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Abstract

This paper studies the existence of efficient (small size) amplifiers for prov-
ing explicit inaproximability results for bounded degree and bounded occur-
rence combinatorial optimization problems, and gives an explicit construction
for such amplifiers. We use this construction to improve the currently best
known approximation lower bounds for bounded occurrence instances of linear
equations mod 2, and for bounded degree (regular) instances of MAX-CUT. In
particular we prove the approximation lower bound of 152/152 for exactly 3-
occurrence E3-OCC-E2-LIN-2 problem, and MAX-CUT problem on 3-regular
graphs, E3-MAX-CUT, and the approximation lower bound of 121/120 for E3-
OCC-2-LIN-2 problem. As an application we are able to improve also the best
known approximation lower bound for E3-OCC-MAX-E2SAT.

1 Introduction

We define Ed-OCC-Ek-LIN-2 as a problem of constructing an assignment that maxi-
mizes the number of satisfied equations for a given system of linear equations modulo
2 (hence LIN-2), where each equation has exactly k variables (hence Ek) and each
variable occurs exactly d times. If we drop an E in the acronym of the problem than
we have “at most d occurrences” or “at most k variables”. Ed-MAX-CUT stands for

the MAX-CUT problem restricted to d-regular graphs.
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In [BK99] an approximation lower bound of 332/331 was proven for E3-OCC-E2-
LIN-2 and 3-MAX-CUT, and in this paper we improve it to 152/151. Moreover, for
E3-OCC-2-LIN-2 we obtain 121/120 lower bound, previously this problem had no
better lower bound than E3-OCC-E2-LIN-2. We also obtain the approximation lower
bound of 788/787 for E3-OCC-MAX-2SAT, an improvement over 2012/2011 lower
bound of [BK99].

We refer to [BK99] for a "wheel-amplifier” method used to get some explicit
bounded degree and bounded occurrence problems. For a survey on explicit approx-
imation lower bounds for small degree (or small occurrence) optimization problems
see [K01], and for some recent work on asymptotic relations between hardness of ap-
proximation and the bounds on a degree or the number of occurrences in optimization

problems see [H00] and [T01].

2 Amplifiers

The notion of an amplifier generalizes the concept of a specific variety of expanders
that are used in proving inapproximability results. This notion was introduced by
Papadimitiou in [P94] (for directed graphs) and it formalizes the construction of
Papadimitriou and Yannakakis of [PY91]. Although not always called that way, the
amplifiers are critical in reducing more “primary” MAX-SNP complete problems to
the problems with bounded degree or number of occurrences.

Definition 1. Consider an undirected graph G' = (V, E). We define
CutiU)={ec F: e¢dUand e V —U} and cut(U) = |Cut(U)].
We say that G is a strong expander if for every U C V we have cut(U) >

We say that G'is an amplifier for X C V if it contains no bad sets for X. A set
A C Vis bad for X if cut(A) < min(|X N A, |X — A]).

An amplifier for X is B-regular if each node in X has B — 1 neighbors and each
node in V — X has B neighbors.

Figure 1: 3-regular amplifiers for |X| = 4,5, 6, solid dots are the elements of X.

The goal of this section is to provide a construction of small 3-regular amplifiers.
In [PY91, P94] there is a description of B-regular strong expanders where B = 80.



Arora and Lund [A95] (see also Ausiello et. al. [ACGT99]) uses a result of Lubotzky
el. al. [LPS88] to obtain a 14-regular strong expander.

To convert a B-regular strong expander with node set X to a 3-regular amplifier
for X, most of the above papers basically do the following: they replace each node x
with a connected node set V. such that x € V.,  becomes a node of degree 2, and
cut(Vy) = B.

This is however not always true as one can see in Fig. 2: a 3-regular strong
expander is transformed into a graph that is not a 3-regular amplifier because it
contains a bad set A such that [AN X| =75 and cut(A) = 4.

The simplest correction of the above error would be to replace each node x of a
B-regular strong expander with a 3-regular amplifier for a set U,U{z} where |U| = B,
and then replace an edge {z,y} with an edge between U, and U,. For example, if
we pick 7 random matchings for the set X then with a high probability the resulting
graph is a 7-regular strong expander, and there exists an amplifier for 8 nodes that
consists of 14 nodes; as a result we can construct an 3 regular amplifier with 14|X|
nodes.

node
replacement,

3

Figure 2: Incorrect amplifier for black dots obtained from a strong ex-
pander, on the right, a bad set is shaded.

