 in Definition 9 is indeed
satisfied by query @, ;41 (as defined above): This query corresponds to block-prefix bpy, satisfies
Tsn (@i 1) = (E(bpd),i), Tmsg(Ti k1) = k + 1, 92(4,ip(q; k+1)) = 1, and is answered with ACCEPT.)
For Condition 1 in Definition 9 to be violated, there must exists a j € {2,..,k+1}, with two ip-
different queries, g; and gy, that correspond to block-prefix bp, satisfy men(q;) = en (o) = (£P) 7),
Tmsg(T1) = Tmsg(T2) = J, and g2(4,ip(q1)) = 92(¢,ip(q,)) = 1. Since, by definition, two queries are
considered ip-different only if they differ in their iteration-prefixes, we have that there exist two
different iteration-prefixes ip(g;) and ip(g,) (of the same length) that correspond to block-prefix bp,
and satisty g2(7,7p(q;)) = 9(4,%p(gy)) = 1. Since iteration-prefixes ip,, ..., ipy,, (from Fact 1 above)
are all of distinct length, then it must be the case that at least one of ip(q;), ip(q,) is different from
all of ipy, ..., ipj11. In particular, for every i € S (that satisfies usefuly;(c, g, h) & accepty;(o, g, h)),

there exists at least one (extra) iteration-prefix, E(i) € {ip(qy),ip(qy)}, that corresponds to block-
prefix bp, differs from ip; for every j € {2,...,k + 1}, and satisfies g (i,ﬁ(l)) =1. 0

Recall that the hash function g9 is chosen at random from a tg(n)-wise independent family. Since
for every pair of different iteration-prefixes the function go will have different inputs, then as long as
the tg(n)™ query has not been made by the simulator, g, will have independent output. Similarly,
for every pair of different 7,1’ € S, g will have different input, and thus independent output. Put in
other words, all outcomes of gy that are relevant to block-prefix bp, are independent of each other.
Since a uniformly chosen gy will output 1 with probability n~/2*, we may view every application

35

of go on iteration-prefixes that correspond to bp, as an independently executed experiment that
succeeds with probability n—1/2% 29 B

Using Fact 4.1, the applications of go which are relevant to sessions {(£(P4),i)};c5 can be viewed
as a sequence of at most k"' experiments (corresponding to at most k°t! different iteration-
prefixes). Each of these experiments consists of |S| independent sub-experiments (corresponding
to the different i € S), that succeed with probability n~1/2k Fact 4.2 now implies that exactly k of
the above experiments will fully succeed (that is, all of their sub-experiments will succeed), while
Fact 4.3 implies that for every i € S there exists an additional successful sub-experiment (that is, a
sub-experiment of one of the kt! — k& remaining experiments). Using the fact that the probability
that a sub-experiment succeeds is n~1/2* we infer that the probability that an experiment fully
succeeds is equal to (n~/?¥)/Sl. In particular, the probability in Eq. (9) is upper bounded by
the probability that the following two events occur (these events correspond to Facts 4.2 and 4.3
respectively):

1. In a sequence of (at most k') experiments, each succeeding with probability (n="/2%)SI,
there exist (exactly) k successful experiments. (The success probability corresponds to the

probability that for every i € S, we have g(i,p;) = 1 (see Fact 4.2).)

2. For every one out of |S| sequences of (at most kt! —k) experiments, each succeeding with
probability n=1/2% | there ezists at least one successful ezperiment. (The success probability

corresponds to the probability that iteration-prefix zp(") satisfies g(i, zp()) 1 (see Fact 4.3).)

We can thus upper bound Eq. (9) by:

<(1/%)S|) (1 -(1- nl/zk)kc+1k) 151
()

)"
kc+1)k+|5‘ (1/2k)k"5|+|5|
s)k+|5‘ _ <n—l/4k)|5| (n—(1/2+1/4k))|5‘
< (n7(1/2+1/4k))‘5| (11)

Where Eq. (10) holds whenever k! — k = o(n'/?*) (which is satisfied if k = O(Flgolgog—n)),

and Eq. (11) holds whenever (k¢T1)*+IS|. (n=1/4)ISI < 1 (which is satisfied if both |S| > & and

k= 0(1o§’i§n))- We thus have:

s
Pr, [pot—used(a,g, h) & (Vi € S, —usefuly;(o,g,h) & accept, (0, g, h))] < (n—(1/2+1/4k))\ |

Which completes the proof of Claim 5. [

We may describe the process of picking g» & @ as the process of independently letting the output of g2 be equal
to 1 with probability n~1/2* (each time a new input is introduced). Note that we will be doing so only for inputs that
occur after block-prefix bp, has been determined (as, in the above case, all inputs for g» are iteration-prefixes that
correspond to block-prefix b_pd, and such iteration-prefixes will occur only after %d has already been determined).

36

Using Claim 5 we upper bound Eq. (8) by
1/2

1/2

3

4

n) —(1/2+1/4k))

1/2 172

(
< (o) .<n—(1/2+1/4k))T
e

.4;

1/2
1/4k)

1/2
< gs(n)- (12)
where Inequality 12 holds whenever 8 - e < n'/** (which holds for k < M—;j_gb"g—e)). This completes
the proof of Lemma 4.

