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Probabilistic abstraction for model checking:
An approach based on property testing

S. Laplante *  R. Lassaigne T F. Magniez * S. Peyronnet * M. de Rougemont **¥

Abstract

In model checking, program correctness on all inputs is verified by considering the transition
system underlying a given program. In practice, the system can be intractably large. In prop-
erty testing, a property of a single input is verified by looking at a small subset of that input.
We join the strengths of both approaches by introducing to model checking the notion of proba-
bilistic abstraction. We put forth the notion of e-reducibility which is implicit in many property
testers. Our probabilistic abstraction associates a set of small random transition systems to a
program. Under some conditions, these transition systems are sufficient to guarantee that a
program approximately decides on all its inputs a property like bipartiteness, k-colorability, or
any first order graph properties of type V. We give a concrete example of an abstraction for a
program which decides bipartiteness. Finally, we show that abstraction is necessary by proving
an exponential lower bound on OBDDs for approximate bipartiteness.

1 Introduction

The verification of programs is a fundamental problem in computer science, where logic, complexity
and combinatorics have brought new ideas which have been influential in practical applications. We
bring two general methods together: model checking, where one formally proves that a program is
correct for all its inputs, up to a given length, and property testing, where a randomized algorithm
makes random local checks within a particular input to decide if this input has a given property.
Our approach brings the notion of sampling and approximation from property testing to model
checking.

Formal verification is a methodology for mathematically proving properties or specifications
of a program. The verification takes place once, before the program is ever executed. Given the
source code, and a specification expressed in a logic-based language, the goal is to decide whether
the program satisfies the specification. Model checking is an algorithmic method for deciding if a
program with bounded inputs, modeled as a transition system, satisfies a specification, expressed
as a formula of a temporal logic such as CTL [8]. This verification can be carried out in time
linear in the number of states in the transition system [6]. However, a program given in a classical
programming language, like C, converted to a transition system, typically undergoes an exponential
blowup in the size of the input. Symbolic model checking [14, 8] addresses this problem by using
ordered binary decision diagrams [3, 4] (OBDDs, or equivalently read-once branching programs
with an ordering restriction on the variables), which in many practical cases provide a compact
representation of the transition system. Nevertheless, in some cases, such as integer multiplication
and bipartiteness, the OBDD size remains exponential.

The abstraction method [7] provides a solution in some cases when the OBDD size is intractable.
A large transition system is approximated by a smaller one, by way of an abstraction, and the spec-
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ification can be efficiently verified. A classical example is multiplication, where modular arithmetic
is the basis of the abstraction. The goal of our paper is to extend the range of abstractions to a
large family of programs on graphs.

In the late eighties the theory of program checking and self-testing/correcting, was pioneered by
the work of Blum and Kannan [2], and Blum, Luby and Rubinfeld [5]. This theory addresses the
problem of program correctness by verifying carefully chosen mathematical relationships between
the outputs of the program on randomly selected inputs. Rubinfeld and Sudan [15] first formulated
the notion of property testing which arises in every such tester. One is interested in deciding whether
an object has a global property ¢ by performing random local checks or queries. One is satisfied if
one can distinguish with sufficient confidence between objects that satisfy ¢ and those that are e-far
from any objects that satisfy ¢, for some confidence parameter £ > 0, and some distance measure.
The surprising result is that when ¢ is fixed, this relaxation is sufficient for it to be possible to
decide many properties with a sublinear or even a constant number of queries.

Goldreich, Goldwasser, and Ron [9, 10, 11] investigated property testing for several graph
properties such as k-colorability. Alon, Fischer, Krivelevich, and Szegedy [1] showed a general
result for all first order graph properties of type 3V.

We identify a notion which is implicit in many graph property testers: A graph property ¢ is
e-reducible to 1 if testing ¢ on small random subgraphs suffices to distinguish between graphs which
satisfy ¢, and those that are e-far from satisfying ¢. Our goal will be to distinguish with sufficient
confidence between programs that accept only graphs that satisfy ¢ and those which accept some
graph that is e-far from any graph that satisfies ¢. We introduce probabilistic abstractions which to
a program associate small random transition systems. We show that for probabilistic abstractions
based on e-reducibility this goal can be achieved.

In Section 2 we review basic notions of model checking and property testing, and define e-
reducibility (Definition 6). In Section 3, we introduce the notion of probabilistic abstraction
(Definition 7). To be useful, an abstraction must preserve the behavior of the program. An ab-
straction is congruent (Definition 9) if it preserves program correctness. It is robust (Definition 8
if correctness on the abstraction implies that the original program does not accept any graph that
is e-far from any graph that satisfies ¢. The latter is an extension to abstraction of robustness
introduced in [15].

We show how to derive a probabilistic abstraction using e-reducibility (Section 3.3). We give
a generic proof of e-robustness for a large class of specifications (Theorem 5). Moreover, we give
a sufficient condition for congruence to hold (Theorem 6). We establish the applicability of our
method by applying it to a program for bipartiteness. On the one hand, we show that a program
for testing bipartiteness can be abstracted by our methods (Corollary 1). On the other hand, in
Section 4 we show that abstraction is necessary, in the sense that the relaxation of the exactness of
the test alone does not yield small enough OBDDs. We prove, using methods from communication
complexity, that the OBDD size remains exponential for approximate bipartiteness (Theorem 7).

2 Framework and preliminaries

2.1 Model checking framework

The goal of model checking is to automatize the process of verifying that a program’s code is in
agreement with formally stated specifications. We provide some background on how model checking
achieves this goal. Briefly, programs are transformed into transition systems over an appropriate
set of states, which represent the current value of all the program’s variables at any given time.