However, we can show following [BK99] that an even simpler construction yields
amplifiers with 7|X| nodes, i.e. twice smaller.

The constructions equivalent (or very similar) to our notion of amplifier can be
used in lower approximability bounds of many combinatorial optimization problems
with bounded degree or bounded number of occurrences, and the obtained bounds
are related to the ratio |V|/|X|. Therefore we will use the following definition.

Definition 2.

An amplifier generator G is a randomized polynomial time algorithm that for a
given n returns, with probability at least 1 —n~", an amplifier G(n) for the set

{1,2,...,n}.
A characteristic of amplifier generator G is a number « such that the set

{n: |V(G(n))| > an} is finite.

The d-regular amplification number «y is the largest lower bound of character-
istics of d-regular amplifier generators.



For d > 7 we know that a; = 1 as there exist (d — 1)-regular strong expanders,
for d < 3, ey is undefined because d-regular amplifiers do not exist. In the remaining
cases the value of ay remains an open problem. Below we prove that a3 < 7.

Definition 3. An n-wheel is a graph with 7 x 2n nodes W = Contacts U Checkers,
that contains 2n contacts and 12n checkers, and two sets of edges, C' and M.
(' is a Hamiltonian cycle in which with consecutive contacts are separated by
chains of 6 checkers, while M is a random perfect matching for the set of checkers
(see Fig. 3 for an example).

e contact node

o checker node

Figure 3: A 4-wheel.

In the remainder of this section we prove the following
Theorem 1. An n-wheel forms a 3-reqular amplifier for its sel of 2n contacts with
probability 1 — O(n™?).

An n-wheel fails to be a 3-regular amplifier only if there exists a bad set A, where
being bad means that |A N Contacts | < n and cut(A) < |[AN Contacts |. We need to
show that a bad set exists with probability O(n™?).

If a set A is bad, we say that B = AN Checkers is wrong. We need to characterize
wrong sets. For the remainder of this proof we convert W to a graph with set of nodes
equal to Checkers by replacing each contact u with an edge (later called a contact
edge) that connects the checkers that were adjacent to u. From now on we consider

only this new graph.

Definition 4. For a set B, a'; is the number of contact edges that have exactly
endpoints in B;

ap = min(ag + ag,n);
bg = |Cut(B)N M];
cg = |Cut(B)NC|;

B is wrong if a < n and bg + cg < ap.



Now it suffices to show that the probability that a wrong subset of W exists is O(n™?).
As a preliminary step, we must have some tools to estimate the probabilities in the
random space consisting of perfect matchings. We will use the following definitions.

Definition 5. A set A C W is M-closed iff c4 = 0, i.e. Cut(A)N M = @;

the function p(m) denotes the number of perfect matchings in a clique with 2m
nodes.

Lemma 2.

Proof. By induction on m. For m = 0, there exists exactly one perfect matching.
Now consider a clique with 2m nodes. A fixed node can be matched using any of
the 2m — 1 incident edges. We can complete the construction of the matching by
choosing any of p(m — 1) matchings of the remaining 2m — 2 nodes, thus u(n) =
(2m — Du(m —1).

0

Lemma 3. The probability that a set of 2d checkers is M -closed is p(d) = p(d)p(n —

d)/p(n), or d

H 21 — 1
L1220+ 1
Proof. Straightforward consequence of Lemma 2.

O

Lemma 4. If B is a wrong set, B contains an M -closed subset of size 2dg, where
dB = |—(SB — ap + CgB + ])/2-|

Proof. An M-closed set must have even size. We obtain an M-closed set S by
removing from B all endpoints of the edges from Cut(B) N M, and |S| = sg — bg.
Because B is wrong, —bg > —ap + c¢p, hence |S| > sg —ap +cg + 1. If S is too
large, we can decrease its size by removing endpoints of some edges of M that are
contained in S.

