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Abstract

Predictive complexity is a generalization of Kolmogorov complex-
ity which gives a lower bound to ability of any algorithm to predict
elements of a sequence of outcomes. A variety of types of loss func-
tions makes it interesting to study relations between corresponding
predictive complexities.

Non-linear inequalities between predictive complexity of non-
logarithmic type and Kolmogorov complexity (which is close to predic-
tive complexity for logarithmic loss function) are the main subject of
consideration in this paper. We prove that asymptotically they differ
on sequences of length n in the worst case by a factor equal to log n.
These estimates cannot be improved. To obtain these inequalities we
present estimates of the cardinality of all sequences of given predictive
complexity.

*Computer Learning Research Centre, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, England, E-mail: misha@cs.rhul.ac.uk

tInstitute for Information Transmission Problems, Russian Academy of Sciences,
Bol’shoi Karetnyi per. 19, Moscow GSP-4, 101447, Russia, and Computer Learning Re-
search Centre, Royal Holloway, University of London, Egham, Surrey TW20 0EX, Eng-
land, E-mail: vld@vyugin.mccme.ru

ISSN 1433-8092



1 Introduction

A central problem considered in machine learning (and statistics) is the prob-
lem of predicting future event z; based on past observations zjzg...zi_1,
where 1 = 1,2.... The sunplest case 1s when z; is equal 0 or 1. A prediction
algorithm makes its prediction on-line in a form of a real number p; between
0 and 1. We suppose that the quality of prediction is measured by a specific
loss function A(z;, p;). The total loss of prediction suffered on a sequence of
events 1Zy ...z, is measured by the sum of all values A(z;,p;), 1 =1,...,n.

Various loss functions are considered in literature on machine learning
and prediction with expert advice (see, for example, [8], [1], [10], [12],
[2]). The most important of them are logarithmic loss function and square-
loss function. Logarithmic loss function, A(o,p) = —logp if ¢ = 1 and
Ao, p) = —log(1l — p) otherwise, is considered in statistics as log-likelihood
function, and the corresponding predictive complexity coincides with a vari-
ant of Kolmogorov complexity. Square-loss function A(o,v) = (6 — v)? is
important to applications, corresponding predictive complexity gives a lower
limit to the quality of regression under square loss.

The main goal of prediction is to find a method of prediction which min-
imizes the total loss suffered on a sequence xjxy...x; for « = 1,2.... This
“minimal” possible total loss of prediction was formalized by Vovk [10] in a
notion of predictive complexity. This complexity is a generalization of the
notion of Kolmogorov complexity and gives a lower bound to ability of any
algorithm to predict elements of a sequence of outcomes.

A variety of types of loss functions defines the problem of comparative
study of corresponding predictive complexities. Kalnishkan [4] provided nec-
essary and sufficient conditions on constant coefficients aq, ay and by, by, b3
under which the inequalities

al_fx"l(:zf) + asl(z)+ 1 > K2($) and blKl(;c) + 62_7&"2(,7;) < bsl(z) + ¢

hold for some additive constants ¢1, ¢;. Here K'(z) and K?(x) are predictive
complexities of different types, I(z) is the length of a sequence z. Logarith-
mic KG' and square-loss KG*® complexities can be among K' and K?,
in particular inequality K G*(z) < %I&"Gl”g(:c) + ¢ holds for some positive
constant ¢. Converse inequalities with constant coefficients between these
complexities which can be obtained by Kalnishkan’s method have additive
members of order O(I(z)). To avoid these addends we explore non-linear
inequalities. These inequalities hold up to factor equal to logarithm of the



length of sequence . By its definition below K G'"9(z) coincides with the mi-
nus logarithm of the Levin’s [11] “a priori” semimeasure (see also [5]) which
is close to Kolmogorov complexity K(z) up to addend O(logl(x)). By this
reason and by general fundamental importance of Kolmogorov complexity
we compare KG*(z) with K(z).

To obtain these inequalities we estimate the number of all sequences of
length n with given upper bound % on predictive complexity (Proposition 2).
We deduce from this combinatorial estimation non-linear inequalities between
Kolmogorov complexity and predictive complexity of non-logarithmic type
(Propositions 3, 4). More advanced estimates for predictive complexity are
given in Theorems 3, 4.

Main results of this paper in an asymptotic form are formulated in The-
orems 1 and 2.