6 Conclusions

6.1 Alternative models

The lower bound presented here draws severe limitations on the ability of black-box simulators
to cope with the standard concurrent zero-knowledge setting, and provides motivation to consider
relaxations of and augmentations to the standard model. Indeed, several works have managed
to “bypass” the difficulty in constructing concurrent zero-knowledge protocols by modifying the
standard model in a number of ways. Dwork, Naor and Sahai augment the communication model
with assumptions on the maximum delay of messages and skews of local clocks of parties [7, 8].
Damgard uses a common random string [6], and Canetti et.al. use a public registry file [5].

A different approach would be to try and achieve security properties that are weaker than
zero-knowledge but are still useful. For example, Feige and Shamir consider the notion of witness
indistinguishability [9, 10], which is preserved under concurrent composition.

6.2 Alternative simulation techniques

Loosely speaking, the only advantage that a black-box simulator may have over the honest prover
is the ability to “rewind” the interaction and explore different execution paths before proceeding
with the simulation (as its access to the verifier’s strategy is restricted to the examination of
input/output behavior). As we have seen in our proof, such a mode of operation (i.e., the necessity
to rewind every session) is a major contributor to the hardness of simulating many concurrent
sessions. Coming up with a simulator that deviates from this paradigm (i.e., is non black-box,
in the sense that it does not necessarily have to rewind the adversary verifier in order to obtain
a faithful simulation of the conversation), would essentially bypass the main problem that arises
while trying to simulate many concurrent sessions. We stress that our result does not rule out non
black-box simulators and that, as far as we know, they could conceivably exist (alas such simulators
seem to be hard to come up with).

Hada and Tanaka [17] consider some weaker variants of zero-knowledge, and exhibit a three-
round protocol for NP (whereas only BPP has three-round block-box zero-knowledge [13]). Their
protocol is the only known example of a zero-knowledge protocol not proven secure via black-box
simulation. We remark that their proof can be extended to show that their protocol remains zero-
knowledge for any language in NP even in the concurrent setting. However, their analysis is based
in an essential way on a strong and highly non-standard hardness assumption.

37

Acknowledgements

We are indebted to Oded Goldreich for his devoted help and technical contribution to this project.

References

[1] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in
Computationally Sound Protocols? In 38th FOCS, pages 374-383, 1997.

[2] M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant rounds. In
22nd STOC, pages 482-493, 1990.

[3] G.Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156-189, 1988.

[4] G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-Knowledge Com-
putationally Convincing Protocols. Theoret. Comput. Sci. , Vol. 84, pp. 23-52, 1991.

[5] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In
32nd STOC, pages 235-244 ,2000.

[6] I. Damgard. Eficient Concurrent Zero-Knowledge in the Auxiliary String Model. In
EuroCrypt2000, LNCS 1807, pages 418-430, 2000.

[7] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409-418, 1998.

[8] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. In Crypto98, Springer LNCS 1462 , pages 442-457, 1998.

[9] U. Feige. Ph.D. thesis, Weizmann Institute of Science, 1990.

[10] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In
22nd STOC, pages 416-426, 1990.

[11] O. Goldreich. Foundations of Cryptography — Fragments of a Book. Available from
http://theory.lcs.mit.edu/~oded/frag.html.

[12] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167-189, 1996.

[13] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Computing, Vol. 25, No. 1, pages 169-192, 1996.

[14] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.
691-729, 1991.

[15] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Jour. of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

[16] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186208, 1989.

38

[17]

[18]

[19]

[20]

[21]

22]

23]

S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In
Crypto98, Springer LNCS 1462, pages 408-423, 1998.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom
Generator from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages
1364-1396, 1999.

J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic
Rounds. In $3rd STOC, 2001.

J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero-Knowledge on the Internet.
In 89th FOCS, pages 484-492, 1998.

M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages
151-158, 1991.

R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EuroCrypt99, Springer LNCS 1592, pages 415-431, 1999.

A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In Crypto2000,
Springer LNCS 1880, pages 451-468, 2000.

39

Appendix

A Detailed Description of the Recursive Schedule

The schedule consists of n? sessions (each session consists of k+ 1 prover messages and k+ 1 verifier
messages). It is defined recursively, where for each m < n?, the schedule for sessions i1,...,in
(denoted R;,,._;,.) proceeds as follows:

1. If s < n, execute sessions i1,...,%s sequentially until they are all completed;
2. Otherwise, For j =1,...,k+ 1:

(a) For£=1,...,n:
()

i. Send the ;' verifier message in session i, (i.e., £);
ii. Send the j*® prover message in session i, (i.e., pg-”));

End(For);

(b) If j < k + 1, invoke a recursive copy of Rt (G 1)-t41) ity (where ¢ def 155)s

(Sessions U(nt(j—1)t4+1)s- - - » {(ntj-r) are the next ¢ remaining sessions out of i1, ... yim-)

End(For);

B Solving the Recursion
Claim 6 Suppose that Eq. (5) holds. Then for all sufficiently large n, W (n?) > n¢.

Proof: The proof follows by a straighforward solution of the recursive formula induced by Eq. (5):

2 _
W(n?) > ’“c+l'W(n K n) (13)
_ kcH_W(n.(n—l))
k
1 et logy(n—1)—1 n—k
> ket (ko) W (= (14)
2 (kc—l—l)logk(n*l) 1 (15)
= (n—1)°"
> nf (16)

where Eq. (13), (14) and (15) hold whenever Eq. (5) is satisfied, and Eq. (16) holds whenever

1ogl(()§£1) < 1+ 1 (which is satisfied for all sufficiently large n). O

ECCC ISSN 1433-8092
40 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