O

Our general method of estimating the probability of a wrong set existing, is to
consider separately cases when a wrong set B has a particular vector of parameters
ag, bg and sg = |B|. For each of them we will

a) estimate the numbers of candidates for a wrong set, such that if a wrong set
exists, than one of the candidates must be wrong as well;



b) find the number of subsets of a candidate B, each of size 2dpg, such that if B is
wrong, than one of these subsets must be M-closed;

¢) multiply the product of the results of a) and b) with the probability p(dp).

While discussing a candidate for a wrong set, say B, we will refer to fragments of
B, connected components of B within cycle C' (note that in the modified W, the cycle
C' consists of checkers only). The following lemma limits the number of candidates
for an M-closed subset.

We will use two ways of estimating the probability that a wrong set exists. The
first one is applied to sufficiently small candidates.

Lemma 5. Fora < n/9, the probability that there exists a wrong set B with ap = a
is O(n=20.6%).

Proof. We formulate the proof for odd value of a, the case of even a is very similar.
We use the following notation: @ = ap is the number of contacts of B (incident
contact edges), f = cp/2 is the number of fragments of B, s = sp is the size of B
and b satisfies the identity a = 1 + 2f + b (note that b > bg).

First we will the upper and lower bounds for s. Consider a fragment of B that
is incident to, say, a, contact edges. This fragment must contain a, — 1 chains of 6
nodes, and portions (possibly empty) of two other such chains on its fringes. Thus it
contains between 6(a, — 1) and 6(a, + 1) nodes. By adding sizes of all fragments, we
obtain 6(a — f) <s < 6(a+ f).

One conclusion that we can draw is that s < 9¢ < n. Another is that s >
6(a—f)=6(14+2f+b—[)) =6f+6b+ 6. The latter implies that B contains an
M-closed set of size 2d = s — b where d > 3f + 2b + 3.

We can generate a candidate B as follows. First, we select f of the “left ends” of
the fragments; this can be done in at most C(12n, f) ways, where C is our notation
for the binomial coefficient. Next, we distribute the sizes of the fragments; because
the sum of sizes is less than n, and all of them are positive, this can be done in less
than C(n, f) ways.

Given a candidate, we can obtain an M-closed set by removing some b nodes, this
can be done in less than C(n,b) ways. Altogether, we generate an M-close set in less

than C(12n, f)C(n, f)C(n,b) many ways, i.e.
f

o f o b o f b
=1 =1

=1

By Lemma 3, each of these candidates is M-closed with probability at most
3f+2b43 3f42b43

2 1 2 1
_ .
11 2r—(2i-1) ° II =

1=1

Note that the latter product has more terms than the first three combined, and that
even the largest of these terms is less than 4a/11.5n < 4a/100a < 1/25.
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We set aside the first three terms of § to get factor O(n™?). Then we combine the
it factors of a, 3 and ~ with the factors of § with numbers 32 4+ 1, 31 + 2 and 37 4 3
respectively. We have still at least f + b factors of § left, and since we estimate them
by 1/25 = 1/15 x 3/5, we get the following overestimate of our probability:

L1126+ 1 li[ 31 6i + 3 ﬁl 3r6i+5 6\ / 1\
S ANEICENTERYE S A CEANIT: B\57 11r < \11 15)

1= =1 =1

Thus the probability that a set with ag = a is wrong is O(?L_B)(G/ll)“_l(zgzl 1571).
O

To tackle the case of larger values of ag we will need another lemma.

Lemma 6. In a wrong set B of minimum size nodes of Cg are not incident to edges
of Cut(B)NC.

Proof. Suppose that a node of Cp is incident to an edge of Cut(B) N C. If we
remove it from B, bg remains unchanged, cp 1s decreased by 1 and ap is decreased
by at most 1 (the later decrease occurs if the edge in question is a contact edge).
Thus we have obtain a smaller wrong set, a contradiction.

O

The next lemma finishes the proof of our theorem.

Lemma 7. The probability that there exists a wrong set B with ap = a > n/9 is
O(n0.81").

Proof. We use variables a, s, cand f as in the proof of Lemma 5. We will overestimate
the number of such candidates for a wrong set B with these parameters in three ways
and take them minimum. The first method, counting in how many ways we can select
2f edges of Cut(B)N C, yields C(12n,2f).