2 Predictive complexity

We counsider only simplest case, where events zy, x3,..., ;... are simple bi-
nary outcomes from {0, 1}, nevertheless, our results trivially can be extended
to the case of arbitrary finite set of all possible outcomes {0,1,...,L — 1},
where L > 1. It is natural to suppose that all predictions are given accord-
ing to a prediction strategy (or prediction algorithm) p; = S(x1,x9, ... 2i21).
We will suppose also that our loss functions are computable. The total loss

incurred by Predictor who follows the strategy S over the first n trials is
defined

n

Losss(z1xy. .. xp) = Z Mg, Sz, @, ... Tiz1)).

i=1
The main problem is to find a method of prediction S which minimizes the
total loss Lg(x) suffered on a sequence z of outcomes. In machine learning
theory several “aggregating algorithms” achieving this goal in the case of
finite number of experts were developed [7], [1], [12], [2], [8]

In [10] Vovk suggested a solution of this problem in the case of infinite pool
of “computationally efficient” experts. He introduced a notion of predictive
complezity, which is a generalization of the notion of total loss. A function
KG(z) is a measure of predictive complezity if the following two conditions

hold:

e (i) KG(A) = 0 (where A is the empty sequence) and for every = there
exists a p such that for each ¢ KG(zo) > KG(z) + Ao, p);
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o (ii) KG(x)is semicomputable from above, which means that there exists
a computable sequence of computable functions K G'(z) such that, for

every z, KG(z) = inf; KG'(x).

We fix some (non-computable) predictive strategy A(z) = p satisfying con-
dition (i) and call it wniversal predictive strategy. By definition Loss,(z) <
KG(z) for all .

By Kolmogorov prefix complexity K (.5) of prediction strategy S we mean
the length of the shortest program (under some universal prefix way of en-
coding) computing its values with given degree of accuracy (for details see
[5], Section 3).

Vovk proved that an “optimal” measure of predictive complexity exists
under the same conditions that are sufficient to optimal efficiency of his
aggregating algorithm. According to Vovk’s [8],[10] framework we fix the
learning rate n > 0 and put 8 = e™ € (0,1). Let ¢, be the infinum of all ¢
such that for each simple probability distribution P(v) on [0,1] (i.e. having
a finite domain) there exists a prediction 4 such that

Ao, 4) < clogg > BV P(y) (1)

for all o. If ¢,, = 1 then the corresponding loss function is called n-mixable.
By [8] ¢, =1 for any 0 < n <1 in the case of log-loss function, and for any
0 < n <2 in the case of square difference.

Proposition 1 [10] Let a loss function Aw,p) be computable and n-mizable
for some n > 0. Then there exists a measure of predictive complexity K G(x)
such that for any measure of predictive complezity KG'(x) a constant ¢ exists
such that KG(x) < KG'(z) 4 ¢ for all x, besides this, KG(x) < Losss(x) +
(In2/n) K(S)4+c for each computable prediction strategy S and each x, where
¢ s a constant.

Let some n-mixable loss function is given. We fix some KG(z) satisfying
conditions of Proposition 1 and call its value the predictive complexity of x.

We formulate our results for loss functions from a wide class. We impose
the following restrictions on a loss function A(o, p): There exists a computable
positive real number b such that

e 1) A\(0,p) > bor A(1,p) > b for each p;

o 2) A(0,0) = A(L,1) = 0



¢ 3) the loss function A(o, p) is n-mixable for some n > 0.

The log-loss function and squared difference satisfy these conditions with
b=1and b= i, accordingly.

The inequality KG(z) < (1 4+ v)(In2/n)K(z) 4+ ¢ between complexities
KG(z) and K(z) can be obtained from Proposition 1, where ¥ > 0 be an
arbitrary and ¢ is a positive constant depending on v. To prove it consider
prediction strategy S defined by z such that S(z) = z; for each z of the
length ¢ — 1, where 1 < ¢ <l(z) — 1, and S(z) = 0, otherwise.

We counsider the following additional requirements on loss function. By
these restrictions the square-loss function differs from log-loss function.

e 4) A\(0,1) = A(1,0) = a.

e 5) There exists a computable monotonically increasing function §(e)
such that §(e) > 0 if € > 0 and such that for each 0 < ¢ < 1 and
0<p<1ifA(0,p) <a(l—e)and A(1,p) < a(l—e)then A(0,p) > ad(e)
and A(1,p) > ad(e).

The condition 5) looks unnatural, but it follows from requirement of strict
monotonicity of A(o, p) by p and symmetry condition A(0,p) = A(1,1 — p).

Without loss of generality we can suppose that b > ad(e) forall 0 < e < 1.
We can also prove that b < %a for any loss function satisfying 1) — 5).

The normalized by a > 0 square-loss function A(o, p) = a(o — p)? satisfies
these conditions with d(e) = €2/4.