On the other hand, a specification is given in a temporal logic, expressing a desired behavior of the
program. The transition system determines the model in which the specification is interpreted. The
problem of verifying the specification on the model, that is, the expression “model |= specification”,
reduces to a simple decision procedure on OBDDs derived from the expression. The entire process
can be carried out in polynomial time, provided the final reduction does not yield intractably large
OBDDs. In the case of some problems, this is inherently unavoidable. An important issue in model
checking is to devise ways around these large, in fact, exponential-size, OBDDs.

2.1.1 Programs and transition systems

We will use transition systems for representing all possible executions of a given program. Formally,
a transition system is a triple defined as follows.

Definition 1. A transition system is a triple M = (S, I, R) where S is the set of states, I C S is
the set of initial states and R C S X S is the transition relation.

To simplify the discussion we will only consider programs which implement boolean functions.
They will be written in a simple language that manipulates bit, bounded integer and finite array
variables, using basic instructions: while statements, conditionals, assignments and a get instruc-
tion which allows the user to interact with the program. The input variables correspond to the
input of the function. An implicit variable ack is set to false at the beginning of the program and
is set to true at the end of the computation. Another implicit variable ret is defined together
with the instruction RETURN such that RETURN b sets ret to b ack to true. To verify properties on
the behavior of a program, we must know values of the variables at certain points of the program,
called control points. The control points are at the beginning of lines labeled by integers. Finally,
the implicit variable PC contains the label value of the last visited control point.

Suppose now that P is such a program with a finite set of variables {vy,...,v,} including the
implicit variables PC, ack, and ret. Each variable v; ranges over a (finite) domain D;. We define
the transition system of P. A state of P is an n-tuple s = (sq,...,s,) corresponding to a possible
assignment of variables vy, ..., v, at a control point during a computation. Then the set of states
of Pis S = Dy X ...X D,. The initial states of P are all the possible states before any computation
starts, and the transition relation of P is the set of all possible transitions of the program between
two control points. When the program terminates, the transition system loops with an infinite
sequence of transitions on the final state.

Model checking does not manipulate the transition system directly; instead, it manipulates
a logical representation of the transition system, expressed as a set of relational expressions. A
relational expression is a formula of the first-order logic built up from the programming language’s
constants and basic operators (such as 4+, —, and =). Moreover we always assume that relational
expressions are in negative normal form (negations pushed down to the atomic level).

Definition 2. Let T (resp. R) be a relational expression on S (resp. S x S). Then (Z,R) is a
representation of M = (S, I, R) iff | = {s € S :Z(s) = true} and R = {(s,s') € S x S : R(s,s') =
true}.

Let us now give an example.
FUNCTION GUESS
INPUT a : BOOLEAN
VAR b : BOOLEAN

1: get(b)
2: IF (a=b) RETURN true
ELSE RETURN false

The program variables are a and b with the implicit variables PC, ack, and ret. A state of



the program is a 5-tuple (PC,ack,ret,a,b). A transition of the program is a pair of states
((PC, ack, ret,a,b), (PC’, ack’, ret’, a’,b’)). The relational expression for the initial states of the
program is (PC = 1) A (ack = false). The relational expression for the transition relation of the
program is defined as the disjunction of the following three formulas:

(PC=1) A (PC' = 2) A (ack’ = ack) A (ret’ = ret) A (2' = a),

(PC=2) A (PC" = 2) A (ack’ = true) A (ret’ = true) A (a =b) A (&' =a) A (b = D),

(PC=2) A (PC' = 2) A (ack’ = true) A (ret’ = false) A (a # b) A (&' = a) A (b/ = D).
Due to user interaction, b’ does not appear in the first formula, and the first transition is therefore
nondeterministic.

2.1.2 Temporal logic

To express the desired behavior of a transition system (associated to a program), we need a
branching-time temporal logic. All our results will be stated for the temporal logic CTL*, but
we only define the simplest fragment CTL and we refer the reader to [8] for more details on CTL*.
Formulas of CTL are defined inductively from a set of atomic propositions and built up by
boolean connectives (-, A, V), path quantifiers V (“for all paths”) and 3 (“for some path”), temporal
operators X (“next”) and U (“until”). In our framework, atomic propositions are (v; = d) where
v; is a variable which corresponds to the ¢th coordinate of a state and d is any constant.
Definition 3. CTL formulas are inductively defined as follows:
1. atomic propositions are CTL formulas;
2. boolean combinations of CTL formulas are CTL formulas;
3. if ® and ¥ are CTL formulas then V(X @), 3(X @), V(2 U ¥), (L U V) are CTL formulas.
We now define the semantics of a CTL formula © for a transition system M = (S, I, R), with
S =D; x...x Dy,. A path of the transition system M is an infinite sequence o = (0;);en of states
such that (0;,0,41) € R, for all ¢ > 0. For every s € S, we now inductively define M, s |= O, that
is the satisfaction of a CTL formula © in M at state s by:
1. M,s ): ('Ui = dz) iff s; =d; with d; € D;.
2. Boolean connectives =, A and V are defined as usual.
3. M,s = V(X®) (resp. M,s = 3(X®))iff M,0; = @ for all paths (resp. for some path) o
s.t. og = s.
4. M,s E V(®UVY) (resp. M,s E F(®UV)) iff for all paths (resp. for some path) o s.t.
oo = s, M,0; =V for some k, and M,0; = ® forall 0 < 5 < k.
The notation M = © means that M, s = O for every initial state s € I.
For example, the following CTL formula is a specification of the behavior of the program GUESS

(see Section 2.1.1): M | ‘v’(—ackUack/\ ((ret A(a=1b))V (-retA(a# b))))

2.1.3 OBDDs and model checking

We now focus on the verification of M |= ©. This is the heart of model checking. Although the
standard model checking algorithm is linear in the size of the transition system M, the number
of states in M is often too large to handle. For some problems, OBDD representation provides a
succinct symbolic representation of the expression M | ©. OBDDs were introduced by Bryant [3, 4]
and can be defined as read-once branching programs, where a single variable is read at each level
of the branching program.