To understand the second method, imagine that we label each edge of Cut(B)NC;
if this edge has its right endpoint in B, we label it <, and otherwise (left endpoint
in B) we label it >. Next, we move each < label to the nearest contact edge to its
right, and each > label to its left. Finally, we move the labels back to their original
positions. The positions of the labels at the time when they are all placed on the
contact edges provides a lower bound on the size of B; a fragment that is incident
to a, contact edges will have its size estimated as 6(a, — 1). (Note that fragments of
B that do not have incident contact edges will obtain the size estimate of —6; this
is because its < label is at this time positioned 6 edges to the right of its < label.)
Therefore the sum of distances that the labels will traverse from their positions on
the contact edges to their correct positions is s —6(a — f) = d. This allows us to select
any B with parameters b and d as follows: first we select the positions of 2f labels
on 2n contact nodes, this can be done in C(2n 4+ 2f — 1,2f) ways; subsequently we
distribute d “units of displacement” to 2f labels, this can be done in C(d+2f —1,d)



ways. Summarizing, the second method is to compute d = s — 6(a — f) and return
C2n+2f—1,0)C(d+2f —1,d).

The third method is very similar, except that we move the labels in the opposite
directions. The resulting formula is identical, except that we compute d differently:
d=6(a+ f)—s.

Note that if we obtain negative d while using the second method, we can conclude
that s is too low to be compatible with @ and f, similarly, negative d in the third
method implies that s is too large. If s is neither too large nor too small, we estimate
the number of the candidates for a wrong set using the minimum of the results of the
three methods described here.

By Lemma 4, B contains an M-closed subset S of size s + 2f — a (plus minus
one). Moreover, by Lemma 6, we may assume that no elements of B — S are adjacent
in C' to the complement of B, hence only s — b nodes may be considered for removal.

Our goal is to show that the probability computed according to the above princi-
ples, and raised to power 1/a, is bounded by 0.81. We achieved this goal as follows.
We define the real parameters of B as follows:

e « such that a = an;

e [ such that 2f = Ban; because we are looking at the parameters of wrong sets,
we know that 0 < a < land 0 < 3 < 1;

o ¢ such that d = {fBan, if a respective counting method (second or third) is
applicable, 0 < ¢ < 3.

Using Stirling’s formula, and the above estimation formula, we can compute
the 1/a power of our probability from the parameters a, 3 and . To consider all
possible cases, we can use parameter values that are multiples of some fraction, say
¢; then, in a subexpression that is an decreasing functions of a parameter, we use
the current multiple, say i€, and in an subexpression that is an increasing function,
we use (¢ 4+ 1)e. This covers the case of all values between ie and (i + 1)e. In our
program, we used the following values for e: 1/20 for £, 1/100 for 5 and 1/2000 for
a. The worst case was obtained for a = 1, 8 = 0.77 and ¢ = 1.15 (d = 4.5755n) and
it equals e~92%1 = (.8041.

O

It remains open whether the same approach may prove a similar result for wheels
with 5 checkers between each pair of contacts. In our attempts we introduced several
parameters, like the number of fragments that are not incident to any contacts. Even
though we were not successful, the logarithm of the target number was estimated to
be 0.03. We believe that with an improved counting method this estimate can be
decreased below 0.



3 Eqg-Reductions

For the purposes of this paper we introduce the following notion that is applicable to
MAX-SNP hard combinatorial optimization problems:

(f(n),g(n)) gap property of problem A means that for every sufficiently
small positive ¢ it is NP-hard to distinguish between two groups of in-
stances of A of size n: those that have no solutions with score above
f(n)+ enj and those that have solutions with score at least g(n) — en.

Of course, this notion of gap property can be easily modified for minimization prob-
lems as well. While not formalized in exactly this fashion, gap properties were widely
used in proving lower bounds on approximation ratios that can be attained by poly-
nomial time algorithms.

For example, Hastad [H97] has shown that if 0 < ¢ < 0.5 then for systems of n
linear equations modulo 2 with 3 variables per equation it is NP-hard to distinguish
between instances where a solution does satisfy n — ¢ equations and instances where
no solution satisfies more then n/2 + ¢ equations. Thus the problem E3-LIN-2 has
(n/2,n) gap property.

Eq-reductions are tools to prove gap properties.