3 Summary of results

In this section we summarize main results in an asymptotic formm. These
results follow from the results of next section.

Let K G(x) be predictive complexity for a loss function satisfying restric-
tions 1) — 5). Let us define a worst-case ratio function

- K(.r)

The next theorem follows directly from Theorem 3 (below).



Theorem 1 The worst-case ratio function f(n) defined by (2) satisfies

lim ()

n—% Llogn =1
Let .
hn(t) = sup ) (3)
z€By,; N
where i
Buo= {eli(e) = 0 <y n

Define relative complexities comparing functions

h(t) = limnil}l; hn(t) (5)
L(t) = limnsglo)o hn(t) (6)

The following theorem is a direct corollary of Theorem 4 (below).

Theorem 2 Let 0 < e < 5_1(%). The relative complexities comparing func-

tions h(t) and h(t) defined by (5) and (6) satisfy

t 1 t
a(l — e) 8 a(l — e)

~Llog = < h(t) < F(t) < - o),
a

a

when t — 0 (the constant in O(t) depends on €).

4 Non-linear inequalities

In this section we explore some possible connections between Kolmogorov
complexity K (z) and predictive complexity KG(x).

A very natural problem arises: to estimate the cardinality of all sequences
of predictive complexity less than &7 A trivial property of Kolmogorov com-
plexity and predictive complexity for log-loss function is that the cardinality
of all binary sequences z of complexity less than k is bigger than 25~ and
less than 2F for some positive constant ¢. In the case of predictive complexity
of non-logarithmic type the cardinality of the set of all sequences of bounded
complexity is infinite. We can estimate the number of sequences of length n



having predictive complexity less than k. We denote by #A the cardinality
of a finite set A. Let us consider a set

Ak = {yll(y) = n, KG(y) < k}. (7)

In this section we will consider only predictive complexity KG(z) for a
loss function satisfying restrictions 1) — 5).

Proposition 2 Let 0 < € < 1 be a rational number. Then there exists a
constant ¢ such that for all n and k the following inequalities hold

£ ()emmes 5 () £ () o

i<(k=c)/a i<k/b ! (a(1-e)) \*

Proof. Let a sequence x of length n has no more than m ones. Consider
prediction strategy S(z) = 0 for all z. Then by item 4) of restrictions on loss

function there are at least ; (7) of z such that KG(z) < Losss(z) 4+ ¢ <
am + ¢ < k, where ¢ is a constant. Then m < (k — ¢)/a and we obtain the
left-hand side of the inequality (8).

To prove the upper estimate (8) consider the universal prediction strategy
A(z) = p, where p = p(z) is the prediction from the item (i) of definition
of the measure of predictive complexity. We assign some labelling to edges
(2,20) and (z,z1) of the binary tree using letters A, B and C, D as follows.
For any x consider two cases.

Case 1. There is an edge (z,z0) such that Ao, A(z)) > a(1 — €). In this
case we assign C to (z,z0) and D to (z,26), where 6 = 1 if 0 = 0, and
6 = 0 otherwise.

Case 2. Case 1 does not hold, i.e. Ao, A(z)) < a(1 —€) for all o. In this
case we assign the letter A to (z,20) and letter B to (z,z1) if A(0,A(z)) > b
and assign these letters vise versa, otherwise.

Evidently, two different sequences of length n have different labellings.

If some edge (z,z0) labeled by C then A(o, A(z)) > a(1 — €) and, hence,
for any path = of length n having more than a(lk—e) letters C it holds KG(z) >
Lossy(z) > k.

By definition if some edge (z, z0) labeled by A or by B then A(o, A(z)) <
a(l —€) for all 0. Then by item 5) of the requirement on loss function we
have A(o,A(z)) > ad(e) for all 0. Hence, for any path z of the length n
having more than k/(ad(€)) letters A or B it holds KG(z) > Lossy(z) > k.
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Hence, any sequence x of length n, on which KG(z) < k, can have no
more than k/(ad(e)) letters A or B and no more than ﬁ letters C, the
rest part of x are letters D. It also has no more than % letters A.

By means of this labelings, every sequence z € A, can be recovered from
the following pair (a, 3) of sequences. The first element of this pair is the
sequence « of all letters A and B assigned to edges on x in the original order.
This sequence contains no more than % letters A. It is also can not be longer
than k/(ad(€)). The second element of the pair is the sequence 3 of all letters
C and D assigned to edges on x in the original order. This sequence contains
ﬁ letters C. Given these two sequences (a, 3), the whole
sequence z can be recovered as follows. Let 2'™! = xq...2;_1, where 1 < i <

no more than
n, be already recovered by some initial fragments o*~' and 877! of sequences
o and 3. We can place z'~! in the binary tree supplied by new labellings and
so define letters assigned to edges (z'~',2'7'0) and (2'~',2'~'1). Comparing
these letters with o, and 3, we can define which sequence must be used in
recovering of the next member of 2. The corresponding letter o, or 3, of this
sequence determines the member x; of the sequence z.