Let us now briefly review the symbolic model checking method [8]. The verification process is
unassisted, in that it takes as input the program and the specification, and decides whether the



specification is verified. It is implemented by a procedure check which takes as arguments the
CTL* formula and an OBDD representation of the transition relation of the transition system to
be checked. The procedure returns an OBDD check(M, ©) whose entries are states of S, and it
satisfies for every s € S
check(M,0O)(s) = true <= M,s = 0.

An OBDD is also constructed for Z. Classical logical operations on OBDDs (for instance, con-
structing an OBDD that computes the disjunction of two given OBDDs) can be carried out in
quadratic time. Therefore, one can easily verify that (—I\/ check(M, @)) is a tautology, that is,
M | O is true. ,

Thus, when the OBDD representing M = O is polynomial in size, the verification can be carried
out in polynomial time. A typical example where this is not the case is multiplication, since any
OBDD for multiplication has exponential size [3]. In the next section, we will see how abstraction
can overcome this problem.

2.1.4 Abstractions

The use of an abstraction [7] helps in some cases to overcome the problem of intractably large
OBDDs. The objective of abstractions is to replace the transition system with an abstract version
which is smaller and simulates the original system. For each variable, a surjection is used to reduce
the size of the domain, and transitions are made between the resulting equivalence classes, as we
define below.

Definition 4. Let M = (5,1, R) be a lransilion system, where S = Dy X ... X D,,. An abstraction
for M is a sur]ectzon h:S— S such that h can be decomposed into an n- tuple h=(hi,... hy),
where h; ; — DZ is any surjection, and DZ is any sel. The minimal transition system of M
w1th Iebpect to h is the transition system ]\/[mm = <S Imm,Rmm> such that S = D1 X ... X Dn,
Imm = h(I), and R

(5,8) € Bin < 3(s,8') € 5%, (h(s) =35) A (h(s") =5") A ((s,s’) € R).

Note that the minimal transition system notion and all the notions that will follow are defined
with respect to a fixed abstraction h. When we manipulate several abstractions together, we will
specify the abstraction h as a superscript.

One can also define the minimal transition system directly from one of its representation. Define

the [-] operator for every abstraction h and for any first order formula ¢ such that:
def

[@](D1, ..., Tn) = For .. Fu, (A T = h(vi)) Ao, ..., v).
Then observe that Emin = [R]
In general, it is very difficult to construct M\min because the full description of the transition
system M is needed in order to carry out the abstraction. Nevertheless, one can produce an
approximation directly from its representation. Let us first define the notion of approximation.

Definition 5. Let M = <S 1 R> be a transition system, and let h : S — S be an abstraction for
M. A lransilion system M <S I R> approximates M with respect to h (M Cp, M for short) if
and only if Imm C T and Rmm C R.

To define an approximation directly on a representation of M, we simply apply [-] at the
atomic level, i.e. to atomic relations and their negations. The obtained operator is named the
approzimation operator A. More precisely, we define A inductively on formulas that are in negative
normal form (negations pushed down to the atomic level) such that for every atomic proposition a,



and first order formulas ¢, ¥

A(a) = [a], A(—a) = [-a],
Al A1) = A() N A(Y), AoV ) = A(¢) V A(Y),
A3z ¢) = 33 A(9), A(Vz ¢) = Vi A(0).

For every transition system M = (S,I, R) with the representation (Z,R), we will denote
by A(M) the transition system with the set of states 5 = h(S) and with the representation
(A(Z), A(R)). Then the following result states that the approximation operator correctly defines
approximated transition systems.

Theorem 1 ([7]). Let M = (S, I, R) be a transition system with any representation (Z,R), and
let h: S — S be an abstraction for M. Then the transition system A(M) approxzimates M with
respect to h.

Let M be an approximation of M. Suppose that M E ©. What can we conclude on the concrete
model M? To answer, let us first consider the following transformations C and D between formulas
on M and their approximation on M. These transformations preserve boolean connectives, path

quantifiers, and temporal operators, and act on atomic propositions as follows:

CH=d)=E \/ (=d), and D =d)E (@ = hi(dy)).

dg:hg(dg):&\i
Denote by VCTL* and FCTL* the universal fragment and the existential fragment of CTL*.
Then the following theorem states correspondences between concrete models and their approxima-
tions.

Theorem 2 ([7]) Let M = (S, I R) be a transition system. Lel b : S — S S be an abstraction for
M, and let M be such that M Ch M. Let © be a VCTL* SJormula on ]\/I and ©' be a 3CTL*
formula on M. Then

ME® = MEC®), and MEO = MED®).

The second part of the theorem is implicit in [7]. Notice that the two statements are not
reciprocals of one another because of the type of formulas involved (VCTL* and ICTL*). In both
cases, reciprocals can be shown under certain conditions on the abstractions [7]. The first result
validates the usefulness of abstractions in practical model checking. The second will be used in our
proof of Theorem 5.

2.2 Property testing

In what follows, we will use property testing to obtain a new family of abstractions for model
checking. We now outline the basic notions pertaining to property testing.

We consider only undirected, simple graphs (no multiple edges or self-loops). For a graph G,
we denote by Vi its vertex set, by Fg its edge set, and by n the cardinality |Vg| of Vg When
there is no ambiguity, we will simply write V and FE instead of Vg and Eg. We will be interested
in properties which are invariant under graph isomorphisms, so labeling is not important. In the
remainder of the paper we will use the following distance measure: for any two graphs G and G’
on the same n-vertex set, Dist(G, G') is the number of edges on which the graphs disagree divided
by n?. Nevertheless, our theory and our main results (Theorems 5 and 6) hold for any distance
measure.