Consider two maximization problem, A and B with objective functions a and
b. An Eq-reduction from A to B has 5 randomized polynomial time computable
functions, 7,¢, v, p and r, in its description:

e instance translation 7 and parameter translation ¢; if « is an instance of A with
parameter n then 7(z) is an instance of B with parameter ¢(n);

e solution normalization v; if y is a solution of 7(X'), then v(u) is another solution

of 7(X) such that b(v(y)) > b(y);

e solution equivalence p and value equivalence r; let Sp(z) be the set of solutions

of an instance z of problem P, p is 1-1 onto function from S4(z) to v(Sg(7(x)))
such that b(p(s)) = r(a(s),n).

Observation 8. Assume that problem A has (f(n),g(n)) gap property and that there
exists an Fg-reduction from A to B with the parameters described above. Then problem

B has (t_l('r(f(n)),n),r(t_l(g(n)),n)) gap property.

3.1 Reducing E3-LIN-2 to 2-LIN-2

We will describe the reduction of Hastad [H97], and later we will alter this reduction
for our purposes.

Consider the following equation modulo 2: z¢ + z; + 22 + x3 = 0. We define the
corresponding system of equations S as follows. We will use indices 7,7 with range
0,1,2,4; original variables z;, auxiliary variables a; and 16 equations z; + a; = b;;

where b;; = 1if 1 = j and b;; = 0 if ¢« # .



For a particular value of © = (zg, z1, 22, 23) let s(z) be the maximum, over different

values of a, of the number of satisfied equations in S. Because of symmetries of S,
3

1=0
negations, the set of satisfied equations does not change, thus it suffices to consider

s(z) depends only on ||z|| = > ,_, #;. Moreover, if we replace all variables with their
the cases when ||z|| < 2.

Case: ||z|| = 0, i.e. z = (0,0,0,0). We have to set a; = 0 to satisfy equations
z; + a; = 0 for 1 # j, which fails to satisfy z; + a; = 1. Thus s(z) = 12.

Case: ||z|| =1, e.g. 2 = (1,0,0,0). We have to set ay = 0 which satisfies all equations
x; + ag = bjy. The equations x; + a; = b;; have the form 1 +ay =0, 0 +a;, = 1,
04 a; =0 and 0+ a; = 0, thus however we set ay, two of them will be not satisfied.
Because the same happens with a3 and a3, we have s(z) = 16 — 3 x 2 = 10.

Case: ||z]| =2, e.g. z = (1,1,0,0). We have to set ag = 0 which satisfies all equations
that include ag except x1 + ag = 0. One can see that each auxiliary variables is a
similar situation, thus, like in case ||z|| = 0, we have s(z) = 16 — 4 = 12.

One can see that s(z) = 12 if zg + 1 + 22 + 23 = 0 and otherwise ss(z) = 10.

Now we can describe a reduction from E3-LIN-2 into 2-LLIN-2. Consider a system
FE of n equations modulo 2 with 3 variables per equation. We define 7(E) by replacing,
one by one, each equation in F. Given an equation w + z 4+ y = b, we view it as
w+x+y+b=0, we create 4 new auxiliary variables and replace it with 16 equations
as described above. Because one of the 4 original variables is actually a constant, we
have 12 equations with 2 variables and 4 equations with 1 variable (which must be
an auxiliary one), thus t(n) = 16(n).

Let x be the vector of the variables of £ and a be the vector of the auxiliary
variables of 7(E). Given a value of (z,a) we can compute v(z,a) by setting each a;
in such a way that a maximal number of equation is satisfied, if the two choices are
equally good, we set a; = 0. Because no equation involves two auxiliary variables,
these value selections can be performed independently and they cannot conflict.

The solution equivalence is p(z) = v(z, d’), observe that v(z,a’) does not depend
in a’. Tt is easy to see that the value equivalence is r(k,n) = 10n + 2k.

Value equivalence 10n+k translates (n/2,n) gap property of E3-LIN-2 into (10n+
n,10n 4+ 2n) = (11n,12n) gap property of 2-LIN-2; of we wish n to refer to the size
of the new instance, i.e. 16n, we got (11/16 n,12/16 n) gap.