Note, that the labelling and, hence, our method of recovering are incom-
putable. It gives us only a possibility to estimate the number of elements of
the set A,, . The method of recovering shows that to do this, it is enough to
estimate the number of all such pairs («, 3). It can be estimated as follows:

i<k/b ! (a(1-)) \*
O
Note, that upper estimate (8) is valid when & < min{nad(e),na(l —€)}
(this means that & must be much smaller than n for small €). A less strong
but more simple upper estimate

n
i<k/b \!
can be obtained using an analogous labeling only by letters A and B.
Proposition 3 Let 0 <y <1 and 0 < e < §7'(L).

o (i) If in addition e < % then a positive constant c¢ exists such that for
all x

K(z) < KCE) KG('”)) -

S (logl(:v) — (1 —=9)log aT—0)
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2log (a(sée)) Ki(m) +e (10)

o (it) For all sufficiently large n for all x of length n if KG(z) < Za(l—e¢)
then

n

where H(p) = —plogp — (1 — p)log(1l — p) is the Shannon entropy.

Sketch of the proof. Let us consider the recursively enumerable set A,
defined by (7) above. We can specify any =z € A,; by n, k and the
ordinal number of z in the natural enumeration of A,, ie. K(z) <
log #A, 1 + 2logn + 2log k + ¢, for some constant c¢. After that we make
some transformations of the upper estimate (8) of Proposition 2 and replace
k on KG(xz). For details see Section 6.1. O

Proposition 4 Let 0 <y <1, 0<e< 5‘1(%). Then a positive constant ¢
exists such that for each sufficiently large n and each k < %na(l —€) a binary
sequence x of length n exists such that

E(1—~)1—-¢) < KG(z) <k+c, (12)
K(z) > log (kT/ZG) —1>nH (I{Z;;Ex)> —2logn (13)

and also
K(z) > chx) (logn — log I(ij)) — 2. (14)

Sketch of the proof. We will find « satisfying the condition of this proposi-
tion in the set A, defined by (7). We must estimate minimal &’ such that
#HA g > ((k—t)/a> > 24 A, 1. We show in Section 6.2 that this inequality
holds for all sufficiently large n if & = (k — ¢)(1 — 7)(1 — €), where ¢ is
a constant from lower estimate (8). By incompressibility property of Kol-
mogorov complexity and lower estimate (8) an = € A,y — A, p exists such

that K(z) > log ((k—Z)/a) — 2. After that, using appropriate estimates of



binomial coeflicients and replacing k on k — ¢ we obtain inequalities (12),
(13) and (14). For details see Section 6.2. O

The next corollary from propositions 3 and 4 gives precise relations be-
tween normalized Kolmogorov and predictive complexities. This result is too
technical and it is reformulated in the Section 3 in a more convenient form.

Corollary 1 Let 0 < € < 5“1(%). Then for all sequences x of sufficiently
large length if KG(z) < %na(l — €) then
K(z) < H KG(z) ~log ad(e)\ KG(z) N Tlogl(z)
I(x) a(l—e€)l(x) b bl(x) I(x)
and for each sufficiently large n there is some x of length n such that
K(z) . KG(z)\ 2logl(x)
I(z) — al(x) I(x)
Proof. This corollary follows from (11) and (13). O

Theorem 3 Let 0 < € < min{3,07'(2)}. Then there exists a constant c
such that for all n

l10gn—c§f(n)< ! g10g5(6)—l—c
a

. _
~a(l—c¢) e b
where f(n) is the worst-case ratio function defined by (2).

Proof. The right-hand inequality follows directly from (9). The left-hand
inequality can be derived from (12) and (14) of Proposition 4. It is enough
to let £ = n°. Taking ¢ — 0 we obtain the needed inequality. O

Theorem 4 Let 0 < e < 5_1(%). Then for each real number t < fa(1 — ¢)

H (L) <0 <ho < o (o) - Foe (15)

where h(t) and h(t) are relative complezities comparing functions defined by
(5) and (6).
Proof. This theorem follows directly from Corollary 1. O
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6 Appendix

6.1 Proof of Proposition 3

We will use the following estimates of the binomial coefficients from [3],

Section 6.1. i i
(%) < (k) <(%) (16)

and estimates

2 (i) en(s) "
10g< ) <nH(n) (18)

for any m < 2 and s < n. We use also inequality
) < o0 (19)

fora110<p<%.