Let ¢ be a graph property. Then G | ¢ means that G has the property ¢. In general, an
e-lest for ¢ is a probabilistic algorithm that accepts every graph with property ¢, and rejects with
probability 2/3 every graph which has distance more than ¢ from any graph having the property.!

'We may also consider two-sided error, and the choice of the success probability 2/3 is of course arbitrary.



Moreover, an e-test can only access the input graph by querying whether or not any chosen pair of
vertices are adjacent. The property ¢ is called testable if for every € > 0, there exists an e-test for ¢
whose total number of queries depends on £, but does not depend on the size of the graph. In several
cases, the proof of testability is based on a mathematical reduction between two properties. The
notion of e-reducibility highlights this idea. This notion is central to the design of our abstractions.
Denote by G, the vertex-induced subgraph of GG on the vertex set # C Vz. For a property ¢ on
n-vertex graphs, we denote by ¢. the property that for every n-vertex graph G,
GE¢. <= dH, Dist(G,H)<e and H [ ¢.

Definition 6. Let ¢ > 0, 1 < k < n be two integers, and ¢ (resp. ) be a property on n-vertex
graphs (resp. k-vertex graphs). For every graph G, let Il denote the set of all @ C Vi such that
|7| = k. Then ¢ is e-reducible to ¢ if and only if for every n-vertex graph G,

GEoé¢ = Vrell, G, =,
G#ge = PriG.Ey]<1/3.

Note that the expression G [~ ¢. means that G has distance more than ¢ from any graph
satisfying ¢.
For example, we can recast the results of k-colorability and bipartiteness [9] in terms of e-
reducibility.
Theorem 3 ([9]). Forall k>3, ¢ >0,
1. k-colorability is e-reducible to k-colorability on O(k*log?(k/¢)/e®)-vertex graphs;
2. bipartiteness is e-reducible to bipartiteness on O(log?(1/¢)/e%)-vertex graphs.
Recently, Alon, Fischer, Krivelevich, and Szegedy [1] showed that all first order graph properties
of type 3V have an e-tester. Their results can also be recast in terms of e-reducibility, as follows.
Note, however, that in this result, the function f is a tower of towers.

Theorem 4 ([1]). There exists a function f : Ry — Ry, such that every first order graph property
¢ of type IV is e-reducible to some property on O(f(t + 1/¢))-vertex graphs, where ¢ has t bound
variables.

3 Verification of graph properties

3.1 Context and objectives

Our goal is to extend the framework of model checking to include the use of probabilistic abstrac-
tions. In order to do so we would like to prove an analogue of Theorem 2. We prove that with
high probability, incorrect programs will be rejected (e-robustness). We also prove a reciprocal,
which states that under a certain condition (ezactness), correct programs will never be rejected
(congruence).

A second goal is to extend the framework of model checking to include the verification of
programs purportedly deciding graph properties. The standard model checking method is not
adapted to programs on inputs that are first-order structures such as graph adjacency relations.
We overcome this by dealing with the specification of the program, and the property of the graph,
separately. The former is handled with standard tools of model checking. The latter will reduce,
as a result of the e-reduction, to verifying a property on constant size graphs, which can be carried
out in constant time.

We give an example of a program for bipartiteness, and show that the approximation operator
A results in an exact approximation of the transition system. Hence, the e-abstraction can be used



to verify the program. Finally, one might ask whether the relaxation brought about by the use of
property testing is in itself enough to beat the exponential lower bounds on the original problem.
We show that this is not the case, by giving a lower bound on the relaxed version of bipartiteness.

Consider the following special case of a formula we wish to verify, where P is a program which
computes some boolean function on bounded size graphs:

The program P accepts only graphs which satisfy some graph property ¢.

Suppose that G is an input variable of P, such that G is interpreted as a graph ' (with respect to
some fixed encoding): this will be written as G = G.

A state s of the transition system M = (S, I, R) of P is a finite sequence of variables (... ,G,...).
For every graph G, we then define I = {s € I : G = G}. Let ¢ be some property. We would like
to check the following;:

VG ((‘v’s €lg M,sk=3 ((—ack)U(ackAret))) = GE ¢)
Note that on the RHS of the implication, ¢ is interpreted in a structure for G which does not
include the transition system. This is because the standard model checking algorithms are not
suited for programs with inputs that are first order structures. When there is no ambiguity, we will

write M,G |= O instead of Vs € Iz, M,s | O.

More generally, our framework applies to the following type of formulas:
VG (MGEO = GE9), 1)

where the input includes the graph G and may also include auxiliary data, © is a CTL* formula,
and ¢ is a graph property. In the remainder of the paper, we always assume a graph G to be an
input variable in the program.

Since (G is a bounded size graph and ¢ is a formula expressing a property on (&, we can determine

whether G |= ¢ using an OBDD. Let sat(¢,G) be such an OBDD. Then verifying (1) can be
achieved by checking the validity of ((—JG V check(M, ©)) = sat(¢, G)), where 7 = Z(G/G)
(all occurrences of the variable G are substituted for G).

For the graph properties that we consider, such as bipartiteness, the OBDDs for G = ¢ have
exponential size. As we show in Section 4, the relaxation of property testing is not sufficient to
reduce the OBDD size of bipartiteness. We use e-reducibility to construct probabilistic abstractions,
yielding smaller, even constant-size OBDDs. Using these small OBDDs, we are able to guarantee
that P approximately decides ¢ on all its inputs.