Remark, The system 7(E) consists of equations that have 1 or 2 variables. We can
define a similar reduction where we introduce a new variable z, and we first replace
each equation w4+ x4y = b with w+ z +y+ z = b and then replace the new equation
with a system of 16 equations as described above. We will use 7/(F) to denote the
resulting system of equations with exactly 2 variables each. This 7' is used in the

original reduction of Hastad [H97].
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3.2

Hardness of E3-OCC-2-LIN-2 and E3-OCC-E2-LIN-2

The results of this sections follow from the existance of Eq-reductions that are de-

scribed in the following lemma.

Lemma 9. There exists an Kg-reduction R from E3-LIN-2 to E3-OCC-2-LIN-2 with
value equivalence function 119n 4 2k and an Fg-reduction R' from E3-LIN-2 to F3-
OCC-E2-LIN-2 with value equivalence 150n + 2k.

Proof. Given a system of equations E we describe the instance transformation in
seven steps.

(i)

Replicate each equation n times (may be less). View the new system as the
original one (for parameter translation).

For R' only: add z to each equation, view z as an original variable.

For each equation, form a four copies of each original variable it contains and 4
auxiliary variables ag, ..., as, each with 4 copies. Create 16 equations.

For a variable x that has m occurrences, create a 3-regular amplifier with 2m
contacts. Every node in this amplifier is a variable, and each edge is an equation
of the form z; + z; = 0.

Connect m disjoint pairs of contact of the amplifier of z with chorded cycles
made of 8 variables, as shown in Fig. 4, the edges inside the chorded cycles and
that connect the cycles with the amplifiers again have the form z; + z; = 0.
Four nodes of a such chorded cycle that still have only two neighbors form a
group of copies of x.

For each equation of E form 4 auxiliary groups of variable, connect each group
into a 2-regular strong expander (which happens to be a simple cycle).

Replace each equation of £ with 16 equations as in 7 (for R) or in 7’ (for R).
In these equations, each variable occurs 4 times, replace each occurrence with
a copy from the same group.

The solution normalization is described in four stages.

(i)

(i)

In each amplifier /expander make all values equal to the value that is the major-
ity among the contacts, this cannot decrease the number of satisfied equation
by the very definition of an amplifier.

Consider a chorded cycle in which not all values are equal. (a) Suppose that out
of 6 edges/equations that contact this cycle, at least 4 can be made true with
the same value. Then we can convert entire cycle to this value, we will cease to
satisfy at most 2 or the contacting equations and we will start satisfying at least
2 equations inside the cycle. (b) Suppose then that at most 5 of the contact

11



(iif)

(iv)

Figure 4: Part of the gadget replacing an equation with 3 variables. The
other two variables also have their chorded cycles of 8 variables. Empty
circles indicate variables, solid circles indicate equations with just 1 vari-
able, edges indicate equations. We can add variable z to the original
equation to eliminate the equations with 1 variable only.

equations are true. We can convert the cycle to a single value that satisfies at
leat 3 of them, and thus we gain at least two equations inside the chorded cycle
and loose at most two contact ones. (c) All contact equations are true, but
three of them are made true with 0s, and three with 1s. If we convert the entire
cycle to the value of the adjacent big amplifier we gain three equations inside
the cycle. The latter follows from the fact that the chord does not separates
zeros from ones the values in each amplifier are all equal.

Now each cycle and each amplifier is consistent. We normalize the values in the
cycles/amplifiers of auxiliary variables as in the normalization of 7, to maximize
the number of satisfied equations.

Suppose that a chorded cycle of an occurrence of a variable is inconsistent
with the amplifier of this variable. We convert this cycle to be consistent, and
renormalize the auxiliary variables. We gain 2 equations that form the contact
of the cycle with the variable amplifier, and we loose at most 2 equations (among
16 equations that replaced an equation with 3 variables, we satisfy 10 or 12, so
we could drop by at most 2).

The solution equivalence is simple: the value of x is given to all variables in its

amplifier and in the chorded cycles of its occurrences, once this is done for every

original variables, we compute the values of the auxiliary variables to maximize the

number of satisfied equations.

It remains to calculate the value equivalence.

We started with F that had n? equations and 3n? variable occurrences. In reduc-
tion R’, we add z to each equations, which makes 4n? variable occurrences.

For each equation, we made 16 equations, of which 12 are satisfied if the equation

was satisfied, and otherwise only 10.

In these 16 equations, we have 16 occurrences of auxiliary variable that are con-

nected into simple cycles, thus creating 16 satisfied equations.