Letkﬁ%a(l—e) VVehavealsobg1 ’E)fora116<5 ( ~).

To prove inequality (9) let us consider the recursively enumerable set A, ;
defined by (7). We can specify any = € A, by n,k and the ordinal number
of z in the natural enumeration of A, . Using an appropriate encoding of

all triples of positive integer numbers by upper estimate (8) of Proposition 2
and using (16), (17), (18), (19) we obtain for all x € A,

K(z) <log#A.r+2logn + 2logk + ¢ < (20)
k(k/(ad(e)) k n
o (V) o0 e )+ 2
2logn + 2logk + ¢ < (22)
k k ad(e) k en k/(a(1=e))
st (7))

210gn+210gk—|—c' = (24)

log % + a5]ze)H (G(Sb(e)) +log a(lk_ 512
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kB
a(l—e)

(ﬁ + 2) (log n—(1-7)log a(lk_ €>) - 2?klog aife) +¢,(27)

where ¢, ¢ and ¢’ are positive constants.

Put £ = KG(z) + 2a(1 — €). Then by inequalities (20)-(27), we obtain
in the case KG(J;) < %na(l — e) + Qa(l — e) = a(l — e)(% + 2) the following
inequality

11 58 (g0 ) o) g

k
(logn—{—loge—log (7) + 2logn + 2log k + ¢ < (26)
a

1—¢)

for some positive constant c.

Counsider two strategies Si(z) = 0 and Sz(z) = 1 for all z. Then for
each = of length n it holds Losss, (x) < §n or Losss,(x) < §n. Therefore
the inequality KG(z) < %an + ¢ holds for some positive constant c. If

KG(z) > Za(1 — €) we have for all n and all 2 of length n
K(:U)Sn—}—Zlogn—l—clgglogn—g(l—y)logn—l—qg (29)
KG(z)
a(l—e)
where ¢, ¢y, ¢3 are positive constants. Inequality (9), (10) follows from (29),

(30) when € < 1. Ttem (i) is proved.
Let us consider the item (ii). In the case KG(z) < Za(l — €) inequality

KG(z)
a(l—e)

(logn —(1—7)log — (1 —~)log(2(1 — 6))) + ¢35, (30)

(11) can be obtained by applying inequality (18) to the second binomial
coeficient of (21) as follows.

K(m) < a(;Ee)H (a(slfﬁ)) +nH (ﬁ) + 6logn + ¢, (31)

where ¢ is a positive constant.
Putting £ = KG(z) in (31) and dividing on n we obtain for any e <
67'(L) for all sufficiently large n

K@) H( KG(z) ) | KG) <a5£e)) | Tlogn _

" naf(l —¢)) ' nad(e) , .
() - (50 TR T
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6.2 Proof of Proposition 4

We will find 2 satisfying the condition of this proposition in the set A,
defined by (7). We must find some k' such that #A,x > 2# A, p.

By the upper and lower estimates (8) of Proposition 2 it is sufficient that
k' be satisfy

<(k _"C>/ “> ’ Qisw%%l—e)) <TZ> gzk:/b (kl/((zé(e)))’ (32)

where ¢ is a constant from the lower estimate (8)
We will find & satisfying k' < Za(l — €). By (16) inequality (32) follows
from

!

ke B K
na \ & _ 4k' eb \7 [ena(l —¢)\ 09 K
> (2 ) (o) .
(k — c> — b (a5(e)) ( k! ) a(l—e) (33)

Inequality (33) holds for all sufficiently large n if &' = (k—c¢)(1—~)(1—¢).
Then for each sufficiently large n we have #A, , > 2# A, 1 and

(k—c)1—7v)(1—¢) < KG(z) <k (34)

for all « € App — Ay . We have also k' < %a(l —e)ifk < %na(l —€)+ec.
By incompressibility property of Kolmogorov complexity we have that an
€ App — Ap g exists such that

k—c

K(z) > log ((k _”c>/a) —2>nH ( — ) — 2log n. (35)

Here we used the last inequality on the page 66 of [5]. We obtain also by
(16)

n kE—c E—c¢, k-—c
K(z)>1 -2> 1 - 1 —-2=
K (z) > log ((k’—c)/a) 2 ——logn —— log (36)

ke >_2. (37)

kE—c

a

(log n — log
Now replacing in the proof of the proposition k£ on k + ¢ and putting k& =
KG(z) we obtain from (35) and (37) inequalities (13) and (14). Inequality
(12) follows from (34).
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