3.2 Probabilistic abstraction

Definition 7. Let M be a transition system. A probabilistic abstraction of M is a triple (H, M, p),
where H_is a set of abstractions for M, M is a functional which maps every h € H lo a transition
system M" = M(h) such that M T, M", and p is a probability distribution over H.

Let © be a CTL* formula on M, and % be a graph property. Then any probabilistic abstraction
of M induces the following probabilistic test, where we require that G" be interpreted as a graph,
and the operator D (see Section 2.1.4) is applied with respect to the appropriate abstraction.

Generic Test((H, M, ), 0, 1)
1. Choose an element h € H according to pu.
2. Accept if (and only if)
vGh (MM GhEDO) =  GhE ).
The probability that the test rejects will be denoted by Rej((?—[, M, 1), 0, g/)) The distribution p
will be omitted when it denotes the uniform probability distribution. To be useful in practice, a




probabilistic abstraction should be both e-robust (programs are rejected with probability 2/3 if the
relaxed specification is false for some input) and congruent (no correct programs are rejected), in
which case we say that it is an e-abstraction. Then checking the correctness of a program can be
easily done on the abstracted model with high confidence using Generic Test. Fix a confidence
parameter 0 < v < 1, and iterate Generic Test O(In1/y) times. If the program is correct,
Generic Test always accepts; and if there is an instance on which the program is not correct with
respect to the relaxed specification, Generic Test rejects at least once with probability greater
than (1—7).

Definition 8. Let M be a transition system, € > 0, © be a CTL* formula, and let ¢, be two
graph properties. A probabilistic abstraction (H, M, i) of M is e-robust with respect to (0, ¢, ) if
(3¢ (M,GE®© and G ¢.)) = Rej((H,M,pn),0,¢)> 2
Definition 9. Let M be a transition system, © be a CTL* formula, and let ¢,1 be two graph

properties. A probabilistic abstraction (H, M, ) of M is congruent with respect to (0, ¢, ) if
VG (M,GE® = GE¢) = Rej((H,M,pn),0,¢)=0.

Definition 10. Let M be a transition system, © be a CTL* formula, and let ¢, be two graph

properties. A probabilistic abstraction (H, M, ) of M is an e-abstraction for (0, ¢, ¢) if it is both

e-robust and congruent with respect to (0, ¢, ).

3.3 Constructing c-abstractions

We now explain how to construct e-abstractions based on e-reducibility. Fix e > 0, n > 1, and
assume that ¢ on n-vertex graphs is e-reducible to ¥ on k-vertex graphs, for some 1 < k£ < n.
We give a generic proof of robustness of our probabilistic abstraction, and we isolate a sufficient
condition which implies congruence. Under this condition, we obtain an e-abstraction. From
Definition 6, for any fixed k, we let IT be the set of all subsets 7 of vertices with |x| = k, and for
any graph (7, the vertex-induced subgraph on the vertex set 7 is denoted by G.

Since we relax ¢ with respect to €, we can decompose our initial specification (1) into the
following family of reduced specifications:

VG (M,GEO = G.E¢):7ell}.

For every m, the corresponding reduced specification can now be subject to an abstraction h,.
Every correspondlng abstracted variable v and constant d will be denoted respectively by ©™ and
d™. We require that the abstraction of G be exactly G, that is, G™ = Gr. Let M™ be such that
M Cj. M™. We define the (uniform) probabilistic abstraction (’H M) (also denoted by (II, M))
as H={h,: 7 €1Il} and M(h,) = M’T, for every 7 € II. This leads to the following test:
Graph Test ((I1, M), ©, ¢)

1. Randomly choose a subset of vertices 7 € TI.

2. Accept if (and only if )

VGT (MT,GTEDO) = G ).

We show that if © is an ACTL* formula, then our probabilistic abstraction is e-robust. This,

together with its conditional reciprocal in Theorem 6, establishes the validity of the method.

Theorem 5. Let © be a ACTL* formula. Let ¢ > 0 be a real, and let ¢ on n-vertex graphs be
e-reducible to 1 on k-vertex graphs. Let (I1, M) be a probabilistic abstraction such that G = G,
for every m € II. Then (I1, M) is e-robust with respect to (0, ¢, ).

Proof. Let G be such that M, G = © and G [~ ¢.. By Theorem 2, M™,G" E D(0), for every w € II.




Moreover, by definition of e-reducibility we know that Pr ¢ [@” = 7,/)} < 1/3. Therefore

Precn |[M7,G7=DO) = GTly| <)
We conclude by observing that 1—Rej(M) is upper bounded by the term on the LHS of the
inequality. O

Having shown that the abstraction is e-robust, we establish a sufficient condition for congruence:
exactness.

Deﬁnltlon 11. Let M be a transition system, © be a CTL* formula, h be an abstraction, and let
M be such that M Cp M. Then the approzimalion M is exact with respect to © if and only if for
every graph G .

M,GED®) = 3H, H=G and M,HEO.
Theorem 6. Let © be a ACTL* formula. Let ¢ > 0 be a real, and let ¢ on n-vertex graphs be
e-reducible to ¢ on k-vertex graphs. Let (I, M) be a probabilistic abstraction such that G™ = Gr

and M™ is an ezact approzimation with respect to ©, for every m € Il. Then (II, M) is congruent
with respect to (0, ¢, ).

Proof. Fix m € 1. Let G™ be a k-vertex graph such that ]T/f”, G E D(O). From the exactness of
M\”, there exists a graph H such that H™ = G™ and M, H = 0. Therefore, from the hypotheses
we get H = ¢. The e-reducibility of ¢ to ¢ implies that Hr = ¢, that is, Gm = ¢. This shows
that for all # € II and G7, DA R

M™.G"E=DO) = G"E°.