12



An occurrence of an original variable has a chorded cycle with 9 equations, 2
equations connecting it with its amplifier. A wheel amplifier has 10 equations for
each contact, so this occurrence needs 20. The total number of equations for an
occurrence 1s 9 + 2 4+ 20 = 31.

In Eg-reduction R, for each original equation we created 16+16+44+3x31+16 =
125 equations. In a normalized solution that satisfies the original equation we satisfy
12 4+ 16 4+ 3 x 31 = 121, and otherwise we satisfy two equations less. Thus the value
equivalence is r(k,n) = 119n" + 2kn.

In Eg-reduction R’ we have need to add 31 satisfied equations, thus we produced
156n* equations and the value equivalence is r(k,n) = 150n* 4 2kn.

O
We conclude that (n/2,n) gap property of E2-LIN-2 implies (120/125n,121/125n)
gap property of E3-OCC-2-LIN-2. and (151/156n,152/156n) gap property of E3-
OCC-2-LIN-2.

By using the same approach as in [BK99], we can extend the result for E3-OCC-
E2-LIN-2 to an identical result for 3-MAX-CUT. Thus we can formulate this conclu-

sion as follows.

Theorem 10. For every ¢ € (0,1/302), it is NP hard to approzimate E3-OCC-
FE2-LIN-2 and E3-MAX-CUT to within a factor 152/151 — ¢ and to approximale
FE3-OCC-2-LIN-2 to within a factor of 121/120 — .

3.3 Hardness of E3-OCC-MAX-2SAT

Theorem 11. For everye € (0,1/787), it is NP hard to approzimate E3-OCC-MAX-
25AT to within a factor 788/787 — e

Proof. We will use a modification of Eq-reduction from E3-LIN-2 to E3-OCC-E2-
LIN-2. The description of this Eqg-reduction is simpler if we represent it as a com-
position of two reductions by introducing a special problem 1-E2-LIN-2-IM. In this
problem we maximize the number of satisfied Boolean constraints in a given mixed
set of constraints being linear equations mod 2 and implications, where each variable
occurs in exactly 3 constraints and each constraint depends on exactly 2 variables;
the following restriction is crucial: each variable occurs once in equation modulo 2,
once as a left-hand-side of an implication and once as a righ-hand-side.
Lemma 12. There exists an Fq reduction from 1-E2-LIN-2-IM to F3-OCC-MAX-
2SAT with value equivalence n + k.
Proof. We replace, one by one, each equation. Suppose that we have equation
1 + y1 = b and implications g — x; — x5 and yy — y1 — y2. We describe the case
of b =1 in detail, the case b = 0 is similar.

The replacement clauses are xg — x1 — =] — z2, Yo = v1 — Yy — y2, v1 V 1
and -z V -yt (in the case of b = 0, the latter two clauses are x{ — y; and yi — 1).
Here, the superscript a indicates the auxiliary copies.
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The size translation is the following: 2/3 n clauses are implications and they are
unchanged, and 1/3 n clauses are equations, and they are replaced with 4/3 n clauses,
thus we get a system with 2n clauses.

The solution normalization also proceeds step by step (in reverse order). Without
changing the values of other variable we will assure that z; = 2} and y;, = y{. If
To # T4 then we can set 7 = z{ to be either 0 or 1 without decreasing the number
of satisfied implications in the chain of z’s. If zy = x4, we set o = 2, = z{, and all
implications in the chain are satisfied. We do the same for y's. If either z, or y; has
freedom of choice, we can assure x; # y; and both 2, Vy, and —2%V —y{ are satisfied.
If neither z; nor y; is free to choose, exactly one of the last two clauses is unsatisfied,
and all other clauses are. It is easy to see that however we would alter the values of
x’s and y’s, we would fail to satisfy one of the implications, so such alteration cannot
be superior.

The solution equivalence is obvious—make each z® equal to x. It is also ease to
check that if we start with a solution that satisfied k clauses, we get a solution that
satisfies n + k.

O
Now consider an instance of E3-OCC-E2-LIN-2 that was obtained as 7/(.S) in the
proof of Lemma 9, where S is a system of n equations. For every equation of S with
3 variables, 7(5) contains

(i) 16 equations that correspond to the equations used by Hastad,;

(ii) 4 4-tuples of equations that correspond to the auxiliary variables in the 16-tuple
above;

(iii) 4 chorded cycles that contain 9 equations each;
(iv) 4 times 2 equations that connect a chorded cycle to an amplifier;

(v) 4 times 20 equations in the amplifier that correspond to occurrences of the
original variables (and the variable that is used as zero).