3.4 An e-abstraction for bipartiteness

In this section, we give a short program for bipartiteness, and an e-abstraction for this program.
We consider a function which decides, given a graph G and a coloring Color (which is captured
by the user), if Color is a bipartition for G. The graph G is represented by the upper triangular
entries of a matrix G and Color by an array Color.

FUNCTION CHECK-PARTITION
CONSTANT INTEGER n=10000
INPUT G : ARRAY[n,n] of BOOLEAN
VAR Color : ARRAY[n] of BOOLEAN
VAR u,v : INTEGER 1..n+1

3: WHILE u<=n DO {

v=1

WHILE v<=u-1 DO {
IF G[u,v] &% (Color[ul=Color[v]) RETURN false
v=v+1 }

u=u+1 }

6: RETURN true

SIS

1: get(Color)
2: u=2
We want to verify that, for every input G, if there exists an input value for Color for which

the program accepts, then G represents a bipartite graph. More formally, we want to verify the
following property:

V@& <M, G | 3((—ack) U(ackAret)) = (s bipartite). (2)

Note that 3 ranges over all the possible initial values of Color which the user can enter with the
instruction get(Color). For each 7 we define the abstraction which maps GG to the subgraph G,
Color to the coloring on the subset of vertices induced by 7, and u, v refer to the vertices as follows:

~r U, ifuemn,
um =
min{w: Vt (w<t<u = t¢m)}, otherwise.
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For this abstraction, the following lemma holds (proof in Appendix A).
Lemma 1. For every m € II, AT(M) is exact with respect to the ACTL* formula in (2).

Since the size of 7 is fixed, our abstraction induces a constant size OBDD. By Lemma 1,
Theorems 6, 3, and 5, we know that our probabilistic abstraction is an e-abstraction, so Graph
Test can be used for checking the validity of (2).

Corollary 1. Let ¢ > 0. Using previous probabilistic abstraction, Graph Test on
CHECK-PARTITION satisfies:
1. If CHECK-PARTITION satisfies specification (2), Graph Test always accepts;
2. If there exists a graph G which has distance more than e from any bipartite graph, bul
which is accepted by CHECK-PARTITION for some coloring Color, then Graph Test rejects
with probability at least 2/3;
3. The time complezity of Graph Test is polynomial in 1/¢ and does not depend on n, the
input size.

4 Lower bound for approximate bipartiteness

In this section, we show how the communication complexity lower bound of Hajnal, Maass, and
Turan [12] can be modified to yield a lower bound on OBDD size for the relaxed version of bipar-
titeness. This establishes that in the case of bipartiteness, reducing the size of the OBDD cannot
be achieved solely by relaxing the exactness of the result. A lower bound for the relaxed version of
connectivity can also be obtained using similar arguments.

A graph G = (V, E) is k-bipartite if there is a set of edges FF C E with |F| < k such that
G' = (V,E\ F) is bipartite. In particular, a graph is 0-bipartite if and only if it is bipartite. The
k-bipartiteness is the following partially defined problem.
Definition 12 (k-bipartiteness). Let k be an integer. The k-bipartiteness problem is a partial
Sfunction [ on graphs G:

F(@) = {1 sz z:s bipartité, |
0 if G is not k-bipartite.

We say that an OBDD solves the k-bipartiteness problem if its output agrees with f whenever

[ is defined. The rest of this section is devoted to proving the following theorem.

Theorem 7. Any OBDD solving the k-bipartiteness problem has width at least
2SU(n=2vk+T)log (n=2Vk+1)) - When | = en?, the width is 2SU(1=2/2)nlog((1-2v/E)n))

4.1 Preliminaries

We denote by SUT the disjoint union of sets S and T. A partition of a finite set S is a set of
non-empty parts Si, Sy, ... whose disjoint union $1US;U - - equals S. The number of partitions of
a set S containing n elements is B,,, the nth Bell number, where B, is 2%(nlogn),

Two kinds of partitions will be considered: partitions of a subset of vertices in the HMT graphs
(defined below), and partitions of the edge variables of the graph (also explained below). To avoid
confusion we call the latter a coloring instead of a partition, and use the letters R (red variables
given to Player I) and Y (yellow variables given to Player II) to denote the color sets. In the
remainder, we only consider colorings which divide the edge variables into two sets of equal size
(plus or minus one).

Let f:{0,1} — {0, 1} be a boolean function which two players wish to compute. Let RUY be

11



a coloring of the N input variables. Player I’s input z corresponds to the variables of R, Player II’s
input y corresponds to the variables of Y. In a one-way communication protocol, Player I sends one
message to Player II, who outputs the value of f(z,y), where it is understood that the variables
are reordered appropriately according to R,Y. The communication x®Y (P; z,y) incurred by a one
way-communicalion protocol P on input z,y for the coloring R,Y is the number of bits sent by
Player I.

For a fixed input length N, the one-way communication complexity of f for coloring R,Y is
&BY(f) = minp max, ,{kEY (P;2,y)}. The one-way communication complezity for the best-case
coloring of variables is k°%*t(f) = min gy {KFEY (f)}.

Let f be a boolean function whose variables are colored by R,Y. The communication matriz
associated with f is the matrix representation My of f, thatis My, = f(z,y). The lower bound on
the width of OBDDs that compute f is related to the communication matrix of f by the following
proposition, proven in [13, Page 144] for general communication complexity, in terms of the rank of
the communication matrix. We state the result for one-way communication complexity, and require
only a lower bound on the number of distinct lines of the matrix.

Proposition 1 (follows from [13, Page 144]).
1. If f has an OBDD of width at most w, then k**(f) < log w.

2. Let My be the communication matriz associated with the boolean function f whose variables
are colored by R,Y. Then k%Y (f) > log(l), where [ is the number of distinct lines in M;.

Since we will study partially defined problems the communication matrices we consider will
have entries 0 and 1 when the problem is defined, and x when the computation can output either
0 or 1. Therefore, when we prove that there is a large number of distinct lines, we only consider
two lines to be distinct if on some column, one line contains a 0 and the other contains a 1.

4.2 The k-partition problem

We introduce the k-partition problem. In Section 4.3 we will show that it appears as a submatrix
of the k-bipartiteness communication matrix.

We denote by [m] the set {1,...,m}. In the rest of the paper, we fix for every integer k > 1, a
set Ey of k+1 bipartite edges from vertices of [2[v/k+1]] in such a way that these new edges only
go between even and odd vertices.

Definition 13 (Figure 1 in Appendix B). Let k,m > 0 be two integers. For any partilion P
of [m], HE denotes the multigraph (where multiple edges are allowed) such that
1. wvertices are the parts of P,
2. there is an edge in H]]% between two parts Q, Q' € P if and only if some edge € € E}, crosses
over Q,Q', that is, e = {a,b}, with a € Q) and b € Q'.
These graphs lead to the following partially defined problem.
Definition 14 (k-partition problem). Let k,m > 0 be two integers. The k-partition problem is
a partial function g on partitions P of [m]:
P — 1 when H*(P) contains k + 1 edges and no odd cycle,
9(P) = 0 when H®(P) is empty.

For any two partitions P, P’ of a set X, PVP' is the finest partition which is refined both by P
and P'. For k-partition problem, the input of Player I is (an encoding of) some partition P, and
the input of Player IT is (an encoding of) a partition P’. The goal of the communication game is
to compute g(PV P'). The corresponding communication matrix is M, whose rows and columns
are labeled by partitions P and P’ of [m]. The number of rows and columns is B,,, the mth Bell
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number (B,, &~ 2™1°96™). We show that M has an exponential number of distinct lines.
Lemma 2. The matriz M has 22(0n=2Vk+D)log (m=2Vk+1)) distinct lines.

Proof. Let P be a partition of the set S. The expression P+ denotes the partition of {z+1|z € S}
obtained from P by adding ! to each element in all parts of P.

To show that the number of distinct lines is large, we exhibit a large subset of lines which are
pairwise distinct. Consider the partitions of the form {{1},...,{2vk + 1}}U(P*+2vk + 1) where
P* is a partition of [m — 2y/k + 1]. These will correspond to distinct lines in M.

Consider two such partitions P, = {{1},...,{2vk+1}} U (P + 2vk+1) and P, =
{1}, {2vE+ 1} U (Py + 2vk 4+ 1). Since Py # P> only on the “second part”, there must
be some pair 2,y such that (without loss of generality) z,y are in the same part of P, but are in
different parts in Pj. Further we will use the notation ), to mean the part of P that contains
z and y, and @z, (), to mean the parts of P that contain z,y, respectively.

We exhibit a partition P' such that Mp, ps differs from Mp, pr. Recall that the new edges
FE; connect only odd vertices to even vertices. Let FVEN, = Ulgkm{%} and ODD; =
Uicicymrri2i — 1}, Let P’ contain the parts FVEN; U {2},ODD; U {y} plus all the remaining
vertices in singletons. Then,

PiVP = EVENUODDUQ: ., {2VE+1+1,...,m}\Qzy
P,vP = EVENUQ,ODDUQ, {2vk+1+1,...,m}\ (Q:UQy)

Now H]lglvp, contains no edges, because all the new edges go between odd and even vertices.
Likewise, H}gzvp, contains a single edge of multiplicity k£ + 1. Therefore the lines corresponding to
P, and P, are different at column P’.

The number of distinct lines must be at least the number of partitions P* of [m — 2k + 1].
This concludes the proof of the lemma. O

4.3 Reduction to k-bipartiteness

In this section, we show that the communication matrix associated with the k-partition problem
appears as a submatrix of the communication matrix of the k-bipartiteness problem (Lemma 4).
For the k-bipartiteness problem, the variables in the communication problem are pairs of ver-
tices: the variable is 1 whenever the corresponding edge is in the graph, and 0 otherwise. Each
player is given half of the variables partitioned according to some coloring. The input of the
communication protocol is the graph formed by the union of edges from the players’ variables.
Hajnal et al. give a reduction from bipartiteness to a property on partitions. We show how this
reduction can be extended to show a lower bound on the relaxed version of bipartiteness by reducing

k-bipartiteness to the k-partition problem. We re-use the main technical component of [12], namely,
HMT graphs.

4.3.1 HMT graphs

The construction of [12] produces a large family of graphs (parameterized by P, P’) that can be
embedded into a coloring of the edge variables, in such a way that Player I's (red) edges represent
a partition P of a set of vertices of size Q(n), and Player II's (yellow) edges represent a partition
P’ of the same set.
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Definition 15 ([12], Figure 2 in Appendix B). Let n > 1 be an integer, and AUBUC C [n]
with |B| = Q(n). Let {Gpp'} be a graph family with vertices [n], where P, P' ranges over the pairs
of partitions of B. {Gpp'} is an HMT graph family on A, B, C for a coloring R,Y if for any pair
of vertices x,y € B included in some part of P (resp. P'), the only edges of the graph G'pp: are
vertex-disjoint red (resp. yellow) paths in AU {x,y} (resp. C'U{x,y}) of length 4.

Lemma 3 ([12]). Fiz any coloring of the edge variable of graphs with vertices [n], with half the
edges colored red and half the edges colored yellow. Then if n is large enough, there exists sets
A, B,C such that there is an HMT graph family on A, B,C for this coloring of the edge variables.