We modify this plan as follows:

e cach 4-tuple (a square) of an auxiliary variable is replaced with a cycle of 8
implications that has two equalities as chords (see Fig. 5, left);

e cach chorded cycle is replaced with a cycle of 18 implications that has five
equalities as chords (see Fig. 5, right);

e cach node that does not belong to a square or a chorded cycle is replaced with
a cycle of three implications.

Let us compute the modified parameter translation. We started with a system S of
n equations, 7'(S) has 156n equations, then 4 times we eliminated 2 equations from
a square and 4 equations from a chorded cycle, thus we eliminated 24n equations to

14



N
I

Figure 5: The implication/equation gadgets for a square of an auxiliary
variable (on the right) and for a chorded cycles (on the left). Black dots
indicate the variable/nodes that are taking part in the external equations,
arrow indicate implications and thick lines indicate internal equalities.

get 132n equations. Because the new system of clauses has two implications for every
equation, the total size is 396n. The goal of the solution normalization is to assure
that all implications are satisfied, i.e. that each implication cycle has one value only.
Our approach is to consider the cycles one at the time, and if needed, modify the
values on the cycle, but without modifying any variable values outside.

First, we make sure that all equations involving variables of the cycle are satisfied.
When we change a cycle variable to do so, we can decrease the number of satisfied
implications by at most 1, and we increase the number of satisfied equations.

Next, we convert all values on the cycle to the majority among contacts (variables
that participate in the external equations) or to 0 if the value split is even. We need
to show that the the minority among the contacts is not larger than the number of
contiguous groups to which the minority belongs that the minority forms (the latter
is the number of violated implications).

We start with cycles of length 3. The correctness is obvious because the minority,
if any, has only one contact. Once we are done with these cycles, we use the properties
of the amplifiers to make all values in each amplifier equal.

It is easy to see that a necessary condition for a minority of contacts to be bad
— to belong to fewer contiguous groups than its size — we must have a contiguous
group that contains at least 2 contacts of the minority. This reduces the analysis of
a square to one case only: two adjacent corners and the non-contact that separates
them have the same value; because the equality of that noncontact is satisfied, we
have the minority value between the two elements of the majority, thus at least two
contiguous groups.

When we normalize a chorded cycle, the contacts that participate in the equalities
with the amplifier must have the same value, say 0, because the amplifier was nor-
malized. If the entire bottom row has value 0, then the other contacts are pairwise
separated by the variables with value 0, so we cannot have a bad set of contacts. This
shows that if the minority is formed just by the two bottom contacts, there must be
at least two minority groups. Thus we may assume that the bottom contacts are in
the majority. Note that in the remaining case the minority must have at least two
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groups: one that contains their contacts, and one in the bottom row. So the minority
can be bad only if it has 3 contacts and only one group outside the bottom row.
However, in this case we have the third minority group: the variable between the
bottom and the majority element at the top.

Now we can finish the normalization in the same manner as in reduction R'. One
can see that the value equivalence is similar as in reduction R’, except that we have
fewer satisfied equalities in a normalized solution, fewer by 24n, and we have more
satisfied implications (there were none before), more by 264n, so instead of 150n 4 2k
we got 390n + 2k.

Our actual reduction composes this reduction with the one in Lemma 12, so we
need to compose the two value equivalences, i.e. apply n + k to 390n + 2k. The new
k, the number of satisfied clauses, i1s 390n + k, and the new n, the number of all
clauses, 1s 396n. Therefore the overall value equivalence is 786n + 2k, which translates
(1/2 n,n) gap into (787n,788n) gap, or, after normalization, (787/792 n,788/792 n)
gap.

O

4 Open Problems

The 3-regular amplifiers were not studied extensively yet, and little is known about the
least possible size of a 3-regular amplifier, i.e. the exact value of a3. Any improvement
below 7 would instantaneously improve lower bounds for numerous combinatorial
optimization problems. The same question applies for d-regular amplifiers for 3 <

d<T.
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