4.3.2 Bipartiteness and partitions

For a coloring R,Y of the edge variables, we show how to construct a large family of instances of
the k-partition problem from a family of HMT graphs for this coloring. A key observation is that
the connected components of an HMT graph Gp pr correspond exactly to the parts of PVP'.
Proposition 2 ([12]). Let {Gpp'} be an HMT graph family on A, B,C for a coloring R,Y . Lel
v, vy € B be two distinct vertices. For any pair of partitions P, P' of B, let G%P, be Gpp' to
which the single edge {vi, vy} has been added. Then G% p, is bipartite if and only if {v1,v2} is not
included in any part () € PVP'. 7

This is because the addition of an edge within a part € PVP' creates an odd cycle in the
graph. No cycle is created if the edge “crosses over” two parts of PV P’ because the parts of PV P’
correspond to connected components of G'ppr.

Without loss of generality, we now renumber the vertices so that B = {1,2,...}. For the k-
bipartiteness problem, instead of adding a single, fixed, edge of B x B to each graph Gp pr, we add
the fixed bipartite set Ej of k+1 edges (see Section 4.2). We call the resulting graph G;% pr-

There are two ways in which an odd cycle can be created in Gppr when adding the k41 new
edges: either by adding an edge within a part of PVP’, or by creating an odd cycle in H]’%vp, (see
Definition 13).

Lemma 4. Let {G%p,} be an HMT graph family on A, B,C for a coloring R,Y .
1. G;CD,P' is bipartite if and only if HllgvP' has k+1 edges and no odd cycle.

2. G%P, is not k-bipartite if and only if H}’%vp, has no edges.

Proof. For the implication of Part 1, we show the contrapositive. If HllgvP' has fewer than k41
edges, then some edge in Fj, lies within a part of PV P’. By definition of G%P'v this creates a cycle
of length 5. If Hlkjvp, contains an odd cycle of length ¢, then this forms a cycle in G%P, of length ¢
plus a multiple of 4. For the converse, notice that the new edges form a bipartite subgraph so they
cannot form an odd cycle on their own.

For the implication of Part 2, we show the contrapositive. Assume that some edge ¢ € E}, gave
rise to an edge in H]]S\/P,. Removing & edges suffices to make G%P' bipartite, because it is enough
to remove all the new edges except e. For the converse, assume H}]%vp, is empty. By definition
the paths in G??,P' are vertex disjoint. Furthermore, the k+1 new edges form a bipartite graph.

Therefore k41 edges must be removed from G;% pr to remove the k41 odd cycles. O

Lemma 4 establishes that the k-partition communication matrix appears as a submatrix of the
k-bipartiteness communication matrix. Theorem 7 therefore follows, by Proposition 1, from the
lower bound on the number of distinct lines, proven in Lemma 2.
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A Proof of Lemma 1

Proof of Lemma 1. The proofis in two parts. First, we will prove that the abstraction which maps
G +— G, and preserves the other variables, is valid for every 7. This is the most difficult part. Then
we show how it can be extended to the complete abstraction.

For convenience, we use a compact representation of relational expressions representing the
transition relation. Each line corresponds to a transition between two control points. The transition
relation is represented by the disjunction of these lines. We use ‘2 — j :” as an abbreviation for
(PC =) A(PC' = j). On any given line, for any pair (v, v') of program variables, if v/ does not occur
in the relational expression, then the atomic proposition (v/ = v) is understood, but omitted from
the compact form. Furthermore, the expression (v/ = #) is used when the value of v/ is unspecified.
This typically occurs after a get instruction, and corresponds to a nondeterministic transition.

The initial states of the transition system of CHECK-PARTITION are (ack = false) A (PC = 1) The
relational expression of the transition system of CHECK-PARTITION is given in compact form by the
disjunction of the following boolean formulas.

1+ 2: (Color’ = x)

25 3: (W =2)

34 (u<n)A (v’ =1)
3—6: (u=n+1)

4—3: (v=u)A(uw =u+1)

4—5: (v<u-1)

5+ 5: G(u,v) A (Color[u] = Color[v]) A (ack’ = true) A (ret’ = false)
5+ 4: G(u,v) A (Color[u] # Color[vl)A (v’ =v+1)

6+ 6: (ack’ = true) A (ret’ = true)

We first suppose that only G is abstracted. Then the operator A transforms only the relational

expression part of transitions 5+ 5 and 5 — 4 into:

5+ 5: (3H (Hr = Gr) A H(u,v)) A (Color[u] = Color[v])

A (ack’ = true) A (ret’ = false)

534 : (3H (Hr = Gr) A H(u,v)) A (Color[ul # Color[vl) A (v’ =v+1)
Fix some n-vertex graph G = (V, F). Suppose there is an accepting path in the abstracted transition
system when the graph input is set to (G, that is, the program variable G takes the value G. Along
the path, when the program counter is 5, there always exists a graph H such that H, = G, so
the system makes the transition 5+ 4. Let G = (V, Ep) be the n-vertex graph whose vertices are
defined by

(u,v) e By <= (u,v) € FE and u,v € 7.

Observe that the transition is also made when the input is GGy. Thus there is an accepting path in
the concrete system when the input graph is Gj.

In the general case, let us consider again an accepting path in the completely abstracted transi-
tion system. Again, one can prove that the abstracted transition 5 > 4 is still made when the input
is Go. Then observe that only the indices of Color in 7 are relevant for this transition. Therefore,
one can fix any value Color, such that CGolor’ = Color . Thus the path of the concrete model
which starts from the initial state G = Gy and Color = Color, is again an accepting path. U
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B Figures

Figure 2: An HMT graph: Q € P, Q',Q" € P'.
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